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Abstract: In this article control constrained optimal control
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1. Introduction

In this paper we consider control constrained optimal control problems for the
Burgers equation:

min J(y, u,v) = é/ aoly(T) = za|* dz + %/ agly — zq|* dz dt
Q Q

I T
+§/ Bluf? + o[ dt (1.1a)
0

subject to

Yt — VYra + YYe = f in Q = {U‘T) X Qv (Ilb)
vy(+,0) + ooy(-,0)=u | .

v, 1) + oy ) = v f O e
¥(0,-) =y in 2=(0,1) CR, (1.1d)

and

(u,v) € Uag x Vag C L*(0,T) x L?(0,T), (1.1e)
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where T' > 0 is fixed and v > 0 denotes a viscosity parameter. We assume that
ag € L®(2), ag € L*(Q) are non-negative weights, zq € L*(2), 29 € L*(Q)
denote given desired states, [, are positive constants, and ¢,y € L>=(0,T).
Moreover, let f € L3(Q), yo € L™®(Q) and wq, up, v, vp € L(0,T) with u < up
and v, < v, almost everywhere (a.e.) in @. The sets of admissible controls are
given by

Usd = {u € L*(0,T) : uo < u < uy ae. in (0,7)},
Vas = {v € L2(0,T) : v, <v < wpae. in (0,7)}.

(1.2)

The initial value boundary problem (1.1b)—(1.1d) is called the state equation.

Optimal control problems for the Burgers equation are studied by several
authors, see for instance Byrnes et al. (1995), Choi et al. (1993), Hinze and Volk-
wein (1999), Kang et al. (1991), Ly et al. (1997), Troltzsch and Volkwein (2001).
In this work we prove the existence of an optimal control and present the first-
and second-order conditions. We extend the analysis done in Volkwein (1997),
where only local existence of a weak solution of (1.1b)-(1.1d) was proved and
control restrictions were not investigated. Since the feasible set is polyhedric, we
introduce a weaker second-order sufficient optimality condition, which is very
close to the second-order necessary optimality condition. The proof is based
on the theory of Legendre forms and follows arguments from Bonnans (1998),
Bonnans and Zidani (1999).

To solve (1.1) numerically we apply the sequential quadratic programming
(SQP) method. To compute each SQP step we have to solve a linear-quadratic
optimal control problem. This is done by a primal-dual active set algorithm,
which is based on a generalized Moreau-Yosida approximation of the indica-
tor function of the admissible controls. The method was developed due to
Bergounioux et al. (1997) and was extended in Hintermiiller (1998). Let us
also mention Kunisch and Rosch (1999), where the primal-dual active set algo-
rithm was applied to linear parabolic optimal control problems. In Trdltzsch
and Volkwein (2001) control constrained optimal control problems for the Burg-
ers equation with distributed controls were also solved numerically by the SQP
method combined with the primal-dual active set strategy.

The paper is organized as follows. In Section 2 the existence of an optimal
solution is shown. Moreover, we prove a regular point condition. First-order
necessary optimality conditions are presented in Section 3. The fourth section is
devoted to the study of second-order conditions. A numerical example is given
in the last section.

2. Preliminaries

By L?(0,T; H'(Q2)) we denote the space of measurable functions from [0, 7] to
H'(Q), which are square integrable; i.e.,
/T

o
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When ¢ is fixed, the expression ¢(t) stands for the function ¢(¢, ) considered as
a function in Q only. The space W(0,T) is defined by

W(0,T) = {p € L*(0,T; HY()) : ¢: € L*(0,T; H(Q)')},

where H'(Q)' denotes the dual of H*(£2). The space W (0,T) is a Hilbert space
endowed with the common inner product, see Dautray and Lions (1992), p. 473,
for instance. Recall that W (0, T) is continuously embedded into C([0, T]; L3(£2)),
the space of all continuous functions from [0, 7] into L%(2). Thus, there exists
an embedding constant Cg > 0 such that

||<P||C([0,T];L2(Q)) - CE”‘P”W(O,T) for all ¢ € W(0,T). (2.1)

Since we will often use the Agmon, Gronwall and Young inequalities, we give
complete formulation of them here.

Agmon’s inequality (see Temam, 1988, p. 52): There exists a constant C4 > 0
such that

1/2
il oo @y < Calleltorgy Illir gy for all o € HY(Q).

Interpolation inequality (see Tanabe, 1979, p. 90): For every q € (2, c0) there
exists a constant C7 > 0 such that

-6
||‘P”Lq(Q) % CI||<P“1Lz(Q)||<P||i11(Q) for all € H'(Q),

where § = (¢ —2)/(2¢) € [0,1/2).

Gronwall’s inequality (sce Walter, 1980, p. 219): Let ¢ be a positive constant.
Suppose that ¢ € L1(0,T) is non-negative in [0, T] a.e. If ¢ € C([0,T]) satisfies
the inequality

P(t) <c+ /t (s)¥(s)ds for all ¢t € (0,77,
0

then we have

P(t) < cexp (/t cp(s)ds) for all ¢t € (0,T].
0

Young’s inequality (see Alt, 1992, p. 28): For all a,b,e > 0 and for all
p € (1,00) we have

ys B = 1
a _T'I"Wa g=p/(p-1).
DEFINITION 2.1 A function y € W(0,T) is called a weak solution of the state
equation if
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and

(We (), @) gy g + o1 (B)y(E, 1)p(1) = oo()y(t, 0)(0)

+ ]{;(mx(t)(p' + y(t)y=(t)y) d

= ]Q F(Bpdz + v(t)p(1) - u(t)p(0) (2.20)
for all p € HY(Q) and t € (0,T) a.e., where (-,-)ny m denotes the dual pair
associated with H*(Q) and its dual.

REMARK 2.2 Let us mention that if we multiply the left- and right-hand side
of equation (2.2b) by x € L*(0,T) and integrate over the interval (0,T), all
integrals are finite.

The following theorem ensures the existence of a unique weak solution to
the state equation. For the proof we refer to the Appendix.

THEOREM 2.3 Suppose that f € L*(Q), yo € L>(2) and that og,01 € L=(0,T).
Then, for every u,v € L%(0,T) there exists a unique solution y € W(0,T) N
L>(Q) of the state equation satisfying

"y"W((}‘T) + “'!}”Loo(q;. <CQ1+ "“”L?(g,-m =+ “’”"ﬁ(n_r))

for a constant C > 0 depending on f, yo, T, and v, but not on u or v. If, in
addition, yo € C(Q2), then y € C(Q) holds.

Now we proceed by writing (1.1) in an abstract form. Therefore, we define
the Hilbert spaces

X = W(0,T) x L*(0,T) x L*(0,T), Y = L*(0, T; HY(Q)) x L¥(Q)
and introduce the subset

0# Kaq=W(0,T) x Uy x Vag C X.
Moreover, let é: X — L%(0,T; H(Q2)') be defined by

(ey, u,v), )‘)m(n,r;m(ﬂ)*).L?(o,T,-H1(9))

T
= [ Ay + ([ vveda + e = rce) at
0 0

&
+ /ﬂ ((e1y(-11) = v)A(, 1) + (v = a0y(+, 0))A(+, 0)) dt

for A € L%(0,T; H'(2)). Then we set
@ NN
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where (—%v + 1)—1 : HY(Q)" — HYQ) is the Neumann solution operator

associated with
/(w’«p' +we)dz = (g, 9) g1y g for all p € HY(Q),
Q
where g € H}(Q)'. Now we can express the optimal control problem (1.1) as:
min J(z) subject to z € K,q and e(z) = 0. (P)

Note that both J and e are twice continuously Fréchet-differentiable and
their second Fréchet-derivatives are Lipschitz-continuous on X. Theorem 2.4
guarantees that the optimal control problem (P) has a solution.

THEOREM 2.4 There exists an optimal solution z* = (y*,u*,v*) of problem (P).

Proof. The claim follows by standard arguments: Let {(y™,u",v")}.en be a
minimizing sequence in K,4. Due to Theorem 2.3 it follows that this sequence
is bounded in W(0,T)NL*®(Q) x L*(0,T) x L?(0,T). In particular, there exists
an element z* = (y*, u*,v*) € X such that
y' =y asn — oo in W(0,T), (2.3a)
(u™,v"™) — (u*,v*) as n — oo in L*(0,T) x L*(0,T). (2.3b)

From (2.3b) we deduce that

n—00

7

lim / (" = v (1) = (u" = u")p(-,0))dt =0
0

for all ¢ € L*(0,T; HY(Q))

and from (2.3a) we infer that

n—oo

P
lim / (W' (t) = yi (8), () g1y g dt = 0 for all p € L0, T; HY(Q)).
0

Now we consider the non-linear part. Using integration by parts, Holder’s and
Agmon’s inequalitics, we find

t * ok 1 n *\2
/ W'y —vyr)ededt = 5/((9 )2 = (y*)*)epddt
Q Q

1

T
=3 /Q((Z/*)2 = ('!/n)Q)(P;L- dz dt + —;—/O (y"(, 15 = v (-, 1)2)(p<.’ 1) dt

1

T
-3 | 007 -y 0Pl

1, ,
< 5”2/ + y””Lw(Q)”y* = yn'“L!(Q)”‘P||L2(0,T;H1(Q))
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Since W(0,T) is compactly embedded into L%(Q) and L*(0,T;L>*(R)), see
Temam (1979), p. 271, and [[y" + y*||z= (@) is bounded by a constant we have

lim /(J" " _y*yt)edzdt =0 for all p € L*(0,T; H ().

n—oo

As we have already mentioned, y" converges strongly to y* in L?(0,T; L>=(9)).
Thus,

& 3
/ﬂ (o1(y" (1) = (-, 1)e(, 1) — ao(y™ (-, 0) = y*(+,0))e(-.0)) dt “==0

for all ¢ € L2%(0,T; HY(Q)). Hence, é(z*) = 0 in L%(0,T; HY(Q)'). Since
W(0,T) is continuously embedded into C([0,T]: L*(2)), we infer that y"(0)
2220 9%(0) in L2(2) and thus
(¥™(0) — y*(0),¥) L. — 0 for all ¥ € L*().

Thus, e(z*) = 0 in Y. As the set K¢ is weakly closed and J is weakly lower
semi-continuous, the claim follows. |

The problem (P) is a non-convex programming problem so that different local
minima will probably occur. Numerical methods will deliver a local minimum
close to their starting point. Therefore, we do not restrict our investigations to
global solutions of (P). We will assume that a fixed reference solution is given
satisfying certain first- and second-order optimality conditions (ensuring local
optimality of the solution).

PROPOSITION 2.5 For every & € X the operator e, (%) is bijective. Here and
in the following, the subscript denotes as usual the associated partial derivative.

Proof. Let & = (y,4.7) € X. The operator e,(x) is bijective if and only if for
all (g,h) € Y there exists a unique y € W(0.T') such that

y(0) = h in L*(Q) (2.4a)
and

(ye(t), ) g + a1 ()y(t, 1)p(1) — ao(t)y(t, 0)p(0)

+ /ﬂ V(00 + (F)e(p d = (9(t), 0) (2.4)

for all ¢ € HY(Q) and t € (0,7T) a.e. First, we prove the a priori estimates for
a weak solution y to (2.4). Taking ¢ = y as a test function in (2.4), applying
Holder’s inequality we obtain

1d 2 L)
Ea"?}(t)"m(m = (”UD"L«»((),T) 2 "C’l||Lon(a_;r'))“y(t)"1,ocm)

+v(lly®)llz @) = Il ONZ2@)
- ("?(t)"Lz(m“y(t)”f{l(n) B "g(’:)”Hl(ﬂ)“y(t)||L2(Q})”3}(f')||1,m(n)
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By Agmon’s and Young's inequalities we derive from (2.5)

1d
>dq lly(t )”L"(Q) 5 ||!i(f)||ﬁi(n)

< er(1+ It )um) TN @Oz + 2 ls®li @) (26)

for constants ¢;, 2 > 0 depending only on v. Integrating (2.6) over the interval
(0,s), s € (0,T], we obtain

2 A 2
() + v / (O g

S/ﬂ 2e1(1+ 17011320y + 1T 50 IO 20y
+262|]§"§,2(0.3:H1(ﬂ}] + ”h'”iqn}- (2.7)

By Gronwall's inequality we obtain for all s € (0,77:

2 2 2
Nyl L2y < (eallgllzzo.rim @y + 1Lz @)

—nd —14/3
3 CXP(QCl(T + ||y“f,4(0.1";1,'3(n}) + "y”L{UB(n_T;Hl(Q))))‘ (28)

Recall that W (0, T) is continuously embedded into L*(Q) and L¥/3(0, T; H'(Q)).
This implies that y € L>=(0,T; L*(2)). Using (2.7) we get y € L2(0,T; H' (Q))
Now it follows from (2.4b) that y, € L%(0,T; H'(2)'). Thus, there exists a
constant cg > 0 satisfying

”;U”W(n,;") < c6. (2.9)

Using standard arguments the existence of a solution to the linear problem (2.4)
follows from the a priori estimal,e (2.9). To prove the uniqueness of a weak
solutlou WL suppose that y',4*> € W(0,T) are two solutions of (2.4). Then
y = y' — y? satisfies (2.4) with ¢ = 0 and h = 0. From (2.8) we infer that y = 0
holds. @

REMARK 2.6 Proposition 2.5 implies the standard constraint qualification con-
dition for ©* (see Robinson, 1976, for example), which in our case has the form
(0,0) € int{(X,e.(2*)X) = (Ko — 2", Y — e(z*))}
=int{X — (K¢ —2*)} x int{e'(2*) X}, (2.10)

where int S denotes the interior of a set S and e'(x*) is the Fréchet-deriwative of

oy VO e . R o e N S Lormane F83 40 2L 4 a4l L .PT P
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3. First-order necessary optimality conditions

This section is devoted to present the first-order necessary optimality con-
ditions for (P). For that purpose let us define the following active scts at
z* = (y*,u*,v*) € Kyq by U* =U; UlUy and V* =V UV}, where

Uy = {t €[0,T]: u*(t) = ualt) ae.}

and Uy = {t € [0,T] : u*(t) = up(t) a.e.},

Vi ={t€[0,T]:v*(t) = v,(t) a.c.}

and Vi = {t € [0,T] : v*(¢) = vs(t) a.e.}.
The corresponding inactive sets at z* are Zf;, , =[0, T]\U* and Iy, =[0,T]\ V*.

The first-order necessary optimality conditions are presented in the next the-
orem.

THEOREM 3.1 Let a* = (y*,u”,v*) € K,y be a local solution to (P). Then there
exist unique pairs p* = (A\*,u*) € W(0,T) x L*(Q) and (£*,n*) € L*(0,T) x
L%(0,T) satisfying

= At = VA — YA = —aQ(y” - 2) in Q. (3.1a)
PO o D=0} oy i
N (T) = —aq(y*(T) - z0) in Q, (3.1¢)
ut = A*(0) in 8, (3.1d)
e(z*) =0, z* € Kag, (3.1¢)
pu® + A*(,0)+€&* =0 1in (0,T), (3.1f)
=X (1) +n"=0in(0,7), (3.1g)
§'uz <0, € u; 20, 5'|I;,'d =0, (3.1h)
7" lv: <0, 9°fy; 20, 1;"|1r‘-/‘d =0, (3.17)

where, for instance, £* |y denotes the restriction of € on the subset U} of [0,T).
Proof. The proof is a variant of the proof of Theorem 3.1 in Volkwein (2000). B

COROLLARY 3.2 Ifﬁg € L*>(R2), then \* € {I_"’"(Q) Moreover, if yo, zq, agq are
even continuous in §), then we have \* € C(Q)).

Proof. From y* € L*®(Q) it follows that y*A% € L*(Q). By Lemma A.1 in the
Appendix, we obtain A* € L*(Q). If in dddlt.l()].l aq, za, %o € C(Q) holds, then
aq(y*(T) — zo) € C(R). The continuity of A* in @ follows analogously. H

Tosodllvawasmaik Fraimens v avrandaren sebtvatn e rhs Taevsres wnlSalem Lo
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LEMMA 3.3 For the Lagrange multiplier X\* it follows that

A oo 07522 (0)) F A" L2 0.0 (02y)
< C(|laa(y™(T) - ZQ)H[R(Q) + lleg(y™ - z)”f,z((_)))

for a constant C > 0 depending on v, T, y*, o¢ and o,.

Proof. We set A*(t) = o*(t)e™* for a constant x > 0, which will be determined
later on. From (3.1a)-(3.1d) we infer that

—0f — VO, — Y0 + K" = —eTMag(y" — 2q) in Q, (3.2a)
voz(+,0) + (¥°(-,0) + 00)e"(1,0) =0 | . .

v (1) + (1" 1) + 01)g"(11) = 0 } o0, T (3:2h)
o' (T) = —e ™aq(y*(T) — zq) in Q. (3.2¢)

Multiplying (3.2a) by p*, integrating over 2 and utilizing (3.2b) lead to

d * - * - - -
= g lle* Oz + vilei @)l 72y + slle" Oz - /{ v (t)e" (Dex(t) de

* 2
= (2”?;'*"[,00((9) + "UU“LW(O.T} + ”Ulnr,w(o.T))HQ (”"LW{Q)
< llaq(B)(¥™ (2) = 2l 2oyl (Bl L2(q)-

Using og,07 € L*(0,T), Agmon’s and Young’s inequality we conclude that
there exists a constant ¢ > 0 satisfying

— e Eaiey + Sl ey + (5 = e Oz

< llag(®)(w" () — 2ot 72(qy: (3.3)
Now we choose k = ¢ and integrate (3.3) over the interval (0,7'). This gives

lo" e ozsar < 2(laay* (1) = 2)lEay + laa(y” ~ 2ol gy
By integrating (3.3) over (¢,T), t € [0,T], we get

le* (32 < llaa(y*(T) = 272y + llae(¥* - 20)2(q)
for ¢t € [0,T] a.e., which gives the claim, because

IA™]| oo 0,722 (0)) F NIA" M £200, 25102y
e2xT 1|

wT “ =
<e"le ILm(o.'r;L?(ﬂ)) + T 2%

lo™|| L3(0,T;HY(Q))" o

Using the normal cone the first-order necessary optimality conditions can be
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DEFINITION 3.4 Let K be a convex subset of a Hilbert space Z and z € K.
Then the cone of feasible directions Ry at z is defined by

Ry (z) = {Z € Z : there exists 0 > 0 such that z + 0z € K}.
The set
Ti(z) = {Z € Z : there exists z(0) = 2+ 0z +0(0) € K, 0 > 0}

is called the tangent cone at the point z. Moreover, the normal cone Ny at the
point 2 s given by

Ni(2)={2€Z:(2,2-2), <0 forall 2 € K}.
In case of z € K these three cones are set equal to the empty set.
Utilizing Definition 3.4 equation (3.1f) can be written as
0 € fu” + A*(-,1) + Ny, (u*). (3.4)

In particular, £* € Ny, (v*). Analogously, 7* € Ny, (v*), and (3.1g) is equiva-
lent with

0 € yv* = A*(-,0) + Ny, (v*). (3.5)
Equations (3.4) and (3.5) are the so-called generalized equations.

LEMMA 3.5 Let Py, denote the orthogonal projection in L*(0,T) onto U,.
Then (3.4) and (3.5) are equivalent to

u* = Py, (n%’o)) and v* = Py, (A‘(’; 1)). (3.6)

respectively.

Proof. Since U,y is closed, convex and non-empty and L?(0,T) is a Hilbert
space, the first identity of (3.6) is equivalent to

(Pu + AX*(-,0),u — u*)Lz(D,T) > 0 for all u € Uy
(see Zeidler, 1985, p. 366 for example), which is (3.4). The second equivalence

follows analogously. |

4. Second-order optimality conditions

Now we turn to second-order necessary and sufficient optimality conditions.
Tiwi BF s T wevn Lm0V B M st v mBnsmcmibm st n-bamve il bl wvmrcl mewe: wircbmy b
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LEMMA 4.1 Let x = (y,u,v) € Kuq.
a) The tangent cone at x is gwen by Ty, (x) = W(0,T) x Ty, (u) x Ty, (v).
where
Ty, (u) = {i € L*(0,T) : ilt) € Ty un(e ((®)) for t € 0,7 .}
and Ty,,(v) accordingly.
b) For the normal cone at x we obtain N, (z) = {0} x Ny, (u) x Ny,(v),
where
Ny, (u) = {i € L*(0,T) : i(t) € Niua(t),us(ty) (u(t)) for t € [0,T] a.e.}
and Ny, (v) accordingly.
c) Moreover,
Ty, (u*)N {E'}"L
={u€e L*(0,T):u>0o0nll, u<0only andu=0onlUy} (4.1)
and Ty, (u*) 0 {n*}* accordingly, where (€*,n*) € Ny, x Ny, are the
Lagrange multipliers introduced in Theorem 3.1, S+ denotes the orthogonal
complement of a set S, and
U ={te[0,T]: & >00r& <0 ae}Cl.

Let us mention the concept of polyhedricity.

DEFINITION 4.2 Let K be a closed convex subset of the Hilbert space Z, z € K

and h € Ni(2). Then K is called polyhedric at z for the normal direction h, if
Ti(z) N0 {h}* = Ry (2) N {h}~+. (4.2)

If K is polyhedric at each z € K for all directions h € Ng(z), we call K

polyhedric.

ProposiTiON 4.3 The closed convex set I,q s polyhedric.

Proof. For K = W(0,T) we obtain Ty (y) = Rx(y) = W(0,T) for arbitrary
y € W(0,T). Since the orthogonal complement is a closed set, (4.2) holds, so
that K is polyhedric. By setting ay = (—1,=1), by = (~ta, —v), a2 = (1,1),
by = (up,v,) the polyhedricity of Uy x Vig follows from Proposition 4.3 in
Bonnans (1998). |

Let us introduce the associated L : X x Y — R Lagrangian with (P) by
L(z,p) = J(x) + (e(z), p)y-

Suppose that the point & = (§,%,7) € X satisfies the first-order necessary
optimality conditions. Hence, by Proposition 2.5 there exists unique Lagrange
multipliers $ = (A, u) € Y and (£,7) € Ny,, x Ny, satisfying the first-order
necessary optimality conditions

L.(%,7) + (0,§,7)" =0, & € K,q and e(z) = 0. (4.3)

Now we introduce the critical cone at &, which is the set of directions of non
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DEFINITION 4.4 The critical cone at Z is defined by
C(z) = {h € Tk, (z) : J.(2)h < 0 and e.(T)h = 0}.

The critical cone at Z can be characterized as in the next lemma. For the
proof we refer to Volkwein (2000), Lemma 4.2.

LEMMA 4.5 Let kere'(Z) denotes the kernel of e.(Z). Then we obtain J.(z)h
=0, whenever h € C(z), and

h = (hy, hu,hy) € C(&) = {h € Tk, (2) N {0,€,7}" : h € kere'(z)}.

Now we turn to the second-order necessary optimality conditions. Let h =
(hy, hu,hy) € X. First we compute the second Fréchet-derivative of the La-
grange functional. We get

er(fuﬁ)(h'vh)=/9aﬁhy(T}2 dz

i
+ ] (aqhi + 2hy(hy)zA) dz dt + f (Bh2 + yh2) dt. (4.4)
Q 0

In Theorem 2.4 we have denoted by z* the local solution to (P). The associated
unique Lagrange multipliers are p*, £* and 9*, see Theorem 3.1.

DEFINITION 4.6 The second-order necessary optimality conditions are defined as
Lyo(2",p*)(h k) >0 for all h € C(z*). (4.5)
Now let £ = z* be a local solution to (P).

THEOREM 4.7 The point (z*,p*) satisfies the second-order necessary optimality
condition (4.5).

Proof. The equality constraints can be written as
e(z) € Ky ={0} CY,

where, of course, Ky is a closed convex set. Clearly, Tyoy(2) = Ryoy(2) = {0}
so that Ky is a polyhedron. The result follows from Theorem 2.7 in Bonnans
and Zidani (1999) if the following strict semi-linearized qualification condition
holds:

0 € int{e/(z*)((K.q — 2*) N {0, n*}1)} C Y. (CQA)
In our case we have

(I{ad = 3"*) N {01 f*sn*}l
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Let z € Y be arbitrary, close enough to zero. Then (CQA) follows if there exists
an element (y,u,v) € W(0,T) X ((Uag — w*) N {€*}) x ((Vag — v*) N {n*}+)
satisfying

/(2 )y, u,v) = 2. (4.6)

Due to Proposition 2.5 the operator e, (z*) is bijective. Thus, there exists even
a unique y € W(0,7") such that

ey(z* )y =z —ey(z”)u — e, (2" v.
This gives (4.6), so that the claim follows. |

REMARK 4.8 As it is proved in Bonnans and Zidani (1999), condition (CQA)
implies uniqueness of the Lagrange multipliers p*. & and n".

To prove Lemma 4.10 we make use of Lemma 4.9. Recall that we have intro-
duced the point # satisfying the first-order necessary optimality conditions (4.3).
Let Uy = {t € [0,T) : 4(t) = uq(t) ae.} and Uy, = {t € [0,T] : @(t) = us(t) a.c.}
and set U = U, UU,. For 7 € Vyg the active sets V,, Vy, and V are defined
analogously.

LEMMA 4.9 Let h = (hy,hy,h,) € kerer(Z). Then there exists a constant
Crer > 0 depending only on &, v, T, oy, and o, but independent of (I, hy)
such that

2 2 2
”hy"u-’(o;_r) = Cker(“h'u"Lz(D,T) + uhi'”L?{D.T})' (4'7)

Moreover, hy, > 0 on Uy, hy <0 on Uy, u=0 on Iy, = [0,T)\U and h, >0
on Vu, hy <0 on Vy, hy =0 on Iy, = [0,T]\ V.

Proof. Due to Lemma 4.1 it remains to prove (4.7). Let h = (hy,hy,hy) €
ker e, (). Then it follows that h,(0) = 0 in Q and

T
[] (((h'y)!{')t ‘!9('))“{})!‘}{1 + Ulhy('l Lp(-1) - UD-‘:?-g_:('rO)‘P(" 0)) dt

+ / (v(hy)r@z + (Ghy)rp) dz dt
Q

- iy
= [ (ot 1) = hupt- o)t =0 (48)

for all ¢ € L*(0,T; H'(Q)). Proceeding as in the proof of Lemma 3.3 yields the
estimate

“h'!.‘”LW(U.T:L"'(Q)) = "h'!f“L?(U.T:H’ ()

ot e
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for a constant C > 0 depending on v, T, 09, 01 and §. Applying (4.8) and (4.9)
we obtain
”(hy)t"m(olr;mm)r) <+ "ﬁ"L‘-’(u,:r;_r_,m(n)))“(hy)r“m(m
+ (If"l)”{,w(n,:r') + ”Ul “Lm(o,:r))l|hy||g,2(g1‘r;z,oe(93)
* ”311:“LZ(Q)”hy“;_,oo(c‘r;m(m) + “h'uu.c’-'(G.T) s ”hv”.t,?(u,;f‘)
so that (4.7) follows from (4.9) and § € W(0,7). m
Let us define the bilinear form @ : X — R by

Q(h) = Lazx(Z, p)(h, h).

From the boundedness of the second derivative of the Lagrangian we infer that
@ is continuous. The bilinear form is very close to a so-called Legendre-form,
see Hestenes (1951).

LEMMA 4.10 The bilinear form Q is weakly lower semi-continuous. Moreover,
let {h"}nen be a sequence in C(Z) with h® — 0 in X and Q(h") — 0 as
n — o0o. Then, it follows that h" — 0 sirongly in X.

Proof. Note that

Q(h) = Jex(z)(h, h) + 2/ yyzrdx dt for h = (y,u,v) € X.
Q

Note also that J..(Z)(h,h) is weakly lower semi-continuous. Since the integral
is even weakly continuous (see the proof of Theorem 2.4), it follows that Q is
weakly lower semi-continuous on X. Now assume that {h" = (hy, by, b)) }aen
is a sequence in C(Z) with " — 0in X and Q(h") — 0 as n — co. Analogously

as in the proof of Theorem 2.4 we derive that

lim f hy (R ) A dz dt = 0.

n—oo

Since g(h™) converges to zero, it follows that for every € > 0 there exists an
ne € N such that

0 < J(z)(h",h") < € for all n > n..

This implies that

T T
ﬁ/ |hul? dt + "y/ |ho|? dt < € for all n > n,,
0 0

which gives (h?,A") in L(0,T) x L*(0,T) as n — oo. Since h € ker e, (%) holds,

u
we infer from Lemma 4.9 that A" converges strongly in W(0,T) as n tends to
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We define by
F(P) = {x € Kyj:e(z) =0}
the feasible set of (P). Let us recall the following definition, sce Bonnnans (1998).

DEFINITION 4.11 Let & € F(P).
a) The point T is a local solution to (P) satisfying the quadratic growth
condition if
there exists p > 0 such that
J(z) 2 J(@) + elle ~ 2l + ol ~ 2
for all x € F(P).
b) Suppose that T = (y,u,v) satisfies the first-order necessary optimality con-
ditions with associated unique Lagrange multipliers p € Y, € € Ny, (),
and 7 € Ny,,(9). At (z,p) the second-order sufficient optimality condition

. (4.10)

holds if
there exists & > 0 such that
Lex(Z,p)(h, h) > k||b|% for all h € C(z). (4.11)

In the following we will prove that (4.10) and (4.11) are related to the weaker
condition

L. (z,p)(h,h) > 0 for all h € C(z) \ {0}, (4.12)
which is very close to the necessary optimality condition.

THEOREM 4.12 The quadratic growth condition (4.10), the second-order suffi-
cient optimality condition (4.11), and (4.12) are equivalent.

Proof. First we prove that (4.10) implies (4.11): Let = (,a,v) € F(P) satisfy
the quadratic growth condition. Then there exists a ¢ > 0 such that  is a local
solution to

. 0 =
min  J(z) — 2|z — ||
zeF(P) 2 &

Hence, due to the second-order necessary optimality conditions we have
Lm@ﬁwmn—§wﬁzomumheam.

This gives (4.11). From (4.11) we directly infer (4.12). Finally we have to show
that (4.12) implies the quadratic growth condition. We follow the arguments in
Bonnans and Zidani (1999). Let us assume that

L..(z,p)(h,h) > 0 for all h € C(7), (4.13)

but (4.10) is violated. Thus, there exists a sequence ¢ = (y*, u",v") € F(P)
with 2" — Z and
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We set " = ||z" — Z||x. Upon extracting a subsequence we may assume that
g =3 +t"h", ||h"|y =1, and A* Z==5 b,

As h" € Rp,, (%) is valid, we obtain h c Tk,,(2). From (4.14) we get that
Je(Z)h £ 0. The identity e(z") = 0 implies that i € kere'(Z). Hence, h € C(Z).
Using (§,7) € Ny,, X Ny,, we get

(é,u™ - @) pa0r) < 0 and (€,u™ - )20,y < 0-
Using the Taylor expansion of L(z",p) and (4.3) we get

J(a") = J(2) = L(=",p) - L(Z,p)
> L(z",p) = L(Z,p) + (§,u" — W) pao,r) + (4" = @) 207

ny2
s f“{Lm(f,ﬁ) + (U‘E_ ?_:.')T)h" £E (52) er(f,ﬁ)(h"‘h”) + G‘((f.“)z)
n\2
= BF o) + o((e?).

Hence, (4.14) yields Q(h") < o(1). By Lemma 3.3 the bilinear form @ is weakly
lower semi-continuous. This gives Q(h) < 0. As h € C(Z) holds, we infer from
(4.13) that & = 0. Thus, we have

" =200 and lim Q(A™) = 0.
n—oo

By Lemma 4.10 we find that lim, . ||h"||x = 0, which contradicts the fact
that ||h"||x = 1 for all n. O

PROPOSITION 4.13 If [laa(y*(T) — 20)ll2() + lleo(v* — 20)llL2(q) s suffi-
ciently small, the second-order sufficient optimality condition is satisfied.

Proof. The proof is a variant of the proof of Theorem 4.10 in Volkwein (2000). B

5. Numerical example

To solve the optimal control problem (P) we apply the SQP method. Suppose
that we have already computed (y™,u™,v",p") € W(0,T)x L2(0,T)x L*(0,T) x
Y for some n > 0 with y"(0) = yo. Then the next iterate

(yrl+1 , utl ; ol | e (y“ A ’L’n) + (6?}3 ou, 61’)

is obtained by the solution of the following linear-quadratic optimal control
problem (QP,,):

min J"(y, du, dv) = J'(y", u™, v")(dy, bu, bv)
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7
= / aq(y™(T) — 2q)0y(T) dz -I—/ Pu™bu + yv™ v
Q 0

+ / aQ(y" — zg)by d dt + %/ aqby(T)* dz
Q Q

1 (T
+ 3 / Béu? + v6v? + / (aQ6y2 + 26yyL A, dz dit
0 Q
subject to

6yt — V8Yur + (Y"0Y)e =~y +V¥Ypp — ¥ Yz + f in Q,
v6y.(+,0) + 0ody(-,0) = u™ + bu | .
vya(s1) + o1y(, 1) = v 450§ 2 (O T):
§y(0) =0 in 9,
and to

(u" + bu,v" + 6’U) € Uyg X Viq,

where ¢" = —y;' + vy, —y"y2 + f. To solve the optimal control problems (QP,,)
at each level of the SQP method, we use a primal-dual active set strategy.
This algorithm is based on a generalized Moreau—Yosida approximation of the
indicator function of the set U,q of admissible controls. For more details we may

refer to Bergounioux et al. (1997).

Let the superscript n and the subscript k& denote the current SQP- and active
set iteration, respectively, and dual variables &, and n stand for the Lagrange

multipliers associated with the inequality constraints

u™ + du € U,g and v" + dv € Vg,

respectively. Suppose that (dug—1,&k—1) and (duk—1,mk—1) are given. Then the

uy-active and up-active sets of the current iterate are chosen according to

A = {t €(0,T) : dup—1(t) + &——Cl(t) < uy(t) a.e. in (O,T)},

A} = {t € (0,T) : bup—1(t) + &——Cit—) > uy (t) a.e. in (O,T)},

where ¢ > 0 is a scalar, and set A7 = A} U A}. Analogously we define

B = {t € (0,T) : bvp-1(t) + @ < vg(t) a.e.in (O,T)},
Bl = {t € (0,T) : bup—1(t) + n—ktcl—(t—) > vy (t) a.e. in (O,T)},

and B = By U B-}c‘. Furthermore, we define the inactive set,

- ( T o5 s & o Ena(t)
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and

it ={te@D):03(0 < a0+ 22U <00 ac.in 0.1},

In general, u™ + dup—; and v" + dvr_; need not be feasible on [}! and J}!, re-
spectively. Notice that the definition of A}, B} and I}!, J}! involve the primal
variable du as well as the dual variable §¢ corresponding to the inequality con-
straints. In Algorithm 5.1 below the identification A}_, = A}, for instance,

n_ An An — An
means Ay = A}, and A} = A} _,.

ALGORITHM 5.1 (Primal-dual active set strategy)
a) Choose ¢ > 0 and starting values (dug, dvg, &g, 10) € Uza X Vag x L=(0,T') %
L*>(0,T), and set k= 1.
b) Compute A}, A}, By, B}, I} and JJ.
¢) Ifk>2, A =A0 BE=BY,, =12 1, I} =J ; then STOP.
d) Else, find (y,\) € X x X satisfying
Yo — VYze + (Y"y)z = ¢" in Q,
vy (+,0) + ooy(+,0) = u} in A},
vy (-, 0) + ogy(-,0) = uy in AL,

A, 0)
B
vyz(+,1) + o1y(-,1) = v} in BE,
Uy:r('w 1) + 013)‘(" 1) - 'U:: in Ers
’\('s 1)
T

vye(+,0) + ooy(-,0) + =01nl},

vys(-,1) + o1y(-, 1) —

y(0) =0 in Q,

(@@ = Ay = At = VAaz — YA = —a@(y" — 2Q) 1 Q,
vAz(+,0) + (y(:,0) + a0)A(+,0) = 0 in (0,7),

vAz(+1) + (y(-, 1) + 01)A(-, 1) = 0 in (0,7T),

aqy(T) + A(T) = —an(y"(T) - za) in 0
set (8yi,6A1) = (y,A) and

. : n
=0 in JE,

up in A}, vy in BY,
bup = < ul in AR, and dvp = § o]} in BY,
=6 (-, 0)/8 an I}, SAk(- 1) [y e JP.

e) Put & = = PBoug — 6k (+,0), me = —y6vp + Ak (-, 1), k = k+1, and return
to step b).

REMARK 5.2 Let us mention that Algorithm 5.1 stops feasible if there exists an
steration lenel I surh that A" = A" .. and B? = B, .. In particular, in this
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In our test run we also compare the optimal solutions with the solutions of
the unconstrained problems, i.e., for Uyy = Vag = L%(0,T).

For the time integration we use the backward Euler scheme, while the spatial
variable is approximated by piecewise linear finite elements. The programs are
written in MATLAB, version 5.3, executed on a Pentium III 550 MHz personal
computer.

Let us choose T'=1, v = 0.01, 0g = —0.1, 07 =0,

vo =4 L in (0,0.5]
Y=10 otherwise,

and f = 0. For n = m = 50 the grid was given by
] T
T = = fori=0,...,nand t; = ek for g =0, 0,00
n m

To solve (1.1b)—-(1.1d) for u = v = 0 we apply Newton’s method at each time
step. The algorithm needs 1 second CPU time. The numerical solution is shown
in Fig. 1.
Now we turn to the optimal control problem. We choose g = 0 and ag =1,
£ =0.05 and v = 0.01. The desired state is z(t) = yo for ¢t € [0,T].
(i) First we solve (P) with Uyg = Vag = L2(0, T) by applying the SQP method.
Then the solution (8y, du, dv) of (QP,,) is given as follows: First, we solve
the linear system

Yt — Ve + (Y"Y)e = " In Q,

vy (-, 0) + ooy(+,0) + i\.(—,éo—) =0in (0,7),
vy (-, 1)+ ory(-,1) - 241) =01in (0,7),
; L (5.1a)
y(0) =0 in , :
(g = AD)Yy — At = VAge — Y™ Ao = a@(y" — 2¢) in Q,
vAz(+,0) + (y(+,0) + 00)A(-,0) = 0 in (0,T),
vA:( 1)+ (y(-, 1) + o1)A(+, 1) = 0in (0, T'),
aqdy(T) + 6MT) = an(y™(T) — zq) in Q
and set 8y = y and §A = A. Next, we obtain du and dv from
A(- ;
Su = A and dv = gl ’1). (5.1b)
g i

The discretization of (5.1a) leads to an indefinite system H™(8y, 6A)T = 7",

where H" is of the forr?
g (A" (BTN
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0.5

x-axis 0o teaxls

Figure 1. Solution for u = v = 0.

We take as starting values 3° = 0, u® = 0, »° = 0 and A = 0. We stop
the SQP iteration if the associated residuum is less than 1077, i.e.,

Res(n) = ||[VL(y",u", ““"af\")”L!(Q)xL!(ﬂ,T)xL'—’(n.T)xLz(Q) <1070
Here, V stands for the derivation with respect to (y,u,v,A). Notice that
VuL(y™,u™, o™, A") = V,L(y",u",v",\") = 0 is guaranteed by (5.1b).
We do not have to check it numerically.
To solve the linear system denoted by H"(6y,6\)T = r™, at each level
of the SQP method we use the Generalized Minimum Residual Method
(GMRES) and stop the iteration if the relative residual

|7 = H"(6y,60)" |l

[l

is less than 1073, Here, || - ||2 stands for the Euclidean norm. The SQP
method stops after six iterations and needs 56 seconds CPU time. In
Fig. 2 the discrete optimal solution is presented.

0.4 0.6 0.8 1
-axis
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(ii) Next we introduce inequality constraints, see Fig. 3. To solve the linear
systems arising in the primal-dual active set algorithm we utilize again the

S

-0.1 R e
-0.2r

D e R e T

-0.3
— W,
u
el
-0.4H v
. a
- Vo
-0.5
0 02 0.4 06 0.8 1

t-axis

Figure 3. Control constraints.

GMRES method with the same stopping criterion as in part (i). Let us
mention that no size control is necessary in this example. Since the primal-
dual active set method stops feasible, we use the same stopping criterion
as in the unconstrained case. The CPU time required is 14 minntes and
35 seconds. The discrete numerical solution is shown in Fig. 4. For the
different values of the cost functional we refer to the following table:

no control | w,v =0 | u € Uyg, v € Viy
Cost 0.094 0.059 0.063

06 08 1
t-axis
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Appendix A. Proof of Theorem 2.3
A.1l. Uniqueness

Let 4!, 4% € W(0,T) be two weak solutions of (1.1b)~(1.1d). Then y = y* — 4
satisfies the following equation

(We(0)s @)y pan + L*f?;a.-(t)w’+(:ff‘(ﬁ)ya.-(t)—y(i)?;i(i))tprim



272 S. VOLKWEIN

for all ¢ € H'(2) and a.e. i € [0, T]. Upon choosing ¢ = y(t) in (A.1) we obtain
the inequality

5 O ey + Oy + [ (400 = R O)y(0) do

< V”y(t)"m(n) + oo(t)y(t, 1)* — a1 (t)y(t,0)? (A.2)
for a.e. t € [0,T]. Application of Agmon’s and Young’s inequalities yields

a0(t)y(t, 1) = a1(8)y(,0)* < (llooll oo 0,7y + lo1l] Lo f0,0) U (D7 ()

< 'E”y(t)HH‘(Q) +f—‘1||?J'(t)||Lﬁ(m

for a constant ¢; > 0. From Hoélder's, Agmon’s and Young's inequalities we
conclude that

[ O w0lde < 1 Ol e Ol @l e
< veallyllego, T}; L?(m)"yz(t)ﬂf,u(Q)“?}(t)||},(32m,
< 'g”?;‘( Wi @ + e2lly®ll 20
and
fﬂ y2(Dy(t)2 do < 12Ol 32y IO 22y IOl o
VROl s 9O 20 O 0

v 2 4/3 2
g"y(tmm(m +eally* (O e oy ly (Ol 22 )

IA

IA

for two constants ¢y, c3 > 0. Together with (A.2) we obtain

1d
Sdt Jt(t)“:,,z(n) g "J(t)“_rft(g)

< v+t e+ esllyP @Ol o)Vl o) (A3)
Since L?(0,T;H'(f)) is continuously embedded into L*/3(0,T; H'()) (see
Zeidler, 1990, p. 407), there is a constant ¢4 > 0 with

/ lly® (f)ﬂm(n} dt < eq.
Hence, by Gronwall’s inequality we derive from (A.3)

2 2
||y(t)”z,2m) < C5||y(0)”:,=(n]s

wiliawn a. = Awndf WM 0w L s L oa N LN Ac MMl eaine — 0 halde the lact
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A.2. Existence

Before we discuss the existence of a solution, we prove the following auxiliary
lemma.

LEMMA A.1 Suppose that g € L¥*(Q), u,v € L*(0,T), yo € L™(Q), 09,01 €
L>(0,T) and that a € L*(Q). Then there exists a unique solution w € W(0,T)N
L>®(Q) satisfying w(0) = yo in L*(Q) and

(we(t), ‘P)(Hl)r_m + a1(t)w(t, 1)p(1) — ao(t)w(t, 0)e(0)

+ Lvu:r(t)¢’+a(t)wr(t)wd$

= [ att)e de -+ u(t1p(1) - ult)e0) (A4)
Q
for all o € HY() and t € (0,T) a.e. Moreover,
"y"f,oo(o_'r) <C(1+ "“"L?(O,T) ;i ""“LZ(O‘T})'

Furthermore, if yo € C(Q), then y € C(Q) holds.

Proof. It follows from Ladyzhenskaya et al. (1968), p. 170 that there exists a
unique w € L2(0,T; H*(Q)) N C([0,T); L3(Q)) satisfying

.
/ (le(‘v (- 1) = gow(-,0)e(,0) — / WPy — VWg Py — QWP dﬂ"—) dt
0 Q

- ,[: (fng‘*"d”“" + (1) = wp(wﬂ)) dt + /n yop(0, ) dz (A.5)

for all ¢ € L*(0,T; HY(Q)) N H(0,T; L3(Q)) satisfying (T,-) = 0 in L*().
In particular, (A.5) holds for ¢(¢,z) = x(¢)i(x), where x € C3(0,T) and ¢ €
H§ (). We find

/anpz dz dt = —(/:we(h-)x(t)di‘w>(m),.m, (A.6)

where w; denotes the distributional derivative of w with respect to t. The
remaining terms in (A.5) are expressed by

T
= Pr P = drdt = —VWgy r = dt,
/Qm Pz + ywep — gpdz (fu (—vwee + yw: — g)X ﬂ*)(m),‘m
for all x € C3(0,T) and v € H}(2). Since
—VWep + yw, — g € L*(0,T; H(Q)')

and the vector space spanned by the set
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is dense in L2(0,T; H(Q)")) we conclude that w, € L%(0,T; H(Q)') so that
w € W(0,T) holds. From (A.5) and

i i
[t oy e = [ wordade= [ wor(o)ds

forall p € H'(Q) and x € H'(0,T) with x(T) = 0 it follows that w solves (A.4).
The proof of the L>-estimate and the continuity of w in ) follows along the
lines of that of Theorem 3.2 in Casas et al. (2000). O

To prove the existence of a weak solution we apply the Leray-Schauder fixed-
point theorem. For a proof we refer to Gilbarg and Trudinger (1977), p. 222.

THEOREM A.2 Let T be a compact mapping of a Banach space B into itself,
and suppose that there exists a constant M > 0 such that

llellz < M for all ¢ € B and s € [0,1] satisfying ¢ = sT . (A7)
Then T has a fired-point.

Here, we choose the Banach space B = W(0,T) and introduce the operator
T:B — B: w= Ty solves

W — VWay + ywe = [ in @, (A.8a)

53{ [1]; I?ﬂ?i = } i (0,7), (A.8h)

w(0) = yp in §2. (A.8¢)

The unique solvability of (A.8) will be proved in Proposition A.4. Notice that
the solvability of (1.1b)-(1.1d) is equivalent to the existence of a solution y €
W(0,T) to the equation y = Ty. The equation y = s7Ty in W is equivalent to

Wy — VWep +ywe = $f in Q,

Uwr('!0)+0‘ w(-,[]):su )
vwe(-,1) —-|—g[1)w(.‘ 1) = sv } in (0,T),

w(0) = syp in Q.
DEFINITION A.3 A function w € W(0,T) is called a weak solution of (A.8) if
w(0) = yo in L*() (A.9)
and

(’w!(t! ) ‘Io)(}-j’l)'.h'l + Ul(t)w(f's 1)99(1) - Ug(i)w(t,O)(p(O)

+ /ﬂ (va(t, )¢ + y(ts Ywalt, )p) da

= /Qf(t,-)npdz'i—v(t)lp(l) = u(t)p(0)



Second-order conditions for boundary contrel problems of the Burgers equation 275

The following proposition ensures that 7 is well-defined and maps B into
itself.

PROPOSITION A.4 Suppose that yo € L2(Q), f € L*(Q), u,v € L*(0,T) and
ag,01 € L(0,T). Then there exists a unique weak solution w € W(0,T) N
L*(Q) to (A.8) for every y € W(0,T).

Proof. Since W(0,7) is continuously embedded into the space L*(Q), the claim
follows directly from Lemma A.1. | |

ProposITION A.5 The operator T is compact.

Proof. Let y € B and let {y"},.en be a sequence in B satisfying y™* — y in B
as n tends to infinity. Then, we prove that the sequence w" = Ty", n € N,
converges strongly to w = Ty in B. The function z" = w" — w satisfies the
parabolic problem

— w2l + yz” = -—(y" —y)wy in Q, (A.10a)
vzy(+,0) + 002" (+,0) = i
vz (-, 1) + oy v"( 1) in (0,7), (A.10b)

2"(0) =0 in Q. (A.10¢)
Multiplying (A.10a) by z", integrating over 2 and using Holder's inequality we
estimate

l d n n n

2&”-‘ “L @) v||z ”HI(Q) - HUHC([O T);L2(Q) yllzz( )"L'—’(ﬂ)“z (’-)”Lw(m

n 2 2
<z (tmu(m s {”‘TUHLw(n,T) + |l "Lw(u_'r))["'-' t)".r,oc(m
2 '
Y™ (1) = YOl oo oy [l Ol L2y 12" (D] 20

for t € [0,T] a.e. By assumption, the sequence {y"},.en is bounded in B. Since

T is continuous, {w”},en is bounded in L2(Q). From Young's and Agmon's
x Ine

inequalitics we obtain

T 2 1 2
12" (20 + vIz" 200,622 (0))
t
il 2 n 2
<eally"(t) - ?)‘(t)||.r,2(n,:r';g,a¢(m) + CZ/O ("z (-“J’”L?(Q) ds (A.11)

for t € [0,T] a.e., where ¢1,c2 > 0 are independent of n. Application of Gron-
wall’s inequality yields
ny2 i
||z ’”L”(Q) < ep|ly™(t) - Yl 20, 7,1. (q2y) exp(e2T) for t € [0,T7] a.e.

As W(0,T) is compactly embedded into L?(0,T; L>*(R)), we conclude that
2" — 0in L®(0,T; L*()) as n tends to infinity. Thus, (A.11) yields that z"
converges to 0 in L?(0,T; H'(2)) as n — oo. From (A.10a) we find also that
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PROPOSITION A.6 Let y satisfy the fized-point equation y = sTy, s € [0,1].
Then there exists a Ty € (0,T] and a constant M > 0 such that ||y|lw o1y < M.

Proof. Choosing ¢ = y(t) in (2.2b) and using |s| < 1 we obtain

5 O + 1Ol + [ 9(0P0utt)do

<y 1z20y + (ool e o,y + o1l oo o) Y| 7 (0
+IF @) 2@ ly @l g2y + (o] + @ DOl L (0y- (A12)

Using Young’s and Agmon’s inequalities we find that there exists a constant
C > 0 such that

d
VOl + Iy Ol )
< OOy + [OF + WP + O + IOIae)-  (A13)

We define w(t) =1+ ||y(t |]L2(ﬂ) > 1. It follows from (A.13) that

d

ﬂ’(t) dt(l + [IJ("’)“L’(Q))
s CUl N2 ) (1 + (BN 20 + IO T2y + B + [o(t)]?)
< CU+F @72 + It + [o())w? ().

Consequently,

wit)
[ / 1+ Oy + (@) + [o(t)) ds,

o 2"
and thus
2 2
w(0)  wi(t) =

By the dominated convergence theorem (Reed and Simon, 1980, p. 17) there
exists T, € (0,7 such that

C(t o “f"L 20,:L2(2)) T ”“"L"(o ot H"""L“(U s))

2 2 2
£z 0,622 () F Nullz2o,ey + 10llz2(0,0)
1

= 2
2C(1 + |lyollz2(qy)
From this we conclude that

- 0( R onmriar + elEaas + HolZaco ,))

1 Ct 1 _1=C( + lyollze ()t

for t € (0,T.).
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for t € (0,Ty]. Finally, we derive that

2(1 + [[yoll 720
w(t) < (~ | “""‘2“”) for t € (0,T.).
1= C(1+ llyollzzq))?t

Setting Tp = min(T,,1/(2C(1 + ||y{]"ig{9))2)) we obtain that

ly 72y < 1+ 2 w72 @) + Iy Olz2) = w?(2)

<4(1+ I|UD”i!(Q))2 =C
for every m > 0 and for all ¢ € [0, Tp). Thus,

y € L=([0, T); L*(%)) for all m > 0. (A.14)
By integrating (A.13) over the interval [0, Tp] and using (A.14) we obtain that

Ty
(T + ¥ f l(5) sy

2 %y 2 2 2 A2
< lwollzz ey + CUF L2 (q) + ellz2o,ry + 0llz2 0,7y + TC(C +1)).

Hence, y is uniformly bounded, in the L2([0,Tp); H'())-norm. This fact to-
gether with (2.2b) and (A.14) imply that ||y | z2(j0,75);v) is bounded. Thus, y is
bounded in W ([0.Tp]) by a constant M > 0, which gives the claim. |

Now we prove the existence of a weak solution of (1.1b)-(1.1d). By applying
Theorem A.2 we infer the existence of a weak solution w € W(0,Tp) from
Propositions A.4-A.6. Let us define the operator 7 : W(0,7) — W(0,T") by

4 _ Jw' on[0,To] x Q,
“”"T*‘{wz on (Ty, T) x 2,

where w? is the weak solution of
Wy — VWeq + yw, = f in (T, T] x £,
vwe(+,0) + ogw(-,0) = u in (Tp, T),
vwe (-, 1) + oqw(-, 1) = v in (1p, T,
w(0) = w'(Tp) in Q.
Note that Propositions A.4-A.5 also hold for the operator T. Let
Py {wl in [0, Ty] x €2,
0 in(Tp,7).
Then, we have w—2z = 0 in [0, T5] x 2. We proceed as in the proof of Proposition

A.6 and obtain |lw — z||w@r) < M, where Ty = min(T},1/(2C)), C was

introduced in (A.13), T} > T, is given by
2 1

nen R TITY conn?2 =
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for t € (T., T}, and M is the same constant as in Proposition A.6. Hence,

lwll 0.7,y < 10 = 2llw o,z + 12wy < 2M.

This implies existence of a solution in W(0,77). Now we can use an induction
argument to get the existence of a weak solution to (1.1b)-(1.1d) on Q. Note
that this induction argument is based on the existence of a decomposition 0 =
T? < ... < T¥ =T of the interval [0, T) such that

1

2 2 -
lifllLQ(Tf,l:Lg(QJ) + ”'E.‘."LQ{T:'.” + |fU||L2{T'_‘.1) S 5&7'

forte (T, Tt and i =0,... .k - L.

A.3. Regularity

To prove that the weak solution is more regular, we make use of Lemma A.1.
Suppose that y € W(0,7") is the weak solution to (1.1b)-(1.1d). Using
Hélder's and the interpolation inequalities we find

T
3/2 : 3/2 3/2
lywellsstsggy = /Q lyy.*? dxdt < /ﬁ Iy ot )35y dt

T
<O [ 10Ozl

3/2 2
< Cr ylleqo, ez @y Wl za o -

Thus, g = f — yy. € L**(Q). Due to Lemma A.1 the claim follows.



