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Abstract: Vector minimization of a relation F valued in an or
dered vector space under a constraint A consists in finding x 0 E A, 
wo E Fxo such that wo is minimal in FA. To a family of vector 
minimization problems minimizexEX F(x, y), y E Y, one associates 
a Lagrange relation L(x, ~, Yo) = UyEY(F(x, y) - ~(y) +~(yo)) where 
~ belongs to an arbitrary class 3 of mappings. For this type of prob
lem, there exist several notions of solutions. Some useful character
izations of existential solutions are established and, consequently, 
some necessary conditions of optimality are derived. One result 
of intermediate duality is proved with the aid of the scalarization 
theory. Existence theorems for existential solutions are given and 
a comparison of several exact duality schemes is established, more 
precisely in the convex case it is shown that the majority of exact 
duality schemes can be obtained from one result of S. Dolecki and 
C. Malivert. 
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tions, duality. 

1. Introduction 

A basic notion of vector optimization is minimality (or maximality) with respect 
to a partial ordering. Let C be a convex cone of a real vector space W. Suppose 
that C is pointed (i.e. C n (- C) = {0}) so that the relation 

(1) 

defines an order (strict or broad) on W. In vector optimization there exist sev
eral notions of optimality. All of them may be expressed in terms of minimality 
with respect to a properly chosen cone defined with the aid of C. An element 
a0 of a subset A of W is a minimal1 point of A (with respect to the order (1)), 

1Such points are called "efficient" in vector optimization. 
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whenever 

(ao - Go) n A= 0, 

where Go = C \ {0}. We denote by mine A the set of minimal points of A . It 
turns out to be very useful to represent this set as 

mine A = A n lA, (2) 

where !A = {w: (w- Go) n A = 0}, Dolecki and Malivert (1988). In the main 
part of this paper, we shall be concerned with the family of vector minimization 
problems 

minimize F(x , y), yE Y, 
xEX 

(3) 

where F is a relation from X X Y toW (F C (X X Y) x W). Let T be a topology 
on X, 2 the discrete topology on Y and Be the cyrtology on W generated by 
the lower closure with respect to Go. A family 8 of subsets of a set W is called 
a cyrtology, if, for every subfamily A of e, n A E e. An element Xo E X is 
called a T-local existential solution of (3) at Yo if there exists a T-neighborhood 
Q of xo such that F(xo,Yo) n mineF(Q,yo) 'I 0, where F(Q,yo) stands for 
UxEQ F(x, Yo). The epigraph of a relation n C Z x W (with respect to C) is 
the set 

epi !1 = { ( z, w) E Z x W : w E Dz + C}. 

It is known (from Dolecki 1980A, B, and 1988), in the univocal and scalar case, 
that a point xo of X is aT-local solution of (3) at Yo if and only if there exists a 
T-neighborhood Q of xo such that (yo, F(xo, Yo)) E Fr,xv((epi F)Q), where Fr A 
denotes the boundary of A and v is the usual topology on the real line JR. We 
extend this result to the multivocal and vector case. We prove (Theorem 2.1) 
that xo is a T-local existential solution of (3) at Yo if and only if there exists a 
T-neighborhood Q of xo such that 

( {yo} x F(xo , Yo)) n Fr,xoc ( ( epi F)Q) 'I 0. 

We give some sufficient conditions for the existence of a locally convex topology 
satisfying a similar characterization (Proposition 2.4). The latter, besides some 
conditions which guarantee the separation of Hahn-Banach, enables us to get 
necessary conditions of optimality (Proposition 3.1). We provide also some 
characterizations of those convex cones C with inta C 'I 0 and for that (W, C) 
is a Riesz space, Corollary 2.4 and Corollary 2.5. The set inta C denotes the 
algebraic interior of C . 

In Section 4, we introduce a new duality concept, namely intermediate dual
ity. The marginal relation <I> for (3) is a multifunction from Y to W defined by 

<I>y = F(X , y) = U F(x , y) . (4) 
xEX 
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Let 3 be a family of mappings from Y to W. The (definite) lagrangean at y0 

(of F with respect to 3) is defined by 

L(x,e,yo) = U (F(x,y)- e(y) + e(Yo)), (5) 
yEY 

where e belongs to 3. The (definite) marginallagrangean at Yo is defined by 

A(e,Yo) = U(<I>y - e(y)+e(yo)), 
yEY 

where <I> is the marginal relation of (3). Observe that for each e E 3, 

A(e , yo) = L(X,e,yo) and <I>yo c A(e,yo). 

(6) 

The duality approach consists in comparing the sets mine <I>yo and mine A(e, yo) 
and similarly the sets infe <I>yo and infe A(e, yo). In order to define a not ion of 
infimum (resp. supremum), we need a notion of closure of a set with respect to 
order (1), introduced by S. Dolecki and C. Malivert (Dolecki, 1990; Dolecki and 
Malivert, 1988, 1993). We shall denote 

clt A = HA and cl(; A= liA, 

where j A = { w : ( w + Go) n A= 0}. Accordingly, wo E clt A if and only if, for 
every w E wo + Go, ( w - Go) n A =f. 0 and symmetrically for cl(; A. If A = clt A 
(resp. A = cl(; A), then A is said to be upper closed (resp. lower closed). We 
define the infimal points of A as the minimal points of the upper closure of A: 

infe A = mine(clt A). 

Analogously, supe A = maxe(cl0 A)=- infe( -A) is the set of supremal points 
of A (where maxc A = An j A). 

In the case of one dimensional space W = IR, each bounded set A has upper 
bound and sup A E clv A , where clr A denote the closure of A with respect to 
the topology r , thus sup A is a limit of a sequence of elements of A. Hence 
when, for instance, min <I>yo = sup~ES inf A(e, Yo) then there exists a sequence 
(en) c 3 such that min <I>yo = limn inf A( en, yo). We suggest here to extend this 
result to vector case. For that, we define different notions of 3-intermediate 
duality with the aid of the cyrtology Be and our contribution to this problem 
is the Theorem 4.1. Our approach is based on the theory of scalarization, on 
some results of convex analysis and some results of lower semicontinuity of 
intersection. 

Finally, we shall pay special attention to exact duality. Using classical ap
proaches such as lagrangean and conjugate approaches , several duality results 
for problems satisfying some constraint qualification and convexity assumptions 
were obtained (see for instance Nakayama, 1984; The Luc Dinh, 1989; Li and 
Wang, 1994; and Song, 1998, and the references therein) and also some re
sults of 3 -exact duality according to Dolecki and Malivert (1993), formulated in 
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terms of vector 2 -subdifferentiability. The Luc Dinh (1989) introduced the ax
iomatic duality. In particular, the lagrangean duality considered by S. Dolecki 
and C. Malivert (1993) is an axiomatic duality. The exact axiomatic dual
ity results require assumptions for the existence of some optimal solutions or 
some constraint qualifications, like Slater type, Abadie type, Cottle type or 
Mangasarian-Fromovitz for linear problems, see Meada (1994). We obtain some 
results on the existence of existential solutions of (3), Proposition 5.1, gener
alizing in this way the result of The Luc Dinh (Corollary 5.1) and we derive 
also some existence results of weak (resp. proper) existential solutions of (3) , 
Corollary 5.2 . In the sequel we shall deal with a special form of families of vector 
minimization problems, namely vector mathematical progra;mming 

minimize f(x) , yE Y; 
xEX 

g(x)n(y - K)o/0 

(7) 

where f C X x W, g C X x Y and K is a pointed convex cone of Y with 
nonempty interior. The aim of Proposition 5.2 is to explore the relationships 
between assumptions of Dolecki and Malivert (1993, Thm. 3.4) which guarantee 
existence and positivity of the lagrangean multiplier of the objective multifunc
tion and constraint qualifications existing in the literature. Hence, the exact 
duality results of The Luc Dinh (1989, Thm. 3.6) and of H. Nakayama (1984, 
Thm. 2.1) follows directly from Proposition 5.2 and Theorem 3.4 of Dolecki and 
Malivert (1993). 

2. Characterizations of existential solutions 

Before we present the precise statements, let us recall some basic notions and 
definitions. A family B of subsets of a set W is called a cyrtology if, for every 
subfamily A of B, n A E B, where n A = nAEA A. Taking for A the empty 
family, it follows that W belongs to every cyrtology. The closure of asubset A 
of W, with respect to B, is the set 

cleA = n{F E B: Ac F}. 

The interior of A, with respect to B, is defined by 

inte A= (de Ac)c, 

where Ac stands for the complementary set of A in W, and the neighborhood 
system Ne is a map from W to 2 w (the set of all subsets of W) defined by 

A E Ne(w) {:}wE inte A. 

For each w E W, N9 ( w) is a semifilter (a possibly empty family A such that 
0 f/. A and AEA, A c Dimply DE A) and every element ofNe(w) contains w 
(Greco, 1985). A subset A of W is called B-closed if cle A= A. A subfamily 
r.p of a cyrtology B is an intersectional base for B whenever, for every A C W, 



Optimality conditions and duality schemes in vector optimization 843 

clo A = n { C E r.p : A c C}. A subfamily fJ of No ( w) is called its base if, for each 
Q E No ( w), there exists B E fJ such that B C Q. A cyrtology 8 is said to be 
finer than a cyrtology a (a:::; 8), if every a-closed set is 8-closed. In particular, 
every topology (identified with the family of its closed sets) is a cyrtology. The 
topologies are precisely those cyrtologies that contain the empty set and are 
stable for finite unions. Let (W, S) be an ordered set, i.e. a set W endowed 
with a binary relation S which is reflexive, anti-symmetric and transitive. An 
element wo E W is said to be a majorant (resp. minorant) of A if a S w0 (resp. 
a~ w0 ), whenever a EA. If wo is a majorant (resp. minorant) of A such that 
w0 S z (resp. w0 ~ z) for any majorant (resp. minorant) z of A then w0 is 
unique and called the supremum ( resp. infimum) of A; the notation is wo = V A 
(resp. w0 = AA). Order intervals are defined by 

[x,y] = {z E W: x S z S y} where x,y E Wand x S y. 

A subset A of W is called order bounded if A is contained in some order interval. 
A vector lattice (or Riesz space) is an ordered vector space in which x V y and 
x 1\ y always exist, see Schaefer (1971) and Luxemburg and Zaanen (1971). It 
is well know from Schaefer (1971, Chap. V, 1.2) that if W is a real vector space 
ordered by a generating convex cone C such that, for each pair (x, y) E C x C , 
either x V y or x 1\ y exists, then (W, C) is a Riesz space. We say that a cone C 
of W is generating if W =C-C. 

Let W be a real vector space ordered by a convex cone C and denote by 
Ne ( w0 ) the neighborhood system of wo generated by the lower closure cl(; 
with respect to Go. Then the family Bw0 = { w + Co}wEwa-eo constitutes a 
base of Ne ( wo), see Dolecki ( 1990) and Dolecki and Mali vert ( 1988). The topic 
of the following proposition is to answer the question under which assumptions 
the equality T+8e = 8e holds, where T+Be denote the upper topology of Be; 
that is- the coarsest topology which is finer than Be. 

PROPOSITION 2.1 Let W be a real vector space ordered by a generating pointed 
convex cone C which contains the origin and Be is the cyrtology on W generated 
by the lower closure with respect to Go . Then, the following conditions are 
equivalent: 

(i) r+Be = 8e, 
(ii) (W, C) is a Riesz space. 

Proof. (i) ==> (ii). Let ( c1, c2) E C x C. 
• If c1 = 0 or c2 = 0, then c1 and c2 are comparable and therefore c1 V c2 

and c1 1\ c2 exist. 
• Suppose that (c1,c2) E Cox Go. In view of (i), Bo = {-c+ Co}cEea is a 

neighborhood base of 0 for the topology T+Be . It follows that 

(-cl+ Go) n ( -c2 +Go)= -c +Go for some c E Co . 

Thus, c = c1 1\ c2 exists and consequently c1 V c2 exists. 
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(ii) ::::} (i). Observe first that the inequality Be ::; T+Be is always true. Now, 
let wo E W. We need only prove that the family 13w0 = { wo - c + Go} cEeo, 
which is a neighborho~d base of wo for Be, is stable for finite unions. Let, for 
that, C1, c2, ... , Cn E Co. As (W, C) is a Riesz space, then 

n 

U(wo- Ci +Go)= 1\ (wo- ci) +Go= wo- V ci +Go. 
i=l 

It follows, since V l::S:i::S:n Ci E Co, that u:l ( Wo - Ci +Go) E 13. • 
Consider now the family of vector minimization problems (3). The epigraph 

of the relation F (with respect to C) is the set 

epiF = {(x,y,w) EX x Y x W: wE F(x,y) + C}. 

We shall look here at epi F C X x Y X W as a relation from X to Y x W and 
we shall give some useful characterizations of existential solutions. 

THEOREM 2.1 Let Be be the cyrtology on W generated by the lower closure with 
respect to Go. If C is pointed, then an element xo of X is a 7-local existential 
solution of (3) at Yo if and only if there exists a 7-neighborhood Q of x 0 such 
that 

( {yo} X F(xo, Yo)) n Fr,xo0 ( ( epi F)Q) ":i 0. 

Proof. Let Q be a 7-neighborhood of xo and w0 E F(xo, Yo) be such that 
(yo,wo) E Fr,xo0 ((epiF)Q). Consequently, for any wE wo- Go, {y0 } x (w + 
C) C/.. (epiF)Q. Since (epiF)Q has the property: 

(y,ro) E (epiF)Q and r1 E ro + C => (y,r1 ) E (epiF)Q, 

the condition above amounts to 

V (yo,w) ~ (epiF)Q. 
wEwo-eo 

Therefore, (F(Q,yo) +C) n (wo- Go)= 0 which is equivalent to showing that 
wo E mine F(Q, Yo), seeing that C is pointed. 

Conversely, let Q be a 7-neighborhood of xo such that F(xo, Yo) n 
mine F(Q, yo) contains at least one element wo. Then, (F(Q, Yo) + C) n 
(wo- Go) = 0. Now we will show that (yo,wo) E Fr,xo0 ((epiF)Q). Let 
wE wo- Go. Since woE clo0 (wo- Go) then (w +Go) n (wo- Go) "I 0 and 
let z E (w +Go) n (wo- Go). One has thus (yo, z) E {yo} x (w + C0 ) and 
(yo,z).~ (epiF)Q, hence (yo,wo) ~ int,xo0 ((epiF)Q). On the other hand, 
(yo,wo) E (epiF)xo C (epiF)Q. It follows that (yo,wo) E ({yo} x F(xo,Yo)) n 
Fr,xo0 (( epi F)Q). • 

Since a global existential solution of (3) at Yo amount to a o-local existential 
solution of (3) at yo, where o designates the trivial topology on X, we have 
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COROLLARY 2.1 Let Be be the cyrtology on W generated by the lower closure 
with respect to Go. If C is pointed, then an element xo of X is a global existen
tial solution of {3) at Yo if and only if ( {yo} x F(xo, Yo)) nFr,xec ( ( epi F)X) =I 0. 

COROLLARY 2.2 Let ( be an arbitrary topology on Y and Be be the cyrtology 
on W generated by the lower closure with respect to Go. If C is pointed and x 0 

is a r-local existential solution of {3) at yo, then there exists a r-neighborhood 
Q of xo such that 

({yo} X F(xo,Yo)) nFrc:xec((epiF)Q) =I 0. 

Proof. Since (X Be::; z X Be then Frzxilc C Fr(xllc· • 
CoROLLARY 2.3 Let Be be the cyrtology on W generated by the lower closure 
with respect to Go. If C is pointed and if there exists a r-neighborhood Q of x 0 

such that ({yo} x F(xo,Yo)) n Fr,xT+ec((epiF)Q) =I 0, then Xo is a r-local 
existential solution of {3) at yo . 

. Proof. The result stem from z x Be ::; z x T+Be and Theorem 2.1. • 

We now are interested in conditions that assure the existence of a minimal 
topology CI satisfying the equivalence; an element x 0 of X is a r-local existential 
solution of (3) at y0 if and only if there exists a r-neighborhood Q of x 0 such 
that ({yo} x F(xo,Yo)) nFr,x.,.((epiF)Q) -f 0. Proposition 2.2 states that, in 
the case of Riesz spaces, there exists a family consisting of order intervals and 
generating a locally convex topology. It turns out that such topology, which we 
denote by Cie, satisfies the above characterization for local existential solutions 
of (3) with respect to the cone Ca = inta C U {0}, where inta C designate the 
algebraic interior of C. We recall that the algebraic interior of a subset A of W 
is the set 

intaA={aEA: V 3 V a+..\wEA}. 
wEW >.o>O >.E(O,>.o) 

(8) 

An element x 0 of X is called a r-local existential weak solution of (3) at y0 

if it is a r-local existential solution of (3) at y0 with respect to the cone Ca. 
Denote by 8;; the cyrtology on W generated by the lower closure cl8;;. 

For the promised existence result of the topology Cie we need the following 
notions and definitions. A family B of subsets of a set W is a filter base if 
B -f 0 and 0 f/. B, and if B1 E B and B2 E B there exists B3 E B such that 
B3 c B 1 n B2. Let now A and B be subsets of a real vector space W. We say 
that A absorbs B if there exists ..\0 > 0 such that B C ..\A whenever ..\ 2:: ..\0 . 

A subset A of W is called radial if A absorbs every finite subset of W. A subset 
A of W is circled if ..\A C A whenever ..\ E ( -1 , + 1]. Recall that if A is a 
nonempty subset of W, then 
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1) A is convex ::::} (inta A is convex and inta(inta A) = inta A). 
2) 0 E inta A<=? (A absorbs { w} whenever wE W). 
3) A is radial <=? 0 E inta A. 
4) 0 E inta A=::::} cone(A) = W, 

where cone( A) denotes the cone generated by the set A, i.e. cone( A) = U.x>o .\A. 
Suppose, now, that W is a real vector space ordered by a convex cone C. In 
this case, the order interval between x and y (with respect to C) can be written 
as [x, y] = (x +C) n (y - C). Every order interval is convex, and every order 
interval of the form [-x, x] is circled. An element e E W such that [-e, e] is 
radial is called an order unit of W. 

REMARK 2.1 If inta C =f. 0, then every element of inta C is an order unit of W 
and C is generating in W. 

Indeed, let e E inta C then 0 E ( -e + inta C) n (e- inta C)= inta[-e, e). 

The following proposition, asserting the existence of locally convex topology 
on every Riesz space W ordered by a convex cone C such that inta C =f. 0. 

PROPOSITION 2.2 Let W be a Riesz space ordered by a convex cone C such that 
inta C =f. 0. Then, the family B = {inta[-e, e] : e E inta C} is a neighborhood 
base of 0 for a unique locally convex topology ac such that (W, ac) is a real 
locally convex space. 

Proof. Observe, initially, that inta [ -e, e] = ( -e + inta C) n ( e- inta C). We 
verify the assumptions of theorem from Schaefer (1971, Chap. I, 1.2). 

-First, we show that the family B is a filter base. Since 0 E inta[-e, e] for 
any e E inta C, B =f. 0 and 0 (/.B. Let, now, e1 and e2 be two arbitrary elements 
of inta C and put e = e1 I\ e2. We check, at first, that e E inta C. For that, let 
w E W, then there exist >.. 1 , >. 2 > 0 such that, for each i = 1, 2, we have 

ei +.\wE C for all.\ E [0,.\i)· 

If we pick .\o = min (.\1 , .\2) > 0, then for any i E {1, 2} and any .\ E [0, .\o] 
we obtain ei + .\w E C. Hence, we get for any .\ E [0, .\o], e + .\w E C. On 
the other hand, [-e, e] C [-e1 , e1] n [-e2, e2] and consequently inta[-e, e] C 

inta[-el, el] n inta[-e2, e2]· 
- Now, take any e E inta C. It is obvious that e/2 E inta C and since 

[-e/2, e/2] + [-e/2, e/2] C [-e, e], we conclude that inta[-e/2, e/2] + 
inta[-e/2, e/2] C inta[-e, e]. 

-Next, let e E inta C. As [-e, e] is convex, the set inta[-e, e] is convex and 
inta(inta[-e,e]) = inta[-e,e] so it contains 0 and therefore inta[-e,e] is radial. 
Besides, [-e, e] is circled so it's the same for inta[-e, e]. Thus, we obtain the 
desired result with theorem from Schaefer (1971, Chap. I, 1.2). • 

The following proposition explores the relationships between the cyrtol

ogy Be and the topology ac. 
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PROPOSITION 2.3 Let W be a Riesz space ordered by a convex cone C such that 
inta C =/; 0. Then, B;; ::::; ae and consequently 

ae = T+B;; V T+B{:;l = 8;; VB{:;)· 

Proof. In this setting, we notice that the cone C is pointed and generating. 
First, we shall show that B;; ::::; ae. To see this, let A C W and w0 E clo-c A. 
Before, note that wo + inta [ - e, e] = inta [wo- e, w0 + e] and therefore the family 
{inta[wo - e, wo + e] : e E inta C} is a neighborhood base of wo for ae. Take 
now e E inta C, then by hypothesis 

0 =/; inta [wo - e, wo + e] n A c ( wo - e + inta C) n A. 

Hence, w0 E clo,:; A which prove that every 8;;-closed set is ae-closed. 

Next, it suffices to prove that ae ::::; 8;; V B{:;l because, in view of the 

Proposition 2.1 and the first part of this proof, we have T+B;; = B;;, T+B~) = 

B~) and 8;; V B{:;l ::::; a e. From Proposition 2.1, we deduce that 8;; and B{:;l 
are topologies. Besides, by definition, 81 = { -e + inta C} eEint. e (resp. 82 = 

{ e - inta C} eEint. c) is a neighborhood base of 0 for Be (resp. B{:;J)· It follows 
that the family B = {inta[-e, e] : e E inta C} is a neighborhood base of 0 for 

the topology B;; VB~) and consequently ae = B;; VB~). • 

REMARK 2.2 The equality T+B;; = ae does not always hold because the topol
ogy ae is separated whenever the cone C is pointed but (in general) that is not 
the case for the topology T+ B;;. 

Using the topology ae, we get the following characterization of local exis
tential weak solutions of (3). 

PROPOSITION 2.4 A point xo of X is a r-local existential weak solution of (3} 
at y0 if and only if there exists a r-neighborhood Q of xo such that 

( {yo} x F(xo, Yo)) n Fr,xo-c ((epi F)Q) =/; 0. 

Proof. {;::) It results from 2 x B;; ::::; 2 x de and Theorem 2.1. 
==:.)Let Q be a r-neighborhood of xo such that F(xo,Yo) n mine;; F(Q,yo) 

contains at least one element wo. Then, (F(Q,yo) +C) n (wo- intaC) = 0. 
Now we prove that (yo,wo) E Fr,xo-c((epiF)Q). Let e E intaC. Since WoE 
clo,:; ( Wo - inta C) then ( Wo - e + inta C) n ( wo - inta C) ¥ 0 and let z E ( Wo -
e + inta C) n ( Wo - inta C). On the other hand, Wo - inta c c Wo + e - inta c 
it ensues that 

(yo, z) E {Yo} x inta[wo- e, wo + e] and (yo, z) rf. (epiF)Q 

proving that (yo,wo) rf. int,xo-0 ((epiF)Q). Moreover, (yo,wo) E (epiF)xo C 
(epiF)Q and therefore (yo,wo) E ({yo} x F(xo,Yo)) nFr,xcrc((epiF)Q). • 
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REMARK 2.3 A point xo of X is aT-local existential weak solution of (3) at Yo 
if and only if there exists wo E F(xo, yo) such that (xo, Yo, wo) is a ( T, 2 X ac )
singular point of epiF that is not a (T,2 x ac)-regular point of epiF. We 
say that a point (xo, Yo) is a regular point of a relation n c X X y whenever 
the inverse relation n- {f!- = { (y, X) : (X, y) E f2}) is lower semicontinu
OUS at (yo,xo). A relation n c X X y is called lower semicontinuous {l.s.c.) 
at (xo, Yo) if, for each neighborhood V of yo, n-v is a neighborhood of xo. 

At this stage, it may be helpful to characterize the convex cones C of W 
satisfying intaC =f. 0 and for which W is a Riesz space. In the case of locally 
convex separated spaces, G. Choquet (1969) provided some examples with the 
aid of the simplex theory. Let B be a compact convex subset of W and putting 
B = cone(B x {1}) that is the cone generated by the set B x {1} in W x JR. 
We say that B is a simplex if the vector space B - B ordered by B is a Riesz 
space. Recall that a base of a convex cone C is a convex subset B of C such 
that C = cone(B) and 0 (j. clB. Let C and D be two convex cones. We say 
that C is isomorphic to D if there exists a one-to-one mapping r.p : C --+ D 
such that r.p(.Ac) = .Ar.p(c) whenever .A > 0, r.p(c1 + cz) = r.p(c1) + r.p(c2) and 
c2- c1 E C-{::} r.p(c2)- r.p(ci) E D. 

Let us quote the following result of G. Choquet: 

PROPOSITION 2.5 (Choquet, 1969, Chap. 6, § 28.3) Let W be a real locally 
convex separated space and C C W a convex cone with a compact base B. 
Then, Go is isomorphic to B. Especially, the vector space C - C is a Riesz 
space if and only if B is a simplex. 

COROLLARY 2.4 Under the assumptions of Proposition 2.5, if inta C =f. 0, then 
W is a Riesz space if and only if B is a simplex. 

Proof. =?) Since W is a Riesz space, then C is generating and further, in 
view of Proposition 2.5, B is a simplex. 

~) Since inta C =f. 0 then C is generating. • 

It is worthy of note that, in finite dimensional space, for instance on JRn, a 
simplex has a more simple and concrete geometric property. A simplex S of JRn is 
the convex hull of (n+ 1) points a0 , a1, ... , an such that a1- ao, a2- ao, ... , an
a0 are linearly independent. The points ai are called the vertices of S. For 
example, a subset S of JR2 is a simplex if and only if it is a triangle. A simplex 
of JRn has always a nonempty interior (Ioffe and Tihomirov, 1979, Chap. 3, 
§ 5.2). A closed half space of W is a set of the form H ={wE W: l(w) 2: 0}, 
for some l E W* (where W* is the topological dual space of W). A polyhedral 
cone of JRn is the intersection of a finite number of closed half spaces. A subset 
A of W is called an affine subspace of W if A = a + L, where a E W and L 
is a vector subspace of W. The dimension of A is, by definition, equal to the 
dimension of L. The set aff(A) denotes the affine subspace generated by A that 
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is the intersection of all affine subspaces of W that contains A and the dimension 
of A is equal to the dimension of aff(A). 

A characterization of Riesz spaces, in finite dimensional case, is given by 

COROLLARY 2.5 Suppose that JRn is ordered by a convex cone C with a closed 
bounded base B. Then, JRn is a Riesz space if and only if B is a simplex if and 
only if C is a polyhedral cone of dimension n. 

At the end of this section, let us consider the special form of families of 
vector minimization problems 

minimize f(x ), y E Y; 
xErv 

(9) 

where f c X x W and r c Y x X. Formula (9) constitutes a special case of (3) 
with 

F(x, y) = { ~(x) if X E fy 
otherwise. 

It is clear, in this case, that 

epiF = {(x,y,w) EX x Y x W: x E fy and wE f(x) + C}. 

In other words, ( epi F)x = r- x x (! ( x) +C) and therefore ( epi F)X = ( epi f)r, 
the composition of the relations rand f. In the general setting (3), the relation 
epi F is intimately related to the marginal relation ~ of (3) by ( epi F) X = 
<P + {0} X C. 

3. Optimality conditions 

Suppose that (Y, () is a real locally convex separated space and W is a Riesz 
space with order corresponding to a convex cone C such that inta C =f. 0. Con
sider the family of vector minimization problems (3) and the class 3 of((, a-c)
continuous linear operators from Y toW (i.e. L(Y, W)) . We denote by C* the 
topological dual cone of C in W*, that is 

C* = {8 E W*: B(c) 2: 0 for all c E C}. 

Using the topology ac, the Proposition 2.4 and the fact that ( x ac :S z x ac 
we can get the following 3-exact duality result (necessary optimality conditions) 
which is valid for any convex cone C such that inta C =f. 0 and not necessarily 
open. 

PROPOSITION 3.1 Suppose that ( epi F)X is convex and {y0 } x ( <Py0 + C) n 
int(xO"c((epiF)X) =f. 0. If an element xo of X is a global existential weak 
solution of (3) at y0 , then there exists ~o E 3 such that xo is a global existential 
weak solution of minimizexEX L( x, ~o, Yo). 
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Proof. We adopt a similar proof to that of Theorem 3.4 of Dolecki and 
Malivert (1993). Let woE F(xo,Yo) be such that (yo,wo) E Fr<;xu0 ((epiF)X), 
then (yo, wo) ~ int<;xuc (( epi F) X). By virtue of the Hahn-Banach theorem, 
there exist A E Y*, f..L E W* with (A, f..L) =/= (0, 0) such that 

J.L(w- wo) + .\(y- Yo) 2:0 for all (y,w) E (epiF)X, and (10) 

f..L(w- wo) + .\(y- Yo) > 0 for all (y,w) E int(xu0 ((epiF)X). (ll) 

By putting y = yo in (10) and since wo E <I>yo, we get 

J.L(c) = J.L(wo + c- w0 ) 2: 0 for all c E C. 

On the other hand, there exists w E <I>yo + C with (yo, w) E int<: x uc ( ( epi F)X). 
Thus, by (ll) , we have J.L(w- w0 ) > 0 and consequently f..L E C* \ {0}. Therefore 
we can choose e E inta C such that J.L(e) = 1 and define eo E 3 by eo(y) = 
-.\(y)e. Note that wo E F(xo, yo) C L(xo, eo, Yo) C A( eo, Yo). It remains to 
prove that 

A(eo, Yo) n ( wo - intaC) = 0. 

If not, there exist Yl E Y and W1 E <I>y1 such that w1 - eo(Yl) + eo(Yo) E 
w0 - inta C. Since J.L(e) = 1, f..L E C* \ {0} and inta CC {wE W: B(w) > 0 for 
all B E C* \ {0}}, we get f..L(wl- wo) + .\(y1- Yo) < 0 which contradicts (10) 
and hence wo E mine;; A( eo, Yo). • 

4. Intermediate duality 

Consider the family of vector minimization problems (3). When the 3-exact 
duality lacks at a point y0 of Y, then it may be useful to look for the existence 
of a filter F on 3 such that every element of mine <I>yo may be approximated 
arbitrarily well by some elements of {mineA(e,vo)}F (resp. {infeA(e,yo)}F, 
{lA(e,yo)}F). Another interesting question is under which assumptions, for 
each element w0 of mine <I>yo, there exists a filter Fw0 on 3 such that wo may 
be approximated arbitrarily well by some elements of {mine A( e, Yo)} F ( resp. 

wo 
{infe A(C Yo) h , {lA(e, Yo) h ). We underline the fact that the intermediate wo wo 
duality we consider is formulated in terms of the cyrtology Be and of an arbitrary 
class 3 of mappings from Y toW. Let F be a filter on 3. A relation .6. C 3 x W 
Be- adheres (with respect to F) to a subset A of W if, for each w0 ~ A, there exist 
wE w0 - C0 and FE F such that (w +Go) n .6.F = 0, where .6.F = UEEF .6.e. 
We denote by Lim(F- ,o;;) .6. the smallest subset of W to which .6. Be-adheres. 

We say that an existential (resp. universal, strict) 3-intermediate duality2 holds 
at y0 whenever there exists a filter F on 3 such that 

mine <I>yo n Lim(F- ,o;;) (infe A(., Yo)) =/= 0, (12) 

2 We may contemplate other concepts ofB-intermediate duality by substituting, in formulae 
(12), (13) and (14), infcA(.,yo) by mincA(.,yo) or 1A(., yo). If we replace minimality by 
weak (resp. proper) minimality, we get the weak (resp. proper) B-intermediate duality. 
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(resp. 

mine <T?yo C Lim(.:F- ,o;;)(infe A( ., Yo)), 

mine <T?yo = Lim(.:F- ,o;;) (infe A(., yo)) ). 
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(13) 

(14) 

We say also that the approximate 3-intermediate duality 3 holds at y0 if, for each 
wo E mine <T?yo , there exists a filter Fw0 on 3 such that 

woE Lim(.r- 11 -)(infe A(., Yo)). 
WQ ' C 

In order to formulate our intermediate duality result, · we begin by listing 
various useful scalarization results in the convex case. Suppose that W is a 
real locally convex separated space ordered by a non-trivial convex cone C with 
nonempty interior. We use int C to denote the topological interior of C . A subset 
A of W is C-convex if A+ C is convex. A function () : W ----+ lR is called strictly 
increasing (resp. strictly decreasing) (with respect to C) if 

w1 E wo + int C =? O(wl) > O(wo) (resp. O(w1) < O(wo)) . 

LEMMA 4.1 If() E C*\{0}, A is a nonempty subset of Wand C = intCU{O} , 
then o-1( min OA) n A c mine A . 

Proof. Let w E o-1(minOA) n A. Then, w E A and O(w) = minOA. If 
w (j. mine A, then there exists z E ( w- int C) n A. Since () is strictly increasing, 
O(z) < O(w) which is a contradiction. • 

As a direct consequence, we get o-1(inf OA) n clh A c infe A. 
By applying Lemma 4.1, we obtain the following result . 

PROPOSITION 4.1 Let A be a nonempty subset of W. If A is C-convex, then 

mine A= U S(O, A) , 
OEe• \{0} 

where S(O,A) ={wE A: O(w) = minOA} . 

Proposition 4.1 has also been proved by J. Jahn (1986, Corollary 5.29) in 
the algebraic setting. For a generalization of this proposition, we refer reader 
to Song (1998, Theorem 2.1) and the references therein. 

We next provide an analogous of Lemma 4.1 for Benson's notion of proper 
minimality. We use PB-mine A to denote the set of all proper minimal points 
(with respect to C) of A in the sense of Benson (1979). That is, ao E PB-mine A 
if a0 EA and clcone(A- a0 ) n (-Cz) = 0, where Cz = C \ l(C) and l(C) = 
C n (-C). The quasi-interior of C* is the following probably empty set 

q-int C* = {0 E W*: O(c) > 0 for all c E Co} . 

3 We have, of course, analogous counterparts of that concept as for the :=:-intermediate 
duality. 



852 B. EL GHALI 

LEMMA 4.2 If (} E q-int C*, C is pointed and A is a nonempty subset of W, 
then 

e- 1 (min(}A) n A c PB-minc A. 

Proof. Let a E e- 1 (min(}A) n A, then a E A and (}(a) = min(}A. If 
a rf. PB-minc A, then there exists w1 E clcone(A-a)n( -C0 ). Thus, (}(wl) < 0. 
Since (} is continuous, there exists a neighborhood U of w1 such that, for every 
u E U, (}(u) < 0. On the other hand, w 1 E clcone(A- a). It follows that 
cone(A- a) nU :f. 0 and let w2 E cone(A- a) nU. Consequently, (}(w2) < 0 
and w 2 = ..\(x- a) with..\ 2 0 and x EA. Because of (}(a)= min(}A, we have 
(}(w2) = ..\((}(x)- (}(a)) 2 0 which is impossible. • 

We need also the definitions of upper and lower limits in the sense of Kura
towski, see Dolecki (1982). We restrict ourselves intentionally to the framework 
of locally convex spaces. Let F be a filter in a set I and let A = { Ai} iEI be a 
family of subsets of a real locally convex separated space W . The upper limit 
of A (filtered by F) is defined by 

limsup A= limsup Ai = n cl( U Ai). 
:F FE:F iEF 

We say that A upper converges to a subset A of W, whenever lim sup A C A . 
Recall that the grill j: of a family F of subsets of I consists of all these subsets 
of I which meet every member of F. The lower limit of A is, by definition, 

lim inf A = linynf Ai = n cl ( U Ai) . 
FEF iEF 

If A is a subset of the lower limit, we say that A lower converges to A. We 
write also liminfi.....,io (resp. limsupi_,i

0
), when F is a neighborhood filter of io. 

If a sequence (An)n of subsets of W lower converges to A in the strong topology 
and (An)n sequentially upper converges to A in the weak topology (that is if 
(xk E Ank and (xk) weak converges to x) then x EA), we say that (An)n Mosco 

converges to A and we denote A = M-l!m An or An ~ A. 

LEMMA 4.3 If (} E C* \ {0} and (rn) is a convergent sequence of elements of IR, 
then 

Proof. The function (} admits a closed graph thus, for any compatible topol
ogy, we have limsup&- 1 (rn) c e- 1(limrn)· On the other hand, B is an open 
mapping hence e- 1 is lower semicontinuous and consequently o- 1(lim rn) c 
liminf e-1 (rn) for the strong topology. • 
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From now on X will be an arbitrary set, Y and W will be two real locally 
convex separated spaces and W will be ordered by a non-trivial pointed convex 
cone C with nonempty interior. The family 2 stands for the class of continuous 
linear operators from Y toW. Let F C (X x Y) x W a relation and consider the 
family of vector minimization problems (3). For each() E C* \ {0}, we associate 
the following family of scalar minimization problems with (3) 

minimizeBF(x,y), yE Y. 
xEX 

(15) 

We have BF C (X x Y) x JR. The marginal function of (15) is the function 
<pe : Y _, iR defined by <pe(y) = infwE<Py B(w), where <I? is the marginal relation 
of (3). Let us introduce the family 8 = {B~ : ~ E 2}. It is obvious that 
8 c Y*. The definite lagrangean at Yo of ()F (with respect to 8) is the relation 
.Co(., ., Yo) C (X x 8) x ~defined by 

.Co(x, ()~, Yo) = U (BF(x, y)- (B~)(y) + (B~)(Yo)). 
yEY 

It is easy to see that .Co(x,B~,yo) = BL(x,~,yo) and therefore .Ce(X,B~,yo) = 
BA(~, y0 ). Note that when the marginal relation <I? of (3) is a convex subset in 
Y x W, A(~, y) is convex for all (~, y) E 2 x Y. The domain of <I? is the set 
Dom<I? ={yE Y: <I?y # 0}. For A c W, .IJ.A ={wE W: (w- intC) n A= 0}. 
The dual relation for F (with respect to C), one considers here, is the relation 
D c (2 x Y) x W defined by D(~, y) = .IJ.A(~ , y). 

The following lemma is a key to the next theorem. 

LEMMA 4.4 Let () E C* \ {0}, r E ~' <I? be the marginal relation of (3} and 
Yo E Dom <1?. Assume that 
(i) <I? is convex in Y x W and <I?y0 = <I?yo + C, 
(ii) o- 1 (r) n mine <I?yo # 0, 
(iii) V mine <I?yo n infe A(~, Yo) = 0. 

€E3 
Then ()- 1(r) n int B # 0, where B is the set cl(n€ES A(~, Yo)). 

Proof. First, we remark that the operator A f--* .IJ.A is decreasing. Take 
any ~ E 2. By virtue of (2) and (iii), we get mine <I?yo n infe A(~, yo) = <I?yo n 
D(~, Yo) = 0. As .IJ.B = .IJ.(n,~Es A(~, Yo)) = D(2, Yo) and <I?yo c B, it follows 
that 

mine<PvonmineB=<l?yon.IJ.B= UC<PvonD(~,yo))=0. (16) 
€E3 

Next, let w0 E ()- 1(r) n mine <I?y0 . The formula (16) entails that w0 (j_ 
mine B. Since w0 E B, we obtain (wo- int C) n B # 0. Let now c E int C 
be such that w0 - c E B. Since <I?y0 = <I?yo + C C B and B is convex by the 
convexity of <I? in Y x W, we have w0 - c +CC B. Hence, 

( wo - c + C) n ( wo + c - C) c B. (17) 
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As int C =f. 0 and w 0 - c E w 0 + c- int C, the lemma from Jahn (1986, Lemma 
1.22, b) enables us to assert that 

WoE inta((wo- c +C) n (wo +c-C)). (18) 

On the other hand, we have int ll>yo =f. 0 because int C =f. 0, ll>yo = ll>yo + C 
and ll>y0 + int Cc int ll>yo. Hence, int B =f. 0. Since B is convex and int B =f. 0, 
we obtain with (Jahn, 1986, Lemma 1.32) that inta B = int B. Accordingly, by 
(17) and (18) , we have Wo E int B and thus Wo E e-1(r) n int B. • 

The following theorem is the main result of this section. A real function 
cp : Y --+ lR is said to be 3-convexoid at Yo (with respect to a family 3 of 
mappings from Y to JR), Dolecki and Kurcyusz (1978) , if 

cp(yo) = sup (~(Yo)- d) . 
f.-d$<p 

Of course, this amounts to that , for every r < cp(yo) , there exists (~ , d) E 3 x lR 
such that 

~- d :S cp and ~(Yo)- d > r. 

THEOREM 4.1 Let lP be the marginal relation of (3) and Yo E Do m lP. Assume 
that 
(i) lP is convex in Y x W , 
(ii) mine ll>yo =f. 0, ll>yo = ll>yo + C and 
(iii) cpo is 8-convexoid at yo, for all() E C* \ {0} , 
then, for every wo E mine ll>yo , there exists a sequence (~n) C 3 such that 
woE liminf(infeA(~n , Yo)). 

Proof. Let w0 E mine ll>y0 . By Proposition 4.1, there exists () E C* \ {0} 
such that w0 E S(B,Il>yo) what amounts to cpo(Yo) = minB!l>yo = B(wo). In view 
of (iii) and the theorem from Dolecki and Kurcyusz (1978, Thm. 7.9) , 

cpo(Yo) =sup inf BA(~, Yo) = B( wo) ER 
f.E3 

Consequently, there exists a sequence { ~n} C 3 such that B( wo) = 
lim(infBA(~n , Yo)). By setting rn = infBA(~n,Yo) and r = limrn = B(wo) 
and with Lemma 4.3, one has w0 E mine ll>yo n M-lim B- 1 (rn)· At this stage, 
we distinguish two cases: 

that is exactly the definition of existential 3-exact duality at y0 with respect to 
the cone C, thus there's nothing to prove. 

V mine ll>yo n infe A(~ , Yo) = 0. 
f.E3 
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We notice that min0 cpyo C cpyo C n~ES A(C Yo) hence the idea of considering 
the set B = cl(n~ES A(~, Yo)) and of applying one result of lower semicontinuity 
of the intersection, see for instance Jourani (1996), Lechicki and Spakowski 
(1985), Rolewicz (1980) and Sonntag (1982), to the sequences of subsets (B) 
and (B - 1 (rn)). From (i), we deduct that B is a nonempty closed convex subset 
of W. Since e-1(r) and e-1(rn) are nonempty closed convex subsets of W such 
that e-1(r) = M-limB- 1 (rn) then, in view of Lemma 4.4, (Sonntag, 1982, 4.16, 
P. IV. 13) and Lemma 4.1, we have 

e- 1 (r) n B c lim inf( e- 1 (r n) n B) c lim inf( e- 1(rn) n cl A(~n, y0 )) 

c liminf(B- 1 (rn) n clB A(~n, Yo)) c lim inf(inf0 A(~n, Yo)). • 

5. Comparison of some exact duality results 

In this section, we shall be concerned with the axiomatic duality introduced by 
The Luc Dinh (1989). Given a general vector minimization problem 

minimize P(x), 
xEX 

(P) 

where X is a nonempty set and P C X x W a relation, a vector maximization 
problem 

maximize D ( 1r), 
1rEII 

('D) 

where II is a nonempty set and D C II x W, is said to be an axiomatic dual 
problem of (P) if the following relation called weak duality axiom holds 

D(1r) n (P(x) +Go) = 0, for each x EX and 1r E IT. (WDA) 

A simple computation show that (WDA) is equivalent to cl{!; P(X) C I D(II). 
We say that ('D) is an exact axiomatic dual problem of (P) if P(X) n D(II) =/= 0. 
It is well know from The Luc Dinh (1989, Chap. 5, Prop. 3.3) that if ('D) is 
an exact axiomatic dual problem of (P), then both problems possess global 
existential solutions and mine P(X) n maxc D(II) =/= 0. 

The exact axiomatic duality results requires the existence assumptions of 
some optimal solutions. 

5.1. Existence of solutions 

Consider the family of vector minimization problems (3) and a family 2 of 
mappings from Y to W. The dual relation for (3) , that one deals with here, is 
the subset D of 2 x Y x W defined by D(~ , y) = !A(~, y). 

The following proposition gives sufficient conditions for the existence of so
lutions of (3). 
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PROPOSITION 5.1 LetxoEX andyoEYaresuchthatF(xo,Yo)nmaxeD(2,y0 ) 

=/; 0. Then, x0 is a global existential solution of (3) at y0 . 

Proof. By Dolecki and Malivert (1993, Prop. 2.1), we have 

D(3, Yo) C 1 ~Yo and ~Yo C I D(3, Yo). 

It follows that, 

F(xo, Yo) n maxe D(3, Yo) C F(xo, Yo) n mine ~Yo· • 
The Luc Dinh has proved the result for vector mathematical programming 

problems (7) at y0 = 0 i.e. 

minimize f ( x), 
xEX 

g(x)n(-K)¥0 

(19) 

where f C X x W, g C X x Y, Y and W are real separated topological vector 
spaces, C C W and K C Y are convex pointed cones with nonempty interior. 
Suppose that the class 2 = { ~ E L(Y, W) : ( -O(K) C C}, where L(Y, W) is 
the family of all continuous linear operators from Y to W. He has called the 
subset L(., ., y0 ) C (X x 2) x W defined by 

L(x, ~' Yo) = f(x)- ~(g(x)) + ~(yo) 
the lagrangean relation of (7). It is clear that L(x, ~' Yo) C L(x, C y0 ) C 

L(x,~,yo) + C; where, in this case, L(x,~,yo) = f(x)- ~(g(x) + K) + ~(Yo). 
If we set Dmin(~, y) = mine A(~, y), then we get Dmin(~, y) = mine L(X, ~' y) 
provided that C is pointed. 

As first consequence, we obtain the following result of The Luc Dinh (1989, 
Chap. 5, Coro. 1.3): 

COROLLARY 5.1 Let x0 E X be such that g(x0 ) n (-K) =f. 0 and f(x 0 ) n 
maxc(U~ES mine L(X, ~' 0)) # 0. Then, Xo is a global existential solution 
of {19}. 

Proof. Notice that Dmin(~,O) = mineL(X,~,O) and Dmin(~,O) C D(~,O). 
In view of Dolecki and Malivert (1993, Prop. 2.1), we have 

f(xo) c ~0 c I D(3, 0) c I Dmin(~, 0). 

Consequently 

f(xo) n maxe Dmin(2, 0) C f(xo) n maxe D(2, 0) 

and the assertion follows from Proposition 5.1. • 
Further existence results for weakly and properly solutions of (3) are given 

by the corollary given below. Before, recall that an element a0 of a subset A 
of W is a proper minimal point (with respect to C) of A according to Henig 
(1982), if there exists a non-trivial convex cone D such that C1 c int D and 
a0 E minD A. We denote by PH-mine A the set of these points. 
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COROLLARY 5.2 Let xo EX and Yo E Y are such that F(xo, Yo) nmax0 D(3, Yo) 
=f. 0 (resp. F(xo, Yo) n PH-maxc D(3, Yo) =f. 0 ). Then, xo is a global existential 
weak (resp. Henig proper) solution of (3) at YD· 

Proof. The first part is evident. Let, now, woE F(xo, yo)nPH-maxc D(3, Yo). 
Then, there exists a non-trivial convex cone K such that Co C int K and wo E 
maxK D(3, Yo). Since F(xo, Yo) nmaxK D(3, Yo) C F(xo, Yo) nminK <I>yo, hence 
wo E F(xo, Yo) n PH-mine <I>yo . • 

In the sequel, we shall be confronted with the comparison of various exact 
duality results for the vector mathematical programming problems (7). 

5.2. Comparison of constraint qualifications 

In this subsection, we will especially be concerned with the vector mathematical 
programming problems (7). Put Ay = {x E X : g(x) n (y- K) =f. 0} . The 
marginal relation for (7) is the subset <I> of Y x W defined by 

<I>y = U f(x) = fg- 1(y- K). 
xEAv 

Suppose that 3 = L(Y, W) the class of continuous linear operators from Y 
to W. We designate by Q the relation from X to Y x W defined by Q(x) = 
(J ( x) +C) x (g( x) + K). A relation <I> C Y X W is said to be C- convex provided 
that, for every (Yl, yz) E Y2 and a E [0, 1], 

a<I>y1 + (1- a)<I>yz C <I>(ay1 + (1- a)yz) +C. 

This is equivalent to the convexity of <I>+ {0} X C in Y x W. 
In order to develop the implications among the various exact duality re

sults, the relationships between Slater constraint qualification and assumptions 
of Theorem 3.4 in Dolecki and Malivert (1993) are first established in the fol
lowing proposition. 

PROPOSITION 5.2 Assume that Domf = Domg =X. 
(i) If Q(X) is convex, then <I> is C-convex. 
(ii) If g(X)n(y0 -intK) =f. 0, then {yo} x (<I>yo+Co)nint(<I>+{O} x Go) =f. 0. 

Proof. 
(i) Let (y1, y2 ) E Y2 , a E [0, 1] and Wi E <I>yi for i = 1, 2. Then, for each 

i E {1, 2}, there exists Xi E g-1(yi- K) such that Wi E f(xi) C f(xi) +C. 
It follows that, for each i E {1, 2}, we have g(xi) n (Yi - K) =f. 0 thus 
Yi E g(xi) + K and consequently (wi, Yi) E Q(xi) C Q(X). Since Q(X) is 
convex, a(w1,yl) + (1- a)(w2 ,yz) E Q(X) and therefore 

(aw1 + (1- a)w2 , ay1 + (1- a)yz) E Q(x) for a certain x EX, 
which amounts to 

aw1 + (1- a)w2 E f(x) + C and g(x) n (ay1 + (1- a)yz- K) =f. 0. 
Hence, aw1 + (1- a)wz E <I>(ay1 + (1 - a)yz) +C. 
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(ii) Let xo EX, zo E g(xo) n (yo- int K), c E int G = int Go and wo E f(x 0 ). 

Now we prove that (yo, wo+c) E int(<P+{O} xGo). Since Yo-zo E int K and 
c E int G0 , there exists a neighborhood U of 0 in Y and a neighborhood 
V of 0 in W such that 

Yo - zo + U C K and c +V C Go. 
Accordingly, wo + c +VC wo +Go C f(xo) +Go and Yo + U C zo +KC 
g(x0 ) + K. It ensues, for every y E Yo + U and every w E wo + c +V, 
that w E <Py + Go which is equivalent to (Yo + U) x ( wo + c + V) C 
<P + {0} x Go. We infer that {yo} x (f(xo) + int C) C int(<P + {0} x Go). 
On the other hand, we have {Yo} x (f ( xo) + int C) C {Yo} x ( <Pyo + Go) 
because g(xo) n (yo - int K) f:. 0. • 

Let us quote the following exact duality result of S. Dolecki and C. Malivert 
(1993, Theorem 3.4): 

THEOREM 5.1 Suppose that G is open, <Pis C-convex and {Yo} x (<Pyo +C) n 
int ( <P + { 0} x C) f:. 0. If wo E mine <Pyo, then there exists ~o E 3 such that 
wo E mine A(~o, Yo). 

Using the problem denoted by ('Dt), which is really an axiomatic dual prob
lem of (19), 

maximize mine L(X, ~' 0), 
eE::: 

('Dz) 

we get the following results as consequences of Proposition 5.2 and Theorem 5.1. 

COROLLARY 5.3 (The Luc Dinh, 1989, Thm. 3.6) Assume that Q(X) is convex 
and g(X) n (- int K) f:. 0. If PH-mine <PO f:. 0, then ('Dz) is an exact axiomatic 
dual problem of {19}. 

Proof. Let w0 E PH-mine <PO. Then, there exists a non-trivial convex 
cone D C W such that Go C int D and wo E minn <PO C min.5 <PO, where 
f5 = int DU {0}. With both hypotheses we conclude, in view of Proposition 5.2, 
that <Pis G-convex and {0} x ( <PO+Go)nint( <P+{O} x Go) f:. 0. Since Go C int D, 
<P is (int D)-convex and {0} X (<PO+ Go) n int(<P + {0} X Go) c {0} X (<PO+ 
int D) n int( <P + {0} x int D). By Theorem 5.1, one gets e E int D and f.L E K* 
such that 

wo E min.5 A(~o, 0) with ~o = JL(.)e. (20) 

As C0 C int D, it follows from (20) that Wo E mine A(~o, 0) = Dmin(~o, 0) = 
mine L(X, ~o, 0). Thus, wo EPH-mine <POnmine A(~o, 0) C <POnmine L(X, ~o, 0) 
which proves the assertion. • 

The following corollary furnishes a sufficient condition for the existence of 
the Henig properly minimal points, that is, the strong domination property 
introduced by E. Bednarczuk (1994). We say that a subset A of W has the 
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strong domination property (SDP) if there exists a closed convex cone D such 
that Do C int C (where Do = D \ {0} ), A C mine A+ D and the cone D has 
the property that, for each neighborhood V of 0, there exists a neighborhood U 
of 0 such that D \V+ U CC. 

COROLLARY 5.4 Suppose that Q(X) is convex, g(X) n (- int K) =f. 0 and ~0 
has the property (SDP). Then, (Vt) is an exact axiomatic dual problem of (19}. 

Proof. Since ~0 has the property (SDP), mine ~0 =f. 0 and mine ~0 
PH-mine ~0 and therefore the result follows from Corollary 5.3. • 

H. Nakayama (1984) investigated also the vector problem (19) under the 
following assumptions. Let X be a compact convex subset of !Rn, Y = !Rm, 
W = !Rr, f : !Rn ---+ !Rr is continuous and C-convex, 9 : !Rn ---+ !Rm is continuous 
and K-convex, C C !Rr and K C !Rm are pointed closed convex cones with 
nonempty interior and U = {U E M(r,m) : U(K) C C}, where M(r,m) 
designate the set of all (r , m)-matrix. Note, in this case, that the condition 
g(x) n ( -K) =j:. 0 amounts to g(x) E -K. We use ~ to indicate the marginal 
relation for (7). We have ~0 = f(Ao) with Ao = {x EX: g(x) E -K}. Let us 
observe that every closed pointed convex cone C in !Rr has a compact base and 
consequently int C* =f. 0 and int C* = q-int C*. 

COROLLARY 5.5 (Nakayama, 1984, Thm. 2.1) If xo E A 0 be such that f(x 0 ) E 
S( B, ~0) for some B E int C* and if there exists x E X such that g(x) E - int K, 
then there exists Uo E U such that f(xo) E mine L(X, -U0 , 0) and U0 g(x0 ) = 0. 

Proof. Since f is C-convex, g is K-convex and X is convex, Q(X) and 
~0 = f(Ao) are convex. On the other hand, f(x 0 ) E A 0 n o- 1 (minB~O) C 

PB-minc il>O = PH-mine il>O and the result follows from Corollary 5.3. • 
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