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Abstract: Simple upper bounds for the integrated tail of the re-
liability function for the following classes of life distributions: IFR,
IFRA, DMRL, NBU, NBUE and HNBUE are presented. These
bounds are very useful for calculation of the mean time to failure
of an item with prescribed accuracy, and to obtain refined upper
bounds on the mean residual life function.
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1. Introduction

Let 7 be a lifetime, i.e.. a non-negative random variable with right-continuous
distribution function F(t), and reliability (survival) function F(t) = 1 — F(t),
with F(0) = 0. If the distribution I is absolutely continuous, then its failure
density and failure rate (hazard rate) functions will be denoted by f and h =
f/F, respectively. We suppose that p = E[7] is finite, but its value is unknown
in advance. Let V(t) = fr” F(z)dz be the integrated tail of the reliability
function F(z), also known as the integrated distribution function, Bernhard
(2000). The function V(#) is of importance in reliability applications because
the following expressions hold true:

p,:/jﬁ(aa)d“/;ﬁ(x)dﬂvm (1)
L40) if F(t)>0

m(t) = { F(t)’
0, if F(t)=0
where m(t) = E[r — t | 7 > t] is the mean residual life (MRL) at time ¢, Hall
and Wellner (1981).

Nne tn the unhamndad interval of inteeration it ie not eacv tao ealenlate
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Therefore, it is of interest to have some simple upper bounds, say B(t), for V(t).
It is clear that in general case it is impossible to find an upper bound for V()
based on the knowledge of its values at finite number of points ty,t9,....%,,
n > 0, or on its behaviour on a bounded interval only. This is because the tail
of a distribution (with finite mean) can be arbitrarily long. Therefore, we re-
strict our consideration to some classes of life distributions, based on the notion
of ageing: IFR, IFRA, DMRL, NBU, NBUE and HNBUE, see Abouammoh
and Qamber (1994), Barlow and Proschan (1975), Klefsjo (1982), Marshall and
Proschan (1972).

In this paper, we derive several simple upper bounds on V (¢) for these classes
of life distributions. Relations between the bounds are discussed. and some
refinements and generalizations are proposed as well. In view of equations (1)
and (2), the bounds obtained may be used:

e to calculate the mean time to failure, p, of an item, with prescribed accu-
racy, Korczak (1999);

e to improve general bounds on the MRL, m(t), reported in Hall and Wellner
(1981).

As an application of the results, an example of numerical computation of
A1e & ime i e 3 & 8ys 15 (S v
the mean time to failure of a system is presented

2. Basic definitions and assumptions

Throughout the paper we use the term “increasing” in place of “nondecreasing”
and “decreasing” in place of “nonincreasing”.

A life distribution F' and its reliability function F with § = {t : F(t) > 0}
are said to be (or to have)

1. Increasing Failure Rate (IFR) if # — F(t+z)/F(t) is a decreasing function
of the age t whenever x > 0 and ¢t € S. If F is absolutely continuous, then
the IFR property is equivalent to the increasing failure rate h(t).

2. Decreasing Mean Residual Life (DMRL) if g < oo and ¢ — m(t) is a
decreasing function of the age t € S.

3. Increasing Failure Rate Average (IFRA) if t — In(F(t))/t is increasing on
S — {0}, i.e., if t == (F'())"/t is decreasing on (0, 00).

4. New Better than Used (NBU) if F(z)F(y) > F(z +y) for 2,y > 0.

5. New Better than Used in Expectation (NBUE) if 1 < oo and V( ) < pF(t)
for t > 0.

6. Harmonic New Better than Used in Expectation (HNBUE) if p < 0o and
V(t) < pexp(—t/u) for t > 0.

The relations between the classes are as follows:

IFR = IFRA = NBU = NBUE = HNBUE
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If u = E[r] = oo, then V(t) = oo for all t. On the other hand, if x4 < co and
its value is known, V(t) may be casily calculated by integrating F numerically
over [0, ] (see (1)), and in this case the upper bounds for V(t) seem to be rather
not needed.

Let bp = sup{t > 0: F(t) > 0}. If bp < oo (i.e., Pr{r < bp} = 1), then
po = V(bg). Furthermore, in this case we may apply (if it is at all necessary)
the following trivial upper bound:

V(t) <F(t)(br —t), t<bp. 3)
In order to exclude the cases mentioned above, we assume throughout that:

ASSUMPTION 2.1 g = E[r] < oo and the exact value of p 1s not known in
advance.

ASSUMPTION 2.2 F(t) >0 for t >0, i.e., bp = oo.

Note that these assumptions also exclude distributions degenerated at 0, and
at oo.
3. Main results

We start with two fairly general bounds.

ProprosITION 3.1 (General bound 1) Let the failure rate h exist on [z,00),
x> 0. If h(t) > e for t > x, where o > 0, then for any t > x:

_ symb,
V(t) < F(t)/a "= Bgeni(1). (4)
Proof. The inequality o < h(w) is equivalent to F(u) < f(u)/a, from which (4)
follows by integration over [t, oc). i

ProrosiTION 3.2 (General bound 2) Let F have the following property: at <
—In(F(t)) for t > x, where o > 0 and x > 0. Then, for any t > x:

V(1) < exp(-at)/a “E" Bogxa(t). (5)
Proof. The inequality au < —In(F(u)) is equivalent to F(u) < exp(—au), from
which (5) follows. | |

These bounds may be applied to lifetimes with decreasing failure rate or
decreasing failure rate average. However, they require some knowledge of the
behaviour of the failure rate function h(f) or cumulative failure rate function
H(t) = —In(F(t)). Furthermore, their convergence to 0 may be very slow.
More useful and better bounds may be obfained within some classes of life
distributions based on notions of ageing: IFR, IFRA, DMRL, NBU, NBUE
and HNBUE. First. we consider the basic (and the simplest) bounds. Some



358 E. KORCZAK

ProrosiTiON 3.3 (IFR bound) If F' is IFR with the failure rate h, then for
h(t) > 0:

symb.

i b
V(t) < F()/h(t) "2 Birn(). (6)

The bound is sharp and decreases to 0 as t — co.
Proof. Since h is increasing on [0,00), h(s) = f(s)/F(s) > h(t), ie., F(s) <
f(s)h(t) for s > t, from which (6) follows by integrating over [t,00). The bound

is attained by an exponential distribution. hence “<" cannot be replaced by “<”.
Its monotone convergence to 0 is obvious. &

ProrosiTiON 3.4 (DMRL bounds) Let I be DMRL.
(a) If 0 <z <t and F(t —z) — F(t) > 0, then
?(t} f‘ - symb.
G e F d = B ti) 7
S Fe—2)-TF0 Jos (u)du 1,DMRL (%, ) (7)

The bound is sharp. .
(b) Ifz >0 and F(t) — F(t+ ) > 0, then

V(t)

mb,

T t4a
VO < g | P2 Bapn(t2) ®

The bound is sharp.

If limsup,_, ., F(t+z)/F(t) < 1, then both bounds (7) and (8) tend to 0 as
t — o0o. In particular, if F' 1s IFR, then the convergence to 0 of these bounds s
monotone.

(c) If F is absolutely continuous and h(t) > 0, then:
V(t) < Brrr(t). (9)
The bound is sharp. It tends to 0 as t — oo, provided that liminf, .. h(t) > 0.

Proof. From definition of DMRL it follows that

o0 T ta

/ F(u)du < L F(u)du, 0 < t; < ts.

t2 F(ty) = F(t2) Ju,

Substituting t; =t —z and t2 = ¢, 0 < x < i, gives (7). The proof of (8) is
similar. If limsup,_, ., _F(H—:rr)/F(f.) < 1, then the multipliers before the integral
sign in (7) and (8) are both bounded for ¢ large enough, and hence the bounds
tend to 0. If F'is IFR, then both F(t)/(F(t—=z)—F(t)) and F(t)/(F(t)-F(t+xz))
are decreasing in ¢ for any = > 0, sce Barlow and Proschan (1965). Hence the
bounds also decrease to 0 as t — oo in this case. Now observe that (7) and the
absolute continuity of F' imply that

_ Fi)e 1 [t _F@)
VO S Iy s . =
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Since [ F(u)du < F(a)(b—a), 0 < a < b, we have:
COROLLARY 3.1 (Simplified DMRL bounds) Let F' be DMRL.
(a) If 0<z <t and F(t —x)— F(t) >0, then
F(t — z)F(t)x symb.

V(t) < = -2 —F() Bis pmre(t, ©)- (10)
(b) If ¢ > 0 and F(t) — F(t + ) > 0, then
V( [Fe)'s = Bas,pmrL(t, 7) (11)

VS - Fera)

If limsup,_, . F(t+z)/F(t) < 1, then both bounds (10) and (11) tend to 0
as t — co. In particular, if F' is IFR, then the convergence to O of these bounds

is monotone. [ |
ProPOSITION 3.5 (IFRA bound) If F is IFRA and F(t) < 1, then:
—fF(t) v.ymh
t). 12
V(t) < n(F (1)) FRA(?) (12)

The bound is sharp and decreases to 0 as t — oc.

Proof. As F is IFRA, = — (F(2))Y* is decreasing on (0,00). Since t > 0
(because F(t) < 1), (F(e)'/* < (F()Y*, ie., F(z) < [(F(2))/]* for z > ¢,
from which (12) follows. Its monotone convergence to 0 follows from the IFRA
defining property. |

PROPOSITION 3.6 (NBU bound) If F is NBU and F(t) < 1, then:

2t
V() < 1—_%6/‘ Flu)de "= Byxpu(t). (13)

The bound is sharp and tends to 0 as t — co. The convergence is monotone for
t > F~1(0.5) = inf{z : F(z) > 0.5}.

Proof. Integration of the NBU defining inequality, F(t +u) < F(t)F(u), with
respect to w in the interval (t, 00), yields:

/ F(u)du < If(t)[ F(u) du. (14)
2t
This inequality can be written as:
oo 2t oo
/ F(u) du./ F(u)du < F(f)/ F(u) du, (15)
t t t

from which (13) follows. Its convergence to 0 is evident. Now observe that ¢ —
f;‘” F(u)du is decreasing on [F~1(0.5), c0) iff 2F(2t) < F(t) for t > F~1(0.5).
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PROPOSITION 3.7 (NBUE bound) If F is NBUE and F(t) < 1, then:

V(t) < 1_(:)()/ F(u)du %1 Bypug(t). (16)

The bound is sharp and tends to 0 as t — oco.

Proof. Inequality (16) is a direct consequence of the NBUE defining property.
Since p < o0 and F(t) — 0 as t — oo, the bound tends to 0. |

COROLLARY 3.2 (Simplified NBUE bound) If F is NBUE and F(t) < 1, then:

tF(t) symi)
V(t) < - B e(t 17
()HI_F(” s, NBUE(?). (17)
The bound tends to 0 as t — oo. |

Observe that (17) can also be obtained from (13) by replacing the integral
by its upper bound, tF(t). The next proposition gives another NBU bound,
which is a result of both NBU and NBUE properties.

ProPOSITION 3.8 (NBU bound) If F is NBU and F(2t) < 1, then:

V() < F(“J’Fz{j”[f iyl "2 Bhssnll). (18)

The bound s sharp and converges to 0 as t — oo.

Proof. We have:
- 2t - oo
/ F(u)du = F(u)du + f F(u) du. (19)
t t 2t

By integrating the NBU defining inequality, F(u +t) < F(u)F(t), with
respect to u in the interval (0,#), we obtain:

2t t
/ F(u)du < F(t) / F(u)du. (20)
t 0
Application of (20) and NBUE bound, Bypug(2t), to (19) yields:
] F(u)du < F(t /F( lut LR /HF(u)d (21)
w)du ‘LI. au 4 u.
- F(2t)

Using (20) once again, we obtain:

2t . t o 2t .
/ F(u)du = / Fu) du+ / F(u)du
0 0 t

t
Y f — % foneny
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Hence:
il = e e F(2t)(1+ F(t
/ Fu) du SF(t)f Flu) du + M[ Flu)ydu.  (23)
' 0 F@e2t)y o
Then, a simple algebra gives (18). Since p < oo and F(t) — 0 as t — oo,
the bound tends to 0. |

COROLLARY 3.3 (Simplified NBU bound) If F is NBU and F(2t) < 1, then:

VRS %}%)ﬂ "2 Bsnu (1) (24)

The bound tends to 0 as t — co. |

For HNBUE class of lifetime distributions one can obtain the following
bonnd, which is rather poor, and is given for completeness only:

ProrosiTioN 3.9 (HNBUE bound) Let F be HNBUE with pp > 0. Ift > 0 and
F(t-) < 1, then:

M aylub

! 5
t— [y F(u)du HNBUE(?)- o

V(t) <

The bound converges to 0 as t — oo.

Proof. From the HNBUE defining property and the inequality, exp(—z) <
1/(1 4 ), x > 0, it follows that V(t) < pexp(=t/u) < pu®/(t + p) for t > 0.
Then, after some algebra, we obtain (25). |

It is easy to see that the following relations hold between the bounds intro-
duced above:

1. Suppose that F is absolutely continnous. Then Bipr(t) < Birra(t) &
F € {IFRA}. However, if F' € {IFRA} — {IFR}, then Bipr(¢) may not be an
upper bound on V(i) for some values of .

2. Let F' be IFR. Then Bs pyre(f,2) < Bipr(f) for any £ > 0 and x > 0,
and Bipr(t) < By pMmeu(t,x) for any 0 < 2 < 1.

3. If Fis IFRA, then Bipra(t) < Bnpug(t) for any £. However, if F' €
{NBUE} — {IFRA}, then Birpa(t) may not be an upper bound on V(t) for
some values of £.

4 If Fis IFRA, then B npul £) < By RA("J) for any .

5. If F is NBU, then By npu(t) < Bypug(t) and By npu(t) < Bypui(t) for
any .*

6. For any F', BIF‘RA( )< BS I\BUE(t
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The bounds introduced so far may be improved and generalized in many
ways. We can use the “brute force” improvement consisting of replacing a
bound, say Bx(t), by:

By x(t;8) = / F(‘U.) du + Bx(s), t < s.
t

Furthermore, the simplified bounds may be improved by applying higher
order upper Da.rboux sum for corresponding integral, e.g., through replacing
the integral f F(u)du by the sum (32) F(a + kh))/h, where n > 1 and
h = (b—a)/n. At last, some bounds may be generalized by considering multiple
time-points £t =ty < t; <13 <...<t, <co,n> 0. Some such generalizations
are presented below for information only. The proofs are omitted, as they are
similar to those of corresponding basic bounds.

ProrosiTiON 3.10 (Generalized IFR bound) Let F' be IFR with the failure
rate h. Let t =tg < t; < ... <ty <o00,n>0. If h(t) > 0, then:

F(t_( 1) = tjb) 'iymb
fi. t;___l

V(t) < B (8,81, s tn).

i
The bound is sharp. Purthcmnwf,

B{px(t) = Birr(?),

BEDG L. baiteis) € B (hds, oo di)s Baii S e, 120,

lim BER(tty, . ta) = lim BER(t+a, i+, ity +2)=0. W

PROPOSITION 3.11 (Generalized IFRA bound) Let F' be IFRA and t = ty <
fh1 <...<tp<oo,n20. If F(t) < 1, then:

L) — (Fte) ™5 taFit)
z —In(F(tx)) * —n(F(t,))

:,ymb i
BI‘;}{A(t, T 2 |

The bound is sharp. Furthermore,
0
B{Pra(t) = Brera(t),
fgrt:\)(t b1y s bnatngl) < Bl(;;ﬁg(i,th---,fu)e tng1l > tn, 20,
T (n) -
tll}glo BIFRA(t,tl,...,tn) = TIEEC Bippalt+a,ti + 2, t,+2)=0. W

PROPOSITION 3.12 (Generalized NBU bound) If F' is NBU and F(nt) < 1
then for any integer n > 1:

| P A (fn F(”‘)d“)z !'f) 5)‘"‘1' (M)
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The bound s sharp. Increase of n above 2 does not necessarily improve the
bound. However, Bf\:'B)U{t) < Bypug(t) for any n > 1, and hence the bound
tends to 0 as t — oo. Of course, Br(\'][);u(t) = Bypug(t)- | |

4. Example of application

The mean time to failure, p, is an important reliability index for non-repaired
items, and is given by the well known expression (1). The explicit and easily
computed expressions for p are available for few probability distribution laws
only, Birolini (1994), and for coherent non-repaired systems composed of inde-
pendent exponential components, Gaede (1977), Karpiniski and Korczak (1990).
For the latter case, the expressions are based on Poincaré’s or a polynomial form
of the system reliability structure, and may also be generalized for the case when
the component lifetimes are Weilbull distributed with the same shape parame-
ter. However, this approach cannot be applied for the general case, e.g. when
the shape parameters of the components are different. Numerical computation
of such kind of integral using numerical integration may be difficult. Integra-
tion by change of variable, e.g. 2 = 1/t — 1, requires individual consideration for
each particular case, and in some cases may be inefficient, Lastman and Sinha
(1989). Therefore, in practice, the mean time to failure is approximated by a
finite limit integral:

1(0,¢) =./[) F(z)dz,

where ¢ should be chosen so that the error caused by neglecting the “tail”, V (f),
is small, for example, less than £ = 0.01.

Here we show how to use the upper bounds on V(t) in practice to compute
the mean time to failure with prescribed accuracy. Let us consider an item (e.g.
a coherent system of independent components). To compute the mean time to
failure, g, of the item, with a given accuracy € > 0 we proceed as follows:

1. Choose 1 > 0 and &2 > 0 such that ey + 5 = . Usually, we take
€1 =e3=¢/2.

Select appropriate upper bound, say B, on V.,

Choose a value t such that B(t) < es.

Compute the proper integral p(0,¢) from one of the quadrature formulae
to an accuracy of ;. For example, Romberg’s quadrature may be used,
see Lastman and Sinha (1989), Marciniak et al. (1992).

Let p=(0.t) be an approximate value of this integral, i.c.,

e 1o

e

[1£(0,8) = =(0,1)] < e;.

Since B(t) < €9,
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A more precise estimation is:
p=(0,t) —eq < p < p(0,t) + €4 + B(t),

where € 4 is actual error of numerical integration.

Let us now consider a coherent system of independent components with reli-
ability block diagram of Fig. 1. We assume, for simplicity, that the components
have the same constant failure rate A = 0.001.

Figure 1. An example of a system

The system is a series composition of three independent subsystems (mod-
ules), each having a k-out-of-n structure. Hence, each subsystem has an IFR life,
and in consequence, the system itself has an IFR life, see Barlow and Proschan
(1965). Therefore IFR upper bound (6) applies. However, for comparison, we
also compute some other upper bounds.

We have:

—2At

F(” i (38—/“ _ 3(3-2)“ k8 6—3/\)(36—2.\! - 26—3.\!)(26—/\1 —e 2 )
= 18" — 39¢75M 4+ 336X — 137 TM 4 278N,

9 39 _. 11 13 _. 1
V(t) = (Ee—‘h\t . ?E_JM‘ 4 ?e—ﬁ}d _ ?E—- At o “'1'6_8'\!)//‘\,

The results of computation of the upper bounds on V(t) for some values of ¢
are given in Table 1.

i V(t) | Birr(t) | Birra(t) | Busue(t) | Bs.nsue(t)
500 | 191.073 | 238.697 401.014 438.345 545.497

1000 41.888 45.241 69.313 87.848 159.443
1500 7.469 7.738 11.093 16.104 41.266
2000 1.188 1.210 1.648 2.651 8.960
2500 0.177 0.179 0.234 0.404 1.705
3000 0.025 0.025 0.032 0.059 0.298

3500 0.004 0.004 0.004 0.008 0.049
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One can see that the bounds converge quickly to 0 and become close to true
values of the “tail”. Suppose that we want to compute the mean time to failure,
. with an error of at most € = 0.1. We choose £ = 9 = 0.05. From Table 1 we
see that Bipr(3000) = 0.025 < 0.05. Hence ¢t = 3000 suffices for our purpose.
Integrating F'(u) over [0,t] numerically gives:

uS(0,t) = 592.83,
hence

592.78 < p < 592.91.
Actually,

[ = p(0,t)] = 0.03 < 0.1.

5. Conclusions

The paper gives some simple upper bounds on the integrated tail, V., of the
reliability function. F. These bounds allow the mean time to failure to be com-
puted with preseribed accuracy, by replacing improper integral, ‘fum F(z)dz
with the proper one, f(: F(z)dz. A numerical example shows that the proposed
upper bounds on V' may be applied to fairly complex systems. In fact, these
bounds have been used successfully in the Telecommunications Research Insti-
tute for numerical computation of the mean time to failure of complex electronic
systems.
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