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Abst ract : In this paper non-identifier-based adaptive stabiliza­
tion of undamped flexible structures is considered in the case of 
collocated input and output operators. The systems have poles and 
zeros on the imaginary axis. In the case where velocity feedback 
is available, the adaptive stabilizer is constructed by an adaptive 
PD-controller (proportional plus derivative controller). In the case 
where only position feedback is available, the adaptive stabilizer is 
constructed by an adaptive P-controller for the augmented system 
which consists of the controlled system and a parallel compensator. 
Numerical examples are given to illustrate the effectiveness of the 
proposed controllers. 

K eyword s: adaptive stabilization, undamped flexible struc­
tures, parallel compensators. 

1. Introduct ion 

The advantage of adaptive control is that good control performance can be 
achieved even in the presence of various uncertainties. Non-identifier-based 
high-gain adaptive stabilization has been also investigated, Ilchmann (1993). In 
the design of high-gain adaptive controllers, it is usually required that the system 
have no unstable zeros. A linear system described by a second-order differential 
equation without damping term has poles and zeros on the imaginary axis, 
Williams (1989). The velocity feedback cannot asymptotically stabilize systems 
which have a pole at the origin. 

In this paper we consider non-identifier-based adaptive stabilization of un­
damped flexible structures which may have a pole at the origin. In the case 
where velocity feedback is available, the adaptive stabilizer is constructed by 
an adaptive PD-controller (proportional plus derivative controller). In the case 
where only position feedback is available, the adaptive stabilizer is constructed 
by an adaptive P-controller for the augmented system which consists of the con­
trolled system and a parallel compensator. Numerical simulation results show 
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2. Problem statement 

We consider a model for the structural dynamics governed by the following 
second-order differential equation with m inputs and m outputs: 

d2 z( t) 
M --;[{2 + Az(t) = Bu(t), (1) 

dz(O) 
z(O) = zo, ~ = Z1, (2) 

y(t) = BT z(t) , (3) 

where z is the n-dimensional vector of generalized coordina tes, u(t) E Rm is 
the 1n-dimensional control input vector , and y(t) E Rm is the m-dimensional 
measurement output vector. The mass and stiffness matrices M and A of the 
structure satisfy that M = MT is positive definite, and A = AT is positive 
semi-definite. We assume that at least one of the initial vectors z0 a nd z1 is not 
zero. The system (1) , (2) and (3) is used as ann-mode model of large flexible 
space structures, see Gawronski (1996), Joshi (1996), Williams (1989). 

Apply the feedback control for the system (1) 

u(t) = -8y(t) 8 > 0, 

where 8 is the control gain. Then the closed-loop system becomes 

d2 z( t) 
M --;[{2 +(A+ 8BBT)z(t) = 0, 

dz(O) 
z (O) = zo, ~ = z1 . 

(4) 

(5) 

(6) 

We assume that for any 8 > 0 the ma trix (A + 8BBT) is positive definite. 
The closed-loop system ( 5) a nd ( 6) is not asymptotically stable. In order to 
asymptotically stabilize the system (5 ) a nd (6) , velocity feedback or an m.­
dimensional parallel compensator such that 

(7) 

is necessary. 
The objective of adaptive stabilization is to construct the control input u 

such that the closed-loop system will be asymptotically stable without explicit 
knowledge of M , A and B. 

In the design of high-gain adaptive controllers, it is usually required that the 
system have no unstable zeros. It should be noted that our system may have 
poles and zeros on the imaginary axis , Williams (1989) a nd does not satisfy the 
condition. 

In this paper we shall show that a non-identifier-based adaptive stabilizer 
can be designed for the system (1), (2) and (3) with collocated actuators and 
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3. Adaptive stabilization in the case where velocity feed­
back is available 

In this section we shall design a non-identifier-based adaptive stabilizer for the 
system (1), (2) and (3) in the case where velocity y(t) = BT i (t) is available. 

We shall consider an adaptive PD-controller 

{ 

u(t) = -K(t)y(t)- k(t)y(t) , 

K(t) = 1 jjy(t)jj 2 + li, 1 > 0, li > 0, 

k(t) = rliiJ(t) ll 2
, k(O) > 0, r > 0, 

(8) 

where II · II denotes the Euclidean norm and 1, li, rare design parameters. If the 
adaptive controller (8) is applied to the system (1), (2) and (3), the resulting 
closed-loop system becomes 

Md::~t) + k(t)BBT d:~t) +[A+ K(t)BBT]z(t) = 0, 

dz(O) 
z (O) = zo, ~ = z1, 

{ 
K(t) = 1 IIBT z(t)ll

2 + li, 1 > 0, li > 0, 

k(t) = riiBTi(t)ll 2
, k(O) > 0, r > 0. 

First we define the following energy-like (Liapunov-like) functions 

E(t) = ~ i(t)TMi(t) + ~ z(tf Az(t) + 
4

1 
K 2 (t), 

2 2 I 

W(t) = E(t) + 2_k2 (t) . 
2r 

Along the solution of the system (9) and (10) it holds that 

. 1 . 
E(t) = (Mz(t) , z(t)) + (A z(t), i(t)) + 

21 
K(t)K(t) 

= -(Az(t) + k(t)BBT i(t) + K(t)BBT z(t), i(t)) 
1 . 

+ (Az(t) , i(t)) + 
21 

K(t)K(t) 

(9) 

(10) 

(11) 

(12) 

= -k(t)IIBT i(t) li
2

- K(t)[BT z(t)( [BT i(t)] + K(t)[BT z(t)([BT i(t)] 

= -k(t) liiJ(t)ll 2
. 

Then, E(-) E £ 00
, and thus i (-) , k(·), K(-) E £ 00

. Moreover z(-) E £ 00 follows 

from the positive-definiteness of A+ liBBT, since z(- f Az(-), BT z( ·) E £ 00
• 

Along the solution of the system (9) and (10) we have 
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In our system (9) and (10) it holds that 

~ :S K(t) < oo, 0 < k(O) < k(t) < oo, y(-) E L00 andy(-) E L00
• (13) 

We have that W(oo) = W(O). That is, 

E(oo) + ~k2 (oo) = E(O) + ~k2 (0). 
2r 2r 

Since E( oo) :::: 0, it follows that 

k(oo) :S )2rE(O) + k2(0). 

Next we show that the closed-loop system (9) is asymptotically stable, that 
is, all solutions of (9) asymptotically converge to zero. To prove this , we use 
La Salle's invariance principle, La Salle and Lefschetz (1961). According to 
this principle, all solutions of (9) and (10) asymptotically tend to the maximal 
invariant subset of the following set 

s = {(z, i, k)IE = o}. (14) 

If S contains only the solut ion z = 0 and i = 0, it holds that 

lim z(t) = 0 and lim i(t) = 0. 
t-~>oo t-~>oo 

(15) 

From E = 0 it results in iJ = BT i = 0. Then K(t) is a positive constant Kc· 
This implies that 

d2 z(t) T dz(O) 
M --;{i2 +(A+ KcBB )z(t) = 0, z(O) = zo, ~ = z1, (16) 

((t) = BT i(t) = 0 for all t:::: 0. (17) 

If the system 

{ 

d
2
z(t) , T ( ) -M --;{i2 +(A+ RcBB )z t - 0, 

((t) = BT i(t) 
( 18) 

is observable, Kaczorek (1992), Sinha (1984), we have that zo = 0 and z1 = 0, 
which yields z(t) = 0 and dz(t)/dt = 0. Then, S contains only the solution 
z = 0 and i = 0. The closed-loop system (9) is asymptotically stable. Using 
Lemma 1 and Lemma 2 given below, we arrive at the following theorem: 

THEOREM 1 Suppose that the system {1), {2) and {3) is observable. Then the 
adaptive PD-controller {8) asymptotically stabilizes the system {1), {2) and {3). 

We can demonstrate the following lemmas: 

LEMMA 1 Suppose that M > 0 and A:::: 0. Then the system {18) is observable, 
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Proof. We can reformulate the system (18) as a set of first order equations. The 
system is equivalent to 

d [ z( t) ] [ 
dt i(t) -M-1(A + KcBBT) 

0 In ] [ z(t) ] 
0 i(t) 

((t) = [0 BT][z(t),i(t)f. 

The system (18) is observable, if for any complex number s the equations 

{ 

SW1- Wz = 0, 

M- 1(A + KcBBT)wl + sw2 = 0, 

BTw2 = 0 

(19) 

(20) 

have no nonzero solution w = {w1,w2}, Kaczorek (1992), Sinha (1984). When 
s -:f. 0, we have BT w1 = 0 and (20) becomes 

{ 

SW1- W2 = 0, 

M- 1 Aw1 + sw2 = 0, 

BTw1 = 0. 

(21) 

If the system (1), (2) and (3) is observable, (21) has no nonzero solution w for 
any complex numbers. 

Next, consider the case where s = 0. From (20) it follows that w2 = 0 and 

Since M > 0, we have 

From this, we obtain that 

which implies that BT w1 = 0, since A ;::: 0. Again we have (21). Therefore if 
the system (1), (2) and (3) is observable, (20) has no nonzero solution w for any 
complex numbers. The system (18) is observable. We have proved the lemma. 

LEMMA 2 Suppose that M > 0 and A ;::: 0. Then A+ 8BBT is positive definite 
for any 8 > 0, if the system (1), (2) and (3) is observable. 

Proof. Suppose that A+ 8BBT is not positive definite for some 8 > 0. When 
s = 0 in (21), we have w2 = 0 and 

since M > 0. There exists a nonzero w1. This provides the contradiction for 
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Finally, we show that the adaptive D-cont roller (only the velocity feed back) 
such that u(t) = -k(t)y(t) cannot asymptotically stabilize the system when A 
has an eigenvalue 0. It follows from the fact that the system 

{ 

d2z(t) 
M~ + Az(t) = 0, 

((t) = BT i(t) 
(22) 

is not observable when A has an eigenvalue 0. We can reformulate the system 
as a set of first order equations. The system is equivalent to 

d [ z( t) ] [ 0 
dt i(t) = -M-1 A 

In ] [ z( t) ] 
0 i( t) 

y(t) = [0 BT][z(t), i(t) ]T . 

If A has an eigenvalue 0, the equations 

{ 

-sw1 + w2 = 0, 

-M- 1 Aw1 - sw2 = 0, 

BTw2 = 0 

(23) 

(24) 

have a nonzero solution w = { w1 , w2} for s = 0. In fact w 1 = ¢0 ( ¢0 is the 
corresponding eigenvector of A to the eigenvalue 0) and w2 = 0 satisfies (21) 
for s = 0. Then, the system (19) is not observable, Kaczorek (1992), Sinha 
(1984). Therefore, when A has an eigenvalue 0, the proportional action (that 
is, position feedback) is necessary to stabilize the system (1), (2) and (3). 

4. Adaptive stabilization in the case where velocity feed­
back is not available 

In this section we shall design an adaptive stabilizer for the system (1),(2) and 
(3) in the case where velocity y(t) = BT i(t) is not available. 

We first introduce an m-dimensional parallel compensator 

(25) 

where ~(t) is the m-dimensional compensator state vector, Ae and Be are rn­
dimensional diagonal matrices such that Ac = diag[a;], Be = diag[,Bi], O:i 2:: 0, 
,8i > 0 ( i = 1, ... , rn). 

For the augmented system (1) and (25) we apply an adaptive controller 

( u(t) = -K(t)[y(t) + ~(t)] 
~ = -K(t)yf.(t), (26) 
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where 1 and r;, are design parameters. The resulting closed-loop system becomes 

d2 z( t) 
M dj2 +[A+ K(t)BBr]z(t) + K(t)B~(t) = 0, 

dz(O) 
z(O) = zo, ---;It= z1, (27) 

d~( t) T 
~ = -[Ac + BcK(t)]~(t) - Bj{(t)B z(t), ~(0) = 0. (28) 

We define the following energy-like (Liapunov-like) function 

E(t) = ~z(t)T Mz(t) + ~z(t)T Az(t) + +~(t)T P~(t) + 4~K2 (t), (29) 

where P is an m-dimensional diagonal matrix such that P = d-iag[pi], Pi > 0 
('i = 1, . .. , m) which will be determined later. 

Along the solution of the system (27) and (28) it holds that 

E(t) = -(Az(t) + K(t)BBr z(t), z(t))- K(t)~(tf Br z(t) 

+ z(tf Az(t) + ~(t)r P~(t) + _!_K(t)K(t) 
21 

= -K(t)y(t)r i;(t)- K(t)~(t)T i;(t) + ~(tf P~(t) + K(t)ycJtf i;c.(t) 

= -K(t)y(t)T y(t)- K(t)~(t)T y(t) + ~(t)T P~(t) 
+ K(t)y(tf i;(t) + K(t)~(t)T y(t) + K(t)y(tf ~(t) + K(t)~(t)T ~(t) 
= ~(tf[P + K(t)Im]~(t) + K(t)y(t)r ~(t) 

= -~(t)T[P + K(t)Im][Ac + K(t)Bc]~(t) 
- K(t)~(tf[Ac +PEe + 2K(t)Bc]y(t)- K 2(t)y(t)r Bcy(t). 

Here we take Pi = a;j f3i (i = 1, ... , m), that is, P = AcB; 1
. Then we obtain 

E(t) = -~(tf[P + K(t)Imi Be~( f) 
- 2K(t)~(t)r[P + K(t)Im]Bcy(t)- K 2 (t)y(t)r Bcy(t) 

= -{[P + K(t)Im]~(t) + K(t)y(t)}r 

x Bc{[P + K(t)Im]~(t) + K(t)y(t)} :::; 0. (30) 

This implies that i(-), z(·), ~(-)and K(-) are in L00
• 

To prove that z(t) and i(t) asymptotically converge to zero, we use La Salle's 
invariance principle, La Salle and Lefschetz (1961). 

From E = 0 it results in 
1 

y(t) = --(-) [P + K(t)Im]~(t). (31) 
Kt 

Then 

u(t) = -K(t)~(t) + [P + K(t)Im]~(t) = P~(t) (32) 

d~(t) 1 A n n \ /"/ ~ \ n rfn \ n 
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This implies that ~(t) = 0 and u(t) = 0. In this case we obtain 

{ 

d2 z(t) dz(O) 
M -;]j2 + Az(t) = 0, z(O) = zo, -;[t = z1, 

y(t) = BT z(t) = 0 for all t ~ 0. 

(34) 

If the system 

{ 

d2z(t) dz(O) 
M -;}j2 + Az(t) = 0, z(O) = zo, -;[t = z1, 

y(t) = BT z(t) 
(35) 

is observable, we have that zo = 0 and z1 = 0, which yields z(t) = 0 and 
dz(t)/ dt = 0. 

We have obtained the following theorem: 

THEOREM 2 Suppose that the system (1), (2) and (3} is observable. Then the 
adaptive controller (26} asymptotically stabilizes the system ( 1 ), (2) and (3). 

5. Numerical example 

In this section we give simulation results to illustrate our theory. We design the 
proposed controllers for a simple flexible structure - a three-mass system. The 
system is with masses m 1,m2, and m3 and stiffness k1,k2,k3,k4 such that 

{ 

m1ih(t) = -k1q1(t) + k2[q2(t)- q1(t)], 

m2ii2(t) = -k2[q2(t)- q1(t)] + k3[q3(t)- q2(t )], 

m3ii3(t) = -k3[q3(t )- q2(t)]- k4q3(t) + u(t), 

y(t) = q3(t), 

(36) 

where q1, q2 and q3 are the displacements of the masses m1, m2, and m3, re­
spectively. The control input u(t) acts at mass No.3 and the output y(t) is the 
displacement of mass No. 3. 

The system parameters are follows: m1 = 1, m2 = 2, m3 = 3, k1 = 0.5, 
k2 = 0.5, k3 = 0.6, k4 = 0.3, q1(0) = 0, ri!(O) = 0, q2(0) = 0, ri2(0) = 0, 
q3(0) = 0.5, q3(0) = 0. In this case the mass matrix M is positive definite and 
the stiffness matrix A is positive semi-definite. It can be easily shown that the 
system (36) is observable. We can design the proposed controllers to the system. 

In the case where velocity feedback is available, tuning the parameters/, n, , 

r and k(O), we designed an adaptive PD-controller 

~ 
u(t) = -K(t)y(t)- k(t)y(t), 

K(t) = lly(t)ll 2 + 20, 
' n 

(37) 
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Figure 1. Open-loop output response 
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Figure 2. The case of PD-controller. (a) Controlled output y(t) . (b) Control input 
u(t). (c) P-controller gain K(t) . (d) D-controller gain K(t) . 

Simulation results are shown in Figs. 2a,b,c,d. For comparison purposes, the 
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results show the effectiveness of the proposed controller (37). 
In the case where velocity feedback is not available, we introduce the one­

dimensional parallel compensator 

d~d(t) = -0.3~(t) + O.lu(t), ~(0) = 0. 
t 

(38) 

For the augmented system (36) and (38), tuning the parameters /, 11,, we de­
signed the controller 

{ 

u(t) = -K(t)[y(t) + ~(t)] 
= -K(t) ydt) , 

K(t) = 100IIyE(t)ll 2 + 30. 

(39) 

Simulation results are shown in Figs. 3a,b,c. These simulation results show the 
effectiveness of the proposed controller (39). 
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6 

Figure 3. The case of parallel compensator. (a) Controlled output y(t) . (b) Control 



Adaptive stabilization of undamped flexible structures 429 

6. Conclusion 

We have constructed adaptive stabilizers for undamped flexible structures in t he 
case of collocated input and output operators. The systems have poles and zeros 
on the imaginary axis. In the case where velocity feedback is available, the adap­
tive stabili11er has been constructed by an adaptive PD-controller (proportional 
plus derivative controller). In the case where only position feedback is avail­
able, the adaptive stabilizer has been constrncted by an adaptive P-controller 
for the augmented system which consists of the controlled system and a parallel 
compensator. Numerical simulation results have showed the effectiveness of the 
proposed controllers. 
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