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Introduction 

Defining a Lyapunov function for a given dynamical system is a crucial step 
in its analysis since it decides of the success or failure in predicting the system 
behavior. Although the choice ofLyapunov function for a given stable dynamical 
system is, generally, not unique, computing even one element of the uncountable 
set of feasible functions can pose difficulties. Therefore, for many classes of 
systems, the problem of fitting a Lyapunov function to system dynamics is still 
an active research area. 

The range, where Lyapunov function belongs, is a subset of some function 
space. It is, however, rather impractical to develop algorithms to search the 
infinite dimensional function space to obtain the suitable Lyapunov function. 
Most design methodologies applicable to practical problems are parametric ones, 
based on confining the range, within which a Lyapunov function is sought, to a 
finite dimensional space of parameters. An important Lyapunov function candi­
date is the quadratic form whose fit to system dynamics reduces to the choice of 
elements of the matrix of parameters. By using a quadratic form one can state 
both the sufficient and necessary conditions of stability for any linear system. It 
is also applicable to many nonlinear systems leading to sufficient stability con­
ditions. Many techniques of stability analysis use Lyapunov function defined 
as a sum of a quadratic form and additional terms, often defined as integrals 
of system nonlinearities along the system trajectories. Such approaches offer 
a better fit to system dynamics and less restrictive stability conditions. Other 
techniques of Lyapunov function construction based on quadratic forms are also 
available. Recently, a methodology of using quadratic Lyapunov functions with 
additional constraints on their structure was developed called LMI's (Linear 
Matrix Inequalities) approach. 

For multidimensional systems, the parametric fit of the Lyapunov function 
candidate to the demands of system stability is realized by applying a variety 
of multivariable algebraic equations or conditions, like solving vector algebraic 
Lyapunov or Riccati equations, estimating ranges of singular values of appro­
priate matrices or solving LMI's. 
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Topic of the book and its motivation 

The book concerns application, to stability problems, of a certain class of func­
tions, called diagonal-type Lyapunov functions. By diagonal-type functions (cf. 
definitions on page 91 of the book) the authors mean separable functions of state 
coordinates. The simplest example of a diagonal-type function is the quadratic 
form with diagonal matrix of parameters, in other words , a weighted /sum of 
squares (xi) of components Xi of state vector x with no cross products XiXj, 

i :j:. j. The authors give the overview of stability conditions obtained with the 
use of diagonal-type Lyapunov functions. A motivation to studying such, quite 
a narrow, class of functions is at least twofold. First motivation is related to 
numerical aspects of solving algebraic problems associated with the parametric 
fit of the Lyapunov function. With increasing size of vector of system variables 
and, more generally, increasing system complexity, algebraic conditions of sta­
bility may become difficult to solve. It is often reasonable to confine the range 
of search to a smaller space and thereby to reduce the number of parameters 
to be computed and increase the size of the problem tractable by the method. 
The second motivation stems from the robustness issues. Systems of significant 
complexity have many parameters to be determined, and often at least a part 
of the parameters are uncertain , or can change in time in a rather unpredictable 
way. It is also possible that system structure is uncertain, or time variable. Con­
ditions on system parameters obtained by defining a diagonal-type Lyapunov 
functions and imposing limits of some type on systems uncertainties or faults, 
guarantee system's robust stability against variable parameters and structure. 

One more reason for paying interest to diagonal stability is, as the authors 
point out, that it happens surprisingly often that diagonal-type Lyapunov func­
tion is the best one applicable to the problem. Several examples are shown to 
illustrate this observation, like the problem of robust stability of a mechanical 
system (page 5 of the book). 

The above arguments are supported by an extensive literature devoted to 
the diagonal-type Lyapunov functions and a wide range of areas of their possi­
ble applications. The authors reference over 400 literature items, mostly papers 
published during the last decade. Possible applications of the diagonal-type 
Lyapunov functions, highlighted in the book, include stability of models of neu­
ral networks, nonlinear electric circuits, models of interacting pupulations and 
trophic chains, models of multiprocessor systems of asynchronous computations 
and models of interconnected and variable structure systems. 

Organization and contents of the book 

Chapter 1 is an introduction, which gives the reader motivation to the study 
and overviews the material presented in the book. 

The rest of the book can be divided into two parts. The first part includes 
Chapters 2 and 3. This part has theoretical character and contains mathematical 
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results on some algebraic characteristics of matrices and some general properties 
and types of models of dynamical systems. The second part includes Chapters 
4-6, which contain examples of applications of results collected in Chapters 2-3. 

Chapter 2 contains algebraic results concerning classification of square ma­
trices into several types, defined by special structure of matrix parameters, and 
showing properties of matrices, which belong to these types. This chapter serves 
as a basis of notions and definitions used in the subsequent parts of the book. 
The introduced types of matrices are related to the application of the diagonal­
type Lyapunov functions to systems stability. In many cases the class of matrices 
defines the interconnection structure of the associated dynamical system. The 
book most often refers to the class of diagonally stable matrices. These are 
system matrices of linear continuous-time systems, which have the additional 
property of existence of a diagonal quadratic form that establishes system sta­
bility. The authors give various algebraic conditions for diagonal stability of 
quadratic matrices. Several other\ classes of matrices are also defined, related 
to aspects of diagonal stability on dynamical systems, and relations between 
introduced classes of matrices are stated in the form of theorems and lemmas. 
The case of discrete-time systems is also covered with appropriate definitions of 
matrix classes. The discrete counterpart of diagonal stability is named Schur 
diagonal stability. In this chapter an important issue of persistence of diagonal 
stability under perturbations (Frobenius and bounded entrywise) is also dis­
cussed. Finally, numerical tests for diagonal stability of matrices are developed. 
The most general approach uses LMI formulation to verify diagonal stability 
(diagonal Schur stability) of a matrix and to find a diagonal solution of the 
associated Lyapunov (Schur) matrix algebraic equation. 

Chapter 3 covers mathematical models of dynamical systems, admitting 
diagonal-type Lyapunov functions. This chapter contains basic stability the­
orems developed in the book. The mathematical models introduced contain 
functions assumed to belong to special classes. So, the chapter begins with 
defining classes of nonlinear functions: sector nonlinearities and positive in­
finite sector nonlinearities. In each of the classes, additionally, two types of 
nonlinearities are distinguished: time invariant and time dependent. Basing on 
the introduced classes of functions, a definition of a Persidski'l-type system is 
given (page 92). This, continuous-time system contains time invariant, posi­
tive infinite sector nonlinearities, and is additionally described by a matrix of 
parameters that define how nonlinear functions are combined in system model. 
The authors state fundamental stability theorem (Theorem 3.2.3) which reads 
as follows: for global, asymptotic stability of time-invariant Persidski'l-type sys­
tem it is sufficient that nonlinearities belong to positive infinite sector and the 
system matrix is diagonally stable. This theorem is further shown in the book to 
have numerous and important applications. The time varying version of Persid­
ski'l-type system is then introduced and its stability conditions are stated. The 
authors also discuss the relation of the class of Persidski'l-type systems with the 
class of Lur'e systems, better known in system theory. Further, several classes 
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of discrete-time systems which can be understood as discrete counterparts of 
the Persidski1-type system are defined, and the appropriate stability theorems 
are proven. As a separate section a class of discrete-time interval systems is 
introduced and results on their Schur diagonal stability are given. The last part 
of Chapter 3 is devoted to discrete-time models for asynchronous systems. The 
authors give them a separate treatment because such models of systems are not 
covered by the previously defined classes of systems. The important property of 
models of asynchronous systems is that they include multiple and time-variable 
delays in state. The only assumption is that all delays are bounded by some 
predefined number d. Results on well posedness and stability of discrete systems 
with multiple, bounded delays are given. These results are based on diagonal­
type Lyapunov functions. 

Chapter 4 is the first of three chapters devoted to discussion of practical 
applications of diagonal stability concepts. In this chapter problems of con­
vergence of numerical iterations are studied. At the beginning, models and 
problems are presented, related to computer implementation of numerical it­
erative algorithms. With the recent development of information technology, 
implementations of numerical algorithms often become parallel or distributed, 
i.e. , computational load is shared by several processing units, while coordina­
tion is maintained by information exchange via communication links. Iterative 
procedures that give solutions to large systems of algebraic, nonlinear or linear, 
equations are presented. Their block-partitioned versions are good examples of 
tasks that can be performed in a distributed computer system. First, the authors 
introduce the model of synchronous iterations and then a more general model of 
asynchronous iterations. Then, they discuss conditions for diagonal stability of 
the introduced models which guarantee convergence of iterations. A special case 
of asynchronous iteration to solve almost linear equations is treated separately. 
The next part of Chapter 4 covers another interesting class of asynchronous com­
putations, namely parallel asynchronous team algorithms. An example leading 
to parallel asynchronous team algorithm is the situation where the problem 
of solving the system of nonlinear algebraic equations can be separated into a 
number of different subproblems. Each of the subproblems may need a different 
algorithm. Then, combining of the results of computations is necessary, leading 
to a team algorithm. A discussion of the conditions sufficient for convergence 
of this class of algorithms concludes Chapter 4. 

Chapter 5 includes results on diagonal stability of models from several 
fields: neural networks, circuits, digital filters, 2D systems and population dy­
namics. A common feature is that they are all analyzed with the use of tech­
niques from Chapters 2 and 3. At the beginning, mathematical models of contin­
uous and discrete Hopfield- Tank neural networks are presented, and it is shown 
that they are variants of Persidski1-type systems. Basing on results from Chap­
ter 3, theorems concerning global stability of their equilibria are stated. The 
next class of models presented includes RLC circuits. The ladder-type circuits 
are presented and the diagonal (sign) stability of system matrices of their models 
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is studied. The relationship between diagonal stability and passivity of circuits 
is discussed. After concluding that the two properties are not equivalent, the 
authors make an observation that the strong robust stability of the ladder-type 
circuits is not only a consequence of their passivity, but is also related to diag­
onal stability of the appropriate system matrices. Further, the authors develop 
state-space models of digital filters. These models contain sector nonlinearities 
resulting from overflow in digital operations. These models are also special cases 
of discrete-time Persidskil-type systems, and variants of diagonal stability the­
orems are used to establish conditions for: their asymptotic stability. The J;J.ext 
class under consideration are the discrete-time 2D dynamical systems. The 2D 
(two-dimensional) systems are governed by discrete equations with two integer 
indices. The authors introduce Roesser and Fornasini-Marchesini models for 2D 
dynamical systems. Then they discuss conditions of their diagonal stability. In­
terestingly, conditions for diagonal stability of 2D systems concern Shur-diagonal 
stability of appropriate system matrices. The model of discrete 2D systems with 
sector nonlinearities and shifts in system indices is also introduced and its diag­
onal stability conditions are developed. The authors highlight, as well, relations 
between shifted 2D systems and models of asynchronous computations. The last 
topic presented in Chapter 5 concerns the field of population dynamics mod­
els. Variants of Lotka-Volterra models are used to describe trophic chains of 
predator-prey populations. Models are divided into two groups, with open and 
closed chains. Linearization technique together with diagonal quadratic forms 
as Lyapunov function candidates are used to predict local, asymptotic stability 
of equilibrium points. 

Chapter 6 is devoted to interconnected and parameter-uncertain systems. 
The material is organized separately, and not included as a section of Chapter 5, 
because results concern not only stability, but also stabilization issues. The 
chapter begins with discussion of a diagonal stability approach to large-scale, 
interconnected systems. Some notions from the theory of vector Lyapunov func­
tions are introduced and their relation to diagonal-type Lyapunov functions is 
discussed. The quasimonotone property of Rn -+ Rn functions is defined and 
the comparison principle that can be applied to analyze stability of an intercon­
nected system is stated. It is pointed out that models of large-scale intercon­
nected systems are special cases of the Persidskil-type system from Chapter 3 
and previously derived stability theorems apply. It is shown that the system 
interconnection structure can be exploited to obtain nonconservative stability 
results. In particular, a diagonally stable structure of a large-scale system can 
lead to useful stability conditions. Next, the problem of robust stabilization of 
interval and parameter-dependent systems by linear state feedback is addressed. 
This area of application of diagonal stability concepts is of particular interest 
since it is known that robust stabilization problems can lead to difficult numeri­
cal problems. The technique applied is as follows: conditions are formulated for 
the system matrix of the closed loop plant to belong to the class of diagonally 
stable matrices. This, on the one hand, guarantees robust stability, and on the 
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other hand makes it easier to solve stability conditions in terms of entries of 
the gain matrix. Basing on this idea results are developed concerning robust 
stabilization of interval and interconnected systems. The obtained stability con­
ditions are compared with several references from the literature. Finally, an ap­
plication of diagonal-type, robust stabilizability techniques to power-frequency 
control systems is studied. 

Conclusions 

This book is a valuable monograph covering the topic of applying diagonal 
stability concepts to models of systems in a wide range of fields. It identifies 
classes of system admitting diagonal-type stability and puts together related 
results on algebraic properties of system matrices. Although mostly known 
in the literature, these results are scattered in many references so the reader 
benefits from having them organized as a logical and interrelated sequence of 
facts. The presented range of applications of diagonal-type Lyapunov functions 
is impressive. It is worth stressing that although in order to go through details 
of a specific application the reader needs consulting further references, still, the 
presentation given in the book is sufficient to understand basic properties of the 
analyzed specific model. The book is written clearly and comprehensively with a 
lot of attention paid to completeness of the presented material and references to 
literature. There are "notes and references" sections in every chapter, supplying 
additional information regarding both theoretical basics and history of many 
notions and problems. 

The book provides a unified perspective on results regarding diagonal sta­
bility by classifying models into categories. It also shows ways to obtain new 
results by exploiting diagonal stability concepts. Several issues can be further 
studied, like applying the diagonal-type Lyapunov functions to stability of the 
sliding-mode control systems. Such a research can start from the results on 
variable-structure systems developed in the book. 

The audience to whom the topic of the book may be of interest is wide since 
the book is rather interdisciplinary. The potential audience contains researchers 
in many fields: control, stability, nonlinear systems, convergence of numerical 
algorithms, neural networks, population dynamics, etc. The book will be fre­
quently used as a support in research and a reference in many studies. 
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