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Abstract: In this article control constrained optimal control 
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1. Introduction 

In this paper we consider control constrained optimal control problems for the 
Burgers equation: 

subject to 

and 

Yt- 1/Yxx + YYx = f in Q = (0 , T) x r!, 

1/Yx(·, 0) + aoy(-, 0) = u } in (O , T) , 
1/Yx( ·, 1) + aly(·, 1) = v 

y(O , ·) =Yo in r! = (0, 1) C IR , 

(l.la) 

(1.1b) 

(l.lc) 

( 1.1d) 

(l.l e) 
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where T > 0 is fixed and v > 0 denotes a viscosity parameter. We assume that 
o:n E L00 (0), O:Q E L 00 (Q ) are non-negative weights , zn E L 2 (0), ZQ E L 2 (Q) 
denote given desired states, /3, 1 are positive constants, and (jo, ()1 E L 00 

( 0, T). 
Moreover, let f E L 2 (Q), Yo E L 00 (0) and Ua, ub, Va, Vb E L00 (0, T) with Ua ~ Ub 

and Va ~ Vb almost everywhere ( a.e.) in Q. The sets of admissible controls are 
given by 

Uad = {u E L2 (0,T): 1La ~ u ~ Ub a.e. in (O,T)}, 
Vad = {v E L2 (0 ,T): Va ~ v ~ Vb a.e. in (O,T)}. 

(1.2) 

The initial value boundary problem (1.1b)-(1.1d) is called the state equation. 
Optimal control problems for the Burgers equation are studied by several 

authors, see for instance Byrnes eta!. (1995), Choi eta!. (1993) , Hinze and Volk
wein (1999), Kang eta!. (1991), Ly eta!. (1997), Troltzsch and Volkwein (2001). 
In this work we prove the existence of an optimal control and present the first
and second-order conditions. We extend the analysis done in Volkwein (1997), 
where only local existence of a weak solution of (1.1b)- (1.1d) was proved and 
control restrictions were not investigated. Since the feasible set is polyhedric, we 
introduce a weaker second-order sufficient optimality condition, which is very 
close to the second-order necessary optimality condition. The proof is based 
on the theory of Legendre forms and follows arguments from Bonnans (1998) , 
Bonnans and Zidani ( 1999). 

To solve (1.1) numerically we apply the sequential quadratic programming 
(SQP) method. To compute each SQP step we have to solve a linear-quadratic 
optimal control problem. This is done by a primal-dual active set algorithm, 
which is based on a generalized Moreau-Yosida approximation of the indica
tor function of the admissible controls. The method was developed due to 
Bergounioux et a!. (1997) and was extended in Hintermii ller (1998). Let us 
also mention Kunisch and Rosch (1999) , where the primal-dual active set algo
rithm was applied to linear parabolic optimal control problems. In Troltzsch 
and Volkwein (2001) control constrained optimal control problems for the Burg
ers equation with distributed controls were also solved numerically by the SQP 
method combined with the primal-dual active set strategy. 

The paper is organized as follows. In Section 2 the existence of an optimal 
solution is shown. Moreover, we prove a regular point condition. First-order 
necessary optimality condit ions are presented in Section 3. The fourth section is 
devoted to the study of second-order conditions. A numerical example is given 
in the last section. 

2. Preliminaries 

By L2 (0 , T; H 1 (0)) we denote the space of measurable functions from [0, T] to 
H 1(0) , which are square integrable; i.e. , 

rr 
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When tis fixed , the expression cp(t) stands for the function cp(t, ·)considered as 
a function in 0 only. The space W(O, T) is defined by 

where H 1(0)' denotes the dual of H 1 (0). The space W(O, T) is a Hilbert space 
endowed with the common inner product, see Dautray and Lions (1992), p. 473, 
for instance. Recall that W(O, T) is continuously embedded into C([O , T]; L2 (0)) , 
the space of a ll continuous functions from [0, T] into L2 (0). Thus, there exists 
an embedding constant CE > 0 such that 

[[ cp [[ c([O,T];£2(!1)) :S CE [[ cp [[w (O ,T) for all cp E W(O, T) . (2.1) 

Since we will often use the Agmon, Gronwall and Young inequalities, we give 
complete formulation of them here. 

Agmon's inequality (see Temam, 1988, p. 52): There exists a constant C A > 0 
such that 

Interpolation inequality (see Tanabe, 1979, p. 90): For every q E [2 , oo) there 
exists a constant C1 > 0 such that 

[[ cp [[Lq(!l) ::::; CI[[cp[[~;tn) l[cp[[~'(!l) for all cp E H 1(0), 

where 8 = (q- 2)/(2q) E [0 , 1/2). 
Gronwall's inequality (see Walter, 1980, p. 219): Let c be a positive constant. 

Suppose that cp E L1(0 , T) is non-negative in [0, T] a.e. If 'lj; E C( [O , T]) satisfies 
the inequality 

'lj;(t) ::::; c +it cp(s)'lj;(s) ds for all t E (0 , T], 

then we have 

'lj;(t) ::::; cexp (it cp(s) ds) for all t E (0, T]. 

Young 's inequality (see Alt, 1992, p. 28): For all a, b, c: > 0 and for all 
p E (1, oo) we have 

c:aP bq 
ab ::::; - + - , q = pf(p- 1). 

p qc:qfp 

DEFINITION 2.1 A function y E W(O, T) is called a weak solution of the state 
equation if 
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and 

(Yt(t), 'P)(Hl)',Hl + o-1(t)y(t, l)VJ(l)- o-o(t)y(t, O)VJ(O) 

+ L (vyx(t)VJ1 + y(t)yx(t)VJ) dx 

= L f(t)VJdx + v(t)VJ(l)- u(t)VJ(O) 

S. VOLKWEIN 

(2.2b) 

for all 'P E H 1(D) and t E (0, T) a. e. , where(-, ·)(HI )' ,Hl denotes the dual pair 
associated with H 1 (D) and its d·ual. 

REMARK 2. 2 Let us mention that if we multiply the left- and right-hand side 
of equation (2.2b) by x E £ 2 (0, T) and integrate over the interval (0, T), all 
integrals are finite. 

The following theorem ensures the existence of a unique weak solution to 
the state equation. For the proof we refer to the Appendix. 

THEOREM 2.3 Suppose that f E L2 (Q), y0 E £ 00 (0) and that o-0, o-1 E £ 00 (0, T). 
Then, for every ·u, v E £ 2 (0, T) there e.'Lists a uniq?te sol<Ltion y E W(O, T) n 
L00 (Q) of the state equation satisfying 

llYllw(o,T) + IIYIIL"" (Q) :::; C(l + llnll£2(o,T) + llvllu(o,r)) 

for a constant C > 0 depending on f, Yo, T, and I/, but not on ·u or v. If, in 
addition, Yo E C(D), then y E C(Q) holds. 

Now we proceed by writing (1.1) in an abstract form. Therefore, we define 
the Hilbert spaces 

X= W(O, T) x £ 2 (0, T) x £ 2 (0, T), Y = £ 2 (0, T; H 1(D)) x £ 2 (0) 

and introduce the subset 

0 =f. Kad = W(O, T) x Uad x V.d C X. 

Moreover, let e: X-+ £ 2 (0, T; H 1 (D)') be defined by 

(e(y, U, V ), ,\) £2(0,T;HI (0)'),£2(0,T;H 1 (0)) 

= ( (Yt(·),>.(-))(HI)'.HI + ( / 1/YxAx + YYxA- f,\d:r) dt Jo .fo 
+ 1T ((o-1y(·, 1)- v)>-(·, 1) + (u- o-oy(·, 0))>.(-, 0)) dt 

for,\ E £ 2 (0, T; H 1 (D)). Then we set 

- \ -1 .' \ 
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where (-~ + I)-1 
: H 1 (D)' ~ H 1(D) is the Neumann solution operator 

associated with 

l (w'tp' + wtp) dx = (g, 'P)(HI)',H 1 for all tp E H 1(D), 

where g E H1 (D)'. Now we can express the optimal control problem (1.1) as: 

min J( x) subject to x E Kad and e(x) = 0. (P) 

Note that both J and e are twice continuously Frechct-differentiable and 
their second Frechet-derivatives are Lipschitz-continuous on X. Theorem 2.4 
guarantees that the optimal control problem (P) has a solution. 

THEOREM 2.4 There exists an optimal solution x* = (y*, u*, v*) of pmblem. (P). 

Proof. The claim follows by standard arguments: Let { (yn, u", v") }nEN be a 
minimizing sequence in Kad· Due to Theorem 2.3 it follows that this sequence 
is bounded in W(O, T) nUX)( Q) x L 2 (0, T) x L2 (0, T). In particular, there exists 
an element x* = (y*, u*, v*) E X such that 

y" ~ y* as n ~ oo in W(O,T), 

(u",vn) ~ (u*,v*) as n ~ oo in L 2 (0,T) x L 2 (0,T). 

From (2 .3b) we deduce that 

lim (T ((v"- v*)tp(·, 1)- (u"- ·u*)tp(-, 0)) dt = 0 
n~oo lo 
for all tp E L2 (0, T; H 1 (D)) 

and from (2.3a) we infer that 

(2.3a) 

(2 .3b) 

lim ( (y;'(t)- y;(t),tp(t))(HI)',HJ dt = 0 for all tp E L2 (0,T;H1 (D)). 
n.--+00 J 0 

Now we consider the non-linear part. Using integration by parts, Holder's and 
Agmon's inequalities, we find 

j~ (yny~- y*y,;,)tp dx dt = ~ k ((y") 2
- (y*) 2 )x'P dx dt 

= ~ r ((y*) 2
- (y 11 )2 )tp.T d:r; dt + ~ ( (y"(-, 1)2

- y*(·, 1)2 )tp(-, 1) dt 
2 }Q 2 }0 

-~faT (y"(·, 0) 2
- y*(-, 0) 2)tp(-, 0) dt 

:S ~llv* + v"llu"'(Qlllv*- v"llucQlii<PIIuco,r;Hl(nl) 
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Since W(O, T) is compactly embedded into L2 (Q) and L2 (0, T; L00 (D.)), see 
Temam (1979), p. 271 , and IIY11 + y*IIL""(Q) is bounded by a constant we have 

lim 1 (y"y~- y*y;)<prLcdt = 0 for a ll 'P E L2(0,T;H1(D.)) . 
n~oo Q 

As we have already mentioned, y" converges strongly toy* in L2(0, T; L 00 (D.)). 
Thus, 

1T (al(y11
(-, 1)- y*(·, 1))tp(-, 1)- ao(y"(-, 0)- y*(·, O))<p(· , 0)) dt ~ 0 

for a ll <p E L2 (0,T;H 1(D.)). Hence, e(x*) = 0 in L2 (0, T;H1 (H)'). Since 
W(O, T) is continuously embedded into C([O, T]; L2 (D.)), we infer that. y"(O) 
~ y*(O) in L2 (H) and thus 

(y"(O)- y*(O), 1/;)p ~ 0 for a ll?j; E L2 (D.). 

Thus, e(:r*) = 0 in Y. As the set Kad is weakly closed and J is weakly lower 
semi-continuous, the claim follows. • 

The problem (P) is a non-convex programming problem so t.hat different local 
minima will probably occur. Numerical methods will deliver a local m inimum 
close to their starting point. Therefore, we do not res t rict our investigations to 
global solutions of (P). We will assume that a fixed reference solution is given 
satisfying certa in first- and second-order optimality conditions (ensuring local 
optimality of the solution) . 

PROPOSITION 2.5 For· every x E X !.he operator ey(x) is bijective. Here and 
in the following, the subscript denotes as usual the associated paTiial derivative. 

Proof. Let i = (Y , fi,. u) E X. The operator ey (x) is bijective if and only if for 
a ll (g ,h) E Y there exists a unique y E W(O ,T) such t ha t 

and 

y(O) = h in L 2 (D.) (2.4a) 

(Yt(t), 'P) Hl + a1(t)y(t, l)tp(l)- ao(t)y(t, O)tp(O) 

+ { VYx(t)<p1 + (fJY )x(f)<p dx = (g(t), 'P) Hl ./o 
(2.4b) 

for a ll 'P E H 1 (D) and t E (0, T) a. e. First, we prove the a priori estimates for 
a weak solution y to (2.4) . Taking 'P = y as a test function in (2.4), applying 
Holder's inequality we obtain 

1 d 2 2 
2 dt lly(t)ll£2(0)- (llaoiiL""(O,T) + llalllL""(O,T))IIY(t)llu"'(O) 

+ v(llu(t)ll~~(o) -llv(t)11~2(o)) 
- (II:Y( t) llu(o) IIY( t) IIHl (o) - liD( t ) II Hl (O) llv( t) llu (o)) llv(t) IlL "" (Ol 
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By Agmon's and Young's inequalities we derive from (2.5) 

ld 2 II 2 
2 dt liy(t)il£2(11) + 2 liy(t)11rfl (11) 

S c1(l + 11Y(t)1112(l1l + lltJ(t)il~;(l1)) 11v( t) 11~ ·2(l1) + c2 llg(t)il ~1 ~ ( 11 ) (2.G) 

for constants c1, c2 > 0 depending only on 11. Integrating (2.6) over the interval 
(0, s), s E (0, T], we obtain 

liy( s)i l~2(11) +II 1s liy(t)11~'(11) dt 

S 1s 2c1(l + lltJ(t)il12(11l + lltJ(t)ii~;< 11 > )11Y(t)ii~2<11J dt 

+ 2c2 ilgii~2(0, s; HI(I1)) + llhll~2(11) ' 

By Gronwall's inequality we obtain for all s E (0, T]: 

2 2 2 
llv(t)il £2(11) s (2c4llgii£2(Q,T;HI(I1)) + llhll £2(11)) 

· exp(2cl(T + II :Y II~4(0,T;£2(11l) + II :YII~~"(O , T;HI(I1)))). 

(2 .7) 

(2.8) 

Recall t hat W(O , T) is continuously embedded into L 4 (Q) and L 413 (0, T ; H 1 (n)) . 
This implies that y E L00 (0, T; L2 (n)). Using (2.7) we get y E L2 (0, T; H 1 (n)). 
Now it follows from (2.4b) t hat Yt E L2 (0 , T; H 1 (n)') . Thus, there exists a 
constant CG > 0 satisfying 

llvllw(O,T) S CG. (2 .9) 

Using standard arguments the existence of a solution to the linear problem (2.4) 
follows from the a priori estimate (2.9). To prove the uniqueness of a weak 
solution we suppose that y1 , y 2 E W(O, T) are two solutions of (2.4) . Then 
y = y1 - y2 satisfies (2.4) with g = 0 and h = 0. From (2 .8) we infer that y = 0 
holds. • 

REMARK 2. 6 Proposition 2. 5 implies the standm·d constmint q'Ualification con
riition for x* (see Robinson, 1976, joT example), which in O'UT case has the form 

(0,0) E int{(X,ex(x* )X)- (Kad- x*, Y- e(x* ))} 

= int{X- (Kad- x* )} X int{e'(x*)X}, (2.10) 

wheTe int S denotes the inteTior of a setS and e'( x*) is the Fnichet-derivative of 
f/-, o rl"tl o rrv·, f .rvr n ro -1 ,...,.* Tl .f,., J1 ,., " " "" ( ,.,.,..""""" I D1 1/)l J. I~,. J. .J.l __ ~- .t _.r T . 
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3. First-order necessary optimality conditions 

This section is devoted to present the first-order necessary optimality con
ditions for (P). For that purpose let us define the following active sets at 
x* = (y* u* v*) E /( d by U* = U* U U* and V* = V* U V* where ' ' a a b o. b ' 

u; = {t E [0 , T] : u*(t ) = ua(t) a .e.} 

and u; = {t E [0, T] : u*(t) = ub(t ) a.e.}, 

v; = {t E [O , T]: v*(t ) = va(t) a.e.} 

and V17 = {t E [O,T] : v*(t) = vb(t) a.e.}. 

The corresponding inactive sets at x* are I[;,d = [0, T] \ U* and I\>,d = [0, T] \ V* . 
The first-order necessary optimality conditions are presented in the next the
orem. 

THEOREM 3.1 Let x* = (y*,u*,v*) E Kad be a local solution to (P). Then there 
exist uniq·ue pai1·s p* = (.A*,J.L*) E W(O,T) x L2 (f2) and (C ,17*) E L2(0 ,T) x 
L2 (0, T) satisfying 

- >.;- VA;x- y* >.; = -aq(y*- ZQ) in Q, 

v>.; (·, 0) + (y*(-, 0) + uo).A*(·, 0) = 0 } . (O T) 
v>.; (-, 1) + (y*(-, 1) + ul).A*(·, 1) = 0 zn ' ' 

.A*(T) = -an(y*(T)- zn) inn, 

J.L* = .A*(O) inn, 

e(x*) = 0, x* E Kad , 

{3u* +.A*(-, 0) + C = 0 in (0, T) , 

1v*- .A*(-, 1) + 17* = 0 in (0, T) , 

Clu~ ~ 0, Clu; 2:: 0, CII;; = 0, 
ad 

(3.1a) 

(3.1 b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3.lf) 

(3.1g) 

(3.1h) 

(3.1i) 

where, for instance, C lu,; denotes the restriction of C on the subset U,7 of [0, T]. 

Proof. The proof is a variant of the proof of Theorem 3.1 in Volkwein (2000). • 

COROLLARY 3.2 !f zn E L00 (f2), then .A* E L 00 (Q). Moreove1·, ifyo,zn,nn are 
even continuous inn, then we have .A* E C(Q). 

Proof. From y* E L00 (Q) it follows that y* >.; E L2 (Q) . By Lemma A.1 in the 
Appendix, we obtain .A* E L00 (Q) . If in addition, nn,zn,Yo E C(n) holds, then 
an(y*(T)- zn) E C(n). The continuity of .A* in Q follows analogously. • 
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LEMMA 3.3 For· the Lagrange multiplier,\* it follows that 

ll..\* llux' (O,T;£2(11)) + II..\* II£2(0,T;HI(I1)) 

:::; C(lla11(y*(T)- z11) 1i£2(l1) + ll aQ(y* - z)IIL2(Q)) 

for a constant C > 0 depending on v, T , y*, ao and a1 . 

Proof. We set ,\*(t) = rl(t)e'<t for a constant"'> 0, which will be determined 
later on. From (3.1a)- (3.1d) we infer that 

* * * * * - Kt ( * ) · Q - r!t - Vr!x x - Y r!x + K,(! = -e Cl!Q Y - ZQ 111 . ' 

ve; (- , 0) + (y*(- , 0) + ao)e*(-, 0) = 0 } in (O T) 
ve; (· , 1) + (y*(·, 1) + at)e*(-, 1) = 0 ' ' 

e*(T) = -e-ttta11(y*(T)- z11) in D. 

Multiplying (3.2a) by e*, integrating over D and utilizing (3.2b) lead to 

(3.2a) 

(3.2b) 

(3.2c) 

- :t lle* (t)11~2(I1J + vlle; (t)11~2(l1l + t,;lle* (t)11~2(l1l -l y*(t)e*(t )e; (t) dx 

- (2ily*IIL"'(Q) + llaoiiL"' (O,T) + llallluoc(o.r)) lle* (t)ll~"'(l1) 
:::; ll aQ(t)(y*(t)- ZQ(t)) II£2(I1J IIe*(t)II£2(I1J · 

Using a0 , a 1 E L00 (0, T), Agmon's and Young's inequality we conclude that 
there exists a constant c > 0 satisfying 

- !lle* (t)11~2(I1J + ~lle* (t)ll~~c 11 J + ("'- c) lle* (t)11~2(l1l 
:::; ll aQ(t)(y*(t)- ZQ(t))ll~2(l1)' (3.3) 

Now we choose "'= c and integrate (3.3) over the interval (0, T). This gives 

lle* II~2 (0,T ; HI(I1)):::; ~(lla11(y*(T)- z11) 1i~ '(l1) + ll aQ(y*- ZQ)II~2(Q l). 
By integrating (3.3) over (t, T), t E [0, T], we get 

lle* (t)11~2( l1l :::; ll a11(y*(T) - z11)1i~2(l1) + ll aQ(y*- zQ)II~2(Q) 

for t E [0 , T] a.e ., which gives the claim, because 

II..\* IIL"' (O,T;£2(11)) + II..\*II£2(0,T;H 1 (11)) 
2t<T 1 

:S e"TIIe*IIL"'(O,T;£2(11)) + e 2"'- lle*II£2(0,T;HI(I1)J· • 
Using the normal cone the first-order necessary optimality conditions can be 
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DEFINITION 3.4 Let J( be a convex subset of a Hilbert space Z and z E J(. 

Then the cone of feasible directions RK at z is defined by 

RK(z) = {z E Z: there exists u > 0 such that z + uz E K} . 

The set 

TK(z) = {z E Z: there exists z(u) = z + uz + o(u) E K, u?: 0} 

is called the tangent cone at the point z . Moreover·, the normal cone NK at the 
point z is given by 

NK(z) = {z E Z: (z,i- z) 2 ~ 0 for all i E K}. 

In case of z rf. !{ these three cones are set eq·ual to the empty set. 

Utilizing Definition 3.4 equation (3.1f) can be written as 

0 E j3u* + >.*(·, 1) + Nu,d(u*). (3.4) 

In particular, C E Nu,d(u*). Analogously, 17* E Nv,d(n*), and (3.lg) is equiva
lent with 

0 E 1v*- >.*(·,0) + Nv,d(v*) . (3.5) 

Equations (3.4) and (3.5) are the so-called generalized equations. 

LEMMA 3.5 Let Pu,d denote the orthogonal projection in L2 (0, T) onto Uad· 
Then (3.4) and (3.5) are equivalent to 

r-espectively. 

d *- p (>.*(-, 1)) an v - vd --- , 
a l 

(3.6) 

Proof. Since Uad is closed , convex and non-empty and L 2 (0, T) is a Hilbert 
space, the first identity of (3.6) is equivalent to 

(f3u* + >.*(·,O),u- u*)£2(0,T)?: 0 for all u E Uad 

(see Zeidler, 1985, p. 366 for example), which is (3.4). The second equivalence 
follows analogously. • 

4. Second-order optimality conditions 

Now we turn to second-order necessary and sufficient optimality conditions. 
T.' - .. T/ _ T/ ···- 1. - • . - <-1-- C- 11 - ••• : .. _. - 1·" ·· -- '- --: "_ ._; ,_., _ IC- .. +1.- ~ .. -- f · · · - .. - +- .. +-
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LEMMA 4.1 Let x = (y , ·u,v) E Kad· 

a) The tangent cone at xis given by TK,d(x) = W(O ,T) x Tu,d(u) x Tv,d(v) , 
where 

Tu,d(u) = {"u E L2(0,T): u(t) E T[,a(t),u&(tJJ(u(t)) fadE [O,TJ a.e.} 
and Tv,d ( v) accordingly. 

b) For the normal cone at x we obtain NK,d( x ) = {0} x Nu.d(u) x Nv.d(v ), 
where 

Nu,d(u) ={fiE L2 (0, T): ·u(t) E N[ua(t) ,"b (t)J(u(t)) fo r tE [0, T] a.e.} 
and Nv,d ( v) accordingly. 

c) Moreover, 
Tu,d ( u *) n { ~· } l. 

={uEL2 (0 ,T):u20onu: . u:::;Oonu; andu=OonU;jJ (4 .1) 
and Tv,Ju:) n {77*}1. accordingly, where (C,11*) E Nu,d x N v,d a.1·e the 
Lagrange multipliers introduced in Theorem 3.1 , 51. denotes the or·thogonal 
complement of a set S, and 

U± = {tE [O ,T] :C > 0 arC < 0 a. e.} cU*. 

Let us mention the concept of polyhedricity. 

DEFINITIO N 4 .2 Let J( be a closed convex subset of the Hilbert space Z , z E J( 

and h E N I\ ( z ). Then J( is called poly hedric at z for the normal direction h, if 

(4.2) 

If J( is polyhedric at each z E J( for all directions h E Nd z ), we call J( 

polyhedric. 

PROPOSITION 4.3 The closed convex set Kad is polyhedric. 

Proof. For f{ = W(O , T) we obtain TK(Y) = Rdy) = W(O , T) for arbitrary 
y E W(O , T). Since the orthogonal complement is a closed set, (4.2) holds , so 
that J( is polyhedric. By setting a 1 = ( -1, -1), b1 = ( -u,, -va) , az = (1, 1) , 
b2 = ( Ub , Vb) the polyhedricity of Uad X v;,d follows from Proposition 4.3 in 
llonnans (1998). • 

Let us introduce the associated L : X x Y -> lR Lagrangian with (P) by 

L(x , p) = J(x) + (e(x) ,p)y· 

Suppose that the point x = (y, u, v) E X satisfies the first-order necessary 
optimality conditions. Hence, by Proposition 2.5 there exists unique Lagrange 
multipliers p = (>. , tt) E Y and (~, fi) E Nu,d x Nv,d satisfying the firs t-order 
necessary optimality conditions 

Lx(x ,p) + (O , ~, ii)T = 0, x E Kad and e(x) = 0. ( 4.3) 

Now we introduce the critical cone at x, which is the set of directions of non 
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DEFINITION 4.4 The critical cone at i is defin ed by 

The critical cone at i can be characterized as in t he next lemma. For the 
proof we refer to Volkwein (2000), Lemma 4.2 . 

LEMMA 4.5 Let ker e'(i) denotes the kernel of ex (i ). Then we obtain l x(i )h 
= 0, whenever hE C(i) , and 

h = (hy , hu , hv ) E C(i ) ={hE Tg ,d(i ) n {O, ( , ry}T : hE ker e'(x )}. 

Now we turn to the second-order necessary optimality conditions. Let h = 
(hy , hu , hv) E X . First we compute the second Frechet-derivative of the La
grange functional. We get 

L xx(i ,p)(h, h)= ln a nhy(T)2 dx 

r 2 - ( 2 2 + }Q(aQhy+2hy(hy)x>-.)dx dt+ Jo (f]hu +!h,Jdt . ( 4.4) 

In Theorem 2.4 we have denoted by x• the local solut ion to (P). The associated 
unique Lagrange multipliers are p*, C and 17*, see T heorem 3.1. 

DEFINITION 4.6 The second-order necessary optimality conditions are defined as 

L xx (x* ,p* )(h, h) 2 0 fo r all hE C (x* ). (4 .5) 

Now let i = x* be a local solution to (P). 

THEOREM 4. 7 The point (x *, p*) satisfi es the second-order necessary optim ality 
condition ( 4. 5). 

Proof. The equality constraints can be writ ten as 

e(x) E Ky = {0} c Y, 

where, of course, Ky is a closed convex set. Clearly, T{oj(z) = R{o}(z) = {0} 
so that Ky is a polyhedron. The result fo llows from Theorem 2.7 in Bonnans 
and Zidani (1999) if the following strict semi-linearized qualification condition 
holds: 

0 E int{e'(x*)((Kad- x* ) n {O,C , ?7*}j_)} c Y. (CQA) 

In our case we have 
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Let z E Y be arbitrary, close enough to zero. Then (CQA) follows if there exists 
an element (y,u,v) E W(O ,T) x ((Uad- u*) n {C}.L) x ((Vad- v*) n {17*}.L) 
satisfying 

e'(x*)(y, u, v) = z. ( 4.6) 

Due to Proposition 2.5 the operator ey(x*) is bijective. Thus, there exists even 
a unique y E W(O , T) such that 

ey(x*)y = z - eu(x*)u - ev(x*)v. 

This gives ( 4.6), so that the claim follows. • 
REMARK 4.8 As it is proved in Bonnans and Zidani {1999) , condition (CQA) 
implies uniqueness of the Lagrange multipliers p*, C and 17*. 

To prove Lemma 4.10 we make use of Lemma 4.9. Recall t hat we have intro
duced the point x satisfying the first-order necessary optimality conditions (4.3). 

Let u" = {t E [O , T]: ·u(t) = 'Uu(t) a.e .} and ub = {t E [O,T]: u(t) = Ub(t) a .e.} 
and set U = U" U Ub . For ii E Vad the active sets Va, Vb, and V are defined 
analogously. 

LEMMA 4.9 Let h = (hy,hu,hv) E ker ex(i: ). Then there exists a constant 
Cker > 0 depending only on x, v , T , ao, and a1 but independent of (hu, h,) 
such that 

(4 .7) 

Moreover, hu?: 0 on Ua, h, :S 0 on Ub, u = 0 on Iu,d = [O ,T] \U and hv ?: 0 

on Va, hv :S 0 on Vb , hv = 0 on I~'•d = [0 , T] \ V. 

Proof. Due to Lemma 4.1 it remains to prove (4.7). Let h = (hy, h,, h,) E 
ker ex (x). Then it follows tha t h11 (0) = 0 in 0 and 

( ( ((hy)t(-), tp(-))(H') ' H' + alhy( ·, 1)tp(-, 1)- aohyC, O)tp(-, 0)) dt 
lo · 
+ j~ (v(h11 )xtp, + (Yhy ),tp) dx dt 

= 1T(hvtp(-, 1)- hu tp(-, O))dt = 0 (4.8) 

for a ll tp E L2 (0 , T; H 1(H)). Proceeding as in the proof of Lemma 3.3 yields the 
estimate 
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for a constant 6 > 0 depending on v, T, ao, a 1 and fi . Applying (4.8) and (4.9) 
we obtain 

il(hy)tii£2(0,T;H'(Ill'l ~ (v + llfill£2(o,T;L=(Il))) li(hy)xii £2(Ql 

+ (llaoiiL=(O,T) + llalii L= (O,T))IIhy ii£2(0,T;£oc(l1)) 

+ 1117xii£2(Q) ilhyiiL=(o,r;£2(11)) + llhuiiL2(0,T) + ilhvll £2(o,T) 

so that (4.7) follows from (4.9) andy E W(O , T). 

Let us define the bilinear form Q : X ---+ IR by 

Q(h) = Lxx (x,p)(h, h) . 

• 

From the boundedness of the second derivative of the Lagrangian we infer that 
Q is continuous. The bilinear form is very close to a so-called Legendre-form, 
see Hestenes (1951). 

LEMMA 4.10 The bilinear form Q is weakly lower semi-continuous. Moreover, 
let {h" }nEN be a sequence in C(x) with h" ~ 0 in X and Q(h") ---+ 0 as 
n ---+ oo. Then, it follows that h" ---+ 0 strongly in X . 

Proof. Note that 

Q(h) = lxx(x)(h ,h) + 2 k YYx'5.. dxdt for h = (y,u ,v) EX. 

Note also that .lxx(x)(h, h) is weakly lower semi-continuous. Since the integral 
is even weakly continuous (see the proof of Theorem 2.4) , it follows that Q is 
weakly lower semi-continuous on X. Now assume that {hn = (h~,h~,h~)}nEN 
is a sequence in C(x) with hn ~ 0 in X and Q(hn) ---+ 0 as n ---+ oo. Analogously 
as in the proof of Theorem 2.4 we derive that 

lim r h~ (h;) x >. dx dt = 0. n--+ oo } Q 

Since q(h") converges to zero, it follows that for every t: > 0 there exists an 
n< E N such that 

0 ~ J(x)(h",h") < t: for all n 2: n< . 

This implies that 

T T 

f311hul 2 dt + 'Y foihvl2 dt < E: for all n 2: n<, 

which gives (h~, h~ ) in L(O,T) x L2(0, T) as n---+ oo. Since hE kerex(x) holds , 
we infer from Lemma 4.9 that h':. converges strongly in W(O , T) as n tends to 
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We define by 

F(P) = {x E Kad: e(x) = 0} 

the feasible set of (P). Let us recall the following definition, see Bonnnans (1998). 

DEFINITION 4.11 Let x E F(P). 
a) The point x is a local solution to (P) satisfying the quadratic growth 

condition if 
ther-e exists e > 0 such that 

J( x) 2: J(x) + ellx- xll~ + o( ii x - xllx) (4 .10) 
for- all x E F(P) . 

b) Suppose that x = (fj, u, v) satisfies the fir-st-or-der- necessar-y optimality con
ditions with associated unique Lagrange multiplier-s j'5 E Y, ( E Nu,Ju) , 
and fj E Nv,Jv). At (x, p) the second-order sufficient optimality condition 
holds ·if 

ther-e ex·ists n, > 0 such that 

L:cx(:r,j5)( h, h) 2: n, jjhlli for- all hE C(x). (4.11) 

In the following we will prove that (4.10) and (4.11) are related to the weaker 
condition 

Lxx(x,p)(h, h)> 0 for all hE C(x) \ {0}, (4.12) 

which is very close to the necessary optimality condition. 

THEOREM 4.12 The quadmtic gmwth condition (4 .1 0), the second-onler suffi
cient optimality condition (4 .11), and ( 4.1 2) ar-e equivalent. 

Proof. First we prove that (4.10) implies (4.11): Let x = (ij, ·u,v) E F(P) satisfy 
the quadratic growth condition. Then there exists a e > 0 such that x is a local 
solution to 

min J( x) - Qllx - xll x· 
xEF( P ) 2 

Hence, due to the second-order necessary optimality conditions we have 

Lxx(x,p)( h , h)- ~ ll h ll i 2: 0 for all hE C(.r). 

This gives (4.11). From (4 .11) we direct ly infer (4.12). Finally we have to show 
that ( 4.12) implies the quadratic growth condition . We follow the arguments in 
I3onnans and Zidani (1999). Let us assume that 

Lxx(x,p)( h, h)> 0 for all hE C(x ), (4.13) 

but (4.10) is violated. Tlms, there exists a sequence x" = (y 11 ,u" ,v" ) E F(P) 
with X 11 

__, x and 
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We set t" = ll xn - x ll x. Upon extracting a subsequence we may assume that 

xn =X+ t"h'\ llh" llx = 1, and hn ~h. 

As h" E RK,d(x) is valid, we obtain /1 C TK,d(x). From (4.14) we get that 
Jx(x)h ~ 0. The identity e(x") = 0 implies that hE kere'(x). Hence, hE C(x) . 
Using ((, fj) E Nu,d x Nv,d we get 

((, u"- uh2(D,T) ~ 0 and ((, u"- u)u(o,r) ~ 0. 

Using the Taylor expansion of L(x", p) and ( 4.3) we get 

J(x" )- J(x) = L(x" ,p)- L(x, p) 

~ L(x",p)- L(x,p) + ((,u"- i:L)u(o,r ) + ((,u"- u)u(o,T) 

= t"(Lx(x,p) + (0, ( , 1])T)h" + (t~)
2 

Lxx (x,p)(h", h") + o((t")2) 

= (t")2 Q(h") + o((t")2). 
2 

Hence, (4.14) yields Q(h") ~ o(1). By Lemma 3.3 the bilinear form Q is weakly 
lower semi-continuous. This gives Q(/1) ~ 0. As hE C(x) holds , we infer from 
(4.13) that h = 0. Thus, we have 

h" ~ 0 and lim Q(hn) = 0. 
n--+ oo 

By Lemma 4.10 we find that limn--+ oo llh"llx = 0, which contradicts the fact 
that llh" llx = 1 for all n . • 

PROPOSITION 4.13 If llan(y*(T)- zn)l l£2 (!1) + llaQ(Y*- zq) li£2 (Q) is suffi
ciently small, the second-order sufficient optimality condition is satisfied. 

Proof. The proof is a variant of the proof of Theorem 4.10 in Volkwein (2000). • 

5. Numerical example 

To solve the optimal control problem (P) we apply t he SQP method. Suppose 
that we have already computed (y'\ u" , v" ,p") E W(O, T) xL2 (0, T) xL2 (0, T) x 
Y for some n ~ 0 with y" (O) = Yo· Then the next iterate 

(y"+l,un+I,v"+l) = (y" , u",v") + (8y,8u,8v) 

is obtained by the solution of the following linear-quadratic optimal control 
problem (OPn): 

minJ"(8y,8u,8v) = J'(y",u" ,v" )(8y,8u,8v) 
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= l o:n (y"(T)- zn)8y(T) dx + 1T {3u"8u + rVnOv 

+ r O:Q(Y" - ZQ )8y dx dt + ~ r o:n8y(T)2 dx ln 2./n 

+ ~ 1T {38u2 + 18v2 + l (o:Q8y2 + 28y8yxAn) dx dt 

subject to 

DYt- VOYxx + (y11 8Y) x = -y;' + vy;x - y"y; + J in Q, 

v8yx(·, 0) + O'o8y( ·, 0) = u" + 8u } . (O T) 
v8yx(-, 1) + O'tDY(·, 1) = v" + 8v m ' ' 

8y(O) = 0 in n, 

and to 

(un + 8u, v" + 8v) E Uad X Vad, 
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where gn = -y~+vy~x -y"y~+ f. To solve the optimal control problems (OPn) 
at each level of the SQP method, we use a primal-dual active set strategy. 
This algorithm is based on a generalized Moreau-Yosida approximation of the 
indicator function of the set Uad of admissible controls. For more details we may 
refer to Bcrgounioux et al. (1997). 

Let the superscript n and the subscript k denote the current SQP- and active 
set iteration, respectively, and dual variables ~k and 'r/k stand for the Lagrange 
multipliers associated with the inequality constraints 

u" + 8u E Uad and v" + 8v E Vad , 

respectively. Suppose that (8uk - t , ~k- d and (8uk-t , 7Jk-t) are given. Then the 
u~-active and ub'-active sets of the current iterate are chosen according to 

A'k = { t E (0, T): 8uk-t(t) + ~k-:(t) < u~(t) a.e. in (0, T) } , 

A'k = { t E (0, T): 8uk_ 1(t) + ~k-:(t) > ub'(t) a.e. in (0, T) }, 

where c > 0 is a scalar, and set Ak' = A'k U A'k. Analogously we define 

!l'k = {t E (O,T): 8vk-t(t) + 'r/k~(t) < v~(t) a.c. in (O,T) } , 

Bk' = { t E (0 , T): 8vk-t(t) + 'r/k-:(t) > vi,' (t) a.e. in (0 , T) } , 

and B!: = fl 'k U B'k. Furthermore, we define the inactive set , 

( {.. _ , (t) . _, ) 



266 S. VOLKWEIN 

and 

JJ.' = { t E (0, T): v~ ( t) ~ 0Vk-1(t) + 1Jk-:(t) ~ vb"(t) a.e. in (0, T) }· 

In general, un + ouk_ 1 and vn + ovk- 1 need not be feasible on IJ.1 and J;.• , re
spectively. Notice that the definition of A'/;, B'k and IJ:, .lJ.' involve the primal 
variable ou as well as the dual variable 0~ corresponding to the inequality con
straints. In Algorithm 5.1 below the identification A'k_ 1 = A'k, for instance, 

An - An d A-" - A-" means -k - -k- 1 an k - k- 1· 

ALGORITHM 5.1 (Primal-dual active set strategy) 

a) Choose c > 0 and staTiing values (ouo, Ovo, ~o, 7Jo) E Uad x Vad x L00 (0, T) X 

L00 (0, T), and set k = 1. 
b) Comvute A.'k , A"k, fl'k, BJ: , IJ: and .lJ:. 
c) If k 2: 2, A'k = A'k_ 1, B',: = BJ:_ 1, fk' = Iic1

_ 1 , Jic' = Jic'_ 1 then STOP. 
d) Else, find (y, A) EX x X satisfying 

Yt- VYxx + (y"y)x = g" in Q, 
vyx(·, 0) +!Toy(-, 0) = u'b in A'k, 

VYx( ·, 0) + O"oy(-, 0) = u~ in A.'k, 

( 0) ( 0) A( .' 0) 0 . In 
VYx ·, +!ToY ·, + -(3- = ~n -k' 

vyx(-, I)+ 0"1Y(· , 1) = vf,1 in BJ:, 
vyx(- , 1) + 0"1y(-, 1) = v~ in fl.};, 

( ) ( ) A (.' 1) 0 . Jn VYx ·, 1 + 0"1Y ·, 1 - -- = zn _ k , 
I 

y(O) = 0 inn, 

(aQ- A~)y- At- VAxx- YAx = -CXQ(Y"- ZQ ) in Q, 
VAx(·, 0) + (y(-, 0) + O"o)A(·, 0) = 0 in (0, T) , 

VAx(· , 1) + (y(·, 1) + O"!)A( ·, 1) = 0 in (0, T) , 

cxny(T) + A(T) = -cxn(y"(T) - zn ) in n 

"' ;::·~OA{•rY· A) and :: i~ : and6v, ~ { ~~ ;~ ~~: 
-oAk(·,0)/(3 in fi: , OAk(· , 1)/r in Jic'· 

e) Put ~k = -(3ouk- OAk(-, 0) , 1]k = -1ovk +OAk(-, 1), k = k + 1, and return 
to step b). 

REMARK 5.2 Let 1ts mention that Algorithm 5.1 stops feasible if there exists an 
;fpmf;nn IP? IP I L: .~?l.rh thn.t A? = A~. . n.nrl B':' = n;l ' ' . In varticular. in this 
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In our test run we also compare the optimal solutions with the solutions of 
the unconstrained problems, i.e., for Uad = Vad = £ 2 (0 , T) . 

For the time integra tion we use the backward Euler scheme, while the spatial 
variable is approximated by piecewise linear finit e elements. The programs are 
written in MATLAB, version 5.3, executed on a Pentium III 550 MHz. personal 
computer. 

Let us choose T = 1, v = 0.01 , a0 = -0.1, a 1 = 0, 

_ { 1 in (0, 0.5] 
10-
y 0 otherwise, 

and f = 0. For n = rn = 50 the grid was given by 

i . jT . 
Xi = - for 2 = 0, . .. , n and tj = - for J = 0, ... , rn. 

n 1n 

To solve (1.1b)- (1.1d) for u = v = 0 we apply Newton 's method at each time 
step. The algorithm needs 1 second CPU time. The numerical solution is shown 
in Fig. 1. 

Now we turn to the optimal control problem. We choose no = 0 and CXQ = 1, 
f3 = 0.05 a nd 1 = 0.01. The desired state is z(t ) =Yo fortE [0 , T]. 

(i) First we solve (P) with Uad = Vad = £ 2 (0 , T) by applying the SQP method. 
Then the solution (8y ,8u,8v) of (OPn) is given as follows: First , we solve 
the linear system 

Yt- VYxx + (Y 11Y) x = 911 in Q, 

( .\(-,0) 0 ( ) 1/Yx(-, 0) + aoy ·, 0) + - (3- = 0 111 0, T , 

) ( ) .\( ·, 1) 0 ( ) 

I/Yx(·,1 +a1y ·,1 --- = 0111 O,T, 
I 

y(O) = 0 inn, 
(cxq- A~)y- At- VAxx - Y11 Ax = cxq(y"- ZQ) in Q, 
VAx(- , 0) + (y(·, 0) + ao).\(· , 0) = 0 in (0, T) , 
VAx(-, 1) + (y(·, 1) +at).\(-, 1) = 0 in (0, T), 
cxn8y(T) + 8.\(T) = cxn(Yn(T) - zn ) in n 

and set 8y = y and 8.\ = .\. Next, we obtain 8u and 8v from 

8u = - 8.\(-, O) and 8v = 8.\(-, 1). 
f3 "( 

(5.1a) 

(5 .1b) 

The discretization of (5.1a) leads to an indefinite system H "' ( 8y, 8.\) T = rn, 
where H 11 is of the form 

Hn = ( ~= ( Bn) T l . 
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x-axis 0 0 t-axis 

Figure 1. Solution for u = v = 0. 

We take as starting values y0 = 0, u0 = 0, v0 = 0 and >.0 = 0. We stop 
the SQP iteration if t he associated residuum is less than w-5 , i.e., 

Res(n) = II'V L(y" 1 un 1 v'', X" )IIL2(Q) xL2(0,T)x£2(0,T)x£2(Q) ::; w-5
• 

Here, 'V stands for the derivation with respect to (y, u, v, >.). Notice that 
'VuL(y11

,U
11

,V
11 ,A11

) = 'VvL(y11
,U

11
1 Vn , >.n) = 0 is guaranteed by (5.1b). 

We do not have to check it numerically. 
To solve the linear system denoted by H 11 (8y,8>.)T = r", at each level 
of the SQP method we use the Generalized Minimum Residual Method 
(GMRES) and stop the iteration if the relative residual 

llr"- H"(8y, 8>.fll2 
llr" ll2 

is less than w-5 . Here, II . 112 stands for the Euclidean norm. The SQP 
method stops after six iterations and needs 5G seconds CPU time. In 
Fig. 2 the discrete optimal solution is presented. 
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(ii) Next we introduce inequality constraints, see Fig. 3. To solve the linear 
systems arising in the primal-dual active set algorithm we utilize again the 

0 .................................................. , 

-0.1 

-0.2f---------' 

t-axis 

Figure 3. Control constraints. 

GMRES method with the same stopping criterion as in part (i). Let us 
mention that no size control is necessary in this example. Since the primal
dual active set method stops feasible, we use the same stopping criterion 
as in the unconstrained case. The CPU time required is 14 minutes and 
35 seconds. The discrete numerical solution is shown in Fig. 4. For the 
different values of the cost functional we refer to the following table: 

0.5 

x-axis 0 0 t-axis 
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-0.1 
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-0.2 

-0.25 --- -' 
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Appendix A. Proof of Theorem 2.3 

A .l. Uniqueness 

Let y 1 ,y2 E W(O,T) be two weak solutions of (Ub)- (Ud). Then y = y 1 - y2 

satisfies the following equation 

( ) r I I 2 
Yt(i),cp (Hl)',HI + /n liYx(t)cp + (y (t)yx(t) - y(t)y,r(t))cpdx 
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for all cp E H 1(f!) and a.e. t E (0 , T]. Upon choosing cp = y(t) in (A.1) we obtain 
the inequality 

1d 2 2 / 1 2 2 dtlly(t)ll£2(11) + vl!y(t)IIHI(I1) + }
11 

(y (t)yx(t)- y(t)yx(t))y(t) dx 

:::; vl!y(t)lli2(l1) + ao(t )y(t, 1)2 - a1(t)y(t, 0)2 (A.2) 

for a. e. t E (0 , T]. Application of Agmon's and Young's inequalities yields 

ao(t)y(t, 1)2 - a1(t)y(t, 0)2 :::; (i!aoll£oo(o,T) + l!alll£oo(o,T)) I!y(t)llioo(l1) 
v 2 2 

:::; 61iy(t)llnl(l1) + cii!Y(t)lluci1J 

for a constant c1 > 0. From Holder's, Agmon's and Young's inequalities we 
conclude that 

and 

fn1Y 1(t)yx(t)y(t)1 dx:::; IIY1(t)lluci1)11Yx(t) lluci1) 11Y(t)I!Loo(l1) 

:::; JCAIIY
1

ilc([O,T];£2(11 )) IIYx( t) 11::/~(11) IIY( t) ~~~~11) 
v 2 2 

:::; 61iy(t)l!nt(l1) + c2 i!y(t)11£2(11) 

l Y;(t)y(t)
2 

dx:::; IIY;(t) ll uci1JIIY(t)lluci1JIIY(t)I!Loo (l1) 

:::; JcAIIv2( t)ll HI (11J II Y( t) 11~~11) ll v( t) ~~~~(11J 
v 2 2 4/3 2 

:::; 61iy(t)lin'ci1J + c3 II Y (t)lln'(n)IIY(t)lluci1J 

for two constants c2, c3 > 0. Together with (A.2) we obtain 

1 d 2 v 2 
2 dti!Yt(t)lluci1J + 21iy(t)lln'<I1J 

2 4/3 12 :::; (v + C1 + C2 + C3IIY (t)IIH'(I1))i!y(t)1 £2(11)' (A .3) 

Since £ 2 (0, T; H 1(r!)) is continuously embedded into £ 413 (0, T; H 1 (f!)) (see 
Zeidler, 1990, p. 407), there is a constant c4 > 0 with 

loT IIY 2 (t)11~~(11) dt:::; C4 · 

Hence, by Gronwall's inequality we derive from (A.3) 

i!y(t)lli2(f!) :::; csl!y(O)IIi2(l1)' 
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A.2. Existence 

Before we discuss the existence of a solution , we prove the following auxiliary 
lemma. 

LEMMA A.1 S·uppose that g E L312 (Q), u,v E L2 (0,T), y0 E L 00 (r!) , u0,u1 E 

L00 (0, T) and that a E L 3 (Q). Then there exists a nnique soZ.ution wE W(O , T) n 
L00 (Q) satisfying w(O) =yo in L2(r2) and 

(wt(t), cp)(HlJ',Hl + u1(t)w(t, 1)cp(1)- uo(t)w(t, O)cp(O) 

+ fnvwx(t)cp' + a(t)wx(t)cpdx 

= l g(t)cpdx + v(t)cp(1) - u(t)cp(O) 

fo1· all cp E H 1(r2) and t E (0, T) a. e. Moreover, 

IIYII L""(O,T) ~ C(1 + llu iiP(O,T) + ll v ii£2(0,T)). 

Furthermore, if Yo E C(TI), then y E C(Q) holds. 

(A.4) 

Proof. It follows from Ladyzhenskaya et al. (1968) , p. 170 that there exists a 
unique w E L2 (0 , T ; H 1(r2)) n C([O, T]; L2 (r2)) satisfying 

1T (urw(·, 1)cp(·, 1)- CJow(·,O)cp( ·, O) -l Wept -vw,cpx- awxcp dx) dt 

= 1T (fngcpd.r: +vcp(- , 1)-ucp( ·, O))dt+ fnvocp(O,·)dx (A.5) 

for all cp E L2 (0, T; H 1(r2)) n H 1 (0, T; L2 (r2)) satisfying cp(T, ·) = 0 in L2 (r!). 
In particular, (A.5) holds for cp(t, x) = x(t)1j!(x), where x E CJ(O, T) and 1/1 E 
HJ(r!). We find 

1 Wcp1 dxdt = _j {T w1(t,·)x(t)dt ,1/J ) , 
Q \}0 (HI)' ,HI 

(A.6) 

where w1 denotes the distributional derivative of w with respect to t. The 
remaining terms in (A.5) are expressed by 

11/Wx'Px + YWx'P- gcp dx dt = / {T ( -1/Wxx + YWx - g )x dt, V') 
Q \ lo (H 1 )',H 1 

for all x E CJ(O, T) and 1/J E HJ(r!). Since 

-1/Wxx + YWx - g E L2(0 , T; H 1 (r!)') 

and the vector space spanned by the set 
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is dense in L 2 (0, T; H 1 (rl)')) we conclude that Wt E L2(0, T; H 1 (rl)') so that 
w E W(O, T) holds. From (A.5) and 

for (wt. cp)(HI l' ,HI dt = - k wcpx dx dt- l Yo'Px(O) dx 

for all cp E H 1 (rl) and x E H 1 (0, T) with x(T) = 0 it follows that w solves (A.4). 
The proof of the L 00-estimate and the continuity of w in Q follows along the 
lines of that of Theorem 3.2 in Casas ct al. (2000). • 

To prove the existence of a weak solution we apply the Leray- Schauder fixed
point theorem. For a proof we refer to Gilbarg and Trudinger (1977), p. 222. 

THEOREM A.2 Let T be a compact mapping of a Banach space B into itself, 
and suppose that there exists a constant M > 0 such that 

II 'PilE < M for all cp E B and s E [0, 1] satisfying cp = sT cp. (A.7) 

Then T has a fixed-point. 

Here, we choose the Banach space B = W(O, T) and introduce the operator 
T: B--+ B: w = Ty solves 

Wt - VWxx + YWx = J in Q, 

vwx(-, 0) + aou{, 0) = u } in (O, T), 
vwx(·, 1) + a1w(-, 1) = v 

w(O) = Yo in fl. 

(A.8a) 

(A.8b) 

(A.8c:) 

The unique solvability of (A.8) will be proved in Proposition A.4. Notice that 
the solvability of (1.1b)- (1.1d) is equivalent to the existence of a solution y E 

W(O, T) to the equation y = T y. The equation y = sTy in W is equivalent to 

Wt- VWxx +ywx =sf in Q, 

vwx(·,O)+aow(-,O)=su} in (O,T), 
VWx(-, 1) + O'IW(-, 1) = S'V 

w(O) = syo in fl. 

DEFINITION A.3 A function wE W(O, T) is called a weak solution of (A.8) if 

and 

w(O) =Yo in L2 (rl) (A.9) 

(wt(t, ·), cp)(Hl)',HI + a1(t)w(t, 1)cp(1)- ao(t)w(t, O)cp(O) 

+ l (vwx(t, ·)cp' + y(t, ·)wx(t, ·)cp) dx 

= l f(t, ·)cpdx + v(t)cp(1)- u(t)cp(O) 
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T he following proposition ensures that T is well-defined and maps B into 
itself. 

PROPOSITION A.4 Suppose that Yo E L2(fl), f E L2(Q), u, v E £ 2(0, T) and 
ao, a1 E U ;o (0, T). Then there exists a ·unique weak solution w E W (0, T) n 
U"'(Q) to (A.S) for ever·y y E W(O, T). 

Proof. Since W(O, T) is continuously embedded into the space L3 (Q), the claim 
fo llows direct ly from Lem ma A.l. • 

PROPOSITION A.5 The operator· T is compact. 

Proof. Let y E B and let {y" }nEN be a sequence in B satisfying y" ~ y in B 
as n tends to infinity. Then, we prove that the sequence w" = T y'', n E N, 
converges strongly to w = T y in B. The function z" = w" - w satisfies the 
parabolic problem 

n '' + n (" )n'Q zt - 1/Z:.:x yz, = - y - y wx Ill . , 

11 z;;-(-, 0) + ao z"(·, 0) = 0 } in (O,T), 
liZ.~'(·, 1) + a 1z"(·, 1) = 0 

z"(O) = 0 in fl. 

(A. lOa) 

(A.10b) 

(A.lOc) 

Multiplying (A.lOa) by Z11
, integrating over fl and using Holder 's inequality we 

estimate 

~ :t II z" i1 ~2(r!) + 11 ll zn II ~ ~ (r!) - ll v ll c( [D ,T];£2 (r!) li z~; ( t) II £2 (r!) li z"( t) II ux• (r!) 

::; l/ ll z"( t)11~2(f!) + (llaollux•(O,T) + lhll ux• (O , T)) II z"(t)ll~ oo (f!) 

+ llv"(t)- y(t) ll ~ oo (o) ll w;:(t) l lu(n) ll z"'(t) ll u(n) 

for t E [0 , T] a. e. By assumption, the sequence {y" }nEN is bounded in B. Since 
Tis continuous, {w~}nEN is bounded in L 2 (Q). From Young's and Agmon's 
inequalities we obtain 

ll z"(t) 11~2(11) + v ll z" ll ~2(o,t;£2(n)) 

::; c1llvn(t)- y(t)11~2 (0,T;Loo(f!)) + c2 1t (llz"(s)ll~2(11) ds (A.ll ) 

fortE [O , T] a.e., where c1 ,c2 > 0 are independent ofn. Application of Gron
wall 's inequality yields 

ll zn ll ~2(f!)::; c1 llv"'(t)- y(t)llu(o ,T;Loo( f!)) exp(c2T) fortE [0 , T] a.e. 

As W( O, T) is compactly embedded into L2 (0 , T; U"'(fl)), we conclude that, 
z" --+ 0 in U"'(O, T; L2 (fl)) as n tends to infinity. Thus , (A. ll ) yields that z" 
converges to 0 in L2 (0, T; H 1 (fl)) as n--+ oo . From (A. lOa) we find also that 
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PROPOSITION A.6 Let y satisfy the fixed-point equation y = sTy, s E [0, 1]. 
Then there exists a ToE (0, T] and a constant M > 0 s-uch that iiYIIw (o,To) ::SM. 

Proof. Choosing r.p = y(t) in (2.2b) and using lsi ::; 1 we obtain 

1d 2 2 r 2 2 dt iiy(t)ii£2(!1) + vjjy(t)IIHI(fl) + Jn y(t) Yx(t) dx 

::S 1Jjjy(t)lli2(fl) + (iiaoiiL "" (O,T) + jjaliiL""(O,T)) jjy(t)lli"" (ll) 

+ llf(t)liu(n) IIY(t)il £2(\l) + (iv(t)i + iu(t)i) iiy(t)iiL"" (ll) ' (A.12) 

Using Young's and Agmon's inequalities we find that there exists a constant 
C > 0 such that 

d 2 2 
dt iiy(t)li£2(ll) + vjjy(t)iiHI(fll 

::S C(lif(t)lli2(fl) + iu(t)i 2 + lv(t)i 2 + liy (t) 11 ~2 (fl) + llv(t ) 11 ~2 (n)) . (A.13) 

We define w(t) = 1 + llv(t) ll i2(fl) 2: 1. It fo llows from (A.13) that 

d d 2 
dt w(t) = dt (1 + liy(t )11£2(n)) 

::S C(liy(t)lli2(n)(1 + liy(t)il i2(rJ J)2 + llf(t)ii l 2(o) + i1t(tW + iv(tW) 

::S C(1 + llf(t)ll i 2(0) + iu(tW + lv(tW)w3(t). 

Consequently, 

tw<t) d~ ::; t 6(1 + ilf(t)11~2<n ) + iu(tW + iv(t)i 2
) ds, 

Jw(O) Z Jo 

and thus 

2 2 - 2 2 2 
w2(0) - w2(t) ::S C(t + llfii£2(0,t;£2(0)) + ll-uii£2(0,t) + ll vii£2(0,t)). 

By the dominated convergence theorem (Reed and Simon, 1980, p. 17) there 
exists T* E (0, T] such that 

llfll i2(0,t;£2(0)) + llu lli2(0,t) + ll v ii ~2(0 ,t ) 
1 

< _ 2 for tE (O,T*J. 
- 2C(1 + 11Yoll £2(ll) )2 

From this we conclude that 

1 1 -(t 2 2 2 ) 
w2(t) 2: w2(0) - C 2 + llfii £2(0,t;£2(0) + lluii £2(0,t) + llvii £2(0,t) 

1 6t 1 
- 2 2 

1- C(1 + ll vo ll £2(nJ) t 
--- - - -------
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fortE (0, T*]. Finally, we derive that 

2(1 + IIY 11
2 

2 )
2 

w 2 (t) ~ _ 
0 

L ~~~) 
2 

fortE (0, T*]. 
1- C(1 + IIYollu(o)) t 

Setting To= min(T* , 1/(20(1 + 11Yoii~2(0)) 2 )) we obtain that 

llv(t)11~2(0) ~ 1 + 2llv(t)11~2(n) + llv(t)lli.2(n) = w
2 (t) 

2 2 A 

~ 4(1 + llvollu(o)) = C 

for every m ~ 0 and for all t E [0, T0]. Thus, 

y E L=([o, T0]; L2 (D)) for all rn ~ 0. 

277 

(A.14) 

By integrating (A.13) over the interval [0, T0] and using (A.14) we obtain that 

llv(To)II~2(0) + v 1To llv(s)ll~~(o) dt 

~ llvoii~2(0) + C(llfii~2(Q) + lluii~2(0,T) + llvii~2(0,T} + TC(C2 + 1)). 

Hence, y is uniformly bounded, in the £ 2 ([0, T0]; H 1(D))-norm. This fact to
gether with (2.2b) and (A.14) imply that IIYtllu([o,To];V') is bounded. Thus, y is 
bounded in W([O, T0 ]) by a constant M > 0, which gives the claim. • 

Now we prove the existence of a weak solution of (1.1b)-(1.1d) . By applying 
Theorem A.2 we infer the existence of a weak solution w1 E W(O, T0 ) from 
Propositions A.4- A.6. Let us define the operator T: W(O, T) _. W(O , T) by 

T- { w1 on [0, To] X n, 
w = y = 2 

w on (To, T] X n, 

where w2 is the weak solution of 

Wt- VWxx + YWx =fin (To, T] X n, 
vwx( ·, 0) + O"ou{, 0) = u in (To, T), 

vwx(-, 1) + O"Iw(·, 1) = v in (To, T), 

w(O) = w 1 (To) in D. 

Note that Propositions A.4- A.5 also hold for the operator T. Let 

z = { w1 in [0, To] X D., 
0 in (To, T]. 

Then, we have w- z = 0 in [0 , To] X n. We proceed as in the proof of Proposition 
A.6 and obtain llw - zllw(o,TJ} ~ M, where T1 = min(T}, 1/(2C)) , C was 
introduced in (A.13), T} > T* is given by 

II r ll2 , II . 112 I 11 •. 112 
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for t E (T* , T} ], and M is the same constant as in Proposition A.6 . Hence, 

llw ll w(O,T!l :S llw- zllw(o,Tt) + ll zllw(O,T') :S 2M. 

This implies existence of a solution in W(O, Tl) . Now we can use an induction 
argument to get the existence of a weak solution to (l.lb)- (l.ld) on Q. Note 
that this induction argument is based on the existence of a decomposition 0 :::: 
T~ < ... < T!: :::: T of the interval [0, T ] such that 

2 2 2 1 
ll f ll u(Tj,t;£2(\l)) + llullu(T!, t) + ll vll u (r:, tl :S 

2
6 

fortE (T~,r:+ 1 ] and i:::: 0, ... ,k -1. 

A.3. Regularity 

To prove that the weak solution is more regular, we make nse of Lemma A.l. 
Suppose that y E W(O , T) is the weak solution to (l.lb)- (l.ld). Using 

Holder 's and the interpolation inequalit ies we find 

3/2 / 3/2 ( 3/ 2 3/2 
II YYx ii £3/2(Q) :::: }q IYYxl dx dt :S Jo lly(t) 11 £6(fl)IIY(t)IIH' (ll) dt 

:::; c712 for lly(t)llu<diY(t)l l ~' (n) dt 

::; c712
11 YII c([O,T];L2 (ll) ) II Y II ~2 (O,T;H' (ll)). 

Thus , g:::: f- YYx E L312 (Q). Due to Lemma. A.l the claim follows. 


