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Let (X,| - |) be a real Banach space. Let f(-) be a function defined on X
with values in RU {+o00}. Let € be a fixed positive number. We say that the
function f(-) is e-convex (see Jofré, Luc and Théra, 1998, and Luc, Ngai and
Théra, 1999) if for every x,y € X and real £, 0 < ¢ < 1, the following inequality
holds

f(tz + (1= t)y) < £5(2) + (1= )f(y) + et(1 = B)]|z = y]. (1)

Lue, Ngai and Théra (2000) introduced the following notions. We say that
the function f(-) is approrimate convexr at a point xy € X, if there is § > 0
such that (1) holds for every =,y € X such that ||z — zg|| < 6, ||y — xol < &
and every t, 0 <t < 1. We say that the function f(-) is approzimate convex on
a set C C X if it is approximate convex at each point zg € C. In particular,
when C = X, we say that the function f(:) is approzimate convez. In those
definitions the choice of 4 depends on e and 2y as well.

Now we shall give a uniform version of the notion of approximate convex
functions.

We say that the function f(-) is uniformly approzimate convez if for every
€ > 0 there is 6 > 0 such that (1) holds for every .,y € X with ||z —y|| < 6
and every ¢, 0 < ¢ < 1. Of course cach uniformly approximate convex function
is approximate convex.

It is obvious that for every e > 0 the domain of an e-convex function f(-).
dom f={re X : fle) < +n0) ig eonvex. This ie not valid for everv annravi-
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The domain of uniformmly approximate convex function need not be convex.
Indeed, let 29 € X be a fixed point such that [z > 3. Let

0 if ||| £ 1,
flz) =<1 if ||z — 20|l < 1,
400 otherwise.

It is easy to sce that if ||z — y|| < 1, then
fltz + (1 - t)y) < tf(z) + (1 - ) f(y).

This trivially implies that f(.) is uniformly approximate convex. Observe that
in this case the domain of f(-) is not connected. One can construct a uniformly
approximate convex function f(-) such that its domain is connected but it is
not convex. Indeed, let X = R? and let

0 ify <0,

f(-”?ay):{l ify=02n<e<2n+l,n=1,2.:4

+oco  otherwise.
It is easy to see that in this case the domain of f(-) is connected and non-convex,
however it is not closed.

We say that A C X is locally conver if for each x € A there is a neighbour-
hood V' of 2 such that the set A NV is convex (see Tietze, 1928, Matsumura,
1928, Klee, 1951). We say that a set A C X is uniformly locally conver if there
is a neighbourhood V' of 0 such that for each x € X the set An(z + V) is con-
vex. Just from the definitions it follows that domains of uniformly approximate
convex functions are uniformly locally convex. Of course, each uniformly locally
convex set is also locally convex. The converse is not true. For example every
open set is locally convex. For uniformly locally convex sets we have

PROPOSITION 1 Let X be a locally convex topological space. Let A C X be a
uniformly locally convex set. Then, its closure A is uniformly locally convex.

Proof. By the definition there is a convex closed neighborhood of zero W such
that for all 2 € X, AN(z+ W) is a convex set. Let V = %W. It is easy to sce
that every 2 € A (V +2)N A is a convex set. Let y,z € An(xz+ V) and let ¢,
0<t<1. Since y,z € AN (x + V) for every convex neighbourhood of zero, U,
there are yy,zy € AN (x4 V) such that yy € (y+ U) and 2y € (z+ U). By
the convexity of U tyy + (1 —t)zy € (ty+ (1 —t)z+ U). The arbitrariness of U
and the closedness of ANV imply that tz 4 (1 —t)y € AN (z + V). Thus, the
set A is uniformly locally convex. 0

Of course, Proposition 1 is not valid for locally convex sets. Indeed, let C
be an open non-convex set. The set €' is locally convex, but its closure is not.

It can be shown that a closed connected locally convex sets are convex (see
Tietze, 1928, and Matsumura, 1928, for R", and Klee, 1951, for topological lin-
ear spaces). In particular, if the domain of an approximate convex function f(-)
is simultaneouslv connected and closed then it is convex. Using the results
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PROPOSITION 2 Let X be a locally convex space. Let A C X be an open uni-
Jformly locally convex connected set. Then it is conver.

Proof. By Proposition 1, A, the closure of the set A, is convex. Thus, its interior
A =Int A is also convex. o

COROLLARY 3 Let X be a locally convex space. Let A C X be an open uniformly
locally convex set. Then it is a union of disjoint conver open sets.

As a consequence we obtain that if the domain of a uniformly approximate
convex function f(-) is open, then it is a union of disjoint open convex scts.

In Rolewicz (2000) the notions of a(-)-paraconvex and strongly a(-)-paracon-
vex functions were introduced. We recall them below.

Let a(t) be a nondecreasing function mapping the interval [0, 400) into the
interval [0, +o0] such that a(0) = 0 and

lim sup w < 400, (2)
tjo

Let (X, ] - |I) be a normed space. Let € be a convex subset of X. Let f(:)
be a real valued function defined on . We say that the function f(-) is a(:)-
paraconvez if there is a constant C' > 0 such that for all z,y € Qand 0 <t < 1
we have

f(ta + (1 = t)y) < tf(x) + (1= 1)/ (y) + Callle — yl))- (3)

For a(t) = t* this definition was introduced in Rolewicz (1979a) and the >
paraconvex functions were called simply paraconvex functions. In Rolewicz
(1979b) the notion was extended of the case a(t) = 17, 1 < 4, and t7-paraconvex
functions were called 4-paraconvex functions. For a(t) = t7, 2 < 7 each 7-
paraconvex function is convex. Morcover, if

a(t)

limsup —= =0,
tio 3

then each «f(-)-paraconvex function is convex (Rolewicz, 2000).
We say that the function f(.) is strongly o(-)-paraconves if there is a constant
C > 0 such that for all 2,y € 2 and 0 <t < 1 we have

J(ta + (1= t)y)
< tf(z) + (1 =) f(y) + Cminlt, (1 - H]a([|lz - yll)- (4)

The notions of a(:)-paraconvexity and strong af(-)-paraconvexity are not
equivalent. A Reader can find some sufficient and necessary conditions for the
equivalence of two notions in Rolewicz (2000). It can be shown that for 1 < v
the {7-paraconvex functions are strongly £7-paraconvex.

In this note we shall show that the notions of uniformly approximate convex
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For this purpose we shall extend the notions of a(-)-paraconvex and strong
a(-)-paraconvex functions to the case of functions, whose domains are uniformly
locally convex sets. Let 2 be a uniformly locally convex set, and let § > 0 be
such that for all z € X, the sets 2N B(z, ), where B(z, §) denotes a closed ball
with the center at z and the radius §, are convex. We say that a function f(-)
is af-)-paraconvez if there is a constant C' > 0 such that for all z,y € © such
that ||z — y|| <6 and 0 < ¢t < 1 we have

fltz 4+ (1 =t)y) <tf(z) + (1 -t)f(y) + Calllz - yl]). (3)

We say that a function f(-) is strongly a(-)-paraconver if there is a constant
C > 0 such that for all 2,y € Q such that ||z — y|| <6 and 0 < ¢ <1 we have

ftz + (1 -t)y)
<tf(@) + (1= t)f(y) + Cmint, (1 - )]a(||lz - yl)- (4)

Basing on this extended notion of strongly «(-)-paraconvex functions we can
formulate

THEOREM 4 Let (X, ||-]|) be a real Benach space. Lei f(-) be a function defined
on X with values in RU{+o00}. Then, the function f(-) is uniformly approzimate
convex if and only if there is an of-) such that
t

lim alt) =] (95)

tlo ¢
and such that the function is strongly o(-)-paraconvex on its domain dom f =
{zeX: f(z) < +oo}.

The proof will be based on the following lemma:

LEMMA 5 A function f(-) is strongly of:)-paraconvex if and only if there is
Cy > 0 such that

[tz + (1= t)y) < tf(@) + (1 = 0f () + Crt(L = allle — gl).  (4")

Proof. This is a trivial consequence of the following inequality #(1 — ) <
min(t, (1 — ¢)] < 2¢(1 — ¢) for every t € [0,1]. 5

Proof of Theorem 4. Suppose that a function f(-) is uniformly approximate
convex and & > 0 be such that (1) holds with € = 1 for all 2,y such that
[[z=y| < 6. Let Q denote the domain of the function f(-), dom f. This domain
is the uniformly locally convex set and for all z € X, the sets Q N B(z,§) are
convex.

Let 6(¢) > 0 denote the supremum of the numbers & such that (1) holds
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to see that the function §(¢) is non-decreasing. Now, let 8(e) be an arbitrary
continuous increasing function such that §(¢) < 6(e) for € > 0 and such that

lelilol 8(e) = 0. (6)

Let e(6) = 6 '(e). Observe that £(6) is a continuous increasing function such
that

%111‘} e(6) =0. (7)

Let a(s) = se(s). By (7) we have (5). Let 2,y € X be such that ||z — y|| = 6.
By the definition of §(¢) and (§) we have

ftz + (1= t)y) < tf(2) + (1= 1) f(y) + ()1 - £)é

= tf(z) + (1 - 1) f(y) + (1 - t)a(6)

=tf(z) + (1= )f(y) + t(1 - t)ea(lle - yl)),

i.e. by (4”) the function f(-) is strongly a(-)-paraconvex.
Suppose now that the function is strongly a(-)-paraconvex, i.e. thereis C' > 0
such that

flte + (1= t)y) S tf(x) + (1 = 8)f(y) + C(1 = t)a(|lz — y|). (4)
Since (5) for every € > 0 there is 6 > 0 such that for 0 < s < é,

a(s) < %s. (8)

Thus, by (4”) and (8) we have
fltz + (1= t)y) < tf(x) + (1 =) f(y) + Ct(1 = t)e(llz - yll)
Stf(z)+(1-1)f(y) + %Cﬁ(l —t)llz - yll
=tf(x) + (1 - 1) f(y) +et(1 - t)[|lz — yl,

i.e. the function f(-) is uniformly approximate convex. [ |

It can be shown that a strongly a(.)-paraconvex function (i.e. uniformly
approximate convex function) f(-) defined on a convex open set Q is locally
Lipschitz (see Luc, Ngai and Théra, 2000, Rolewicz, 2001).

Let f(-) be a real-valued function defined on a convex set 2 ¢ X. We say
that a linear functional z* € X* is a «af-)-subgradient of the function f(.) at a
point zg if there is C' > 0 such that

(2, h) < f(zo + k) — f(zo) + Ca|Ih]]) (9)

for all h such that = + h € Q.
The set of all a(-)-subgradients of the function f(-) at the point zy is called
the a(-)-subdifferential of the function f(-) at the point 2y and we shall denote
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The notions of a(-)-subgradient and a(-)-subdifferential can be considered as
a uniformization of the notion of subdifferential in nonconvex analysis, consid-
ered by several authors (see for example Fabian, 1989, loffe, 1983, 1984, 1989,
1990, Mordukchovich, 1980, 1988, and many more).

It can be shown that for strongly a(-)-paraconvex functions the «af(-)-subdif-
ferentials and Clarke subdifferentials coincide (Rolewicz, 2001). Thus, using
Theorem 9 of Rolewicz (1999) we obtain

THEOREM 6 Let (X, |.|]) be a real Banach space, which has the separable dual X*.
Let f(-) be a strongly a(-)-paraconvez (i.e. uniformly approximate convex) func-
tion. Suppose that its domain is an open set Q. Then there is a subset Ay of the
first category such that on the set Q\ Ay the function f is Fréchet differentiable?.

Proof. Put ¢ = X™*. Since the domain Q of the function f(-) is a uniformly
locally convex set, which is simultaneously open, it is a union of disjoint open
convex sets. Thus, without loss of generality we may assume that € is an open
convex set. Thus, the function f(-) is locally Lipschitz (see Luc, Ngai and Théra,
2000, Rolewicz, 2001), i.e. for each 20 € X there are a convex neighbourhood V.,
and a constant L,, such that f satisfies on V., the Lipschitz condition with a
constant L,,. This implies that for every y € V,, the Clarke subdifferential
df|, at y is not empty. This subdifferential is equal to the a(:)-subdifferential.
Hence f(-) is a continuous a(-)-X*-subdifferentiable function on V. Since we
can cover the whole set @ by neighbourhoods V.. f(-) is a continuous a(-)-
X*-subdifferentiable function on the whole €. Then by Theorem 9 of Rolewicz
(1999) there is a subset Ay C Q of the first category such that on the set Q\ Ay
the function f is Fréchet differentiable. |

CoroLLARY 7 Let (X,|.||) be a real Banach space, which has the separable
dual X*. Let f(:) be a uniformly approrimate convexr function. Suppose that
Q = Int(dom f) # 0. Then, there is a subset Ay of the first category such that
on the set Q\ Ay the function f is Fréchet differentiable.

Proof. Let
flz) = {f(ﬂi) ifzeqQ,

+00  otherwise.

It is easy to see that f is a uniformly approximate convex function such that
Q =dom f and f(z) = f(z) for & € Q. Thus, there is a subset Ay C Q of

the first category such that on the set 2\ Ay the function f = f is Fréchet
differentiable. |

QUESTION 8 Is Corollary 7 valid for the approzimate conver functions?

tA(_tuallg.v, in the present paper, in Corollary 7 and Proposition 9 the set Ay can be taken

Lowiin m inesmssnis T IR S ik Rakeerraas weke R st Fhis e eatlad srealEliv anolboamminll
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Till now we have considered only scalar valued functions. In a similar way
we can define strongly «af(:)-paraconvex functions for functions having values in
a normed space Y ordered by a convex pointed cone Z with non-empty interior.

Let as before a(t) be a nondecreasing function mapping the interval [0, +00)
into the interval [0, +00] such that a(0) = 0 and

t

lim sup &) < 400. (2)
t10 t

Let (X, ]| |lx), (Y.]l - [[y) be normed spaces. Let (Y] - ||y-) be ordered by a

convex pointed cone Z with non-empty interior. Let © be a convex subset of X.
Let f(-) be a function mapping Q into Y, f: Q@ — Y. Let ¢ be an arbitrary
fixed element of the interior of Z, e € IntZ. We say that the function f(-)
is a(-)-paraconvez if there is a constant C' > 0 such that for all z,y € Q and
0 <t <1 we have

fltx+ (1= t)y) <z t1() + (L = ) (y) + Calllz - yl)e, (3.)

where the inequality in (3,) means the inequality in the sense of order <y
induced by the cone Z. This definition does not depend on the choice of ¢ €
Int Z. 1t follows trivially from the fact that if we have two arbitrary e, g € Int Z,
then there are ¢y, ¢y > 0 such that ¢19 < e < cag.

A natural question arises: is Theorem 6 valid for the vector valued functions?

We know only the answer in the case of finite dimensional spaces R" with
the standard order. In this case an n-dimensional «(-)-paraconvex function
fC) = (fi()so oy fu(4)) is a(-)-paraconvex if and only if all functions f;(-),
i=1,...,n, are a(-)-paraconvex in the real-valued case.

Thus, by Theorem 6, we trivially obtain

PROPOSITION 9 Let (X,|.||) be a real Banach space, which has a separable
dual X*. Let f(-) be an n-dimensional «(-)-paraconver function. Suppose that
its domain ts an open set ). Then there is a subset Ay of the first category such
that on the set Q\ Ay the function f is Fréchet differentiable.
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