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Abstract: Simple upper bounds for the integrated tail of the re­
liability function for the following classes of life distributions: IFR, 
IFRA, DMRL, NBU, NBUE and HNBUE are presented. These 
bounds are very useful for calculation of the mean time to fai lure 
of an item with prescribed accuracy, and to obtain refined upper 
bounds on the mean residual life function. 
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1. Introduction 

Let T be a lifetime, i.e ., a non-negative random variable with right-continuous 
distribution function F(t), and reliability (survival) function F(t) = 1 - F(t) , 
with F(O) = 0. If the distribution F is absolutely continuous, then its failure 
density and failure rate (hazard rate) functions will be denoted by f and h = 
f /F, respectively. We suppose that J.l· = E[T] is finit e, bnt its value is unknown 
in advance. Let V(t) = J:)OF(x)dx be the integrated tail of the reliability 

function F(x), also known as the integrated distribution function, Bernhard 
(2000). The function V(t) is of importance in reliability applications because 
the following expressions hold true: 

J.l· = 100 

F(x) dx = 11 

F(x) dx + V(t) 

{ 

V(t) . .,...-
( ) 

=-, If F(t) > 0 
1n t = F(t) 

o, ifF(t) = o 

(1) 

(2) 

where m(t) = E[T- t I T > t] is the mean residual life (MRL) at timet, Hall 
and Wellner (1981). 
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356 E. K ORCZAK 

Therefore, it is of interest to have some simple upper bounds, say B(t), for V(t) . 
It is clear that in general case it is impossible to find an upper bound for V(t) 
based on the knowledge of its values at finite number of points h, t2, . . . , t,, 
n > 0, or on its behaviour on a bounded interval only. This is because the tail 
of a distribution (with finit e mean) can be arbitrarily long. Therefore, we re­
strict our consideration to some classes of life distributions, based on the notion 
of ageing: IFR, IFRA, DMRL, NBU, NBUE and HNBUE, see Abouammoh 
and Qambcr (1994) , Barlow and Proschan (1975) , Klefsj0 (1982) , Marshall and 
Proschan (1972). 

In this paper, we derive several simple upper bounds on V(t) for these classes 
of life distributions . Relations between the bounds are discussed, and some 
refinements and generalizat ions are proposed as well. In view of equations (1) 
and (2), the bounds obtained may be used: 

• to calculate the mean time to failure, p., of an item, with prescribed accu­
racy, Korczak (1999) ; 

• to improve general bounds on the MRL, rn(t), reported in Hall and Wellner 
(1981). 

As an application of the results , an example of numerical computation of 
the mean time to failure of a system is presented . 

2. Basic definitions and assumptions 

Throughout the paper we usc the term "increasing" in place of "nondecreasing" 
and "decreasing" in place of "nonincrcasing". 

A life distribution F and its reliability function F with S = {t: F(t) > 0} 
arc said to be (or to have) 

1. Increasing Failure Rate (IFR) if t ~---+ F(t+x )jF(t) is a decreasing function 
of the age t whenever x > 0 and t E S. IfF is absolutely continuous, then 
the IFR property is equivalent to t he increasing failure rate h(t). 

2. Decreasing Mean Residual Life (DMRL) if J.L < oo and t ~---+ m(t ) is a 
decreasing function of the age t E S. 

3. Increasing Failure Rate Average (IFRA) if t ~---+ ln(F(t))jt is increasing on 
S- {0}, i.e., if t ~---+ (F(t) )1 ft is decreasing on (0, oo ). 

4. New Better than Used (Nl3U) if F(x)F(y) ~ F(x + y) for .T , y ~ 0. 
5. New Better than Used in Expectation (NBUE) if p, < oo and V(t) ~ p,F(t) 

for t ~ 0. 
6. Harmonic New Better than Used in Expectation (HNBUE) if JL < oo and 

V(t) ~ J.Lexp( -tj J.L) fort ~ 0. 

The relations between the classes arc as follows: 

IFH. => IFRA => NJ3U => NJ3UE => HNBUE 



Upper bounds on the tail of reliability funct ion 357 

If J-l = E[T] = oo, then V(t) = oo for all t. On the other hand , if 1-l < oo and 
its value is known, V(t) may be easily calculated by integrating F numerically 
over [O,t] (see (1)), and in this case the upper bounds for V(t) seem to be rather 
not needed. 

Let bF = sup{t ~ 0: F(t) > 0}. If bF < oo (i.e., Pr{T S bF} = 1), then 
fJ, = V(bF ). Furthermore, in this case we may apply (if it is at all necessary) 
the following trivial upper bound: 

V(t) s F(t)(bF- t), t < bF. (3) 

In order to exclude the cases mentioned above, we assume throughout that: 

ASSUMPTION 2.1 J-l = E[T] < oo and the e:ract val-ue of fJ, is not known in 
advance. 

AssUMPTION 2.2 F(t) > 0 for t ~ 0, i.e., bF = oo. 

Note that these assumptions also exclude distributions degenerated at 0, and 
at oo . 

3. Main results 

We start with two fairly general bounds. 

PROPOSITION 3.1 (General bound 1) Let the failure mte h e.rist on [x,oo) , 
x ~ 0. If h(t) ~a fort 2: x, where a> 0, then for any t 2: x: 

- symb. 
V(t) S F(t)ja =: BGENl(t). (4) 

Proof. The inequality aS h(u) is equivalent to F(u) S J('u)fa, from which (4) 
follows by integration over [t , oo). • 

PROPOSITION 3.2 (General bound 2) Let F have the following propeTfy: at S 
-ln(F(t)) fort~ x, where a> 0 and x ~ 0. Th en, for any t 2: x: 

sy mb. 
V(t) S exp( - at) fa =: BGEN2(t). (5) 

Proof. The inequality au S -ln(F(u)) is equivalent to F(u ) S exp( -au) , from 
which (5) follows . • 

These bounds may be applied to lifetimes with decreasing failme rate or 
decreasing failme rate average. However , they require some knowledge of the 
behaviour of the failure rate function h(t ) or cumulative failure rate function 
H(t) = -ln(F(t)) . Furthermore, their convergence to 0 may be very slow . 
More useful and better bounds may be obtained within some classes of life 
distributions based on notions of ageing: IFR, IFRA , DMRL, NBU, NBUE 
and HNBUE. First , we consider the basic (and t he simnlest) bounds. Some 
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PROPOSITION 3.3 (IFR bound) IfF is IFR with the failure rate h, then joT 
h(t) > 0: 

- symb. 
V(t)::; F(t)jh(t) =: Brm(t). (6) 

The bound is sharp and decreases to 0 as t---. oo. 

Proof. Since his increasing on [O ,oo ), h(s) = f(s)/F(s);::: h(t), i.e., F(s)::; 
f(s)h(t) for s;::: t, from which (6) follows by integrating over [t ,oo). The bound 
is attained by an exponential distribution, hence "::;" cannot be replaced by "<". 
Its monotone convergence to 0 is obvious. • 

PROPOSITION 3.4 (DMRL bounds) Let F be DMRL. 

(a) If 0 < x::; t and F (t- 1:)- F(t) > 0, then 
- t 

V(t) < F(t) / F(u)dv. sy~b B1 DMRL(t, :r). 
- F(t- x)- F(t) lt- x ' 

The bound is shar'P. 
(b) If x > 0 and F(t)- F(t + x) > 0, then 

- t+ F(t) 1 x - symb. 
V(t)::; F(u)du =: B2,DMnL(t ,:r) 

F(t)-F(t+x) t 

The bound is sharp. 

(7) 

(8) 

If limsupt-+oo F(t + x)jF(t) < 1, then both bounds {7) and {8} tend to 0 as 
t ---> oo . In particular, ifF is IFR, then the convergence to 0 of these bounds is 
monotone. 

(c) IfF is absolutely continu.o·us and h(t) > 0, then: 

V(t) ::; Brm(t). (9) 

The bound is sharp. It tends to 0 as t ---> oo, provided that lim inf t-+ oo h( t) > 0. 

Proof. From definition of DMRL it follows that 

r= F(u) du::; F(t2) lt2 

F(1t) dv., o::; t1 < t2. 
}t2 F(tt)- F(t2) . t 1 

Substituting h = t- x and t 2 = t, 0 < :r ::; t , gives (7). The proof of (8) is 
similar. Iflimsupt--+00 F(t+1:)jF(t) < 1, then the multipliers before the integral 
sign in (7) and (8) are both bounded for t large enough, and hence the bounds 
tend to 0. IfF is IFR, then both F(t)j (F(t- x )-F(t)) and F(t)j(F(t)- F( t+x)) 
are decreasing in t for any x > 0, see Barlow and Proschan (1965). Hence the 
bounds also decrease to 0 as t ---> oo in this case. Now observe that (7) and the 
absolute continuity ofF imply that 

V( ) l. F(t )x 11t+x -F( ) d F(t) t < llll u u = --, 
- x--+ 0 F(t)- F(t + x) X 1. h(t) 
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Since J:F(u) du ~ F(a)(b- a), 0 ~a< b, we have: 

COROLLARY 3.1 (Simplified DMRL bounds) Let F be DMRL. 

(a) If 0 < x ~ t and F(t- x )- F(t) > 0, then 

V( ) F(t- x)F(t)x sy~b . B ( ) 
t ~ F(t-x)-F(t) - IS ,DMRLt, x . 

(b) If x > 0 and F(t) - F(t + x) > 0, then 

[
- 2 F(t) ] X symb. 

V(t) < = B2s DMRL(t,1:) 
- F(t)- F(t + x) ' 

359 

(10) 

(11 ) 

If lim SUPt. .... oo F(t + x)/F(t) < 1, then both bounds {10) and {11) tend to 0 
as t -> oo. In particular, ifF is IFR, then the conver-gence to 0 of these bounds 
is monotone. • 

PROPOSITION 3.5 (IFRA bound) IfF is IFRA and F(t) < 1, then: 

( ) 
-tF(t) sy~b. ( ) 

V t ~ ln(F(t)) = BrmA t . (12) 

The bound is shary and decreases to 0 as t -> oo. 

Proof. As F is IFRA, x f-7 (F(x)) 11x is decreasing on (0, oo). Since t > 0 
(because F(t) < 1), (F(x)) 11x ~ (F(t)) 111, i.e., F( x) ~ [(F(t)) 11t]x for x 2: t, 
from which (12) follows. Its monotone convergence to 0 follows from the IFRA 
defining property. • 

PROPOSITION 3.6 (NBU bound) IfF is NBU and F(t) < 1, then: 

1 121
- symb. 

V(t) ~ 
1

_ F(t) t F(u)du := B 1,Nnu(t). (13) 

The bound is sharp and tends to 0 as t -> oo. The conver-gence is monotone for 
t 2: p - 1(0. 5) = inf{.T: F(.T) 2: 0.5}. 

Proof. Integration of the NDU defining inequality, F(t + u) ~ F(t)F(u), with 
respect to u in the interval ( t, oo), yields: 

f':xJ F(u) d·u ~ F(t) ;·oo F(u) du . 
./ 2t t 

(14) 

This inequality can be written as: 

!00 12t 100 F(1t) dv. F('u) du. ~ F(t) F(1t) du , 
. t t t 

(15) 

from which (13) follows. Its convergence to 0 is evident. Now observe that t f-7 

.J~2 tF(v.)du is decreasing on [F- 1(0.5),oo) iff 2F(2t) ~ F(t) fort 2: F- 1 (0.5). 
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PROPOSITION 3.7 (NBUE bound) IfF is NEUE and F(t) < 1, then: 
- t 

V(t) :S F(t) { F(tt) du sy~b. BNI3UE(t). (16) 
1-F(t)}o 

The bound is sharp and tends to 0 as t ---+ oo . 

Proof. Inequality (16) is a direct consequence of the NBUE defining property. 
Since f..l < oo and F(t) ---+ 0 as t---+ oo, the bound tends to 0. • 

COROLLARY 3.2 (Simplified NBUE bound) IfF ·is NEUE and F(t) < 1, then: 

( ) 
tF(t) symb. ( ) 

V t < = Bs NBUE t . 
- 1- F(t) ' 

(17) 

The bound tends to 0 as t ---+ oo. • 
Observe that (17) can a lso be obta ined from (13) by replacing the integral 

by its upper bound, tF(t). The next proposition gives a nother NBU bound, 
which is a result of both NBU and NBUE properties. 

PROPOSITION 3.8 (NBU bound) IfF is NBU and F (2t) < 1, then: 

F(t) + F(2t) lot- symb. 
V(t) < F(u) du = B2 NBu(t). 

- 1-F(2t) .o ' 
(18) 

The bound is sharp and converges to 0 as t ---+ oo. 

Proof. We have: 

1= 12t 1= F(u) dtt = F(u) du + F(tt) dtt. 
t t 2t 

(19) 

By integrating the NBU defining inequality, F(n + t) :S F(u)F(t), with 
respect to u in the interval (0 , t) , we obtain: 

1
2

t F(tt) du :S F(t) j·t F(u) du. 
t 0 

(20) 

Application of (20) and NBUE bound , BNBUE(2t), to (19) yields: 

1= - - 1t- F (2t) 12t-F(u) du :S F(t) F(u) du + F(u) du . 
t o 1-F(2t) o 

(21) 

Using (20) once again, we obtain: 

{2t t 12t 
Jo F(u)du= Jo F(u)du+ t F(u)dn 

-= · " rt -= · .. 
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Hence: 

1
00 

F(u) du::; F(t) t F(u) du + F(2t)( 1 + F(t)) t F(u) du. (23) 
t Jo 1- F(2t) .fo 

Then , a simple algebra gives (18). Since fl· < oo and F(t) --+ 0 as t --+ oo, 
the bound tends to 0. • 

COROLLARY 3.3 (Simplified NBU bound) IfF is NBU and F(2t) < 1, then: 

( ) 
t(F(t) + F(2t)) 'Y~b. ( ) 

v t ::; 1 - F(2t) = B2S,NBU t . (24) 

The bound tends to 0 as t --+ oo. • 
For HNBUE class of lifetime distributions one can obtain the following 

bonnd, which is rather poor, and is given for completeness only: 

PROPOSITION 3.9 (IINBUE bound) Let F be HNBUE with 11 > 0. Jjt > 0 and 
F(t-) < 1, then: 

( ) (J~ F(u) du)
2 sy~b. . ( ) v t < t = BHNBUE t . 

t- .f0 F(u)du 
(25) 

The bound converges to 0 as t --+ oo. 

Proof. From the HNBUE defining property and the inequality, exp( -.1:) < 
1/(1 + x), :r > 0, it follows that V(t)::; p.exp(-t/11) < 1.12/(t + 11) fort> 0. 
Then, after some algebra, we obtain (25). • 

It is easy to see that the following relations hold between the bounds intro­
duced above: 

1. Suppose that F is absolutely continuous. Then Brm(t) ::; BrFRA(t) ¢> 

FE {IFRA} . However, ifF E {IFRA}- {IFR}, then Brm(t) may not be an 
upper bound on V(t) for some values oft. 

2. Let F be IFR. Then B2,DiviRL(t,x ) ::; Brm(t) for any t:?: 0 and .T > 0, 
and Brm(t)::; Bl ,DMnL(t, :r) for any 0 < x::; t. 

3. IfF is IFRA, then BrmA(t) ::; BNnuE(t) for any t. However, ifF E 
{Nl3UE}- {IFRA}, then BrmA(t) may not be an upper bound on V(t) for 
some values oft. 

4. IfF is IFRA, then Bl,NBu(t)::; BrmA(t) for any t. 
5. IfF is NBU, then Bl ,NBu(t) ::; BNnuE(t) and B2 ,NBu (t) ::; BNBUE(t) for 

any t. 
6. For any F, BrmA(t)::; Bs,NnuE(t). 
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The bounds introduced so far may be improved and generali:wd in many 
ways. We can use the "brute force" improvement consisting of replacing a 
bound, say Bx(t), by: 

Bbr,x(t; s) = ls F(u) du + Bx(s), t < s. 

Furthermore , the simplified bounds may be improved by applying higher 
order upper Darboux sum for corresponding integral, e.g., through replacing 

the integral J:F(u)du by the sum o=z:iF(a + kh))/h, where n > 1 and 
h = (b- a)/n. At last, some bounds may be generalized by considering multiple 
time-points t = to < t1 < t2 < . . . < t, < oo, n ~ 0. Some such generalizations 
are presented below for information only. The proofs are omitted, as t hey a re 
similar to those of corresponding basic bounds . 

PROPOSITION 3.10 (Generalized IFR bound) Let F be IFR with the failure 
rate h. Lett= to< t1 < ... < t, < oo, n ~ 0. If h(t) > 0, then: 

V( ) < F(tn) ~ F(tk-1)- F (tk) sy~b . B(nl ( ) 
t - I ( ) + ~ h( ) - IFR t , t1, ... , t, . 

1 t,. tk -1 
k =1 

The bound is sharp. FurthermoTe, 

Bi~~(t) = BrFR(t) , 

B (n+l) ( ) B(n) ( ) IFR t ,h, .. . ,tn,tn+1 ~ IFR t,t1, ... , tn, tn+1 >in, n~O, 

lim B};~(t , t1, ... , tn) = lim B};~(t + x, t1 + .':r, ... , tn + x ) = 0. • 
t-+oo x -+ oo 

PROPOSITION 3.11 (Generalized IFRA bound) Let F be IFRA and t = t0 < 
h < . . . < tn < oo, n ~ 0 . If F(t) < 1, then: 

sy~b. (n) ( ) 
BIFRA t, t1' .. . ' tn . 

The bound is shaTp. FurtheTmoTe, 

Bi~~A(t) = BrFRA (t), 

B (n+ l)( ) B(n) ( ) IFRA t , ti, ... ,t,,tn+1 ~ IFRA t,h, . . . , tn, tn+l > i 11 , n ~ 0, 

lim Bi;L(t,t1, ... ,t,.)= lim B};L(t+x,h+x, ... ,t,+x)=O. • 
t-+oo · x -+ oo 

PROPOSITION 3.12 (Generalized NBU bound) IfF is NBU and F(nt) < 1, 
then for any integer n ~ 1: 

1 71 ~\ / (j~ F(u) d1t) Z:::: Z=1 !__(kt) sy~b. R(n) (+ \ 
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The bound is sharp. Increase of n above 2 does not necessarily improve the 

bound. However, B~~u (t ) ::; BNBUE(t) for any n 2: 1, and hence the bound 

tends to 0 as t---+ oo . Of cour·se, B~1~u(t) = BNsuE(t). • 

4. Example of applicat ion 

The mean time to failure, f.l , is an important reliability index for non-repaired 
items , and is given by the well known expression (1 ). The explicit and easily 
computed expressions for fJ· are availa ble for few probability distribu tion laws 
only, Birolini (1994), and for coherent non-repaired systems composed of inde­
pendent exponential components , Gaede (1977) , Karpi1iski a nd Korczak (1990) . 
For the la tter case, the expressions are based on Poincare's or a polynomial for m 
of the system reliability structure, and may also be generalized for t he case when 
the component lifetimes are Weilbull distributed with the same shape parame­
ter. However , this approach cannot be applied for the general case, e.g. when 
the shape parameters of the components are different. Numerical computation 
of such kind of integral using numerical integration may be difficul t . Integra­
tion by change of variable, e.g. :1: = 1/t- 1, requires individual consideration for 
each particular case, and in some cases may be ineffi cient, Lastman and Sinha 
(1989) . Therefore, in practice, the mean time to failure is approximated by a 
fini te limit integral: 

where t should be chosen so that the error caused by neglecting the "tail" , V(t ), 
is small , for example, less than c: = 0.01. 

Here we show how to use the upper bounds on V (t) in practice to compute 
the mean time to failure with prescribed accuracy. Let us consider an item (e.g. 
a coherent system of independent components ). To compute t he mean time to 
failure, JL , of the item, wi th a given accuracy c: > 0 we proceed as follows: 

1. Choose c: 1 > 0 and c:2 > 0 such that c: 1 + c: 1 = c: . Usually, we take 
EJ = E2 = t: /2. 

2. Select appropria te upper bound, say B, on V. 
3. Choose a value t such that B (t ) < c:2 . 
4. Compute the proper integral f.L(O , t) from one of t he quadrature formulae 

to an accuracy of c: 1, For example, Romberg's quadrat ure may be used, 
sec Last man and Sinha ( 1989), Marciniak et a!. ( 1992). 

Let f.L""(O , t ) be an approximate value of this integral, i. e., 

Since 13 (t ) < E2, 
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A more precise estimation is: 

J.L~(o, t)- E'A < J.L < ,L~(o, t) + E'A + B(t), 

where E'A is actual error of numerical integration. 
Let us now consider a coherent system of independent components with reli­

ability block diagram of Fig. 1. We assume, for simplicity, tha t the components 
have the same constant failure rate >. = 0.001. 

Figure 1. An example of a system 

The system is a series composition of three independent subsystems (mod­
ules) , each having a k-out-of-n structure. Hence, each subsystem has an IFR life, 
and in consequence, the system itself has an IFR life, see Barlow and Proschan 
(1965). Therefore IFR upper bound (6) applies. However, for comparison, we 
also compute some other upper bounds. 

We have: 

F(t) = (3e->-t _ 3e- 2>-t + e- 3>-)(3e-2>-t _ 2e- 3,\t)(2e- >-t _ e-2,\t) 

= 18e- 4>-t - 39e- s>- t + 33e- 6>-t- 13e-7At + 2e- s>-t, 

V( ) ( 
9 - 4At 39 -5,\t 11 -6.A t 13 - 7At 1 -8At) I \ t = 2e - 5 e + 2 e - 7 e + 4e -", 

83 
J.L = 140.A. ~ 592.857. 

The results of computation of the upper bounds on V(t) for some values oft 
are given in Table 1. 

t V(t) BwR(t) BwRA(t) BNeuE(t) Bs,NeuE(t) 
500 Hl1.073 238.697 401.014 438.345 545.497 

1000 41.888 45.241 69.313 87.848 159.443 
1500 7.469 7.738 11.093 16. 104 41.266 
2000 1.188 1.210 1.648 2.651 8.960 
2500 0.177 0.179 0.234 0.404 1.705 
3000 0.025 0.025 0.032 0.059 0.298 
3500 0.004 0.004 0.004 0.008 0.049 
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One can see that the bounds converge quickly to 0 and become close to true 
values of the "tail". Suppose that we want to compute the mean time to failure, 
f.L , with an error of at most E = 0.1. We choose E 1 = E2 = 0.05. From Table 1 we 
see that BrFrr(3000) = 0.025 < 0.05. Hence t = 3000 suffices for our purpose. 
Integrating F\u) over [0, t] numerically gives: 

~/"(0, t) = 592.83, 

hence 

592.78 < f..l < 592.91. 

Actually, 

IlL- f..l~(o, t)J ~ o.o3 < 0.1. 

5. Conclusions 

The paper gives some simple upper bounds on the integrated tail, V , of the 
reliability function , F. These bounds allow the mean time to failure to be com­
puted with prescribed accuracy, by replacing improper integral, ./~

00 F(x) dx 

with the proper one, J~ F(x) d:1:. A numerical example shows that the proposed 
upper bounds on V may be applied to fairly complex systems. In fact , these 
bounds have been used successfully in the Telecommunications Research Insti­
tute for numerical computation of the mean time to failure of complex electronic 
systems. 
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