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1. Introduction and assumptions

Many physical phenomena are modelled by more or less complicated partial
differential equations systems. For instance, meteorological previsions may be
deduced from systems based on Navier-Stokes equations. The state function
that describes the system is observed at time t = 0, via measurements or previ-
ous computations from another model. For many situations, it is necessary to
control such systems (so that the temperature or the velocity of a fluid is not too
high, for example). Therefore, we have to deal with systems governed by partial
differential equations involving control functions, whose initial data are not well
known (noise, measurements or computation errors...) This is related to the
more general question: how to perform a stability and sensitivity analysis with
respect to a parameter (perturbation or unknown data) appearing in the data?
Stability and/or sensitivity has been studied by many authors, especially in the
ODE context. Let us mention papers by Malanowski (1995), and Malanowski
& Maurer (1996), where the perturbation belongs to a Banach space: the main
ingredients are first and second order optimality assumptions and strict comple-
mentarity. In Maurer & Pesch (1994) the solution’s differentiability with respect
to a finite dimensional parameter is studied. In the PDE context, let us mention
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differential operator and of the source term as well: sufficient conditions for a
directional differentiability of the solution are given with applications to shape
sensitivity analysis. More recently, Troltzsch (1996, 1997) and Malanowski &
Troltzsch (1999) have established Lipschitz stability theorems for the solution
to nonlinear parabolic optimal control problems. At last we have to mention
the work of Bonnans & Cominetti (1996a, 1996b) and Bonnans (1998a). We
have used these authors’ techniques to establish the results presented here.

In this paper, we focus on the (simple) model case where the system is
described by a semilinear parabolic equation and the control function is a dis-
tributed one. The initial value function is not well known and may belong to the
neighborhood of a fixed value, say g; therefore, we can view it as a system per-
turbation. Of course, we could consider boundary controls (or both distributed
and boundary controls), but the analysis would be the same: the main tool is
the state function regularity which allows to deal with the two-norm discrepancy
phenomenon.

In adddition, we have considered smooth perturbations (that is perturba-
tions in W1P) to ensure good regularity properties of the state function. Of
course a more realistic approach should involve quite general perturbations (for
example L™ functions or measures as in Ahmed & Xiang, 1997).

Now we present the problem. Let 2 be a bounded open domain in RV
(N > 2) of class C?*7, for some v satisfying 0 < v < 1. We denote by I' its
boundary and set Q@ = Q2 x]0,T[, £ = T x ]0,T[ where T is a positive real
number.

Next, we consider a system whose state y is the solution of

dy+Ay+ fly) =u in Q
y=0 on X (1.1)
y(0) =g in Q,

and an optimal control problem (g being fixed)

min J(u,y)
y = y[u, g] solution to (1.1) (Pg)
u € K.

The cost functional J and the control constraint set K will be made precise
in the sequel. Problem (P,) has at least one solution u*(g) under appropriate
assumptions that are quoted thereafter. We would like fo describe the (local)
behavior of u*(g) with respect to g as well as the behavior of the optimal value
function g — J(u*(g),y[u*(g),9]). Under second order optimality conditions,
we shall give some continuity results and a local expansion of the optimal value
function in a neighborhood of a fixed value §. As mentioned, most of the
techniques we use are due to J.F. Bonnans (1998a) who has considered a problem
governed by elliptic equations and a linear perturbation of the desired state in-
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(and quadratic) with respect to the perturbation so that second order expansions
were exact. A direct extension of this situation to the parabolic case is studied
in Merabet (2000), Chapter 3. We present here a further generalization.

Let us precise assumptions:

e (H1) A is a second order elliptic differential operator defined by
N

- Z Oy, (aij (x)a:r,- y) + ao(x)y with
ij=1
aijec2(ﬁ), i,j=1---N, (1.2)
€ L*>(Q), essinf{a,, )|z e} > 0 )
Vo € Q,VE e RY, Z aij(@)éit; > MZ£2 with M > 0.
i,j=1 i=1

e (H2) f is a C? real function from R to R, nondecreasing and globally

Lipschitz continuous. We denote in the same way, the real function f and
the Nemytskii operator f : y — f(y) such that f(y)(z,t) = f(y(=,t)),
(z,t) € Q.

o (H3) g € WlP(Q) with N < p.

The paper is organized as follows. We first recall continuity and differ-
entiability properties of the state mapping which are useful in the sequel. The
subsequent section is devoted to studying the optimal control problem and “zero
order” properties of the solution and the optimal value function. We also recall
first and second order optimality conditions therein. Finally, we give first or-
der (Section 4) and second order (Section 5) sensitivity analysis for the problem
under the additional assumption that the set of control constraints is polyhedric.

2. State equation properties

In this section, we recall some continuity and differentiability properties of the
state mapping which associates the state function y to the control function u
and the initial value g. These results are not new, but it seems preferable to
give them to make this paper more readable.

THEOREM 2.1 Assume (H1) and (H2). For anyu€ LP(Q) and g€ W}P(Q) with
p > N, equation (1.1) has a unique weak solution y = y[u, g] € W2(0,T)NC(Q).

Proof. See Bergounioux & Troltzsch (1996), p. 521 for N < 3. For the case
of N > 3 one uses a result of Arada & Raymond (1998) and W;*(Q) C C(Q)
to get the continuity on the whole set Q. =

We recall that
W,(0,T) = {y € LP(0,T; H}()) | ye € L' (0, T; H~())}.
1

where — L — =1
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REMARK 2.1 Assumption (H2) may be weakened: it is sufficient for f to be C*
to make the previous theorem valid. One also refers to assumption A2 of Arada
& Raymond (1998).

In the sequel, we will assume that N < p < co: we do not allow p = +c0 so
that W2P(Q) is reflexive.

We define the state space in a usual way (see Bergounioux & Troltzsch
(1996), for instance) as:

Y ={yeW,(0,T)|dy+ Ay € L(Q), y=0o0n T, y(0) € W, *(Q)}.
Y is a subspace of C(Q) and, supplied with the norm
lvlly = lwllw, 0.1 + I¥lleg) + I1ve + Avlize@) + (027 q)s

it is a Banach space. From now we denote by || - ||y the norm of the space V.
The L?(Q)-norm will be denoted || - ||;,0 (¢ = oo corresponds to the uniform
norm of C(Q)) and the L¢()-norm is denoted || - [|,.0. We now give some useful
properties of the mapping (u, g) = y[u, g] that we need in the sequel.

2.1. Continuity properties of the state-mapping

Since we assume p > N and 2 is bounded, WL?(Q) is compactly embedded
in C(£2). Therefore, from Theorem 2.1 we obtain:

THEOREM 2.2 Let be u € LP(Q) and g € WHP(R); there exists C > 0 such that
¥9llo.@ < Cllullp.@ + l9gllco.2 + 1), (2.3)

where y is the unique solution io (1.1).
Moreover, y is Holder continuous on Q: there erists v such that, for any
M > 0, there exists C such that

lullp + llglloe.0 < M = [ylle.crngy < C.

Proof. Estimation (2.3) is given in Theorem 3.1.i of Raymond & Zidani
(1999). The above stability result of the weak solution to (1.1) with respect to
the data is proved in Theorem 3.4.1) of Bergounioux & Zidani (1999). The second
part of the Theorem follows from a regularity result for linear equations (see for
instance Arada & Raymond, 1998, 1999). Equation (1.1) may be written as

dy+Ay=v=u- f(y) in Q
y=0 on X
y(0)=g in 2
where v € LP(Q) and g € W}P(Q) C C?(Q) with o =1 - %, for example. We
achieve the proof using assumptions on f. ||

The previous theorem allows to get a weak-strong continuity result of the
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THEOREM 2.3 The mapping (u,g) — ylu, 9] is sequentially continuous

(i) from LP(Q) x WL?(Q), endowed with the weak-LP(Q) x weak-star L>°(Q)
topology, into C(Q) (strong topology)

(i) from LP(Q) x W2P() endowed with the weak topology into C(Q) (strong
topology).

Proof. (i) Let (u,, g )n be a sequence converging to (4, §) in LP(Q) (weak) x
L*>(§)) (weak-star). Let y, be the solution to (1.1), corresponding to (un, gn)-
By (2.3), (y») is bounded in L*°(Q). Therefore, there exists § € L*=(Q) such
that a subsequence still denoted (y,) converges to § for the weak-star L>(Q)
topology. In addition, by Theorem 2.2, (y,) is bounded in C**/2(Q), for some
v > 0. Since the embedding of C**/2(Q) into C(Q) is compact, then (y,)
converges to § uniformly in Q. On the other hand y, satisfies

/Qyu(-%+A'z)da‘dt+/Q(f(yn)—un)zdxdt=/ngnz(0)dx

for any z € C*(Q) such that z(T) = 0 and zig = 0 (A* denotes the operator
adjoint to A). By H2 and the Lebesgue theorem we may pass to the limit and
obtain

fQﬁ(—%+A‘z)dzdt+f@(f(3})—ﬁ)zdxdt=/ﬂ§z(0)dm

for any 2z € C3(Q) such that 2(T) = 0 and zz = 0. Therefore, § is the weak
solution of (1.1) associated with (&, §).

(i) The second point is a direct consequence of the first one since the weak-
convergence in W2?(Q) implies the L°°-weak-star convergence. =

2.2. Differentiability properties of the state-mapping

This subsection is devoted to differentiability results for the state mapping:
(u,g) — y[u,g]. The main tool is the implicit function theorem.

THEOREM 2.4 The operator
T:L7(Q) x WoP(Q) x Y — LP(Q) x W, P(R),
(v, 9,9) = (Bey + Ay + f(y) — v, y(0) - g),
is of class C2.
Proof. The first component of 7 has a linear part y — &y + Ay which

is continuous from Y to LP(Q); the nonlinear part is the Nemytskii operator f
which is known to be C? (since f is C*). The second component (y, g) — y(0)—g
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THEOREM 2.5 Let (@,§) € LP(Q) x W)P(Q) and § = y[i, g] be the solution to
(1.1). The state mapping (u,g) — ylu,g] is C* in a neighborhood of (%, §) and
its derivative with respect to (u, g) at (@,g) is Z = Dy[, g](v, h), the solution of

Qi+ AZ+ f'(J)Z=vinQ
Z=0o0n kX (2.4)
Z(0) =h in Q

We denote by Dy the derivative of y with respect to (u,g).

Proof. We only give a sketch of the proof. We apply the implicit function
theorem to equation 7 (u,g,y) = 0 in the neighborhood of the pair (@,7) €
LP(Q)xWEP(Q). It is easy to see that D, 7 (&, g, 7) is an isomorphism; therefore,
by the implicit function theorem, there is a C? function (u, g) — y[u, g] defined
in a neighborhood of (i, ), such that 7 (u, g,y[u,g]) = 0.

2.3. The adjoint equation

We end this section with a similar result for the so-called adjoint equation that
appears in a natural way in optimal control theory. We consider the following
linearized adjoint equation

—0wp + A*p+ f'(ylu, g])p = ylu, 9] — 24 in Q
p=0on X (2.5)
p(T)=0in Q

where (u,g) € L?(Q) x W1P(Q) and z4 € LP(Q).
PROPOSITION 2.1 For any g € WHP(Q) and u € LP(Q), there ezists a unique

solution p € W5(0,T) ﬂ_C(Q_) to (2.5). The mapping (u,g) — plu, g] is C* from
LP(Q)x WEP(Q) to C(Q) and the derivative Dplu, g](v, h) := q is the solution of

—0iq + A*q + f'(y[u,9))g = (1 = f"(y[u,g]p)z in Q
g=0onk (2.6)
a(T) =0 in Q

where z = Dy(u, g](v, h).
Proof. Again we use the implicit function theorem. |

COROLLARY 2.1 The mapping (u,g) — plu, g] is sequeniially continuous from
LP(Q) x Wr?(Q) endowed with the weak topology to C(Q) endowed with the
strong topology.

Proof. It is a direct consequence of the above Proposition and Theorem 2.3.
We use the (strong) continuity of f’ and a stability result for the linear equa-

T =N W m e oeN m e ma W e A
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3. The optimal control problem
Given g € W2P(9), we call (P,) the following optimal control problem

min J(u,y) :=l/(y—zd)2dmdt+2/ u? dz dt
2 Jg 2 Jo

y = y[u, g] solution to (1.1)
uweEK

(Py)

where K is a nonempty, convex, bounded and closed subset of L?(Q). Such a
problem (P,) admits (at least) a solution for any ¢ € W)?(Q) and we call S,
the set of solutions of (Py).

3.1. Regularity of the cost functional

We would like to describe the (local) behavior of the optimal value function
for (P,) in a neighborhood of some fixed j. First, we have to establish some
differentiability results for the cost functional with respect to both the control
u and the perturbation g. This cost functional F is defined by

LX(Q) x W,P(Q) —» R, u,g— Flu,g) = J(u,ylu,g]), (3.7)
where y(u, g] is the unique solution to (1.1). Indeed, problem (P,) may be
written equivalently as

min  {F(u,g)|u € K}.

We first give continuity properties for /' which are deduced from Theorem 2.3.

THEOREM 3.1 The mapping F : LP(Q) x WP(Q) — R is weakly lower semi-
continuous (Isc).

Moreover, for any u in LP(Q), the mapping g — F(u, g) is weakly continuous
from WlP(Q) to R.

Proof. Let (uk,gr) be a sequence of LP(Q) x W2P(Q) weakly convergent
to (@, §) in LP(Q) x WHP(Q). Theorem 2.3 yields that yx = y[ux, gk] strongly
converges to y[%, §) in C(Q) (and in L?(Q)). Moreover, the mapping -~ | - |I§‘Q
is convex continuous on L%(Q). Therefore, F' is weakly Isc and the mapping
g+ F(u, g) is weakly continuous on W2P(Q) (for every fixed u). ]

We get also some differentiability properties for F.

THEOREM 3.2 F is a C* mapping on LP(Q) x WYP(Q). Moreover, for any
(v, k) € LP(Q) x WP(Q),

F'(u,g)(v,h) = (p + au,v)2, — (p(0), h)2,0 (3.8)
F'(u,9)((v, h), (v, 1)) = ellv]l3 o + 12113 o

P9 [ ol ol Y F (b aN22(e D drdt — 9 {ﬂfﬂ\fm\?J(T\ Ar {2 0)
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where p 1is the adjoint-state defined by (2.5), whereas z = Dylu, g](v,h) and
q = Dplu, g](v, h) are given by (2.4) and (2.6) respectively.

Proof. The mapping
LP(Q) x WyP(Q) = Y, u, g — y = y[u,g],

is C? (Theorem 2.5); therefore, F is C? as well. Let (u,g) € LP(Q) x W1?(Q)
and compute F'(u,g)(v,h) for some (v,h) € LP(Q) x W1P(Q).

F'(u,g)(v, k) = a(u,v)2,q + (y[u, 9] — 24,9’ [1, 9] (v, 1))2.0-

Let p = p[u,g] be the adjoint state given by (2.5) and set z = y'[u, g](v,h)
(satisfying (2.4)). Then

F'(u,g)(v,h) = a(u,v)2,0 + (=0p + Ap + f'(y[u, 9])p, 2)2.05
an integration by parts and the use of (2.4) yield

F'(u, 9)(v,h) = (plu. 9] + au,v)2.q = (p[u, g)(0), h)2,0. (3.10)
A similar computation for F'(u, g)((v, h), (v, h)) gives

F"(u,9)((v, h), (v, 1))
= allvll3.q + (#'[u. 9)(v, h), v)2,0 = (P[4, 9)(v, £)(0), h)2, 0.

By Proposition 2.1, ¢ = p'[u, g](v, h) satisfies (2.6) and we get
F"(u,g)((v, k), (v,h)) = allv]l3 g + (¢,0)2,0 = (4(0), h)2,0,
that is, using the definition of z,

F"(u,g)((v,h), (v, 1))
= aflvl3 @ + (4,02 + Az + f'(y[u, g))2)2,q ~ (4(0), h)2,0.

An integration by parts and (2.6) give the result. [

PROPOSITION 3.1 For every h in WY?(Q), the mapping v — F"(u,g)((v,h),
(v, h)) is weakly lsc from L?(Q) into R.

Proof. We know that
F"(u, g)((v,h), (v, h))
= allv[i3.o + lIzll3.0 - /QPf”(:u[’farag])z2 dx dt — 2/{3@(0)’10&,

where z = y'[u, g](v, h) ;-] 2y + zn, with

Orzo + Azy + f'(y[u,9])20 = v in Q,
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and

Oezn + Az + f'(y[u, g])zn = 0in Q,
zn=00n X, 2(0)=hin Q. (3.12)

Similarly ¢ = p'[u, g](v,h) = ¢» + qr with

—0go + A"qw + f'(y [u, 9])g0 = (1 = f"(y [u, )P [u, 9]) 20 in Q,
gy =0o0n X, ¢(T)=0in 9,

and

—Oqn + An + ' (y [w, 9))an = (1 = f"(y [u, 9))p [u, g])2n in Q,
gn=0o0n %, g(T)=0in Q.

F"(u,g) may be written as

F'(u,9)((0, 1), (v,1)) = ol + Qu(v) + Qupy(v. ) + Q(h)  (3.13)
where

Qu(v) = l12ul3.q - fQ plu, 91" (ylu, g))22 da dt, (3.14)
Q(u,g)(v, h) = 2/ Zpzp dz di
Q
=2 [ pluglf "Gl sz dodt =2 [ a,(O)hds, (3.15)
Q o

Qo(h) = |l2.0 - /Q plu, 91" (vl 9]) 22 dz it — 2 /ﬂ a(O)hds.  (3.16)

We know that p € C(Q); moreover, f"(y) € C(Q) since f is C* from C(Q) to
C(Q). Therefore pf”(y) € L=(Q).

The mapping v > z, is continuous and linear from LP(Q) to C(Q) and L*(Q);
so, it is weakly continuous from L?(Q) to L*(Q) and v — Q. (v) is a weakly
continuous quadratic form on LP(Q). The mapping v = Q(y 4)(v,h) is a linear
weakly continuous form on LP(Q) and Q4(h) does not depend on v. Therefore,

v — F"(u, 9)((v, h), (v, h)) is weakly lsc on LP(Q). B

Note that F"(u,g) is a priori defined on LP(Q) x W}P(Q) but may be ex-
tended to L2(Q) x L?(Q):

PROPOSITION 3.2 For any h € L*(Q2), the mapping v — F"(u,g)((v,h), (v, k)
is well-defined on L*(Q) and is weakly lsc from L*(Q) to R.

Proof. We have observed that pf”(y) = plu,g]f”(y[u,g]) € L=(Q); in
addition, if h € L*(Q) then z, € L%*(0,T;H}(Q)) N C(0,T;L*(Q)) (see, for
example, Lions-Magenes, 1968, p. 265). Similarly, v € L*(Q) implies z, €
L*(0,T; HX(Q)) n €(0,T; L*(€2)). Finally, since z € L*(Q), g € C(0,T; L*())
and q(0) € L*(92), again the same regularity result yields that F”'(u,g)((v,h),
(v,h)) is well defined on L?(Q) x L%(S2).
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3.2. Necessary optimality conditions
We end this section by recalling (classical) first and second order optimality
conditions.
3.2.1. First order optimality conditions
PROPOSITION 3.3 Let be g € WHP(Q). If u is a solution of (P,) then
(Fi(u,g),v —u)20 >0, YveK. (3.17)
Proof. The first order optimality condition is
Fi(u,g) + N2(u) 3,

where Ni.(u) is the normal cone at u with respect to the LP-norm (we recall the
definition in the sequel); F (u,g) is the partial derivative of F' with respect to
u at (u,g). This is equivalent to

(Fa(u,9),v —u)pp 20, WEK

where (-, -), ,» denotes the duality pairing L?, L?’ with i + 5 = 1. Since F),(u, g)
=p[u,g] + au € L*(Q), we obtain (3.17) which is equivalent to

(plu, 9] + au,v — u)a g > 0, Vv € K. [ |

3.2.2. Second order optimality conditions

Before we express second order optimality conditions we introduce some nota-
tions.

Let ¢ € NN [2,p] and u € K. The cone of admissible directicns at u
(in L9Y(Q)) is

Rl(u):={yeLYQ)|36>0, z+8y €K}, (3.18)
the tangent cone at u to K in L9:
TE(u) == {v € LY(Q) | 36 > 0 such that u + v + 0,(6) € K}, (3.19)

where 04(6) is the remainder term in the sense of the L?-norm; the normal cone
at u (in ) is

NE(u) := {u* € LY (Q) | (u*,v —u)gq >0, Vv € K}. (3.20)
Finally, the L?(Q)-critical cone at u is
Cq(u,9) := {v € LUQ) | Fi(u,9)v =0, v € T¢(u)}.

This last definition is quite formal. In the sequel, we shall distinguish two cases
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the “natural” space of data (u and g) and the state-space ), while the case of
q = 2 corresponds to the hilbertian case L?(Q), for which classical regularity
conditions are easier to verify.

On the other hand, the g-polyhedricity of K will be necessary to get a second
order necessary optimality condition. Let us recall the definition (Haraux, 1977,
Mignot, 1976)

DEFINITION 3.1 A convez, closed set K C L(Q) is q-polyhedric at u € K in
the direction v* € Ny (u) if

T (u) N (v*)* = RE(w) N (7)1 (3.21)

Following Bonnans-Shapiro (2000), Proposition 5.33, one can show, for ex-
ample, that for a,b € R? the set

Kep={u€e L Q)|a<u<ba.e. in Q},
is L?-polyhedric.
THEOREM 3.3 Let g € W)P(Q) and u € S;. If K is p-polyhedric, then
Vv € Cp(u,g) Fi2(u,g)(v,v) > 0. (3.22)
(F!; 1is the second order partial derivative of F with respect to u.)
Proof. See Bonnans (1998a), Theorem 2.5. |
Let us mention, as well, that if K is 2-polyhedric then the following relations
v > 0 Vv € Ca(u,g) Fla(u,g)(v,v) > v||v|3 (3.23)
and
Vv € Ca(u, g) — {0} F2(u,g)(v,v) >0
are equivalent (see Bonnans, 1998a). This is due to the fact the Hessian of F is

a Legendre form.

4. First order sensitivity results

We may now give a stability result for the “solution” of (P,) which can be
viewed as a (upper) continuity result for the multi-function S which associates
the set S, of solutions to (Py) to a given g.

THEOREM 4.1 Let (gi) be a sequence weakly converging to § in WHP(Q) and
Uug € Sg,‘
Then, one can eztract a subsequence still denoted (uy) which converges to

e ad 1 . LR T Fal) | ) . L ety
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Proof. As uj is a solution to (P, ), ux € K. Since K is bounded in L?(Q),
one can extract a subsequence of (uy) still denoted (u;) that weakly converges
to @ in LP(Q). Since K is closed and convex, i € K.

We prove first that @ is a solution of (P;). By Theorem 2.3, yr = ylux, gk
converges to § = yli, g] strongly in L*(Q). Therefore (&, ) is feasible for (P5).

Since uy is a solution to (Py, ), then F(ug,gx) < F(u, gx), Yu € K. Moreover
F' is weakly Isc from LP(Q) x W2P(Q) to R (Theorem 3.1) and we get

F(u,g) < limkinf Flug, gr) < limkinf F(u,gi) Yu € K.
The weak continuity of F' with respect to g yields
limkinf Flu,gi) = li}cn F(u,gr) = F(u,§).
Finally,
F(u,3) < limkinf Flug,gr) < F(u,g) Yu € K. (4.24)

Therefore, € S;. Note that with u = @ relation (4.24) gives
lim F(ur, gx) = F (4, 3),
that is
liin J(ug, yi) = J(@, 7). (4.25)

Since y, converges to § strongly in L?(Q), relation (4.25) implies strong conver-
gence of uy to @ in L*(Q). m

Now we make this result more precise by estimating the rate of convergence.
This will provide a first order expansion of the optimal value function with
respect to the parameter g. This section is devoted to first order sensitivity
analysis and we only assume that the constraint set K is a convex, bounded and
closed subset of L?(Q). We do not need any polyhedricity assumption for the
moment. :

The first result is a fundamental lemma which ascertains that the remainder
term of the second order expansion of F(u,g) is o((||u]|2 + |lg]l2)?). This is not
obvious since F is C? from LP(Q) x W}?(Q2) to R and the remainder term is a
priori o(([|v]l, + llgll1,p)?) (with test functions in LP(Q) x W}P(£)).

LEMMA 4.1 Let g,h € W2P(Q) and u,v € LP(Q). Let r(u,v,g,h) be the
remainder term of the second-order expansion of the cost functional F at (u,g)
in the direction (v, h), that is

Flu+v,94+h)

T N o B e aAfae Y & Tt X s BN voalos me s EY
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If v — 0 strongly in L?(Q) and v remains bounded in LP(Q), if h — 0 weakly
in WHP(Q), then

|r(u,v,9,h)|

— 0.
(Ilvll2,@ + [IR]l2,0)?

Proof. As u and g are fixed, we drop the dependence with respect to » and g
in what follows and set r(v, h) := r(u,v,g,h). As F is C? in LP(Q) x W}P(f),
we may write a Taylor-expansion with an integral remainder term: for any
(v, h) € LP(Q) x W5 P(Q)

1
F(u+v,9+h) = F(u,g) + F'(u,g)(v,h) + 51’”(%.‘7)(0,’1)2 + (v, h),
where

1
r(v,h) = %/0 (1= 8)F"(u+ sv,g+ sh)(v,h)*ds — %F"(u,g)(v,h)2,

that is

r(v,h) = %/01(1 — 8)[F"(u+ sv,g + sh) — F"(u, 9)](v, h)* ds.

Set z = y'[u, g](v, h) (resp. zs = y'[u+sv, g+sh](v, h)), the solution to the linear-
ized state equation corresponding to y := y[u, g] (resp. ys := y[u + sv, g + sh]):

Oz+Az+ f'(y)z=vin @, z=00n %, 2(0)=hin Q,
Orzs+ Azs + f'(ys)zs =vin Q, z, =00n X, z,(0) = h in Q.

Similarly ¢ = p'[u, g](v, h) (resp. g5 = p'[u+ sv,g + sh](v, h)) is the solution
to the linearized adjoint state equation corresponding to p := p[u,g] (resp.
ps = plu+ sv, g + sh]):

-0+ A%+ f'(y)g=1-pf"(y))2in Q, g=00n L, ¢(T) =01in Q,
—0gs + A%qs + fl(yS)qs =(1- psf”(yS))zs in Q,
gs=0o0n %, ¢(T)=0in Q.

The expression for F” is given by (3.9) so that
1
o) = [ [ @90 =paf wa))e? - (L= pf"(0)s*] do deds
0 JQ
1
~2 [ [ - 9)(a0) - ao)hdads
0o Ja

Therefore |r(v,h)| < |r1]| + |r2| + |rs|, with

1
o= / /(1 — M1 = Ff" (w22 = 22Ydx dt ds. (4.26)
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) _/ / (1 =38)(f" (W) = Pof"(ys))22 dz dt ds, (4.27)
r3 = 2/ / 1 — 3)(gs(0) — q(0))h dz ds. (4.28)
Il 5 s | [0-pr ) - ) dea

1
Il < 5 sup [I1=pf" W)lleollzf = 2*ll1.1
s€[0,1)
| < C sup ||z = 22|10
s€[0,1)

The mapping s — p[u+ sv, g + sh]f"(y[u + sv, g + sh]) is uniformly continuous
from [0,1] to C(Q). Here, we use the fact that (v,h) weakly converges (up to
a subsequence) in L?(Q) x W2?(2) and Corollary 2.1. So, for any ||v||2 small
enough, ||v||, bounded and h — 0 in W}P(R), we get |r2| < o(||2?|2,@). Finally

Ir(v,h)] < C sup |22 = 2%l1,q + o(||2Z]|2,¢)
s€(0,1)
+ sup |lgs(0) = q(0)|l2.allAll2,0-
s€[0,1]

Note that z — z, is the solution of the following linear equation

{ (2= 2) + A(z = 2,) + f'(y)(2 — 20) = (/'(¥s) = f'(y))2 in Q
z—2z;=00n %, (z—-2,)(0)=0in &

therefore (see for example Dautray-Lions, 1984) we obtain for any s € [0, 1]

Iz = zallz.@ I f (Wl + sv,9 + sh]) = f'(y [w, gD)ll2.¢ll2sll2.@ S oIl 2a|2.@)-

Similarly we have
[lg(0) = gs(0)ll2,.2 < ll7 = gsllzo=(0,7522(2))
< o(llgsll2,@) + o(llz = zll2,@) + o(l|zsl2.Q)-
Using
25113 < C(lloll3.q + lIhl3,0) and |22 = 22[l1,q < l|2 = zl2,0ll2 + 220,
we finally obtain
I2* = 2Zll,@ < ollzl13) < o(llvllz.q + lIl13.0)
and ||¢(0) — ¢s(0)[|2,e < o([|zs]l2,¢)-
This implies
Ir(v, k)| < o(lvli3.q + IRI13.0) + o(lIvll2.llkllz,0 + 1A13.0)
= o[llvll2. + [Ikll2.0)*). =
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COROLLARY 4.1 Let g € W}P(Q), u,vx € LP(Q) and let r(u,g,vx) be the
remainder term of the second order ezpansion of the partial function F(-,g) at
(u,g) in the direction vy:

1
F(u + 'Ukvg) = F(u!g) + F’l’t(u7g)vk + -2—F:2(u,g)v,2c * r(u,g,vk).

I'r(u, 9, 'Uk)l

If vp — 0 strongly in L?(Q) and weakly in LP(Q), then =
”'Jk"z,Q

— 0.

COROLLARY 4.2 Let g,gr € W}P(2), u € LP(Q) and let r(u,g,gx) be the
remainder term of the second order expansion of the partial function F(u,-) at
(u, g) in the direction gy:

1
F(u,g+ gx) = F(u,9) + Fg(u, 9)gx + EF;'z(u,g)gi +7(u, g, g)-

|r(u,g, gk)l

— 0.
llg 13 o

If gr — 0 weakly in WXP(Q), then

THEOREM 4.2 Let (gx) be a sequence convergent to § weakly in W}?(Q), and
ur € Sy,. Assume that (@ = ug,§) satisfies condition (3.23); then one can
extract a subsequence still denoted (ux) such that

llux — @ll2 = O(llgx — gll2)- (4.29)

Proof. Let us assume

Nux — all2 — (4.30)

llgr — all2 ’
and set o = ”Zk — f_lllllz (— 0). We are going to exhibit a critical direction at

K — U2
(@, g) which doest not verify (3.23). Setting
up — U
Uk = 7 =1
llex — @l

we get ||vk]l2,0 = 1 and we may extract a subsequence still denoted (vx) con-
verging to ¥ weakly in L?*(Q). Since v, € TZ(%) (which is a closed, convex
subset of L2(Q)), then o € T2 ().

We prove now that F, (@, 3)v = 0. Relation (3.17) gives F}, (@, §)vi > 0, for
all k£ and the second order expansion of F at (u, gx) (together with Lemma 4.1)
yields

F(uk, g) = F(@,3) + F'(4,3)(Jlux — @ll2vx, g% — g)

| JE—_— _ _ _ _
+ 5 (@ 9)((lwk — allzox, ge — 9), (lux = @llove, 95 — 7))

s —1n " ETEEND AN /s N
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Since

F'(@, §)(llur — @ll2 vk, gk — §) = llux — @ll2 Fy (@, §) vk + F,(,3) (9% — ),

we deduce
Fuk,gx) — F(8,§) /- v 9x—7
F’ = -F
w (T §) vk Tur — 3l o (T, g) Tux — 212
luk = @ll2 1, - (( ) ( gk —J ))
b —F ) 1
P (v =) (% o
+0(|]uk - ‘1'1“2(1 + ak)z). (4.32)
By setting hy = ”—gi——-;"— (|h]l2 = ax — 0), we get
2 5 _ F(uk)gk) _F(ﬁlg) = =
F:L(u! g]”k = "uk = ﬁ”z Fg(u! g)h’k
— Mot~ 2 o, ), ) + ol — )

Since uy is a solution to (P, ), we have F(ug, gx) < F(, g) and

F(u, g) - F(,3)
lJur — @2

F"(1,9) (v, hi)* + of[lux — @ll2)- (4.33)

0 < Fi(@,g)vx <

E F_;(ﬁa g)hk

e = all2
2

By Corollary 4.2, we observe that

F(a,g¢) - F(u,9) _ akF(ﬁ’gk) - F(4,3)

lluk — @ll2 llgx — 3ll2

Similarly, the continuity of Fy(#,g) and (4.30) yield

Fy(@,g)hy — 0.
At last, F"(u, ) is Isc and quadratic, so —F" is usc and the limit of the cor-
responding term is zero as well. Therefore the passage to the limit in (4.33)
proves that ¥ is a critical direction (o € Ca(%)).

It remains to prove that ¥ cannot satisfy F', (g, §)(?,v) > v||v||3. By Corol-
lary 4.2 if u, € S, then

F(ug,9) < F(,g9) = F(a,3) + Fy(,3)(9 - 9)
1 "
+5F(@,9)(9 - 3.9 - 9) + olllg - 913)- (4.34)
In particular, for g = gx, u, = ux

F(uk, g) < F(t,9x) = F(@,3) + Fy(,3)(gx — 3)
o

— 0.

il f= =N/ -2 . -2 fa ooy
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On the other hand,
F(uk, gi) = F(2,9) + F' (8, 3)(ux — % gk — )
+3F(@,9)(uk ~ 5,98~ 9+ ol(l = alla + v~ gll)?). (436)
The optimality condition (3.17) implies
F'(a, g)(ur — @, gk — §) > Fg(, §)(gx — 9)-
(4.35) and (4.36), we get

Combining
F"(U 9)(ux — @, g — g)°
Fro(,9) (g — 9)° + o(([lue — @ll2 + llgr — 3ll2)*),
( 9)(wx — @)® + 2F, (@, §)(ur — @, gk — 3)
< o((lluk — @ll2 + llgw — §ll2)?)-
In addition,
| (@, §)(ur = @, gk = §)| < (|1 Fyy (@, §)ur — @ll2llgr — §ll2,
so that
vz (T, ) (ue — Gy up, — @) < Mag|lug — a3 + oflur — Gl13(1 + ax))?

where M > 0 is a constant independent of k. As ay converges to 0 we finally
obtain

Fip (4, §) (ui = @y up, = @) < o||ux ~ @l3). (4.37)

Then we pass to the inf limit and use the weak lower semicontinuity of F(, g);
this gives

" (T, )(,0) < liminf F5 (@, §)(vk, vk)
< limsup F> (@, §)(vk, vk) < 0. (4.38)

The proof is achieved as soon as we have proved that o # 0. By Theorem 3.2
we have

F:?(ﬁ‘ﬂg)(vvv)
= olplfiq + [ (15l 2l(e, )" 015, 2D)<3(e, ) (439

Let us set

Qg (v) = /Q (1 - pla. 31" (v (@ 31)) 22z, 1) de dt

T atrsor
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where z, is given by (3.11). By the weak continuity of Q5 5 we have
Qa,5)(?) = lim Q(q,5)(vk) < liminf Q(g,g)(vk)
= liminf F2 (&, §)(vk, vi) — a||‘u;.,||§‘Q <-a<0.

Therefore ¥ cannot be zero: we have found a nonzero critical direction which
does not satisfy (4.38). ES}

Let us define now the “optimal value” function for problem (P,):
V(g) = F(ug,9) = J(ug,y[uy, g]) for every u, € S,. (4.40)

The previous study shows that V is weakly continuous at any § € W2P(Q).
This is a “zero-order” result. Now, we look for a higher order representation
of V in a neighborhood of j and we have to perform a second order analysis.

5. Second order sensitivity analysis
5.1. A linear problem associated to (P,)

It is known that under certain regularity assumptions the solution of a nonlinear
control problem is also the solution of the linearized problem (see Zowe and
Kurcyusz, 1979). We enounce here a similar result

THEOREM 5.1 Let be gx = § + tihi, where t; > 0, ti — 0% and ||hi|1,p, = 1;
then the solution @ to (Pz) (given by Theorem 4.1) is also a solution to

min  {F;(u,§)h | u € S3}. ('Pg‘h).
where h € W2P(Q) is a weak cluster point of the sequence (hi).

Proof. Since ||hkl|1,, = 1, one may extract a subsequence still denoted (hy)
which converges to some h weakly in W2?(Q2) (and strongly in C(2)). Let @ € S5
be the solution of (P;) given by Theorem 4.1. We prove that @ is solution to
(Pg_h) as well, that is

Vu € 8 Fy(i, g) h < Fy(u,g) h.

Let us choose u € S5 (V(g) = F(u,§)) and let u;. be a solution of (Py, ):
V(gr) < F(u, gk)
= F(0,) + teFy 0 0)b+ S F .3) (b b) + oI, ),

V(gr) = V(9)

t
i S F;(T.L, g)hk + _k _:z(usg)(hk!hk) + O(tk)'

2

and

im ann M < F'(u aYh Yu e 8-
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Setting
v-ll-(ﬁi h) = lim sup M1
k tx
we have just proved
Vi (@:h) < inf{Fy(u,g)h | u € S(Py)}. (5.41)

On the other hand
V(gk) = F(uk,gx) = Fluk,g) + teFy(ur, §hs + o(tr).
Recall that V(§) = F(u,3) < F(ux,3) and

V(gr) - V(3)

> Fy(ug, §)hx + o(1);
bk

setting

V' (g: h) = lim jnf 209%) = V()
k i1

we get

V. (g;h) > lim inf Fy(uk, 3)he. (5.42)
We have seen (Theorem 4.1) that uy converges to @ weakly in LP(Q) and strongly
in L?(Q). Moreover by (3.8), F;(uk,d)hx = —(p[u,d)(0), hi)2,0. Since 7 is
fixed, Theorem 2.3 yields that y[us,g] converges to y[i, g] strongly in L=(Q).

Therefore p[u, §] converges to p[i, g strongly in C(Q) and p[u, §](0) converges
to pla, g](0) strongly in L*°(§2). Finally

F}(uk,§)hi — F, (i, g)h strongly in L*(Q)
and with (5.41) and (5.42), we obtain

Fy(a,g)h < V_(g;h) S Vi(3;h) < Fo(a, g)h,
that is

V= tim X=X - g gy m

REMARK 5.1 Theorem 5.1 remains valid if we choose a sequence gy strongly
convergent to some § in WIP(Q). Indeed, one chooses

. g — gk
te =115 = il (—0) and by = 5.
Note that the weak convergence of any sequence gi is not sufficient since we do
not know how ty = ||g — gk||1,p behaves.
Moreover, Theorem 5.1 is not valid if the sequence hy. is strongly convergent
to h in L*(Q) without any further assumption; indeed, we cannot use Theo-
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5.2. A quadratic auxiliary problem associated to (P,)

Since we want to perform a second order analysis, it is natural to introduce
a “quadratic approximation of the original problem” (7,). We may also re-
mark that it is the basic idea of SQP methods. Let us consider the following
quadratic problem which corresponds to the formal second order expansion of
the functional F at (u,g), for a fixed h € W1P(Q):

min  F"(u, g)((v, h), (v, h))
{ v € Ca(u, g) (Qug.)

as it has been previously set in Bonnans (1998b). Remark that

F"(u,9)((v, h), (v,h)) = el|v]|3 g + Qu(v) + Qeu,g)(v, h) + Qy(h)

where Qu, Q(u,) and @, are given, respectively, by (3.14), (3.15) and (3.16).
The direction h is fixed so that the minimum is to be taken with respect to the
variable v; therefore, the objective function of (Qy,g,1) turns to be

Vlu, g, h(v) = allv]l3 g + Qu(v) + Qqu,g) (v, h).

THEOREM 5.2 Assume that the weak second order condition (3.23) holds at
(u,g) € LP(Q) x WLP(RQ); then, for any h € L?(Q) problem (Qy q.1) has at least
one solution.

Proof. We have seen (Theorem 3.2) that for every fixed h € L?(Q2), the
mapping v +— F"(u,g)((v,h),(v,h)) is weakly Isc. As Cz(u,g) is convex and
L%(Q)-closed, it is sufficient to prove that v — ¥[u, g, h](v) is coercive. We have

U[u, g, h](v) = allvll3 @ + Qu(v) + Qeu,g)(v, h).

where

Qulv) = - [Q (1= pluy 9} (ylu, g1))22 da b, and

Qu,g)(v,h) =2 fQ (1 = plu, 9" (ylu, 9])) zv2n dz dt — 2 fn qu(0)h da.

Assumption (3.23) at (u,g) yields
alloll3,q + Quv) = Fia(v, 9)(v,v) 2 v|lv|l? o with v > 0.
We use the Cauchy-Schwartz inequality to estimate Q(, g)(v, h):

f zomndzdt > —||zllallznllzg.
Q

The mapping v i z, is linear, continuous from L%(Q) to L2(Q): Je; > 0 such
that
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that is
fQ plos 91" (vl g]) 202 iz dt

z—mmmﬂwmmmaéaamm.
> ~llplus gl (vl ) ool zollz 0 lznl2.01
> —exlplu, g1/ (vlus gD lolollz.0llz8 ln0-

Similarly
. /Q 2(O)hds > —csllvllz.qlibllz-

Finally

Qu,g)(v, 1) 2 [vl2,0(=c1llznll2,0
- a1|lp[u, 91" (y[w, g))lleoll2nllz.@ — c2llRll2,Q), (5.43)

that is

V[u, g, h)(v) 2 [lvllz,@llIvll2.@ = Clh,u, 9)],
where C(h,u, g) is a constant depending only on h, v and g. il

Let us call V(Qu,g,n) the optimal value function for (Qy g,1):

V(Qug,n) = min(Qug,n) = min{F"(u, g)((v, h), (v, h)) | v € Ca(u, 9)}

5.3. Use of polyhedricity

We would like to get a L?-expansion of the optimal value function V because the
(weak) second order sufficient coercivity condition is satisfied only in L?-norm.
Unfortunately, we have seen that this function (via function F') is differentiable
only if the state function belongs to C(Q) (that is why we consider a control
function in LP(Q) and perturbed initial data in W}?(Q)). We will use the
coercivity condition in L?-norm. There is a gap between the two norms: this is
the two-norm discrepancy phenomenon. The tool that will help us to solve the
problem (to overcome the difficulty connected with the gap) is the polyhedricity
of the control constraints set K. Of course, the polyhedricity is also useful
without the norm discrepancy (see Haraux, 1977, Mignot, 1976: it may be
useful to control variational inequalities for example).

THEOREM 5.3 Consider a sequence (gr) € WLP(Q) weakly convergent to §.
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(i) If (u,3) satisfies (3.23) then V admits the following second-order expan-
ston:

V(g) = V(g) + F,(1,3)(9x - 9)

_ 12
+ ooy, )+ ofloe - i) k)

where h is a weak cluster point of ﬁ in L*(Q).
k= gll2

(11) If v is a weak cluster point of _u_;__;e_
llgx — 3ll2

in L*(Q) and it is a solution to (Qg.g.n)-

in L*(Q), then v is a strong

Up — U
llgx — gll2

Proof. (i) Theorem (4.2) yields ||ux — ||z = O(|lgx — §||2).- Therefore the
sequence

cluster point of

o up =4 up—u
N P TP
is bounded in L2(Q) and there exists v € L*(Q) such that a subsequence of (vy)
converges to v weakly in L*(Q).

Let us show that v is a critical direction. The proof is similar to that

given in Theorem 4.2: we consider now the L?-norm instead of the W'* norm.
We set

hy

— _9—9
llg — 3ll2
The second order expansion of F' and Lemma 4.1 gives

F(uk, gx) - F(@,3) = ti F' (@, ) (vk )

s
+ %P (,5) ok, ) + ool + halll?).

and tx = ||gk — gll2-

Furthermore, by Theorem 4.2, ||vk||2 = O(||ill2), so that the remainder term
in the previous expression is o(t2||he||2) = o(t?). We obtain

F(ux, gi) = F(a,3) + te F' (@, §) (v, hi)
2
+ EF(@,9)((0k, ha), (v b)) + o8,

0< F:‘(ﬁ,g)vk = F(uhgkl’: F(ﬁ!g) . F;('Eg)hk

t" M= =
= —Q’tF (@, §) (v, ha), (Vs Bi)) + o(tx)-
Since F(ug,gx) < F\a,gx), we get
F(a, ) — F(a,3)

48
5 O, Y

0 < Fy(a, g)ur <

= F;(ﬁs g)h'l
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Passing to the limit yields that v is a critical direction: indeed, using Corol-
lary 4.2 gives
F(ﬂvgk) . F(ﬁ‘g)
tg
On the other hand, by (3.9)

= Fy (@, g)hk + o(ty).

F" (@, 3)((vk: hte), (vk, b)) = ellvell3 @ + 19 [ 8)(ox hi) 3.0
- || #1531 .30 15 8w, e v =2 /153, ) O

this term remains bounded as & — +o00 and we finally obtain F) (@, g)v = 0.
Now, we give lower and upper estimates of

Vigr) = V(7) — tiFy (1, g)ha
z :

and we start with a lower estimate: from (5.45) we have

i 3 iR vt s
F(u, gi) = F(3,§) = tkFy(8,9) hie 2 5 F"(@ §) vk, h)? + o(£5).

Passing to the inf-limit and using the weak lower semicontinuity of
F (@, g)(vr, vi) we get

F(uk,gk) — F(ﬁ.

liminf
k

Since v € Ca(%, §), we obtain

V(gr) = V(g) — Fy(@,§)(9x — 3) 5 &
& =4

limkinf V(Qs.5.8)- (5.46)

Upper estimate: let u; be a solution to (P, ):
V(gr) = Flu, gx) < F(u, gx), Yu € K.
Let w € RE (@) N F/(@,3)* and u:= @ + txw; then
V(gx) < F(i + trw, gi)-
Again, we perform a second order expansion of F'
F(u + tyw. gx) = F(4,3) + t F'(@, §)(w, hy) + %F”(ﬂ, ) (w, h)? + o(t2).

Since F) (@, g)w = 0, for every w € Cs(i, §), we obtain

2
F(@+ tw, gi) = F(3,5) + e F! (5, )hs + %‘F”(ﬂ,g)(w. hi)? + o(t2),

) — V(G) — te Fl(w, §)hs
Vige) - V(g) = Fy (@, 9)hu < 1F‘”{ﬁ,. aVw. hi)2 + o(1).
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and

V(gr) — V(g) — txF, (G, g)h
th

lim sup < %F”(ﬁ,g](w, By (5.47)

k
We use here the 2-polyhedricity of K: the previous inequality is a priori
valid for any w € R% (@) N F,(&@,§)"; therefore it is also valid for any w €
TZ(@) N F!(@,g)*, that is, at least for any w € Ca(@, §). Consequently,

V(gr) — V(g) — teFy (i, 3)ha

lim su

k ¥ ti
<l min P50 h)? = 2V(Qusn). (5.48)
= 2 weClug) R e

This completes the proof of (i).
Let us demonstrate (ii). Relation (3.9) of Theorem 3.2 yields

1
llvell3 = ;{F”{ﬁ")(vk,hk)z — Qa,g(ve, b))},

where

Qag(ve, he) = ||z&ll3,0 — pr[ﬁ‘ alf" (y[u, g)) 22 (z, t) dw dt

-2 [ gfe,0)hu(,0)ds.
and zx = y'[&@, §](vk, hi). We have seen that Qg ; is weakly continuous. In
addition, point (i) gives

Iiin F"(,3)(vk, i) = F"(,§)(v,h) = V(Qag.n)-
Therefore vy, strongly converges to v in L2(Q). |

REMARK 5.2 Theorem 5.3 is of course valid if we choose a W1P(2) ezpansion h
of g around §. Indeed, we are in the L*-frame and the W}?()) weak convergence
is sufficient to ensure the strong one in L*(Q). This theorem is stronger than
Theorem 5.1. Though V is not differentiable in L?(Q), we are able to give an
expansion for tests functions in L*().
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