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Abstract: Most of multiple criteria scheduling problems are 
NP-hard, so that exact procedures can only solve small problems 
and with two criteria. The complexity and the diversity of multiple 
criteria scheduling problems resulted in many alternative approaches 
to solve them. Exact and approximate procedures proposed in the 
literature are mainly dedicated to the problem to be solved and their 
performance depends on the problem data, on the criteria optimized, 
and are generally difficult to implement. We propose in this paper 
a Tabu Search approach to multiple criteria scheduling problems. 
The proposed procedure is a general flexible method, able to solve 
hard multiple criteria scheduling problems, easy to implement, and 
providing a set of potential efficient schedules. The criteria are any 
combination chosen from (Cmax, Tmax ,I, Nr and F). 

K eywords: scheduling, multiple criteria, Tabu Search. 

1. Introduction 

Most of research in production scheduling is concerned with minimization of a 
single criterion. However, scheduling problems often involve more than one as-
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scant attention has been given to multiple criteria scheduling problems, espe­
cially in the case of multiple machines. This is due to the extreme complexity 
of these combinatorial problems. A comprehensive survey of multi-objective 
scheduling problems is in preparation (Loukil and Teghem, 1998). 

Hoogeveen (1992) and Chen and Bulfin (1993) studied the complexity of 
the single machine bicriteria and multiple criteria problems. They concluded 
that only problems including flow time as primary criterion, in a hierarchical 
optimization, and problems minimizing flow time and maximum tardiness can 
be solved in polynomial time. All other problems are either shown to be NP hard 
or remain open as far as computational complexity is concerned. Obviously, the 
problems including more than one machine and two criteria are more difficult. 

Metaheuristics, like Simulated Annealing, Tabu Search and Genetic Algo­
rithms have demonstrated their ability to solve combinatorial problems such as 
vehicle routing, production scheduling, time tabling, etc. Recently, some au­
thors suggested to adapt metaheuristics in order to solve multi-objective com­
binatorial (MOCO) problems. Fortemps et al. (1995) and Ulungu et al. (1999) 
present the MOSA algorithm for solving combinatorial optimization problems, 
and an interactive version was recently designed (Teghem et al., 2000). Of other 
authors: Ben Abdelaziz, Chaouachi and Krichen (1997) proposed a MOTS al­
gorithm for the multi-objective knapsack problem; Hansen (1997) - a general 
adaptation of Tabu Search to the multiple criteria problems; Jaszkiewicz (1997) 
-a metaheuristic approach to the multi-objective nurse scheduling; Gandibleux 
et al. (1998) - a MOTS procedure based on the preference modeling. Loukil 
et al. (1999) adapted the MOSA method to solve multi-objective scheduling 
problems. 

Since scheduling problems are also combinatorial problems, applying the 
metaheuristics to production scheduling with multiple criteria is suitable (see, 
for instance, Neppali et al. , 1996). 

In this paper we propose a general heurist ic method, based on multi-objective 
Tabu Search (MOTAS), able to tackle general multiobjective combinatorial 
problems. 

Another aim of this paper is to show how such a method can be used to 
solve complex multiple criteria scheduling problems. 

The suggested procedure is composed of two embedded heuristics: 

- the first -called the scheduler- is a conventional one meant to build a 
feasible schedule; 

- the second - called the optimizer - is the MOTAS method. 

The aim of this general procedure is to generate a list of potentially efficient 
schedules. 

The paper is organized as follows: Section 2 gives a description of the MO­
TAS heuristic for a general MOCO problem. The multiple criteria production 
scheduling is considered in Section 3 and the procedure "scheduler-optimizer" 

. .. .. .. 
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2. A multiobjective Tabu Search a lgorit hm: MOTAS 

2.1. The problem 

We focus on the analysis of a MOCO problem (P) with the general form: 

"min" zk(x), k = 1, ... , K, 
xES 

where S is a finite set of feasible solutions. 
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(P) 

A solution x• E S is efficient for (P) if there does not exist any other so­
lution x E S such that: zk(x) ~ zk(x*), k = 1, . . . , K, with at least one strict 
inequality. Then, the vector z(x*) is said to be non-dominated in the space of 
objective functions. 

Let E(P) denote the set of all efficient solutions to a problem P. The aim 
of the MOTAS method is to determine a good approximation, denoted by PE, 
called the set of potentially efficient solutions, i.e. the generated solutions which 
are not dominated by any other generated solution. As in the MOSA method 
(see Ulungu et al., 1999), the method will require consideration of some weight 
vector .A = (.Ak, k = 1, .. . , K; Ak > 0 Vk and L:~==l Ak = 1) in order to 
aggregate, in a way defined below, the different objective functions. 

2.2. Basic concepts 

Let Xn be a current solution at iteration n. 
N(xn) is a neighborhood of Xn· 
A subneighborhood SN(xn) is made by randomly selecting K1 neighbors. 
Tabu list length is K2 with K2 < K1. 
Let Yi and Yi be two solutions in SN(xn)· tl.k(yi) = Zk(Yi) - Zk(xn) (resp. 

tl.k(Yj) = zk(Yi)- Zk(Xn)) is the variation of the objective function k. While 
moving from Xn to Yi ( resp. Yi), three possibilities can be considered. 

1. tl.k(Yi) ~ tl.k(Yi) Vk E {1,2, ... ,K} with at least one strict inequality: 
solution Yi dominates solution Yii 

2. tl.k(Yi) ~ tl.k(Yi) Vk E {1,2, . .. ,K} with at least one strict inequality: 
solution Yi is dominated by solution Yii 

3. k,k' E {1,2, ... ,K} such that: tl.k(Yi) < tl.k(Yj), tl.k'(Yi) > tl.k•(Yi); in 
this case, neither Yi dominates Yi> nor Yi dominates Yii this situation is 
specific to the multiple criteria framework. 

Among the non-dominated solutions in SN(xn), it is necessary to define a 
method for selecting the "best" neighbor for Xn · Thus, solution Yi is "better" 
than solution Yi if its modification vector tl.(yi) is smaller than the modification 
vector tl.(yj) based on the infinite norm: 
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where Rk is the range of the kth objective function for all non-dominated neigh­
bors of Xn: 

Rk = mk- Mk 

Rk = max(m~x(zk(Yi ) ), Zk(xn))- min(min(zk(Yi)), Zk(xn)). 
t t 

An aspiration value is defined by the equation: 

A( ) 
, Zk(Y)- Zk(Xn) 

y = maXAk M 
k mk- k 

A*= min A(x) 
xEPE(>.) 

2.3. Principles of the MOTAS algorithm 

2.3.1. Determination of PE(.>.) 

The following procedure is applied to generate a set of potentially efficient so­
lutions P E(.>.). 
Initialization: Draw at random an initial solution xo, evaluate Zk(xo) Vk; 
PE(.>.) = {xo}; 
Mk = 0; mk = zk(xo) Vk; 
Parameters K 1 > K2 ; Parameter N (maximum number of iterations); T = 0 
(tabu list) ; n = 0. 
Iterative Procedure: 
Xn - current solution; 
8 = 0. 
Generate randomly K1 neighbors: Yi (i = 1, ... , Kl) is a neighbor of Xn· 
For each i < K1: 

• If Yi is dominated by any x E P E(.A) do i = i + 1 
• If Yi is non-dominated by all x E P E( .>.), then update P E( .>.) by includ­

ing Yi 

- If Yi is non tabu 

~ If 8 = 0: Xn+l +- Yi and 8 = 1; 

~ If 8 = 1 and A(yi) < A(xn+l): Xn+l +- Yi· 

- If Yi is tabu 

~ If 8 = 0 and A(yi) <A*: Xn+l +- Yi; 

~ If 8 = 1 and A(yi) <min( A*, A(xn+l)): Xn+l +- Yi· 

Do i = i + 1; 
If i = K 1 : update Mk, mk , A* and tabu list 
while n < N don= n + 1; 
End ifn = N; 
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REMARK We use here sampling as neighborhood operator to generate the so­
lutions Yi, i = 1, ... , K 1 • Clearly, other neighborhood operators can also be 
implemented in MOTAS. 

2.3.2. Generation of P E 

The weights have a significant influence on the generation of P E ( >.). As a matter 
of fact, because of the use of a scalarizing function, a given weight set >. induces 
a privileged search direction on the efficient frontier: the procedure generates 
only a subset of potentially efficient solutions in that direction. 

Unfortunately, a lot of solutions of P E( >.) appear to be dominated by some 
other solutions obtained with another weight set X and belonging to P E("X) and 
vice versa. 

Though the weight set induces a privileged direction, it is possible to obtain 
solutions not in this direction. These solutions are often dominated by some 
solutions generated with other weight sets. 

The procedure which allows us to obtain a good approximation P E to E(P) 
is as follows: 

• A widely diversified set of weights is considered: different weight vectors 
>.(l), l E L, are generated where>.(!) = (>.~1 ), k = 1, ... , K) with>.(!) ~ 0 Vk 

and 'L:~=l >.~1 ), Vl E L. This set of weights is uniformly generated (see 
Ulungu et al., 1999) . For each of them, the procedure described in Sub­
section 2.3.1 is applied to obtain ILl lists PE(>.(1)). 

• The set Ul~11 P E( >. (l)) is filtered by pairwise comparisons in order to re­
move the dominated solutions. This filtering procedure is denoted by /\. 

Finally, 

ILl 
PE = 1\ PE(>.(l)). 

1=1 

REMARK A data structure like quad tree (Habenicht, 1982) can be used to 
efficiently manage the filtering procedure. 

3. Multicriteria production scheduling problems 

It can be interesting to study the efficiency of the MOTAS method on different 
MOCO problems. For instance, we are currently working on the comparison 
between the MOSA method of Ulungu et al. (1999) and the MOTAS method on 
multiple objective assignment problems and multi objective knapsack problems, 
analysing the quality of the approximations PE obtained with these respective 
methods. 

The aim of the present paper is different: we want to prove that the MOT AS 
method can be useful in the analysis of complex multi objective production 
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3.1. The scheduling problems 

The problems considered can be classical flow job of job shop (see, for instance, 
French, 1982) or even more complex flexible job shop. An example of such a 
problem is given in El Maqrini and Teghem (1996). It consists of the schedule 
of n jobs with several operations on a network of machines in series and in 
parallel. Each machine can perform a set of possible operations and each job 
is characterized by a set of ordered operations; the processing times of these 
operations are known and can depend on the machine used. The configuration 
of the workshop gives several possible routings for each job. 

Many additional constraints are considered in El Maqrini and Teghem (1996): 

- non null ready dates of jobs, 
- variable delay between two successive operations of a same job, 
- dependent set-up times between two operations on a machine, 
- waiting stocks of finite capacity in front of each machine, 
- maintenance periods of the machines. 

Our aim is to consider such models with several regular criteria such as the 
makespan (Cmax), the mean flow time (F), the maximum and mean tardiness 
(Tmax, T), the number of t ardy jobs (Nr) (for a definition of these criteria, 
see French, 1982), and to generate an approximation PE of the set of efficient 
schedules. 

3.2. Particularization of MOTAS method 

In this specific framework, several elements of the MOT AS method described in 
Section 2 must be particularized: 

- a solution x is described as an order of the n jobs, . 
a neighbor solution is obtained by t he permutation of two successive jobs, 
the cardinality K 1 of the subneighborhood is equal to [n/k1] with k1 < n, 
the length K 2 of the tabu list is defined by [n/ k2] with k1 < k2 < n. 

3.3. The scheduler 

To obtain the evaluations zk(x), k = 1, ... , K, of a solution on the different 
criteria, it is necessary to associate to the order of then jobs corresponding to x, 
a real feasible schedule of the different operations on the machine configuration, 
in respect of the different constraints. This is the role of the scheduler. So, the 
scheduler is a heuristic dedicated to build a feasible solution from an ordered 
list of jobs. Each job is considered successively in this order and, by applying 
logical rules, its operations are assigned to the possible machines respecting the 
different constraints. 

An example of such scheduler is described in details in El Maqrini and 
Tee:hem (1996): the scheduler provides a feasible schedule of all the jobs, satis-
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corresponding to an ordered list of jobs i.e. to a solution x - is evaluated and 
the objective function values Zk(x), k = 1, . . . , K, are determined. 

3.4. The couple Optimizer-Scheduler 

This scheduler is coupled with the MOTAS method, playing the role of opti­
mizer, as described in Fig. 1. 

List of fixed 
order of jobs 

OPTIMIZER: MOTAS --~)• {List of potential 
1..-----------~ efficient schedules 

Figure 1. The proposed model 

At each iteration of MOTAS, two jobs are chosen randomly and their posi­
tions in the ordered list are exchanged; the new ordered list of jobs is proposed 
to the scheduler. The general rules of MOTAS are applied to generate a set of 
potentially efficient schedules. 

4. Computational results 

The proposed method has been tested on many problems taken from the lit­
erature dealing with multi-objective scheduling problems (problems on a single 
machine, problems of open shop, flow shop and job shop). Almost all the 
efficient sequences already obtained in the literature are generated by the MO­
TAS software. Sometimes, better solutions than those found by other proposed 
heuristics are generated. The number of efficient sequences ranges from one to 
eight for the tested problems for a number of jobs limited by 15 (Table 1). 

We present here the results for two of these problems (n = 10, m = 5) 
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Criteria 
n = 10, m = 5 n = 20, m = 5 

CPU (sec}2 IPEI CPU (sec) IPEI 
Cmax 1 F 59 5 115 3 
Cmax 1 T 44 4 230 6 
Cmax, Tmax 50 2 150 5 
Cma.x 1 Nr 53 2 177 2 
F,T 45 2 177 2 
F, Tmax 55 3 265 2 
F,Nr 39 1 170 2 
T, Tmax 48 1 110 1 
T,Nr 49 3 141 2 
Tmax 1 Nr 44 4 180 1 
1 I PEl is the number of potentially efficient solutions 
2 On a Pentium 166 Mhz 

Table 1. Test of the software (CPU and jPEj1) for different criteria. Number 
of weights' sets = 5. Max number of iterations = 50. Neighborhood size = 5. 

Tabu list length = 2. 

n = 10, m = 5 n = 20, m = 5 

Criteria ILl= 5 ILl= 10 ILl =5 ILl= 10 
'Y 'Y 

o:l/ /31 0:2//32 o:1 I /31 0:2//32 

Cmax 1 F 5/4 0 5/2 3/0 0 5/5 
Cmax 1 T 4/0 0 8/4 3/1 0 6/5 
Cmax 1 Tmax 2/1 1 6/6 5/1 0 4/4 
Cmax 1 Nr 2/2 0 3/2 2/1 1 2/2 
F,T 2/0 0 7/7 2/2 0 3/3 
F, Tmax 3/1 0 3/3 2/1 0 3/3 
F,Nr 1/1 0 2/1 2/0 0 2/2 
T, Tmax 1/0 0 2/2 1/1 1 1/1 
T,Nr 3/3 0 2/0 2/0 0 2/2 
Tmax, Nr 4/2 0 3/2 1/1 1 1/1 

Total 27/14 1 41/29 23/8 3 29/28 

0:1 = IE1(P}I is the number of potent ially efficient solutions for ILl= 5; 
o:2 = IE2(P)I is the number of potent ially efficient solutions for ILl= 10; 
'Y = is the number of solutions included in E1 ( P) n E2 ( P); 
{31 =is the number of solutions of E1(P) included in E1(P)AE2(P}; 
/32 = is the number of solutions of E2(P) included in E1 (P)AE2(P). 

Table 2. IPEI/N = 10 versus N = 20/ILI = 5 versus ILl= 10. Max number of 
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[P(1 - T- R/2), P(1 - T + R/2)], where T is the tardiness factor, R is the 
control factor of the range of due dates (we used R = 0.4 and T = 0.6), and 
P = (n + m- 1)p' with p' being the mean execution time of a job operation. 

Logically, the CPU time increases with the number of jobs. It also increases 
with the maximum number of iterations, the number of weight sets and the 
tabu list length. 

The number of potentially efficient solutions does not always increase with 
the number of jobs. It increases with the maximum number of iterations, the 
neighborhood size, the number of weights' sets, and tabu list length. 

We made many other experiments for different values of parameters: number 
of the weight sets, the maximum number of iterations, the neighborhood size 
and the tabu list length. We just present in Table 2 the results for two values 
of ILl, 5 and 10. 

The results confirm that the quality of the obtained solutions depends largely 
on the number of weight sets. The user has therefore to find a compromise 
between the quality of solutions and the CPU times. 

5. Conclusion 

In this paper we described the principles of the MOTAS method and its imple­
mentation for the multi-objective scheduling problems. The proposed method 
can deal with all the general problems and gives a set of potentially efficient 
solutions. More experiments are still necessary to obtain strong conclusions 
on the performance of the MOTAS method. Nevertheless, it appears already 
that MOTAS constitutes a useful approach for approximating the efficient set 
of scheduling problems in reasonable CPU times. 

This method is general, flexible , easy to implement and it allows the decision 
maker to modify easily the parameters of the method. Furthermore, for real 
applications, an interactive version of the algorithm - similar as in Teghem 
et al. (2000) - can be used so as to take into account the decision maker's 
preferences. 
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