Control and Cybernetics

vol. 30 (2001) No. 2

An algebraic analysis approach to 2-D discrete problems

 by
Danuta Przeworska-Rolewicz ${ }^{1}$ and Hubert Wysocki ${ }^{2}$

${ }^{1}$ Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-950 Warszawa, Poland E-mail: rolewicz@impan.gov.pl
${ }^{2}$ Department of Mathematics, Polish Naval Academy
Jana Śmidowicza 69, 81-103 Gdynia, Poland
E-mail: hwys@amw.gdynia.pl
Abstract: A model of algebraic analysis for the 2-index sequences (of the type 2-D) is considered. For difference operators of the form

$$
D\left\{x_{m, n}\right\}:=\left\{x_{m+1, n+1}-a_{m, n} x_{m, n}\right\}
$$

the right inverses and the corresponding initial operators are constructed. Having already known the initial operators, one can determine solutions of the corresponding initial value problems.

Keywords: algebraic analysis, 2-D systems, difference operator, right invertible operator, right inverse, initial operator, forward shift, backward shift.

1. Foundations of algebraic analysis

Let X be a linear space over a field \mathbb{F} of scalars (of the characteristic zero). Let $L(X)$ be the set of all linear operators A whose domains $\operatorname{dom} A$ and sets of values range $A=A \operatorname{dom} A$ are linear subsets of the space X. Write

$$
L_{0}(X):=\{A \in L(X): \operatorname{dom} A=X\} .
$$

An operator $D \in L(X)$ is said to be right invertible if there is an operator $R \in L_{0}(X)$ such that $R X \subset \operatorname{dom} D$ and $D R=I$, where $I \in L_{0}(X)$ is the identity operator. The operator R is a right inverse of D. Denote by \mathcal{R}_{D} the set of all right inverses of D. Clearly, $\mathcal{R}_{D} \subset L_{0}(X)$.

An operator $F \in L_{0}(X)$ is said to be an initial operator for D corresponding to an $R \in \mathcal{R}_{D}$ if

$$
F^{2}=F, F X=\operatorname{ker} D \text { and } F R=0
$$

It can be shown (cf. Theorem 2.2.1 in Przeworska-Rolewicz, 1988) that F is an initial operator for D corresponding to R if and only if

$$
F x=x-R D x \text { for } x \in \operatorname{dom} D .
$$

We therefore conclude that the family $\mathcal{R}_{D}=\left\{R_{\gamma}\right\}_{\gamma \in \Gamma}$ of right inverses of D induces a family $\mathcal{F}_{D}=\left\{F_{\gamma}\right\}_{\gamma \in \Gamma}$ of initial operators for D, where

$$
F_{\gamma}=I-R_{\gamma} D x \text { on } \operatorname{dom} D, \gamma \in \Gamma \text {. }
$$

Example 1 (see Example 5.3 in Przeworska-Rolewicz, 1998) Let $X:=(s)_{\mathrm{F}}$ be the space of all'sequences $x=\left\{x_{n}\right\}$, where $x_{n} \in \mathbb{F}, n \in \mathbb{N}$, with the usual coordinatewise addition of sequences and multiplication of sequences by scalars belonging to \mathbb{F}.

Consider the forward shift

$$
D\left\{x_{n}\right\}=\left\{x_{n+1}\right\},\left\{x_{n}\right\} \in \operatorname{dom} D=(s)_{\mathbf{F}},
$$

which is right invertible. Indeed, $\operatorname{ker} D=\{c \delta: c \in \mathbb{F}\} \neq\{0\}$, where $\delta:=\left\{\delta_{1}^{n}\right\}$ and δ_{1}^{n} is the Kronecker symbol, i.e.

$$
\delta_{1}^{n}= \begin{cases}1 & \text { for } n=1, \\ 0 & \text { for } n \neq 1 .\end{cases}
$$

A right inverse of D is the backward shift:

$$
R_{1}\left\{x_{n}\right\}=\left\{x_{n-1}\right\}, \text { where } x_{0}:=0,
$$

which determines the initial operator

$$
F_{1}\left\{x_{n}\right\}=x_{1} \delta .
$$

Let $i \in \mathbb{N}$ and let

$$
F_{i}\left\{x_{n}\right\}:=\left(x_{1}+\cdots+x_{i}\right) \delta, i>1 .
$$

Observe that every operator defined by the following formula:

$$
R_{i} x:=R_{1} x-F_{i-1} x, x \in X, i>1,
$$

is a right inverse of D, since $F_{i-1} X=\operatorname{ker} D, i>1$. Moreover, $F_{i}, i>1$, is an initial operator for D corresponding to $R_{i}, i>1$. Indeed,

$$
\begin{aligned}
& x-R_{i} D x=x-\left(R_{1} D x-F_{i-1} D x\right)=\left(x-R_{1} D x\right)+F_{i-1} D x \\
& =F_{1} x+F_{i-1} D x=x_{1} \delta+\left(x_{2}+\cdots+x_{i}\right) \delta \\
& =\left(x_{1}+\cdots+x_{i}\right) \delta=F_{i} x, i>1,
\end{aligned}
$$

for every $x \in X$. Hence, to the family $\left\{R_{i}\right\}_{i \in \mathrm{~N}} \subset \mathcal{R}_{D}$ of right inverses of D

2. Formulation of the problem

The set $(s)_{\mathrm{F}}$ of all sequences $x=\left\{x_{m, n}\right\}$, where $x_{m, n} \in \mathbb{F}, m, n \in \mathbb{N}$, with the coordinatewise addition and multiplication by scalars

$$
x+y:=\left\{x_{m, n}+y_{m, n}\right\}, \lambda x:=\left\{\lambda x_{m, n}\right\},
$$

where $x=\left\{x_{m, n}\right\} \in\left(s_{2}\right)_{\mathbf{F}}, y=\left\{y_{m, n}\right\} \in\left(s_{2}\right)_{\mathbf{F}}, \lambda \in \mathbb{F}$, is a linear space over the field \mathbb{F}. Moreover, if for $x, y \in\left(s_{2}\right)_{\mathbf{F}}$ we define the coordinatewise multiplication

$$
x y:=\left\{x_{m, n} y_{m, n}\right\},
$$

then $\left(s_{2}\right)_{\mathbb{F}}$ is a commutative algebra over \mathbb{F} with the unit $e=\left\{e_{m, n}\right\}$, where $e_{m, n}=1$ for all $m, n \in \mathbb{N}$.

Suppose therefore that $X:=(s)_{\mathrm{F}}$ is an algebra with the structure operations defined as above. Suppose, moreover, that there are given sequences $\alpha, \beta \in(s)_{\mathbf{F}}$ and $a \in(s)_{\mathrm{F}}$ with the property

$$
a_{m, n} \neq 0 \text { for every } m, n \in \mathbb{N} .
$$

The second author of the present paper posed in the paper Wysocki (2002) a problem, which can be presented in the algebraic analysis approach as follows:

Determine for the operator

$$
\begin{equation*}
D\left\{x_{m, n}\right\}:=\left\{x_{m+1, n+1}-a_{m, n} x_{m, n}\right\} \tag{1}
\end{equation*}
$$

a right inverse $R \in \mathcal{R}_{D}$ and the corresponding initial operator F induced by the following conditions:

$$
\begin{equation*}
x_{m, n_{0}}=\alpha_{m}, x_{m_{0}, n}=\beta_{n}, m, n \in \mathbb{N} \text {, } \tag{2}
\end{equation*}
$$

where $a_{m_{0}}=\beta_{n_{0}}$ and m_{0}, n_{0} are fixed positive integers such that $m_{0} \neq n_{0} .{ }^{1}$

3. Solution of the problem

We shall solve the problem posed in Section 2 in the case when instead of Conditions (2) the following conditions are imposed:

$$
\begin{equation*}
x_{m, 1}=\alpha_{m}^{1}, x_{m, 2}=\alpha_{m}^{2}, \ldots, x_{m, n_{0}}=\alpha_{m}^{n_{0}}, m \in \mathbb{N} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1, n}=\beta_{n}^{1}, x_{2, n}=\beta_{n}^{2}, \ldots, x_{m_{0}, n}=\beta_{n}^{m_{0}}, n \in \mathbb{N} \tag{4}
\end{equation*}
$$

where given sequences

$$
\begin{aligned}
& \alpha^{j}=\left\{\alpha_{m}^{j}\right\} \in(s)_{\mathbf{F}}, j \in{\overline{1, n_{0}}}^{2}, \\
& \beta^{i}=\left\{\beta_{n}^{i}\right\} \in(s)_{\mathbf{F}}, i \in \overline{1, m_{0}},
\end{aligned}
$$

[^0]This implies

$$
y_{m, n}=\left\{\begin{array}{ll}
z_{m, n} \sum_{k=1}^{m} \frac{x_{k, n-m+k}}{z_{k, n-m+k}} & \text { for } m \leq n, \tag{11}\\
z_{m, n} \sum_{l=1}^{n} \frac{x_{m-n+l, l}}{z_{m-n+l, l}} & \text { for } m>n,
\end{array} \quad m, n \in \mathbb{N} .\right.
$$

Finally, we get

$$
\left(I-R_{1} R_{2} A\right)^{-1}\left\{x_{m, n}\right\}=\left\{y_{m, n}\right\},
$$

where the sequence $\left\{y_{m, n}\right\}$ is given by Formulae (11).

5. Algebraic description of 2-D systems in control theory

The generalized $2-D$ model considered in control theory is the state-space model with deviating arguments, Kaczorek (1993),

$$
\begin{align*}
& E_{m+1, n+1} x_{m+1, n+1}=A_{m, n}^{0} x_{m, n}+A_{m+1, n}^{1} x_{m+1, n}+A_{m, n+1}^{2} x_{m, n+1} \\
& +B_{m, n}^{0} x_{m-k, n-l}+B_{m+1, n}^{1} x_{m-k+1, n-l}+B_{m, n+1}^{2} x_{m-k, n-l+1} \\
& +C_{m, n}^{0} u_{m, n}+C_{m+1, n}^{1} u_{m+1, n}+C_{m, n+1}^{2} u_{m, n+1}, \tag{12}\\
& y_{m, n}=G_{m, n} x_{m, n}+H_{m, n} u_{m, n}, \tag{13}
\end{align*}
$$

where $\boldsymbol{x}_{m, n} \in \mathbb{R}^{p}$ is the local state vector at the point $(m, n) \in \mathbb{N} \times \mathbb{N}, u_{m, n} \in \mathbb{R}^{q}$ is the input vector, $\boldsymbol{y}_{m, n} \in \mathbb{R}^{r}$ is the output vector and the variable coefficients $E_{m, n}, A_{m, n}^{0}, A_{m, n}^{1}, A_{m, n}^{2}, B_{m, n}^{0}, B_{m, n}^{1}, B_{m, n}^{2}, C_{m, n}^{0}, C_{m, n}^{1}, C_{m, n}^{2}, G_{m, n}, H_{m, n}$ for each $(m, n) \in \mathbb{N} \times \mathbb{N}$ are the real matrices of appropriate dimensions.

Upon admitting

$$
\begin{aligned}
x & :=\left[x_{\mu}\right], x_{\mu} \in\left(s_{2}\right)_{\mathbb{R}}, \mu \in \overline{1, p}, \\
u & :=\left[u_{\nu}\right], u_{\nu} \in\left(s_{2}\right)_{\mathbb{R}}, \nu \in \overline{1, q}
\end{aligned}
$$

we get $x=\left\{x_{m, n}\right\}, u=\left\{u_{m, n}\right\}$.
Using the operators considered in this paper, the state equation (12) is transformed into the vector-matrix 'partial integro-differential equation'

$$
\begin{align*}
& D_{1} D_{2}(E x)=A_{0} x+D_{1}\left(A_{1} x\right)+D_{2}\left(A_{2} x\right) \\
& +B_{0} R_{1}^{k} R_{2}^{l} x+D_{1}\left(B_{1} R_{1}^{k} R_{2}^{l} x\right) \\
& +D_{2}\left(B_{2} R_{1}^{k} R_{2}^{l} x\right)+C_{0} u+D_{1}\left(C_{1} u\right)+D_{2}\left(C_{2} u\right) \tag{14}
\end{align*}
$$

where operators $D_{i}, R_{i}, E, A_{j}, B_{j}, C_{j}$ are defined in the following way

$$
D_{i} x:=\left[D_{i} x_{\mu}\right], R_{i} x:=\left[R_{i} x_{\mu}\right], i=1,2, E x:=E_{m, n} x_{m, n},
$$

In the case, when the coefficients of the equation (12) are real-valued constant matrices, from (14) we obtain the first and the second Fornasini-Marchesini model, respectively (see Fornasini and Marchesini, 1978; Antoniou and Emmons, 2000)

$$
\begin{aligned}
& D_{1} D_{2} x=A_{1} D_{1} x+A_{2} D_{2} x+C_{0} u, \\
& D_{1} D_{2} x=A_{1} D_{1} x+A_{2} D_{2} x+C_{1} D_{1} u+C_{2} D_{2} u
\end{aligned}
$$

and the generalized linear model (see Kaczorek, 1985; Dzieliński, 1993)

$$
\begin{equation*}
D_{1} D_{2} x=A_{0} x+A_{1} D_{1} x+A_{2} D_{2} x+C_{0} u+C_{1} D_{1} u+C_{2} D_{2} u . \tag{15}
\end{equation*}
$$

Example 3 Consider the scalar system described by the following state equation

$$
\begin{equation*}
x_{m+1, n+1}=x_{m, n}+(m+1)(n+1), m, n \in \mathbb{N} . \tag{16}
\end{equation*}
$$

It corresponds a particular case of the model (15) and it can be presented in the form

$$
D_{1} D_{2} x=x+u
$$

or

$$
\begin{equation*}
\widetilde{D} x=u \tag{17}
\end{equation*}
$$

where $x=\left\{x_{m, n}\right\}, u=\{(m+1)(n+1)\}$.
We determine the solution of the equation (17) with the condition

$$
\begin{equation*}
F^{\left(m_{0}, n_{0}\right)} x=0, \tag{18}
\end{equation*}
$$

for a fixed $m_{0}, n_{0} \in \mathbb{N} \backslash\{1\}$.
The condition (18) will be satisfied if

$$
\begin{aligned}
& x_{1, n}+x_{2, n}+\cdots+x_{m_{0}-1, n}=0, x_{m_{0}, n}=0, n \in \mathbb{N} \\
& x_{m, 1}+x_{m, 2}+\cdots+x_{m, n_{0}-1}=0, x_{m, n_{0}}=0, m \in \mathbb{N} .
\end{aligned}
$$

The solution of the initial value problem (17), (18) is given by the formula

$$
x=R^{\left(m_{0}, n_{0}\right)} u
$$

i.e.

$$
\begin{aligned}
& x=\left(I-R_{1} R_{2}\right)^{-1} R_{1}^{\left(m_{0}\right)} R_{2}^{\left(n_{0}\right)} u \\
& =\left(I-R_{1} R_{2}\right)^{-1}\left(R_{1}-F_{1}^{\left(m_{0}-1\right)}\right)\left(R_{2}-F_{2}^{\left(n_{0}-1\right)}\right) u
\end{aligned}
$$

Applying the form of the operators $R_{1}, R_{2}, F_{1}^{\left(m_{0}\right)}, F_{2}^{\left(n_{0}\right)},\left(I-R_{1} R_{2}\right)^{-1}$, we finally obtain

$$
x_{m, n}= \begin{cases}\frac{m(m+1)(3 n-m+1)}{6} & \text { for } m<n \\ -\frac{(n-m+1)\left(m_{0}-1\right)\left(m_{0}+2\right)}{2} & \\ \frac{m(m+1)(2 m+1)}{6} & \text { for } m=n \\ +\frac{\left(m_{0}-1\right)\left(m_{0}+2\right)}{2}-\frac{\left(n_{0}-1\right)\left(n_{0}+2\right)}{2} & \text { for } m>n \\ \frac{n(n+1)(3 m-n+1)}{6} & \end{cases}
$$

where $m, n \in \mathbb{N}$.

References

Antoniou, G.E. and Emmons, K. (2000) Fornasini-Marchesini 2-D state space models: Transfer function computation via the DFT. Int. J. Appl. Math. and Comp. Sci., 10, 2, 321-331.
Dzieliński, A. (1993) Optimal control of two-dimensional systems. Archives of Control Sciences, 2, 3-4, 185-199.
Fornasini, E. and Marchesini, G. (1978) Doubly indexed dynamical systems: State space models and structural properties. Math. Syst. Theory, 12, 1, 59-72.
Kaczorek, T. (1985) Two-dimensional linear systems. Lecture Notes in Control and Information Sciences, 68, Springer-Verlag, Berlin.
Kaczorek, T. (1993) Generalized multidimensional linear systems with deviating arguments. Archives of Control Sciences, 2, 3-4, 165-183.
Przeworska-Rolewicz, D. (1988) Algebraic Analysis. D. Reidel \& PWNPolish Scientific Publishers, Dordrecht \& Warszawa.
Przeworska-Rolewicz, D. (1998) Logarithms and Antilogarithms. An Algebraic Analysis Approach. With Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht.
Wysocki, H. (2002) Some 2-D discrete models of the Bittner Operational Calculus. Acta Math. Hungar. (in print).

[^0]: ${ }^{1}$ The case $m_{0}=n_{0}$ has been considered in Wysocki (2002).

