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Abstract: This paper presents a non-linear model of the Blum­
lein circuit for the excitation of an N2-laser that leads to a high 
order integer-differential equation system where each of the two dis­
charges (the spark gap and the laser chamber) taking place in the 
circuit are simulated by an inductance and a resistance connected in 
series. The inductance and the resistance of each loop are considered 
current dependent and their time behaviour is found by means of a 
parametric identification method based on the voltages measured in 
the charge capacitors. A comparison between two representations of 
the induced emf in the different loops of the circuit is used. The first 
one is based on the dynamical (or derivative) inductivity and the sec­
ond one on the statical (or integrative) inductivity. A Gauss- Seidel 
algorithm for the parametric identification was used. 
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1. Introduction 

For the pulsed excitation of N2 , a well-known arrangement is the Blumlein 
circuit . Its role is to produce a very intense uniform glow discharge across 
the laser head during a very short time. The Blumlein circuit consists of two 
common non-linear elements, a spark gap whose function is to fire the circuit 
and the laser chamber where the laser discharge takes place. Besides, in order 
to charge the circuit, a coil L parallel to the laser head is used. So, the circuit 
is reduced to two loops, which follow the fourth order differential equations for 
any voltage and current in the circuit, when each discharge taking place in the 
circuit is simulated by an inductance and a resistance connected in series, whose 
values are considered time independent. 

Recently, Persephonis et al. (1995), have proposed to solve the integer­
differential equations of a charge transfer circuit for the excitation of a N2 laser 
by considering the behaviour of the inductances and resistances of the spark gap 
and the laser chamber as time dependent. They substituted the derivatives of 
the experimental circuit voltages in the equations at four very closed adjacent 
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and inductances vary linearly, and solved the four equations for the unknown 
inductances and resistances at the corresponding time interval. By repeating 
the same procedure for other time intervals and scanning the entire time region 
of the discharge, the time histories of the resistances and inductances of the 
discharge were obtained. 

In conventional electric circuits inductances are usually constant. In plasma 
systems this is generally not the case and for rapidly moving plasmas dL / dt can 
be very large (see Glasstone and Louberg, 1960; de la Rosa et al., 1994), so we 
consider the induced emf in the loops of the circuit as given by the Lenz law, where 
two different representations of the non-linear inductivity can be worked out. 

In this work we propose the analysis of the complete Blumlein circuit con­
sidering the resistances and the inductances used to simulate the spark gap and 
laser chamber as time dependent. In fact, we use a p-order dependence of their 
values on the current. The resulting integer-differential equations of the system 
are solved through a parametric identification method based on the measured 
voltages in the capacitors C1 and C2. A Runge-Kutta method for solving the 
integral terms and a Gauss- Seidel algorithm (see Niewierowicz et al., 1995) were 
used for parametric identification. 

2. Theoretical considerations 

Figs. 1 and 2 show the experimental arrangement and the equivalent circuit of 
a N2 laser excited by a Blumlein circuit. The circuit is composed of a spark 
gap (S. G.), the laser head , two capacitors and a coil L. When high voltage is 
applied, both capacitors are equally charged until the breakdown voltage across 
S. G. is reached. At this potential, t he S. G. fires and C2 begin to discharge 
very fast through S. G., so does C1, but through LandS. G. in a slower way. 
A very quickly rising high voltage difference appears across the laser head until 
the laser breakdown voltage is reached and the discharge takes place. Fig. 3 
shows the voltages Vc1 and Vc2 in the capacitors C1 and C2 . 
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Figure 2. Equivalent circuit of an N2 laser 
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The voltages Ve1 and Ve2 were measured with two equal high voltages probes 
(Tektronix P6015) combined with a 300 MHz bandwidth oscilloscope (Tektronix 
2440). The voltage in the laser head (see Fig. 3) is the voltage difference Ve1 -

Vc2 that was automatically given by the oscilloscope and is the average of 
16 discharges. Stable operation of the laser was achieved at voltages ranging 
from 6 to 12 kV, pressures between 60 and 130 hPa and frequencies up to 20Hz. 
The pulse-to-pulse fluctuations of the laser head voltage were smaller than 5%. 

To analyse the circuit, each discharge taking place in the circuit is simu­
lated by a non-linear inductance and resistance connected in series (see Fig. 4). 
R1 and £ 1 stand for the inductance and a resistance associated with the laser 
head loop, respectively, and R2 and Lz stand for the analogous parameters of 
the spark gap loop. 

l 

:----LASER- --: 
I 

I 

I L1 R1 : 
L ______ __ __ _ 

Figure 4. Equivalent circuit of the Blumlein circuit 

The changes of R1 and R2 in both discharges are due to the change in the 
electron and ion concentrations, which produce a time and space dependence of 
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we take R1 and R2 as current dependent, and a form of power series for R1 

and R2 is proposed. 

R1 = fR 1 (ft) 

= R1,plf + R1,p-1If-
1 + R1,p-2If-

2 + ... + R1,1ft + R1,o 

Rz = fR2([z) 

= R2,pl~ + Rz,p-11~- 1 + R2,p-2l~- 2 + ... + R2,1lz + Rz,o 

Non-linear inductances can therefore be given through (see Wojnar, 1969): 

U = d'ljJ = d[Lint(I)I] = 1dLint(I) L· (I) dl 
dt dt dt + tnt dt 

d'l{! dl dl 
U = dJ dt = Lder(I) dt 

3a) 

3b) 

(1) 

(2) 

(3) 

where: Lint-iS the integral inductance, Lder-is the derivative inductance, '1/J­
is the induced magnetic flux in the loop. 

Eq. (3a) is the Faraday law of electromagnetic induction. This is independent 
of the way in which the flux is changed, the circuit may be distorted or moved, 
or the value of B (the magnetic induction) at various points inside the circuit 
may be changed. Equation (3b) is valid for a rigid stationary circuit, where 
the changes in flux result from changes in the current (see Reitz and Milford, 
1960) . In order to find which of the two representations produces the best 
fitting to the experimental laser voltage, we solve our model for both of them. 
The inductances £ 1 and Lz are represented through a power series too. Such 
expansion gives: 

£1 = h 1 (lt) 

= L1,plf + L1,p-1If-
1 + L1,p-zlf-

2 + ... + L1,1ft + £1,0 

L2 = h2(I2) 

= L2,pl~ + L2,p-1l~- 1 + L2,p-2l~- 2 + ... + Lz,1lz + Lz,o 

(4) 

(5) 

The differential equations governing the performance of the circuit are given as 
follows: 

The first step (0 :::; t :::; tB ): 

At t = 0 the S. G. fires and at t = tB the laser head fires. For this step, the 
equivalent circuit showing the operation of the system is shown in Fig. Sa. The 
equations governing its performance are given as follows (considering 3a): 

(6) 

(7\ 
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Figure 5. Equivalent circuits for the different operation steps of the Blumlein circuit: 
a) 0 ::; t::; ta , b) ta::; t ::; tFIN 

The second step (tB :=:; t :=:; tFIN ): 

At t F 1 N the glow discharge in the laser head arrives at the breakdown. For 
this step the equivalent circuit showing t he operation of the system is shown in 
Fig. 5b. The equations governing its performance are given as follows: 

dL1 dh 
R1h + f3h dt + L1 dt 

1 ltFJ N 
+ C (h +In) dt + Vllt=ta 

1 ta 

1 ltFJ N 
+ -C (II+ In- h) dt + V2 lt=ta = 0 

2 ta 

din 1 li FJN 
Ly + -C (!1 +In) dt + Vllt=ta 

t 1 ta 

1 ltFJN 
+ -C (h +In - I2) dt + V2lt=tn = 0 

2 ta 

dL2 dh 
R2h + f3h dt + L2dt 

1 lt FJN 
+ C (h- h- In) dt + V2lt=ta = 0 

2 t a 

where: 

f3 = { ~ for Lder· 

for L ;.nt· 

3. Parametric identification 

(8) 

(9) 

(10) 

The parametric identification is accomplished t hrough a comparison of values 
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sider n experimental voltage values for Vt(tk) and for V2*(tk) (k = 1, 2, ... , n), 
satisfying Eqs. (6)-(10). We have then 

1 t 
V1 = C

1 
Jo (o:h +In) dt + V1(0) (11) 

1 t 
V2 = C

2 
Jo (!2- o:h- In) dt + V2(0) (12) 

where 

0: = { ~ for 0 :S t < tB 
for tB :S t :S tFIN 

(13) 

and where tB can be obtained from: 

tB = { t E [0, tFIN]: ~1 1t In dt + Vcllt=O 

- ~2 1t (h- In) dt- Vc2lt=O +VB} (14) 

with VB being the measured value, I 2 and In calculated through a Runge-Kutta 
method, until Eq. (15) is satisfied for the experimental value of VB. 

As the parameter identification index we propose: 

( 15) 

The problem is then reduced to determination of the 4(p + 1) parameters 
R1,i, R2,i, L1,i, R2,i fori= 0, 1, 2, 3, ... ,p that make the value of the Eq. (15) a 
minimum. In other words we have to obtain 

The currents h, h and In are obtained from the following equations: 

(171 
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(18) 

(19) 

where: 

B1 = (j3p + 1)Ll,plf + [f3(p- 1) + 1]Ll ,p-llf-1 

+ [f3(p- 2) + 1]Ll,p-2If-
2 + ... + ((3 + 1)L1,1h + L1,o 

Bz = (j3p + 1)L2,pl~ + [(3(p - 1) + 1]L2,p- 1 I~- l 

+ [f3(p- 2) + 1]L2,p-zl~-z + ... + (/3 + 1)L2,1/z + Lz,o. 

4. The proposed algorithm and the results 

(20) 

(21) 

We have used an algorithm based on the Gauss- Seidel method (see Luenberger, 
1984; Bakhvalov, 1977; Niewierowicz et al., 1995) , which consists of changing 
the value of only one parameter, holding the other (p-1) as constants, until the 
minimal value of the optimisation index, Eq. (15), for t his parameter is obtained. 
The changes in the parameter values are carried out using an increasing or 
decreasing constant . All the other parameters are treated similarly until a first 
cycle is completed. A second or more cycles could be done, always with smaller 
increasing or decreasing constant, until the increasing or decreasing constant 
is lower than a minimal predetermined value. This minimal predetermined 
constant gives the accuracy of the calculated values. Because the solution of 
the Eq. (15) needs the solution of the currents in t he circuit, each time the 
parametric identification is done, the current values are obtained solving the 
mathematical model given by Eqs. (17)- (21), with the resistance and inductance 
values calculated from Eqs. (1) (2)(4)(5). 

The algorithm was written in FORTRAN and a PC Pentium (200 MHz) 
was used. We have calculated the parametric optimisation indexes and the 
resistances and inductances, and for both inductance approximations (Eqs. 3) 
we have considered the same initial values. The solution takes the maximum 
time of 8 hours. 

From the experimental voltage (see Fig. 3) we chose 26 values for calculation . 
After processing with Vk , tk, for k = 1, 2, ... , 26, we obtained the parameter 
values shown in Table I, where those related to j3 = 0 are larger than those 
related to j3 = 1. 

Fig. 6 shows the time behaviour of the resistance and inductance of each 
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the discharge, but after the laser emission the laser discharge changes into an 
arc discharge, changing the inductance and resistance drastically. Because this 
discharge period is not interesting for laser emission it has not been analysed. 

Because a pulsed gas discharge is a dynamical process, the resistance and 
inductance are time dependent; physically, they are functions of the plasma 
conditions and their geometrical dimensions. Fig. 6 shows that the temporal 
behaviour of the corresponding resistances, i.e. the L and R curve inflexions 
take place at the same time but in the contrary sense. 

In the formation phase of the discharge in the spark gap and in the laser head 
their resistance drops from an open circuit until a minimum, as a consequence of 
the electron avalanche multiplication, while their inductances rise from zero to 
a maximum, which depends on the geometrical evolution of the discharge. The 
minimal value of the inductance corresponds to the static value of the circuit 
components. After this formation phase, where a great part of energy in the 
circuit has been expanded, a glow discharge is formed and laser action takes 
place (approximately in the interval from 23 ns to 30 ns) . So, the resistance 
and inductance time variations of both discharges are strongly dependent on the 
electrical energy in the circuit. The circuit stops working when all the energy 
has been consumed. 

The time evolution of the inductances calculated using equations (3a) and 
(3b) do not show any qualitative difference, but Fig. 6 shows a better-behaved 
time dependence of Rlint than of Rlder· 

(3 

1 

0 

i 5 4 3 2 1 0 
R1 ,i 0 2.72E-16 1.34E-11 8.05E-9 6.94E-5 1.880 
R2,i 0 -7.30E-16 2.05E-11 -2 .63E-8 -4.42E-5 1.401 
L1,i 0 0 0 1.78E-16 -7.48E-13 1.46E-9 
L2 ,i 0 0 0 1.20E-15 7.15E-13 1.66E-8 
R1,i 0 4.55E-16 2.04E-11 6.98E-8 9.79E-5 1.672 
R2,i 0 -1.49E-15 2.37E-11 -3.10E-8 -5.40E-5 1.439 
L1 ,i 0 0 0 9.79E-16 -9.70E-13 1.23E-9 
L2 ,i 0 0 0 1.52E-15 9.42E-13 1.93E-8 

Table I. Calculated parameters for the fifth order functions used to represent 
R1, R2, L1 and £2 

L!,O L2,o Optimisation index 
estimated [nH] 1.57 16.9 -

L int [nHJ 1.46 16.6 1.4360 * 10 
Ldif [nHJ 1.23 19.3 1.4842 * 10 

Table II. comparison of the results of identification 

Finally, Fig. 7 shows the laser voltage obtained with the parameter from 
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Figure 6. Time behaviour of the resistance and inductance of the spark gap {R2 , L2 ) 
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Figure 7. Simulated laser voltage 

Because the parameters in Table I were calculated considering the experi­
mental curve of Fig. 3, they satisfy the 26 values of the curve of Fig. 3, the 
fitting of both models is very similar. 

5. Conclusions 

Because the capacitor resistances Rc1 and Rcz have values of the order of 
0.0145 0 (see Niewierowicz et al., 1998) , the behaviour of R1 and Rz given in 
Figs. 6a,b are, respectively, the ones of the laser and the spark gap discharges. 
Toll (1967) found through very detailed spectroscopic measurements of the ra­
dial distribution of electron densities and gas temperatures in spark gaps a 
similar behaviour of the resistance in the spark channel. Then, following Toll 
(1967), the time behaviour of R1 and Rz can be explained as follows: At the 
very beginning both resistances are infinities because the discharges have not 
started, then they go down through the development of the discharges until they 
reach minimal values when the expansion process of the discharges stops. That 
is so because the energy in the circuit is not any more sufficient to sustain such 
expansion. Both discharges are glow discharges at that moment, and in t he case 
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each resistance are reached, they start to grow up again till the discharges turn 
off when all the energy in the circuit has been exhausted. 

In our previous report (see Niewierowicz et al., 1998) we have estimated, 
from the geometric arrangement and the material properties, the statical values 
for L1,0 = Lc1 = 1.57 nH, and L2,o = Lc2 + Lsc = 16.9 nH. From Table II 
we conclude that the general Faraday law (Eq. 3a) is the best representation 
for the induced emf in the circuit loops. Physically, equation (3a) is also the 
best representation of the self-induced electromotive force, because the laser 
and the spark gap discharges in the circuit develop freely. That is, not only the 
current but their dimensions , as well (and after that their inductance) are time 
dependent. 
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