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Abstract : A model of algebraic analysis for the 2-index se
quences (of the type 2-D) is considered. For difference operators 
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1. Foundations of algebraic analysis 

Let X be a linear space over a field lF' of scalars (of the characteristic zero). 
Let L(X) be the set of all linear operators A whose domains dom A and sets of 
values range A = A dom A are linear subsets of the space X. Write 

Lo(X) :={A E L(X): domA =X}. 

An operator D E L(X) is said to be right invertible if there is an operator 
R E Lo(X) such that RX C domD and DR = I , where I E L0 (X) is the 
identity operator. The operator R is a right inverse of D. Denote by RD the 
set of all right inverses of D. Clearly, RD C Lo(X). 

An operator F E L0 (X) is said to be an initial operator forD corresponding 
to an R E RD if 

F 2 = F, F X = ker D and F R = 0, 
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It can be shown (cf. Theorem 2.2 .1 in Przeworska-Rolewicz, 1988) that F is 
an initial operator for D corresponding to R if and only if 

Fx = x - RDx for x E dom D. 

We therefore conclude that the family R D = { R1 } -1Ef of right inverses of D 
induces a family :FD = {F1 } 1 Ef of init ial operators forD, where 

F1 = I - R,Dx on dom D, 1 E r. 

EXAMPLE 1 (see Example 5.3 in Przeworska-Rolewicz, 1998) Let X := (s)F be 
the space of all ' sequences x = { Xn}, where Xn E lF, n E N, with the usual 
coordinatewise addition of sequences and multiplication of sequences by scalars 

· belonging to lF. 
Consider the forward shift 

D{x n} = {xn+l}, {xn} E domD = (s)F, 

which is right invertible. Indeed, ker D = { c8 : c E JF} i= {0}, where 8 := { 8j_'} 
and 81 is the Kronecker symbol, i.e. 

8n = { 1 for n = 1, 
1 0 for n i= 1. 

A right inverse of D is the backward shift: 

R1 {xn} = {xn-d, where Xo := 0, 

which determines the initial operator 

Fl{xn} = x18. 

Let i E N and let 

Fi{xn} := (x1 + · · · + x;)8, i > 1. 

Observe that every operator defined by the f ollowing formula: 

is a right inverse of D, since Fi_ 1X = ker D, i > 1. Moreover, Fi, i > 1, is an 
initial operator for D corresponding to R;, i > 1. Indeed, 

x- RiDx = x- (R1 Dx- Fi-1Dx) = (x- R1Dx) + Fi-1Dx 

= F1x + Fi-1Dx = x18 + (x2 + · · · + Xi)8 

= (x1 + · · · + Xi)8 = Fix, i > 1, 

for every x E X . Hence, to the family {Ri}iEN C RD of right inverses of D 
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2. Formulation of the problem 

The set (s)r of all sequences x = {xm,n} , where Xm ,n E f , m, n E N, with the 
coordinatewise addition and multiplication by scalars 

X+ Y := {xm,n + Ym,n}, Ax:= {.Axm,n }, 

where x = {xm,n } E (sz)r , y = {Ym,n } E (sz)F, .A E f, is a linear space over the 
field f. Moreover, if for x, y E (s2 )F we define the coordinatewise multiplication 

x y := { :z:m,nYrn,n} , 

then (s 2 )r is a commutative algebra over f with the unit e = {em,n }, where 
Cm,n = 1 for all m ,n EN. 

Suppose therefore that X := ( s )F is an algebra with the st ructure operations 
defined as above. Suppose, moreover, that there are given sequences a, (3 E ( s )F 
and a E ( s )r with the property 

am ,n ;;f 0 for every m, n E N. 

The second author of the present paper posed in the paper Wysocki (2002) a 
problem, which can be presented in the algebraic analysis approach as follows : 

Determine for the operator 

(1) 

a right inverse R E Ro and the corresponding initial operator F induced by 
the following conditions: 

Xm,no =am , Xmo ,n = f3n, m, n E N, (2) 

where am0 = f3no and mo, no are fixed positive integers such that mo ::f no. 1 

3. Solution of the problem 

We shall solve the problem posed in Section 2 in the case when instead of 
Conditions (2) the following conditions are imposed: 

Xm,l =a;,, Xm,2 = a;n, ... , Xm,no =a~~, mE N 

and 

Xl,n = (3,1, , Xz,n = (3~, .. . , Xmo,n = f3;:•o, n EN , 

where given sequences 

a j ={a!, } E (s)F, j E 1,no 2, 

(Ji = {(3:,} E (s)IF , i E 1,mo, 

1The case mo =no has been considered in Wysocki (2002). 
o -. - • 

(3) 

(4) 
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This implies 

l 
~ Xk,n - m+k 

Z,n ,n L....,; 
k= 1 Zk ,n-m+k 

Ym,n = n 
"""' Xm-n+l,l 

Zrn,n L....,; 
l=1 Zm-n+l,l 

Fina lly, we get 

form~ n, 

m,nE N. 

form.> n, 

where the sequence {Ym,n} is given by Formulae (11). 

(11) 

5. Algebraic description of 2-D systems in control theory 

The generalized 2-D model considered in control theory is the state-space model 
with deviating arguments , Kaczorek (1993), 

Em+1 ,n+1Xrn+1,n+l = A~,11 Xrn ,n + A.~1+1.nXm+ 1 ,n + A ?,, ,n+1Xm,n+l 

+ B?n ,n Xm-k ,n-1 + B;n+l .nXm.-k+ l ,n-1 + B?n ,n+l Xm-k,n-1+1 

+ c?,, ,n Urn ,n + C~,+1 ,n Um+1,n + C~,n+ l Um,n+l , 

Ym. ,n = Gm,nXm,n + Hm,nUm,n, 

(12) 

(13) 

where Xm,n E JRP is the local state vector at the point ( m, n) E N X N, Um,n E JRq 
is the input vector, Ym n E JR'' is the output vector and the variable coefficients 

Ern,n , A~,n • A~ .n• A?n:, , B~,n• B~' ·" ' B?,,,n, c?,, ,11 , C~"·" ' C ?,., ,n, Gm,n, Hm. ,n for 
each ( m, n) E N x N are the real matrices of appropriate dimensions. 

Upon admitting 

X:= [x11 ] , Xp. E (s2)JR , J-l E l,P, 
u := [uvJ, Uv E (sz)JR, 11 E l,q 

we get X= {xm,11 }, u = {um,n }· 
Using the operators considered in t his paper, the state equation (12) is trans

formed into the vector-matrix 'partial integra-different ial equat ion' 

D1D2(Ex) = Aox + D1(A1x) + Dz(A2x) 

+BoR~R~x + Dt(BtR~R~x) 
+ Dz(BzR~R~x) + Cou + Dt(Ctu) + Dz(Czu) , 

where operators D; , Ri , E, Aj, B j, Cj are defined in the following way 

(14) 
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In the case, when the coefficients of the equation (12) are real-valued constant 
matrices, from (14) we obtain the first and the second Fornasini~Marchesini 
model, respectively (see Fornasini and Marchesini, 1978; Antoniou and Emmons, 
2000) 

D1D2x = A1D1x + A2D2x + Cau, 

D1D2x = A1D1x + A2D2x + CtDtu + C2D2u 

and the generalized linear model (see Kaczorek, 1985; Dzielit'tski, 1993) 

EXAMPLE 3 Consider the scalar system described by the following state equation 

Xm+l,n+l = Xm,n + (m, + 1)(n + 1) , m, n EN. (16) 

It corresponds a particular case of the model (15) and it can be presented in the 
form 

or 

Dx = u, 

where x = {xm,n}, u = {(m + 1)(n + 1)}. 
We determine the solution of the equation (l'l) with the condition 

p(mo,no)X = 0, 

for a fixed rna, no E N \ { 1}. 
The condition ( 18) will be satisfied if 

:r1,n + .'1:2,n + 0 0 0 + Xmo ~ l,n = 0, Xmo,n = 0, n E N, 

.Tm ,l + Xm,2 + · · · + Xm ,no~1 = 0, Xm ,no = 0, 1n EN. 

The solution of the initial value problem (l'l), {18) is given by the form?Lla 

i.e. 

. _ (I_ R R )~1R(mo)R(no) :t- 1 2 1 2 1L 

-(I R R )~1(R p(mo~1))(R L~(no~1)) - - 1 2 1 - 1 -2 - r2 1L 

T""\ ., ( n n -1) T"""' T"""l (ln n - 1 ) ., ( n tn - 1 ) T"""l(n .. n - 1 ) , 

(17) 

(18) 
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Applying the fonn of the operators R1, R2, Ffmo), Fi"o) , (I- R 1R2)- 1, we finally 
obtain 

Xrn,n = 

where m, n EN. 
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