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Abstract: We consider two-person nonzero-sum stopping game. 
The players (insurers) observe discrete time risk processes until one 
of them decides to stop his process. Strategies of the players arc 
stopping times. The aim of each player is to maximize his expected 
gain . We find Nash equilibrium point for this game under certain 
assumptions on reward sequences. 
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1. Introduction 

Let (fl, :F, P) be a probability space on which all the considered random vari­
ables arc determined . Let U,~, n = 0, 1, 2, ... , i = 1, 2, denote the discrete time 
risk process representing the surplus of the i-th insurer at time n, i.e. 

where ui > 0 is the initial capital of the i-th insurer, ci > 0 is the amount of 
premium received at each period , Sf, = V{ + . .. + V~ is the sum of all claims in 
the first n periods. 

We also assume that t he distribu tion of the claim sequences Vl, Vl, ... , 
V?, V}, . .. depends on an unobserved random time (), similarly as in the disorder 
problem considered by Shiryaev (1978) and generalized by Bojdecki (1979). 
() represents t he random moment at which the environment changes. Until that 
moment the subsequent claims of each insurer are iid random variables and at 
t ime () the common distribution switches to another one. We assume t hat the 
nreminms arP. estahlishP.rl r.mTP.rt. !v t.ill t.hP. mnnlPnt. fi i P t. h at. avPrao-P rb im« 
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insurers and there is an urgent need to recalculate the premiums, i.e. to stop 
the process. 

Let :Fn = o-(Vl, . .. , v,; , V?, ... , v,n denote the o--field of the events observed 
at the n-th moment, n = 1, 2, ... , and :Fo = {0, D}. Let A be the class of 
stopping times with respect to (:Fn)nEN > i.e. TEA iff {wEn: T(w) = n} E :F,. 
For n E N let us denote by An the class of all stopping times T with respect 
to (Fn)nEN such that T ?: n a.s. 

We shall consider the following stopping game. There are two players (in­
surers) observing their risk processes U,i, until one of them decides to stop his 
process. Strategies of the players arc the Fn-stopping times. For the pair of 
strategies ( T1 , T2 ) E A x A, the ith player reward is 

gi(T 1, T2) = X~J(Ti < Tj) + Y:jl(Tj < Ti) 

+ w;J(Ti = Tj < oo) +lim sup W~l(Ti = Tj = oo), i,j = 1, 2, i :f j, 
n 

where I( A) is the indicator function of the set A E :F, 

x,i, = U,~- klP(B < n I :Fn), y~ = u~- k~P(B < n I Fn), 

w,: = U,~- k~P(B < n I :Fn) , 

n = 1, 2, .. . , and k:f, k~, k~ are nonnegative constants representing the stopping 
costs, i = 1, 2. 

The aim of the ith player, i = 1, 2, is to maximize the expected gain 
E(gi( T1 , T2 )) with respect to Ti in A. So, we face the problem of finding Nash 
equilibrium strategies for this game. 

Let us recall that (71 , :r2 ) E A x A is a Nash equilibrium point if for any 
other strategy ( T1 , T2) E A x A we have 

E(gl(:rl ' :r2)) 2: E(gl(Tl ' :r2)), E(g2(Tl' :r2)) 2: E(l(Tl' T2)). 

The pair (E[gl(T1 ,T2)], E [g2 (:r1 , :r2)]) of values is called the equilibrium value 
corresponding to (Tl, :r2). We say that (71 , :r2 ) E An x A,. is a Nash equilibrium 
point at n if 

E(g 1 (71
, T2)) = ess sup E(g1 ( T1

, T2
) I :Fn) a.s., 

r 1 Ei\n 

E(g2(T1 ,:r2)) = esssupE(l(T\ T2
) I Fn) a.s. 

r 2 Ei\n 

Let us note that the described game may be applied by one insurer who 
manages two surplus processes (e.g. two different kinds of insurance policies). 
So, he/she should care for each risk process. The assumption that :Fn is the 
observed o--field at n is natural then. 

In Section 2 we describe the stopping game investigated by Ohtsubo (1987) 
mhirh ;,_ t.hoc P"PllPrali'l.Prl VPrsion of the Dvnkin 's stoooing problem presented by 
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sequences under which Ohtsubo's results on existence of Nash equilibrium points 
arc still valid and which are essential for our risk model. Section 3 contains the 
detailed analysis of our game associat ed with risk processes. 

Stopping games with various reward function st ructures and various modi­
fications of stopping (selection) strategies were analyzed by many authors, e.g. 
Yasuda (1985), Enns and Ferenstcin (1987), Sakaguchi (1991) , Ferenstein (1993) 
and Szajowski (1993) , to list a few. A broad survey of such games has been pre­
sented recently by Nowak and Szajowski in (1999) . 

A single player optimal stopping time problem for the risk process with 
change in claim distribution, similar to t hat of our paper , was investigated by 
Bobecka, Danielak and Fcrcnstein in (2002). Optimal stopping of continuous 
time risk processes was analyzed by Ferenstein and Sierociuski (1997) and Jensen 
( 1997). General optimal stopping t ime theory is presented in the excellent 
monographs by Chow, Robbins , Siegmund (1971) and Shiryaev (1978) . 

2. General Dynkin's game 

Let (X;'Jn=O,l , ... , (Y,;)n=O, l, ... , (W,~)n=O , l , ... , -i = 1, 2, be six sequences of real­
valued random variables defined on (n, F , P) and adapted to (F,) nEN. We 
assume t he following: 

(a) x:, 2 W,t, 2 Y,: for every n EN and each i = 1, 2, 
(b) E IXj; l < oo and ElY,~ I < oo for each i = 1, 2, 
(c) E[sup(Xj,)+J < oo for each i = 1, 2. 

n 

Assumption (a) corresponds to the "Case I" studied by Ohtsubo (1987), but 
instead of (b) and (c) he ass umed that 

(b)* E[sup,, IX:,IJ < oo and E [sup" I Y,~ IJ < oo for each i = 1,2 . 
Let us consider t he following noncooperative stopping game. There a re two 

players and the first player and the second one choose (as t heir strategies) t he 
stopping times T 1 E A and T 2 E A, respectively, wit hout mutua l cooperation. 
Then t he ith player , i = 1, 2, gets t he reward 

gi(T 1 ,T2
) = X~J(Ti < Tj) + y;) I (Tj < Ti) 

+ w;J(Ti = Tj < oo) +Jim sup W,:f(Ti = Tj = oo), j = 1, 2, i ;j; j. 
n 

T he aim of the ith playe r, i = 1, 2, is to maximize the expected gain 
E(gi ( T 1 , T2 )) with respect to Ti in A. 

We will now present a constructive way of finding an equilibrium value and 
the Nash equilibrium points given in Ohtsubo in (1987). For each mEN let us 
define a pair (,6.;:' , , ;;') 11 =o,1,2 , .. , rn of sequences of random varia bles by backward 
induction 

( (.1'7/. m) _ (W l w 2) 
f-'11 1 lfut - IIJ.l f ll l 

.( (W}, w.:l (X.~ . Y}) \ 
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n = m- 1, m- 2, ... , 0, where val( A ) denotes the set of all Nash equilibrium 
values in the bimatrix game A with two pure strategies. In other words, for a 
2 X 2 bimatrix A= [(a;j,bij)), i,j = 1,2, (a; 0 j0 ,b;0 j0 ) E val(A) iff a;0 j 0 ~ a;j0 

for all i and b;0 j 0 ~ b;0 j for all j. 
Under the assumption (a) the above value relation is equivalent to: 

(!3~;, 1:) = (w;,, w,;), 

(/3m m) = { (£({3~n+l I :Fn),E(!~n+l I :Fn)) 
n1fn (W,!,W~) 

n = m- 1, m- 2, ... , 0, where 

on A~n 

off A~', 

Under the assumptions (a), (b) and (c) the following Lemmas 1- 4 (Lemmas 
3.1, 3.2, 3.4 and 3.5 in Ohtsubo, 1987) are satisfied : 

LEMMA 1 For each n , m EN with n :S nt , 

(Wl W2) = (f3n In ) <(/3m 1 m) < (/3m+l ""m+l) 
n' n n' n - n ' n - n ' In · 

Thus, we can define f3n = limm__.00 /3.;;' and In = limm-->oo 1;;'. Then /3, 
and In are .1'11-measurable. 

LEMMA 2 The bisequence (f3n, ln)n=O,l, ... satisfies the following relation: for 
each n EN, 

(/3 ) _ { (E(f3n+l I :Fn), E(/n+l I Fn)) 
'"In - (Wl w2) 

n ' n 

on An 
off An, 

where An= {(X,~, x;) < (E(f3n+l I Fn ), Ehn+l I :Fn))}. 

LEMMA 3 lim sup f3n = lim sup w,~ and lim sup In = lim sup w,;. 
n n n n 

For each n E N, define two random variables , T n and an ' by 

1'11 = inf{k ~ n: f3k = Wl} , an= inf{k ~ n: lk = Wl} , 

where we suppose that the infimum over empty set is equal to +oo. 

LEMMA 4 (i) FoT each n EN, f3n = W,! iff In = W,; . 
(ii) FoT each n EN, Tn =a". 

The above results have been proved in Ohtsubo (1987) under the stronger 
assumption (b)* instead of (b) and (c). The proofs of Lemmas 1, 2 and 4 are 
exadlv the same under the weaker assumptions. Below we give the modified 
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Proof of Lemma 3. Let n, m be arbitrary fixed integers in N, n 2: m. From the 
assumptions (b) and (c) W,~ and supkEN(Wf)+ are integrable and 

W~::; sup Wf::; sup(Wf)+. 
k?_m kEN 

Hence supk>m Wf is integrable. Moreover E(supk >m Wf I F,) is an Fn­
martingale, so it is a regular martingale. Since supk>~n Wf is F 00 -measurable, 
where Foo is the a-field generated by U~=oFn , by letting n __, oo (under fixed m) 
we get 

lim E(sup Wf l F,) = E(sup Wfl F oo) =sup Wf a.s. 
n->oo k?_m k?_m k?_m 

Similarly as Ohtsubo we can prove that 

f3n ::; E(sup Wfl F,), a.s ., n 2: 7TL 
k?_m 

(2.1) 

So, we have lim sup,, ;3, ::; supk> m Wf, a.s. Letting 1n __, oo we obtain the 
inequali ty lim sup

71 
;3, ::; lim sup

11 
W,!. The reverse follows from the fact that 

;3, 2: w,~ for all n E N. Similarly, it is proved that lim sup, In = lim SUPn w~ .• 
The theorem below gives the Nash equilibrium strategies and inequali ties for 

the corresponding game values. 

THEOREM 1 Under assumptions (a), (b) and (c) the following statements are 
true: 

(i) For every n EN, 
7J, := E(tJrn/\0', IF,.)= E(g 1 (1'n ,7Yn) I Fn) 2: ;3,, 

and 
73n 2: E(f3ri\O'n IF,) 2: E(g1(T,a,) I Fn) for all T E An. 

(ii) For every n EN, 
"in := E(!Tni\O'n I :J',) = E(g2(1'.,t> 0', ) I Fn) 2: In, 

and 
"in 2: E(ITnM IF,) 2: E(l(rn,a) I Fn) for all a E An. 

(iii) For each n E N , a pair ("'Fn, 0'11 ) is an equilibrium point at n, and aN ash equi­
librium value corresponding to ("To, 7Jo) is equal to (E(/3:r0 Aa0), E (IT0 Aa0 ) ). 

(iv) If lim sup" W,~ = -oo a.s. then, for each n EN, Tn = 0'.,. < oo a.s. 

Proof of Theorem 1. (i) Let n EN be fixed arbitrarily. We will show first that 
{f3kAa, , k 2: n} is a regular submartingale. From Lemma 2 it follows t hat 

;3k = E(f3k+I I Fk) a.s. if n ::; k < O'n. (2.2) 

Moreover 
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and 

(2.4) 

Now, from (2.2), (2.3), (2.4), we have that {f3kA'ii,, k 2: n} is an (h)­
martingale. 

To show that it is a regular submartingale it suffices to prove tha t (Propo­
sition IV-5-24 in Neveu, 1975) 

E[sup(f3kAaJ+] < oo . 
k~n 

From (2.1) it follows that 

f3; :S E[sup(W/)+ I Fk], a.s. 
l 

and hence we have 

E[sup(l:h)+] :S E [sup(W/ )+ ] < oo, a.s. 
k l 

(2.5) 

(2.6) 

and thus (2.5). Thus, the sequence {f3kA'ii,, k 2: n} is a regular submartingale. 
By the optional sampling theorem for regular submartingales (Corollary IV-2-
25 in Neveu, 1975) we have f3n = f3nA'ii, :S E(f3rA'ii, I Fn) for any T E An. In 
particular for T = Tn we obtain f3n :S E(f3r,Aa, I Fn) = 73n. Moreover, since 
Tn = O'n, from Lemma 4: f3rl\'ii, :S E(f3r,l\a, I Fr/\aJ, and hence we have 
E(f3rl\'ii,, I Fn) :S E[E(f3r,ACi, I Frl\aJ I Fn] = E(f3r,I\Ci, I Fn)· Now, let US 

note that /3a, = WJ, 2: YJ, if an< oo and, from Lemma 2, f3k 2: Xk if an> k. 
Hence from Lemma 3 we get for any T E An , 

7Jn 2: E(f3rl\'ii, I Fn) 

= E [f3rl(T < O'n) + f3a.J(an < T) 

+ f3aJ(T = O'n < oo) + limsup f3n l(T = O'n = oo) I Fn] 
n 

2: E [X~I(T < O'n) + Y;iJ(an < T) 

+ W;}J(T = O'n < oo) +lim sup w,~I(T = O'n = oo) I Fn] 
n 

In particular, for T = T n we have, from Lemma 4, 

7Jn = E(f3r,l\a, I Fn) 

= E(W,f.J('Tn = O'n < oo) +lim sup w,~I('Tn = O'n = oo) I Fn) 
n 

= E(g 1(1',.,an) I Fn)· 

Therefore the proof of (i) is complete. 
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(iii) Immediately follows from (i) and (ii). 
(iv) From Lemma 4 it is sufficient to prove that 0', < oo, a.s. From (2.6) 

it follows that supk>n E[(,ih/\un )+] < oo. Hence a martingale {,6k/\un, k 2: 
n} converges a.s. to- a limit which is an integrable r.v. (Theorem IV-1-2 in 
Neveu, 1975). Thus, the sequence {,6,, n 2: 0} converges to a finite limit 
a.s. on the set {an = oo}. Therefore, since limsup,, ,6, = limsup 11 W~ a.s., 
we have limsup, W,~ > - oo a.s. on {O'n = oo}. But we have assumed that 
limsupn W,~ = -oo a.s. Hence we get P(O'n = oo) = 0. • 

REMARK 1 Theorem 1 corresponds to Theorem 3.1 in Ohtsubo ( 1987). But 
in that paper Ohtsubo pr-oved that 73n = .6n and -;y" = In· Unde-r our 'Weaker 
assumptions 'We can prove only that 73n 2: .6n and -;yn 2: In. This results f-rom the 
fact that in Ohtsubo 's case the sequence {.6k/\un, /,; 2: n} is a regular martingale 
'While in ours it is only a 1·egular s-ubmartingale. 

3. The Markov model 

We will present the stopping game described in Section 2 in the case when 
the reward sequences are functions of states of a homogeneous Markov process, 
similarly as in Ohtsubo. Ohtsubo in (1987) studied the noncooperative stopping 
game in the following Markov model. 

Let (Z,, F, , Px) be a homogeneous Markov process on the phase space 
(E, B). Let B(E) be the set of bounded B-measurable fun ctions on (E, B). Let 
q}, 1j/, hi E B(E), i = 1, 2. For stopping times T 1 and T 2 in A, the mean reward 
of the ith player is 

Ex[gi (T 1, T 2
) ] = Ex[¢i(zri )l(Ti < Tj) + 'lj}(Zrj )l(Tj < Ti) 

+ h'i(zri )l(Ti = Tj < oo) +lim sup hi(Zn)l(Ti = Tj = oo)], 
n 

where i,j = 1, 2, i-f j, x E E, and Ex denotes the expectation operator with 
respect to P x. 

Under the assumption that ·1/Ji :S hi :S ¢i on E for each i = 1, 2, let us define 
the biscquence {(a;1 ,cx~) , n EN} of functions by 

on A 
off A, 

x E E, n EN, where the operator Tis such that Tf(x) = Ex[f(Zt)], x E E, 
for f E B(E), and 

A= {x E E: (¢1(x) ,¢2 (x) ) < (Ta~(x),Ta?,(x))}. 

Then, { a~.}~=O' i = 1, 2, are increasing in n and we denote the limits of a~ 
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Define the stopping times ~, i = 1, 2, by 

7i = inf { n 2 0 : Zn E fi} 

K. BOBECKA, E.Z. FERENSTEIN 

(= +oo if no such n exists), where fi = {x E E: o:i(x) = hi(x)}. The theorem 
below is the immediate consequence of Theorem 1: 

THEOREM 2 A pair (71, 72) of stopping times is a Nash equilibrium point and 
the Nash value function (73, 1) corresponding to (71 , 7 2 ) is such that jj 2 o: 1 and 
12 0:

2
. 

Let us note that for Theorem 2 to be satisfied it is sufficient to assume that 
the functions cpi,'lji,hi , i = 1,2, are such that El¢i(Zn)l < oo, El7f!i(Zn)l < oo 
and E[sup11 (¢i(Z11 ))+] < oo, which corresponds to our assumptions (b) and (c). 

4. Equilibrium strategies for the risk process model 

Now, we apply the results of Section 2 to find Nash equilibrium strategies for 
our game associated with the risk processes. 

First, let us make precise assumptions on the distributions of random vari­
ables defining the processes U~ = ui + nci - (V1i + ... + V~), n = 0, 1, 2, ... , 
i = 1, 2. Let B, Vl, Vl , .. . , Vl , Vl, ... have the distribution as follows 

P(B = 0) = 11', P(B = n) = (1- 11')(1- p)11
-

1p, n = 1, 2, ... , 

where 1l' E [0, 1], p E (0, 1] are fixed and known and 

if n < () 
'f () n=1 , 2, .. . , 
1 n2 , 

where v,;J, V,~J are iid with the density f 0 , and v,;.n, v,;.n are iid with the 
density ft, fo 'I ft. 

We also assume that /i1 > ci 2 J.Lo , i = 1, 2, where J.Li is the expectation 
of the random variables with the density fi , j = 0, 1. Let us note that the 
inequalities for J.L1 s mean that the premiums are established correctly for the 
distribution with the density fo and then after the change into h the situation 
is unfavorable for the insurers. 

Let, for any n, IIn denote the conditional probability that the change in 
distribution of claims has occurred not later than at n, given the observations 
till that moment, i.e. 

IIn = P(B S n I Fn), n = 1,2, .... 

Using the Bayes formula (Shiryaev, 1978) we obtain: 

IIn = 
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which may be rewritten in a more convenient form 

II - >.(V,{, V,?) 
n - >.(V,t, v,n + w(IIn- 1)' 

where the functions >. and w are defined as follows 

' (V1 V2) = h(V;, V,?) (II ) = (1- Hn-1}(1- p) 
A n' n ( 1 2)' W n-1 ( . fo Vn, V,, IIn-1 + 1- II,. _I)p 

From the Bayes formula it also follows that (Bojdecki , 1979) 

4>-(v; , V.?) 
P(B = n I Fn) = ---'---­

P~n + 1 
where 

n. 

~n = I)1 - p)i-n- 1 >.(V,;, V,~) ... >.(V/, V/), ~0 = 0. 
i=1 

Let us define Zn = (IIn, U~, U~, ~n) for n = 1, 2, .. . , Zo = (IIo, UJ, U5, ~o) = 
('7r, u 1 , u2 , 0) . 

LEMMA 5 (Zn) n=O,l, ... form s a homogeneous Markov chain with respect to 

(Fn)n=0,1, . · 

Proof. (1) Zn is Fn-measurable for n = 1, 2, ... 
(2) For n = 1, 2, ... there exists a measurable function x such that 

Zn+1 = x(Zn, (V,;+l , v,;+I)). 

Indeed 
1 2 

2,,+1 = (IIn+1,Un+1•U.n+1•~n+t) 

_ ( >.(v,;+I , v,;+1) u1 + 1 _ v1 
- ( 1 2 ) ( ' n C n+1 • >. V,,+l , V,,+1 + w II,.) 

u2 2- v2 (~n + 1)>-(v,;+l , v;+1)) 
n + C n+1 • 1 -p 

= x(IIn, U,~, u,; , ~"' (V,;+I, V,~+ 1 )) = x(Zn, (V,;+1, V,~+ 1 )), n = 1, 2, .... 

(3) The conditional distribution of V,~+l, V,?+1 given Fn has the distribution 
function 

Frr, (x, y) = P(V,t+ 1 ~ x, V,~+l ~ Y I Fn) 

= P(v;+l ~ x, v;+1 ~ y,B ~ n I Fn) 

+P(V,;+1 ~ x, V,~+ 1 ~ y,B 2': n+ 11 F.,) 
= II,F1(:r) F1(y) + P(V,;+l ~ 1:, V,~+l ~ y,B = n + 1, 8 > n I Fn) 

+P(v,;+l ~ .T, v,?+1 ~ y,B > n + 1,8 > n I Fn) 

= IInF1(1:) F1(y) + (1- IIn)PFt(x)f't(y) + (1- IIn)(1- p)Fo(x)Fo(y), 
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Now we may apply Lemma II. 17 of Shiryaev (1978) to obtain that (Zn)n=O,l, .. 
forms a homogeneous Markov chain with respect to (F,)n=O,l, • 

Let us denote 

Now our reward sequences may be rewritten as follows: 

X~ = U,~- k!II,_ = qi(Zn), Y,; = U,i,- k~ IT n _ = 7/J ;(Zn), 

W~ = U,~- k~ITn_ = h;(Zn), 

n = 1, 2, . .. , where ki, k~, kj are nonnegat ive constants representing the stop­
ping costs and ¢;, 7/Ji, hi are functions defined on a state space of the homoge­
neous Markov chain (Z,),=O,l, ... · 

We assume that k~ :2: /.;~ :2: ki, 'i = 1, 2. This is equivalent to X,i, :2: W~ :2: Y,:, 
for every n EN and each i = 1, 2, (or: 'lj;i :<;:; hi :<;:; ¢; on E for each i = 1, 2) 
and means that, for each of the players, it is more profi table to stop at the same 
time than to stop as the second one and the most profitable is to stop as t he 
first one. Hence the assumption (a) is fulfilled. In what follows we assume that 

l
+oo 

-oo x
2 f j (x) dx < oo, j = 0, 1, ( 4.1) 

which ensures that assumptions (b) and (c) are satisfied as the consequence of 
the following lemma in Bobecka, Danielak and Ferenstcin (2002): 

LEMMA 6 If p, l > ci > J..Lo , ·i = 1, 2, a.nd (4.1} then 

(1) limu___, 00 E(U~) = - oo a.nd 
(2) E [supn(U,i.)+] < oo. 

Sequences (/1~", ')'~" )n=o, 1,2 , .. . ,rn of the conditional game values in t he fi nite 
horizon case, defined in Section 2, become for our game: 

n = m- 1, m - 2, ... , 0, where 

on A;:• 
off A;:• 
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Then for n = m - 1, m- 2, . .. , 0, we have 

{J;;' = E(f3::'-t1 I Fn) f(A;~) + (W,;) J(Jt;:') 

= E(/3.;~+ 1 I F,)I(x,; < E(/3.~~ 1 I Fn))I(x,: < E(r;;'t1 IF")) 
+ (W,~)I(X,~ 2 E(/3.;~~ 1 I Fn))I(X,; 2 E(r:;~ 1 I Fn)) 

349 

= [E (f3;:'-t 1 I Fn)- W,!]I(x,; < E(f3.;;'-t1 IF, )) I (X,~ < E(r;,~+ 1 I F,)) + W~, 

,;;· = E(r;:'t1 I F, ) I( A;~') + (W,~)I (!I;;') 
= E(1';:'-t1 I Fn)I(X,~ < E(/3.;;~1 I Fn))I(X,: < E(1~n+l IF,)) 
+ (W,~)f(X~ 2 E(/3;;\1 I F,))J(X~ 2 E(r;;~1 I Fn)) 

= [E(r.~'t1 I Fn) - w.:J I(X~ < E(/3;:~ 1 I Fn )) I(X~ < E(1';;~ 1 IF,))+ w,: , 
which may be rewritten in a more convenient form : 

!3m = ,(')1,mf(,!'l1.m > X1 _ W1)J(,!'l2,m > xz _ wz) + w1 
'It rn. Yn n n r n n n .,,. 

= IP ~/" f( IP;,'"' > (k5- ki)Tin_)f(IP~,· "' > (k§ - ki )H,_) + W,;, 

1' '111. = ll'l2,w[(t !'l1,m > x1- W1)I( II'l2,m > xz- W2) + w2 
n Yn rn n n 't"n n n n 

= ip~1 ' 111 f (IP;,• m > (kj- k})Tin _)f (IP?,·"' > ( k~- ki)Hn-) + W,: , 

where for convenience we introduce the random variables lf):;m, ·i = 1, 2, defined 
as follows 

If)~,'"' = E(/3;;~1 IF,)- W,! = E(/3.~'+1 IF,)- (U,~- k5Tin _), 
2,m - E( m I 'L ) w2 - E( m I 'L ) (U2 /·2TI ) IPn - ln+1 J n - n - ln+ l Jn - n - "3 n_ ' 

n = m- 1, m- 2, ... , 0. 
T he lemma below gives the recnrre nce formn la for the sequence ( IP;;w, If);,·"'): 

LEMMA 7 

i , nt i ,rn ( ) ·i ,1 n ( '"'"' 1 2 C) 
1Pm- l = <p,_l Z = IPm.-1 11' , '1/, ' 71. ' <, 

i -( -) - J.i ~,\(v l ,v2 ) . ? 
= C - 7r ~i1 - ~ip - J.ip - t.:3 ]J~ + 

1 
l 1, = 1 l w l 

and, fm· n = m - 2, m.- 3, . .. , 0, 

1/'li ,m = i,m(z) = Ltl'li,m (z) 
rn 'Pn rn+l ' ' 

where 

L i 'Ill ( ) i 111 ' 1 1 1 jj [ ,\( ·u1 712) 
'P,;+1 z = If),;+ I \ ( 1 2) (-), 1i + c - 'U ' 

A V,V + w1r 
A:~+ l 

? 2 ?(~ +1 )/\ (v l ,v 2) ] f(l 2)d 1d2 
1C + c - v- - v v v v 

' 1-p rr ' 

I _i ~I . -:-: \ 1 ,, 
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liP= Pf.L1 + (1- p)f.Lo, 

Am -{(1 2)· i,m [ A(V
1

,V
2
) 1 1 1 

n+l- v ,v ·<Pn+1 A(v1,v2)+w(1f)'u + c -v' 

u2 + c2 - v2 (~ + 1)A(v1,v2)] > (ki- ki)1f i = 1 2} 
' 1-p 3 1 ' ' . 

Proof. 

<P;~'~1 = <P~'-:\(Zm-d = <P;~'~t(llm-1,U;,_1,Ur~-1•~m-d 
= E(j3~~(ITm, u;,, U,~ .. ~m) IFm-1)- (U~-1- kjiT(m-1) _) 

= E(U~- kjiTm_ IFm-1)- u~t-1 
+ kj(ITm-1- P(() = rn - 1 IFm_l)) 

= E(u;,_1 + c1 - v,;.- kjP(B < m, IFm) I Fm-d- u~-1 
+ kj(ITm-1- P(B = rn - 1 IFm-1)) 

= U,~-1 + c1 - E(v,;. IFm-1)- kjE(P(B < m IFm) IFm-d - u;,_ 1 
+ kjflm-1 - kjP(() = m- 1 IFm_t) 

= c1 - [ITm-1f.L1 + (1- ITm-dPf.L1 + (1- llm- 1)(1- p)p.o] 

- kjE(E(I(B < rn) IF,,) IFm- 1) 

+ kjiT·m- 1 - kjP(B = m- 1 I Fm-d 

= c1 - [ITm- 1(f.L1- lip)+ lip]- k~ E(I(B :S m- 1) IFm-1) 

+ k~ITm-1 - kjP(() = rn- 1 I Fm-1) 

= c1 - Hm-1(lt1- lip)- lip- k~ P(B :S rn -11Fm-d 

+ kjiTm-1 - k~P(B = m- 1 I F.n-d 
= c1 - llm-1(f.L1 -/Lp)- liP- k5ITm-1 

+ kjHm-1 - k5P(() = m. - 1 I Fm-d 
_;e_A(V 1 V2 ) _ 1 IT ( - ) - k11-p m-1• m-1 

- C - m-1 Jl1 - f.LJ> - /.Lp - 3 t + 
1 Pc,m-1 

For n = m. - 2, m - 3, ... , 0 

,,..,1,m = ,,..,1,m(z ) = ,,..,1,m(rr u1 u2 c ) 
-rn Yn n rn n, n' n,~n 

= E[/3~~1 (ITn+1, U,~+1 , U,~+l , ~n+ t) I Fn] - (U,~ - k~ITn_ ) 
= E[.6;~+ 1 (ITn+l, u,:+1, U~+ 1 , ~n+ 1 )1(.6;;'+1 (ITn+l , U,~+l, U~+ 1 , ~n+l) > 0) 

I(r;~+l (ITn+l' u,~+1' u~+1' ~n+l) > 0) I Fn] 
+ E(U,;+l- kjiT(n+l)- IFn)- (U,~- kj iTn_ ). 

Moreover , we have 

E(U,~+ 1 - kjrr(n+1) _ IFn) - U,~ + kjiT,._ 
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= u,~ + c1 
- E(v;+l I Fn) 

- kjE(P(() < n + 1 I Fn+I) I Fn)- u~ + kjiTn_ 

= c1
- [ITn(tLI- /ip) + /ip]- kjiTn + kjiTn- kjP(() = n I Fn) 

___E.._.>,(Vl V2) 
_ 1 IT ( - ) - 1, 1 1-p n' n 
- C - n Ill - tlp - tlp - 1\.3 P~n + 1 ' 

and 

where 

A~~+I = { ( v1
, v2

) : (U~+l - k} IT(n+IJ _ , u,:+I - kiiT(n+Il-) 

< (E(/3~~2 I Fn+I), E(r~n+2 I Fn+I))} 

= {(v1,v2
): cp;,·_;'1 (ITn+I,U,~+l'U~+l'~n+I) > (kj- k})ITn _ , 

cp~·_;'l(ITn+I,U,~+I,U,~+I'~n+d > (k~- ki)Hn-}· 

The equalities for cp~~ 1 and cp;,·m are given in the same way. 
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• 
For the infinite horizon, from Theorem 1, we get that a Nash equilibrium 

value corresponding to ('To, O'o), where 

'To= inf{n ~ 0: /3n = U~- kjlln_}, 

O'o = inf { n ~ 0 : In = u;, - k~ITn_ } , 

is equal to (130 ,10 ) = (E(/3r011u0 ),E(!ToiiO'o)), where 

73o ~ /3o = lim /3g' and 1o ~ /O = lim ro' . 
m-oo m - oo 

Now we apply the results of Section 3 for the Markov model. 
Let us denote by ai the limit of a~, as n ----+ oo, i = 1, 2, where the bisequence 

{ (a;,, a;,), n E N} is defined as follows 

(a6(z), a6(z)) = (h 1(z), h2(z)), 

( 
1 ( ) 2 ( )) _ { (Ta~(z), Ta;,(z)) 

an+l z 'an+l z - (hl(z), hz(z)) 
on A 
off A, 

n = 0, 1, ... , z E E, (E, B) is a phase space of the Markov chain (Zn), n = 
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and 

Moreover, let 

cpi(z) = To/(z)- hi(z ), i = 1, 2. 

Define t he stopping times 7i, i = 1, 2, by 

7i = inf{n 2: 0: ai(Zn) = hi(Zn)} 

( = + oo if no such n exists). 
The theorem below , which is t he consequence of T heorem 2, gives Nash 

equilibrium point and inequalities for t he corresponding game value. 

THEOREM 3 (i) The pair (71, 7 2
) is a. Nash equilibTiurn point. 

(ii) The corTesponding game va.l·ue is equal to (/3, 1): 
- 1 
/3 2: /3o = !3o(zo) = a (zo) 
= cp 1(zo) / (cp 1(zo ) > O)I(cp2 (zo) > 0)- h1(zo) , 

2 12: 'Yo = 'Yo(zo) = a (zo) 
= cp2(zo) l( cp 1 (zo) > O)l( cp2 (zo) > 0)- h2(zo), 

where 
cpi(zo) = Tai(zo)- hi(zo) 

j oo ~oo ·i[ .\(v1,v2) 1 1 1 - a ·n + c-v 
- -oc. - oo .\(v1,v2)+w(7r)' , 

u2 + c2 - v2 
' f (v 1 v2 )dv 1dv2 - u' i =1 2 

.\(v1 v2) ] . 
, 1- p 71' , , , • 

(iii) 7; < oo, a.s., i = 1, 2. 

Proof. 

where 

(/3o,/o) = (!3o(zo),'Yo(zo)) = (a1(zo),a2 (zo)) 

_ { (Ta1 (zo) , Ta2 (zo)) on A 
- (h1 (zo), h2 (zo)) off A, 

A = {zo E E: (¢1(zo),¢)2 (zo)) < (Ta 1(zo) , Ta 2 (zo)) }, 

¢;(zo) = ¢/ (IIo,U<} ,UJ,~o) = ¢i((1r,u1 , u2 , 0)) = ui , i = 1, 2, 

Ta;( zo ) = Ta;(Ilo, UJ, UJ, ~o) 
i 1 2 12 12 = E[a (II1, U1 ,U1 ,~1) I ( ITo ,U0 , U0 ,~o) = (1r,u ,u , 0)] 

[ 
; ( .\(V11, V{) 1 1 1 

= E a >-(Vl , V{) + w(ITo) , Ua + c - V1 ' 

__ ,., (En+ 1).\(V,1 , V,2)\ I ·~ .. 1 T.0 1 ? ~ J 
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and 

A= {zoE E: (¢1(zo) ,¢2(zo)) < (Ta1(zo),Ta2(zo))} 

= { zo E E: Tai( zo)- hi(zo) > ¢i(zo)- hi(zo) = ui- ·ui = 0, i = 1, 2} 

= { zo E E : <pi ( zo) > 0, i = 1, 2} . 

Moreover, from Lemma 6 we have 

lim suph.;(Zn) = lim sup W~ = limsup(U,~- k~Iln_) = - oo a .s. 
n 11 n 

So (iii) immediately follows from (iv) of Theorem 1. • 
REMARK 2 We do not need to assume that claim distributions of each player 
ar·e the same until the moment B and at () they switch to another common 
distribution. W c may assmne, instead, that the claim distributions of each player 
are different, i. c. 

. { viJ 1 _ n v,, - v i,! I 
ll 

ifn<B _ 

f B 
n-1,2, ... , 

z n 2 , 

where V,!:,I are iid with the density f~ , and V~ ,I I are iid with the density f{, 
i = 1, 2. Then, under the assurnption that 1il. > c; 2 J.lo , where J.t j is the 
expectation of the random variable with the density fJ, .i = 0, 1, i = 1, 2, all 
fo rmulas and results are still true if we only replace the function A with 

-A( V 1 v2) ff ( v,~) Jl ( V.?) 
"' ., - fl (V l )f2(V2) · 0 n 0 n 
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