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Abstract: We consider two-person nonzero-sum stopping game.
The players (insurers) observe discrete time risk processes until one
of them decides to stop his process. Strategies of the players are
stopping times. The aim of each player is to maximize his expected
gain. We find Nash equilibrinm point for this game under certain
assumptions on reward sequences.
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1. Introduction

Let (Q,F,P) be a probability space on which all the considered random vari-
ables are determined. Let U, n=10,1,2,...,i= 1,2, denote the discrete time

risk process representing the surplus of the ¢-th insurer at fime n, i.e.
U =u*+nct -8, i=1,2,

where u' > 0 is the initial capital of the i-th insurer, ¢ > 0 is the amount of
premium received at each period, S! = Vi +...4 V! is the sum of all claims in
the first n periods.

We also assume that the distribution of the claim sequences Vi, Vi, ...,
Vlz, Vi#, ... depends on an unobserved random time @, similarly as in the disorder
problem considered by Shiryaev (1978) and generalized by Bojdecki (1979).
# represents the random moment at which the environment changes. Until that
moment the subsequent claims of each insurer are iid random variables and at
time # the common distribution switches to another one. We assume that the
preminms are estahlished ecorrectlyv till the moment A e that averase elaime
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insurers and there is an urgent need to recalculate the premiums, i.e. to stop
the process.

Let Fo = o{V, ..., V2, Vf, ..., V.2) denote the o-field of the events observed
at the n-th moment, n = 1,2,..., and Fy = {0,Q}. Let A be the class of
stopping times with respect to {}-n),.e v,ie.T € Aiff {w € Q:7(w) =n} € F,.
For n € N let us denote by A, the class of all stopping times 7 w1th respect
to (Fpn)nen such that 7 > n as.

We shall consider the following stopping game. There are two players (in-
surers) observing their risk processes U} until one of them decides to stop his
process. Strategies of the players are the F,-stopping times. For the pair of
strategies (71,72) € A x A, the ith player reward is

gi(rh, 7)) = XLI(r' < P) + Y5 I(rF < 7
+WLI(r' =19 < 00) + limsup Wil(7' = 77 = 00), 4, = 1,2, i £ j,
where [(A) is the indicator function of the set A € F,

Xi=Ul-KPO<n|F), Yi=U-kKP@O<n|F),
W:=U.-kiP(0 <n|F),

n=1,2,...,and ki, ki, ki are nonnegative constants representing the stopping
costs, 1 =1, 2.
The aim of the ith player, i« = 1,2, is to maximize the expected gain

E(g'(r',7%)) with respect to 7' in A. So, we face the problem of finding Nash
equilibrium strategies for this game.

Let us recall that (7!,72) € A x A is a Nash equilibrium point if for any
other strategy (71,7%) € A x A we have

B(g"(7,7%) 2 B(g'(r,7%), B(g*(7',7) 2 B(g*(7', 7).

The pair (E[g}(71,72)], E[¢%(7',72)]) of values is called the equilibrium value
corresponding to (71,72). We say that (71,72) € A,, x A,, is a Nash equilibrium
point at n if

E(¢*(7,7?)) = esssup E(g* (t*,7%) | F») as.,
T‘Ief\n
E(g*(7',7%)) = esssup E(¢*(F},7%) | Fo) as
T2€MAn
Let us note that the described game may be applied by one insurer who
manages two surplus processes (e.g. two different kinds of insurance policies).
So, he/she should care for each risk process. The assumption that F, is the
observed o-field at n is natural then.
In Section 2 we describe the stopping game investigated by Ohtsubo (1987)
whirch ig the eeneralized version of the Dvnkin's stopping problem presented by
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sequences under which Ohtsubo’s results on existence of Nash equilibrinm points
are still valid and which are essential for our risk model. Section 3 contains the
detailed analysis of our game associated with risk processes.

Stopping games with various reward function structures and various modi-
fications of stopping (selection) strategies were analyzed by many authors, e.g.
Yasuda (1985), Enns and Ferenstein (1987), Sakaguchi (1991), Ferenstein (1993)
and Szajowski (1993), to list a few. A broad survey of such games has been pre-
sented recently by Nowak and Szajowski in (1999).

A single player optimal stopping time problem for the risk process with
change in claim distribution, similar to that of our paper, was investigated by
Bobecka, Danielak and Ferenstein in (2002). Optimal stopping of continuous
time risk processes was analyzed by Ferenstein and Sierocinski (1997) and Jensen
(1997). General optimal stopping time theory is presented in the excellent
monographs by Chow, Robbins, Siegmund (1971) and Shiryaev (1978).

2. General Dynkin’s game

Let (X )n=01..., (Y)n=01..., Wiln=01.., i = 1,2, be six sequences of real-
valued random variables defined on (. F, P) and adapted to (F,)nen. We
assume the following:

(a) X} > Wi > Y, for every n € N and each i = 1,2,

(b) E|X!| < oo and E|Y;}| < oo for each i = 1,2,

(c) E[sup(X,",)'*'] < oo for each i = 1,2

Assumptlon (a) corresponds to the “Case I" studied by Ohtsubo (1987), but

instead of (b) and (¢) he assumed that
b)* E[sup,, |X}|] < oo and E[sup,, |Y;i]] < oo for cach i = 1,2.

Let us consider the following noncooperative stopping game. There are two
players and the first player and the second one choose (as their strategics) the
stopping times 7! € A and 72 € A, respectively, without mutual cooperation.
Then the ith player, i = 1,2, gets the reward

g =Xil(rP <)+ Y] f{r‘('r)
+WLI(T =7/ < 00) + ]llllhllp Wil(ri=1I = c0), 1=1,2, i # 4.

The aim of the ith player, ¢ = 1,2, is to maximize the expected gain
E(g'(r1,7%)) with respect to 7' in A.

We will now present a constructive way of finding an equilibrium value and
the Nash equilibrium points given in Ohtsubo in (1987). For each m € N let us
define a pair (', 4" Ju=0.1.2.....m of sequences of random variables by backward
induction

(B, vm) = (W, W3),
o me (WL W?) (X1YD) \
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n=m-—1,m-—2,...,0, where val(A) denotes the set of all Nash equilibrium
values in the bimatrix game A with two pure strategies. In other words, for a
2 x 2 bimatrix A = [(aij, bij)], 4,7 = 1,2, (Gigjos bigjo) € val(A) iff aipjo > aijy
for all ¢ and b;yj, > bi,; for all j.

Under the assumption (a) the above value relation is equivalent to:

(ﬁi’“ ‘ﬂ}(”l) = (Wfi'l’wlfl}
( ,Ym) = (E( n41 |'F ) E 7:;—1 I}‘H) on A:?
n In (Wl W?) off A:z,

n

n=m-1m-2,...,0, where
A:ﬂ- .-..{ Xl X2 ( ( n+1 |‘?:") E(F‘(n-i-l |'F' )}

Under the assumptions (a), (b) and (c) the following Lemmas 1-4 (Lemmas
3.1, 3.2, 3.4 and 3.5 in Ohtsubo, 1987) are satisfied:

LEMMA 1 For each n,m € N with n < m,

(Wi Wa) = (Baf) £ (B2) < (B ),

T

Thus, we can define 8, = limy—o A7 and v, = limy— oo ¥™. Then 3,

and 7, are F,-measurable.

LEMMA 2 The bisequence (fn,vn)n=01,.. satisfies the following relation: for
eachn € N,

_ S (EBnt1 | Fu)y Elyntr | Fu)) on A,
(ﬁns’)"rl) - {(wl ﬁ/lg) i Oﬁ An.

nt

where Ap = {(X1},X2) < (E(Bus1 | Fu), E(yns1 | Fa))}.

LEMMA 3 limsup 8, = limsup W;! and limsup+y, = limsup W2,

T
n n i n

For each n € N, define two random variables, 7, and 7,,, by
Fo=inf{k>n:f=Wi}, G, =inf{k>n: v = Wi},
where we suppose that the infimum over empty set is equal to 4oc.

LEmMMA 4 (i) For cachn € N, B, = W} iff v, = W2.
(i) For each n e N, 7, =7,.

The above results have been proved in Ohtsubo (1987) under the stronger
assumption (b)* instead of (b) and (¢). The proofs of Lemmas 1, 2 and 4 are
exactlv the same under the weaker assumptions. Below we give the modified
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Proof of Lemma 3. Let n,m be arbitrary fixed integers in A', n > m. From the
assumptions (b) and (c) W,\, and supger(Wi)* are integrable and

W} < sup W} < Sllp(Wk) ‘
k>m

Hence supys,, Wl is integrable. Moreover E(supy>m, W,-\ | F) is an Fy-
martingale, so it is a regular martingale. Since SUPk>m WA is Feo-measurable,
where F., is the o-field generated by U3 F,,, by letting n — oo (under fixed m)
we get

lim E(sup W} | F,) = E(sup W}! | F) = sup W} as.

A=eo k>m k>m k>m
Similarly as Ohtsubo we can prove that

B < E(sup Wﬂ | Fu), as.,n>m. (2.1)
k>m

So, we have limsup, 3, < supys,, W}, a.s. Letting m — oo we obtain the
inequality limsup, 3, < limsup, W}. The reverse follows from the fact that

— n*

By > W} foralln € N. Similarly, it is proved that limsup,, 7, = limsup, W2. H

The theorem below gives the Nash equilibrium strategies and inequalities for
the corresponding game values.

THEOREM 1 Under assumptions (a), (b) and (c) the following statements are
true:
(i) For everyn € N,
B, := E(Br.nz, | Fn) = E(9"(Tn,Tn) | Fu) 2 B,
and
f_’ln 2 E(Braz, | Fn) 2 E(gl('r,ﬁu) | Fn) for all T € A,
(ii) For every n € N,
Tn = E(yronz, | Fo) = E(f(;man] | Fa) 2 n,
and
Fn 2 E(veone | Fn) = E(9*(Fn,0) | Fu) for all 0 € A,.
(iii) Foreachn € N, apair (T,,,) is an equilibrium point at n, and a Nash equi-
librium wvalue corresponding to (To, @) is equal to (E(fz,nz0)s E(150n70))-
(iv) If limsup, W} = —c0 a.s. then, for eachn € N, 7,, = &, < o0 a.s.

Proof of Theorem 1. (i) Let n € A/ be fixed arbitrarily. We will show first that
{Binz, . k > n} is a regular submartingale. From Lemma 2 it follows that

Br = E(Bryr | Fr) as. ifn <k <7,. (2.2)
Moreover

ﬁk!\b’",. = ﬁkf(k < 6:?!) + ﬁE,‘I(k 2 ‘En)
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and
Bik+1)az, = Brarl(k <Tp — 1) + Brnz, [(k 2 Tn). (2.4)

Now, from (2.2), (2.3), (2.4), we have that {fkaz, .k > n} is an (Fy)-
martingale.

To show that it is a regular submartingale it suffices to prove that (Propo-
sition IV-5-24 in Neveu, 1975)

E [Eg_p(ﬁwn)*l < 0. (2.5)

From (2.1) it follows that

B < Elsup(W})* | Fi), as. (2.6)
]

and hence we have

Efsup(8)*] < E[sup(W})*] < o0, as.
k 1

and thus (2.5). Thus, the sequence {Bisz,, k > n} is a regular submartingale.
By the optional sampling theorem for regular submartingales (Corollary IV-2-
25 in Neveu, 1975) we have 8, = Barz, < E(Braz, | Fu) for any 7 € Ay In

particular for 7 = 7,, we obtain 3, < E(f, A7, | Fn) = B,. Morcover, since

Tn = On, from Lemma 4: Braz. < E(Br a7, | Fraz,), and hence we have
E(ﬁr!\?,. l -Fu) S E[E(,B?,.AE,. | F‘T/\E“) ! Fn] — E(B?,.AE,. I Fn)- N(}W‘ let us
note that 3z, = W3 >Y3 if 5, < oo and, from Lemma 2, i > Xlifo, > k.
Hence from Lemma 3 we get for any 7 € A,,,

En Z E(ﬁr!\o_" 1 -7::;)
= EIPGTI(T < Eu) +,J'3§"I(En < T)
+ Gz, 1(r =Fn < 00) + limsup B,I(1 =7, = 00) | F,.]

> EXH(r<Tn)+ Yy 1[G, <7)
+ Wz I(T =5y < 00) + limsup WA (1 =5, = o0) | F)]
= E(gl(r,ﬁn) |~?'—n)-

In particular, for ¥ = 7,, we have, from Lemma 4,

Bn = E(ﬁ“l‘",.f\?.‘ | f“)
= E(W2 I(T = n < 00) + limsup W, I(T,, = T = 00) | Fy)

— E{gl(?u-ﬁﬂ) | 'F”.}‘

Therefore the proof of (i) is complete.
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(ii1) Immediately follows from (i) and (ii).

(iv) From Lemma 4 it is sufficient to prove that 7, < oo, a.s. From (2.6)
it follows that supys, E[(Biaz,)*] < co. Hence a martingale {firz,, kb >
n} converges a.s. to a limit which is an integrable r.v. (Theorem IV-1-2 in
Neveu, 1975). Thus, the sequence {3,, n > 0} converges to a finite limit
a.s. on the set {7, = oo}. Therefore, since limsup, B, = limsup, W} as.,
we have limsup, W}! > —oo as. on {7, = oo}. But we have assumed that
limsup, W! = —oco a.s. Hence we get P(7, = o) = 0. 5]

REMARK 1 Theorem 1 corresponds to Theorem 3.1 in Ohtsubo (1987). But
in that paper Ohtsubo proved that Bn = f, and 7, = vn. Under our weaker
assumptions we can prove only that p’,, > By and 7,, > yn. This results from the
fact that in Ohtsubo’s case the sequence {fiaz,, k > n} is a reqular martingale
while in ours it is only a regqular submartingale.

3. The Markov model

We will present the stopping game described in Section 2 in the case when
the reward sequences are functions of states of a homogeneous Markov process,
similarly as in Ohtsubo. Ohtsubo in (1987) studied the noncooperative stopping
game in the following Markov model.

Let (Z,,F..P.) be a homogeneous Markov process on the phase space
(E,B). Let B(E) be the set of bounded B-measurable functions on (E, B). Let
¢, 9" b € B(E), i = 1,2. For stopping times 7! and 72 in A, the mecan reward
of the ith player is

E.[g'(".7%)] = E:[¢'(Z,)I(r" < 77) + 4/ (Z5) (77 < T')
+h{(Z)I(t' = 7 < 00) + limsup h*(Z,) (7' = 77 = 0)),

where i,j = 1,2,1 # j, v € E, and E, denotes the expectation operator with
respect to P,.

Under the assumption that ¢’ < h' < ¢' on E for cach i = 1,2, let us define
the bisequence {(al.a?), n € N'} of functions by

(0[1)((8)'(1'(2]('7')) = (h,](_q:), h.z(,r))‘ T E E'
al(x), i .
ebntehedaten ={ G S

x € E, n € N, where the operator T is such that T'f(z) = E.[f(Z1)], z € E
for f € B(E), and

A={z € E:(¢'(2),4°(2)) < (Tay(z), Tay(x))}.

Then, {a},}32,, i = 1,2, are increasing in n and we denote the limits of a;,
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Define the stopping times 7, i = 1,2, by
7 =inf{n >0: 2, €T}

(= 400 if no such n exists), where I' = {2 € E : a'(z) = h'(z)}. The theorem
below is the immediate consequence of Theorem 1:

THEOREM 2 A pair (?l,fg} of stopping times is a Nash equilibrium point and
the Nash value function (3,%) corresponding to (71,7%) is such that > o' and
3> a?.

Let us note that for Theorem 2 to be satisfied it is sufficient to assume that
the functions ¢',9*, h*, i = 1,2, are such that El¢'(Z,)| < oo, E|¢*(Z,)] < c©
and E[sup,,(¢*(Zn))"] < oo, which corresponds to our assumptions (b) and (c).

4. Equilibrium strategies for the risk process model

Now, we apply the results of Section 2 to find Nash equilibrium strategies for
our game associated with the risk processes.

First, let us make precise assumptions on the distributions of random vari-
ables defining the processes Ui = vl +ne' = (Vi +...+ Vi), n = 0,1,2,...,
i=1,2. Let 0, V}}, V..., V2 V2, ... have the distribution as follows

P@=0)=x, P@=n)=(1-n)(1-p)" 'p, n=1,2,...,
where 7 € [0,1], p € (0,1] are fixed and known and

1 gy ] (L ifn<t _ .,
(‘/I'I‘t/tl)_{(‘/"l.fj‘p:?“'f) lfﬂag, 'ﬂ.—],,_.‘_

ey

V21 are iid with the

L) n

where V11 V2T are iid with the density fo, and V.17

n 1 T

density f1, fo # fi- .

We also assume that g > ¢ > po, 1 = 1,2, where p; is the expectation
of the random variables with the density f;, j = 0,1. Let us note that the
inequalities for y's mean that the premiums are established correctly for the
distribution with the density fo and then after the change into f; the situation
is unfavorable for the insurers.

Let, for any n, II,, denote the conditional probability that the change in
distribution of claims has occurred not later than at n, given the observations
till that moment, i.e.

I, =P €5 | F);, n=1,2. ...
Using the Bayes formula (Shiryaev, 1978) we obtain:

H‘N =
Hn—lfl(vnl!‘i?} + (1 = Hn—l)pfl(vnl' V;;q
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which may be rewritten in a more convenient form
XV.1.v2)

AV V) + w(lln-y)’
where the functions A and w are defined as follows
VL, v2) (1= Taey)(1 - p)
A Vl,Vz fl( n''n Hu n .
(Voo Vi) = JolVE VS Wil o1 + (1= Iaa)p

From the Bayes formula it also follows that (Bojdecki, 1979)

Hn =

Bl | J—,\(Vl V2)
n | )= W‘
where
€= (L=p) "NV VD) AV VD), G =
i=1

Let us define Z,, = (I, U}, U2,&,) forn =1,2,..., Zp = (Ilp, U}, U¢, &) =
(m,ul,u?,0).

LEMMA 5 (Z,)
(Fn)n=0.l,..-

Proof. (1) Z, is F,-measurable forn =1,2,...
(2) For n=1,2,... there exists a measurable function y such that

/J’n-i-l —X(Zn'( n411 u+1))
Indeed
Zn-l—l = (H?l+l\UA+I!UE+]sED1+1)

_( Mg Vi) gy,
’\(Vn+1’ n+1) +w(ﬂ )

(fn 1)’\( |1+]‘V;12+l )

=0,1,.. fJorms a homogeneous Markov chain with respect to

4
n.+ n+1 1—?1

= X(HH Uall‘Uz 6":( n+1° n+l)) = Y{Zﬂ ( n+l» u-l-l))‘ n _1 2 """

(3) The conditional distribution of V,}, ,, V2| given F,, has the distribution
function

I, (z,y) = P(VIH <z, Vn+1 Syl Fa)

=P(Vap <o,V <y 0<n|F)

+P(Viy £ 7, V,+1$1.8>n+1|}',,)

=L, F()RA@)+ PV, <o, Vi Syl=n+1,0>n|F,)
+PVi, <o, Vi <y b>n+1,0>n|F,)

=L Fi(2)Fi(y) + (1= IL)pFi(@) Fi(y) + (1 = ) (1 = p) Fo() Fo(y),
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Now we may apply Lemma I1.17 of Shiryaev (1978) to obtain that (Z,,),=0,1,...
forms a homogeneous Markov chain with respect to (F,)n=01,..- [ |

Let us denote

[I = P 9 F — Pr’9 ]_‘ l-[ ],—p)k(l/lll‘ [3]
N <n n) = “" —_ = n) =11, —
( n| Fy) { 1] F) = _pg,, :

Now our reward sequences may be rewritten as follows:

X =Ul = KIL,_ =¢'(Z,), Y = Ui - KI,_ =9'(Z.),
Wi = UL — kil = h*(Z,),

n=1,2,..., where ki, kj, k} are nonnegative constants representing the stop-
ping costs and ¢, %, h' are functions defined on a state space of the homoge-
neous Markov chain (Z,,),=0.1.....

We assume that k5 > k3 > ki, i = 1,2. This is equivalent to Xi > Wi > Y}
for every n € N and each i = 1,2, (or: ' < h* < ¢' on E for cach i = 1, 2)
and means that, for each of the players, it is more profitable to stop at the same
time than to stop as the second one and the most profitable is to stop as the
first one. Hence the assumption (a) is fulfilled. In what follows we assume that

4 oo
f z*fi(z)dz < 00, j =0,1, (4.1)

(=]

which ensures that assumptions (b) and (¢) are satisfied as the consequence of
the following lemma in Bobecka, Danielak and Ferenstein (2002):

LEMMA 6 If uy > ¢t > jo, i =1,2, and (4.1) then

(1) limy—eo E(UL) = —00 and
(2) Efsup,(Ui)*] < co.

Sequences (87,47 )u=0.1,2....m of the conditional game values in the finite
horizon case, defined in Section 2, become for our game:

( ::’: 1 7:::) — ( m! m ) (UI:I k'l r‘[m Ur‘;i AT?H-,“ )!

(JI{ m m. _ ::E{-l | fu) E('Y::l_}_l | F;;)) on Am
ni )= (Wl H’,-O) off A::'

(F( Bt | Fu) Bty | Fa) - on A
( - A'3 Tt -U? A‘?Hn_) Off A::*,

n=m-—1m-—2,....0, where

AT = {{XE X2 < (BB | Fodi B | F))}
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Then forn=m-1,m-2,..., 0, we have

m

Bt = BBy | Fa)I(AY) + (WI(A,)
= B(By1 | F)[(Xy < BB | Fa)I(X3 < E(viia | Fu))
+(W)I(Xy 2 BBy | Fa)I(XE 2 E(vyy | Fa))
= (BB | Fa) - WHI(XE < B(B2yy | FO(X2 < BOy | Fa))+ WL,
Tt = B | F)I(AY) + (WHI(A)
= By | Fa)l(Xn < BBy | F)I(XE < By | Fa))
+H(WHI(X, 2 BBy | Fa)(X5 2 E(vpyy | Fa))
=[E (V41 | Fn) = n] (Xrlz<E (Butr | Fn)) (X3<E('7::n+1 | Fa)) +Wf{»
which may be rewritten in a more convenient form:
At = on™op™ > Xo = W)l (od™ > X5 - W)+ W,
= tﬂ,l:"’f(tp,ll "> (kg = k)L, )1(%2. "> (k3 = ADIL-) + W,
T =" H(on™ > Xo = W) (@™ > X5 - W) + W,

= @p" (o™ > (ky = kI ) (9™ > (K] = k)ILa-) + W

n?

where for convenience we introduce the random variables <p' m 4 =1,2, defined
as follows

O™ = B(By | Fa) = Wi = BBy | Fa) - (U - KIL,_),
wi'”—E(m,Hm)—w,, By | Fa) - (U2 - 1L, ),

n=m-—1m-—2,...,0.
The lemma below gives the recurrence formula for the sequence (2™, >™):

LEMMA 7

I m

i . 1 ')

(p:nml QO:”rzl(Z) Som 1(7r U 6)

= B = B = B (=1,
S

and, forn=m—-2m-3,...,0,

o™ = im(x) = Lol (2)

where
il
i,m _ i,m U ) 1 by | -
Ligit(s) = // H+1[ o u?)+w(7r) uw+e —u,
n+l
i A (2
e 42 (6_‘_1)#} f;(ul, v?) dv' dv?
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Fip = ppa + (1 = p)peo,
m 1 n,m
Ay = {(ﬂ v?) : %+1[W

1 .2 : :
(_f_t_li%i;__szj] > (k3 — ky)T, f=1a2}-

Aw?, v?
W) Jul et =0,

w? +c% - 1:2,

Proof.

(Prlnml ‘Pm 1(Zm 1) ‘Prlrlrjl{nnv-laUr}a 1!U:2n—1‘§m—1)
= E(Bn (T, UL, U2 €m) | Fin1) = (Ueq = K3y )
= E(Us = Bl | Fin-t) - Uja

+ k3 (M1 — P(e m—=1|Fn-1))

=BU)\_ 1+ =VL=k3P(0 <m|Fn)| Fm-1)=UkL_;
+ k(M1 = PO =m =1 | Fn-y))

=Ul_ i+ =EWV])| Fn-1) = KEWPO < m | Fu) | Fn-1) = UL _,
+ k3 —k3PO@=m —1| Fpo1)

= ¢! = =11 + (1 = Mpmy)ppy + (1 = My )(1 = p) o]
~k3E(E(I(0 < m) | Fn) | Fn-1)

+ k3, —k3P(@=m—1| Fu-)

= c! = [[n-1(p1 = ip) + fip) = k3 B(I(0 S m —1) | Frnr)
+ kil oy —kiP@=m—1|Fp-1)

=c - Om—1(p1 = Hp) = fip — kéP(G Sm—1|Fnu-1)

+ kil —k3PO =m— 1| Fno1)

=cl - M1 (g1 = ﬁp) = Jap = A-':}.Hm—l

+ kil = k3P0 =m =1| Frn-1)

_L ( m 1 Vl;zl 1

=1—H_ o e _'l'.‘llp
¢ m-1(t1 = fp) = Tip — k3 1

Forn=m-2,m-3,...,0

PR s () = ke (L, U UR )

= BBy (Mat1,Up 41, Ul 1 6ns1) | Ful = (Up — K311_)

= E[r@u-{-l( n+laUu+lsU:+1s£n 1” ﬁ":-l(nﬂ'flsUri+l‘ u+1!£?!+l) > 0)
Iyt (M1, Up 4, Uy Enr) > 0) | Fu

+E(Unyy = k3Tlnir)_ | Fa) = (Up = K310 ).

Moreover, we have

E(Uri-l-l . k:li'[]("‘i'l}— | '?:“) - U:E T k.’il‘lu._
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=Ur+c' = EViy | F)
~kIE(P@ <n+1|Fns1) | Fn) = UL + K310, _
=c - [Hn(ﬂl - ﬁp) i ﬁp] = kiH,, + kll'l,l kéP(ﬂ =n I Fu)

—L_\(V} V2)
e - 1= nt*'n
=c' = Ma(py = fip) = fip — ’»é“‘“;;-&::-l——,
and
E[‘Prlzrl H,,.H, U']H—]- Uf+1svfn+1)f(so,l1‘i"1(ﬂn+1- Urlaq-lvU:?-l-lean) > 0)
I(‘Pn+1 n+l'Url;+1=U:L:+1'fu+l) >0) | Fa)
/\('ul 1:2)
i,m 3 Ul 1_ 1,
ff Pt [z\('{ll,vl‘!) +w(ll,)' " =
Al
o2
U2 + C (El‘? Ei ]1.) ( )]fnn(vlsv2) d’Ul d’l}z‘
—-p
where
L+1 = {(t’ !1] ’t“ II(!H-l) :Un.—!—l "I" H (n+41)- )

<(E(B42 | 5‘-n+1) (’Yn+2 | Frt1))}
% [(0%9%) o (Mt Uk U s K] 500 — 4 s

2,m

‘P,,+1(Iln+1‘U‘.ll+1. Ul?-i—lreﬂ-i‘]-) > (kg - k%)‘n“—}'

,m

The equalities for 2™, and %™ are given in the same way. |

For the infinite horizon, from Theorem 1, we get that a Nash equilibrium
value corresponding to (7o,7), where

To=inf{n > 0: 8, = U} — K311,,_},
go=inf{n>0:v,= Ug - kgl'ln_ h

is equal to (By, 7o) = (E(Brynze )s E(¥ronz,)), Where
B> b= ilm [30 and Jp > Y0 = hm i

Now we apply the results of Section 3 for the Markov model.
Let us denote by o the limit of & , as n — oo, i = 1,2, where the bisequence

n?t

{(a},a2), n € N} is defined as follows

(ag(2), ap(2)) = (h'(2), h*(2)),
M2). Tz 1
bt = { (5 i

N o e z € E, (E,B) is a phase space of the Markov chain (Z,), n =
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and
A= {(¢"(2).4*(2)) < (Tal(2), Ta2(2))}.
Moreover, let
©'(2) = Ta'(2) = hi(z), i=1,2.
Define the stopping times 7, i = 1,2, by
7 =inf{n > 0:a'(Z,) = h'(Zn)}

(= +00 if no such n exists).
The theorem below, which is the consequence of Theorem 2, gives Nash
equilibrium point and inequalities for the corresponding game value.

THEOREM 3 (i) The pair (7'.72) is a Nash equilibrium point.
(i) The corresponding game value is equal to (3,7):
B 2 fo = Bolz0) = ' (20)
= ¢! (20)1(¢*(20) > 0)I(*(20) > 0) = k' (20),
7 > 70 = Y0(20) = o*(20)
= ¢*(20)I("(20) > 0)I(¢*(20) > 0) = h*(z0),
where
¢'(20) = Ta'(z0) — h'(20)

/ / [ 111/\(1:)_1_ I)U( ),“} et —pl,

)\(t? v?)

ul 46 - ]f,r(ﬂ J)dvtde? -, i=1,2.
(iii) 7 < o0, @.5., i = 1,2‘
Proof.

(Bos10) = (Bo(20),70(20)) = (a(20), &*(20))
_ [ (Ta'(2),Ta?*(z)) on A
T (h*(20), h%(20)) off A,

where

= {20 € E : (¢'(20).4*(20)) < (T (20), Ta*(20))}
¢'(20) = ¢' (o, UL, U3. &) = ¢'((m,u},u2,0)) =o', i=1,2,
Ta'(20) = Ta' (o, Us, U2, &)
= E[a'(IL,, U, U, &) | (o, Uy, UZ &) = (7, ut,u*,0))
1 2
= 5o (s vy 8+ - -
o o e EaFDMVEVIN s et wem v 5 1 9wl
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h
Av',v?) 1 1 1
/ / [ t11,112)+1u(7r) u-+c 1=

222)\(11'} L@y topd .
w4 = e f=(v*,v*)dv" dv*, i=1,2.

and

A= {20 € E: (¢ (20),6°(20)) < (T (20), Ta*(20))}
={z € E : Ta'(20) — h'(20) > ¢'(20) = h'(z0) = v —u' =0, i = 1,2}
={20€E:¢'(z)>0,i=12}

Moreover, from Lemma 6 we have

limsup h'(Z,) = limsup W} = limsup(U} - k311,_) = —o0 ass.

n T

o (iii) immediately follows from (iv) of Theorem 1. |

REMARK 2 We do not need to assume that claim distributions of each player
are the same until the moment 0 and at 0 they suntch to another common
distribution. We may assume, instead, that the claim distributions of each player
are different, i.e.

i Vil ifn<@ L
Vs {V,:“ ifn>8, =

vy

whem VL are iid with the density f§, and V,f " are wid with the density f},
= 1,2. Then, under the assumption that pj > ¢' > jdy, where pj is the
c:vpccmf.ion of the random variable with the density fJ‘ 4 = 01,8 =1;2, all

formulas and results are still true if we only replace the function X\ with

UV F(V2)
VLV = rm vy
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