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1. Introduction 

Many results from mathematical programming, which concern convex functions 
hold in fact for a considerably wider class of functions called invex functions. 
The first to introduce the notion of an invex functions was Hanson (1981) (it 
should be stressed that this definition concerned differentiable functions). Han
son's paper was an inspiration for further investigations of invcxity which went 
in various directions, and giving the definition of nondifferentiable invex func
tions became the intention of many authors. In the case of quasidifferentiable 
functions, invexity was characterized by Craven and Glover (1985), and then, 
for the case of Lipschitz (not necessarily differentiable) functions, Craven (1986) 
gave the definition of generalized invexity. 

The present paper concerns optimization problems with constraints, in which 
the appearing functions are ( nondifferentiable) in vex functions. The main result 
of the paper is Theorem 3 whose content is the sufficient condition for optimality 
in problems of this type. It is a modification of the sufficient condition from 
Miffiin (1977), where the respective functions were semiconvex (thus regular in 
the sense of Clarke, 1983) . 

In the final part of the paper, we give an example of an optimization prob
lem in which one cannot apply the sufficient condition for optimality from Mif
flin (1977), whereas one can make use of the sufficient condition for optimality 
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2. Definitions and propositions 

DEFINITION 1 (Clarke, 1983) Let f: X---+ R be a locally Lipschitz function in 
a neighbourhood of a fixed point x E X. The generalized gradient (in the sense 
of Clarke) off at x E X is defined by 

8f(x) :={~ERn: (~,h)::; f 0 (x; h), Vh E R"}, (1) 

whe1'e f 0 (x; h) denotes a generalized directional derivative f at a point :t in the 
direction hER" defined as f 0 (x ; h):= lim sup f(y+tl~)-f(y). 

y---+x 
tlO 

Throughout the paper by f '(x; h. ) we denote the directional derivative of 
a function f : X ---+ R at the point x E X in the direction h E Rn, that is , 

f '( . h) ·- l' f( x +th)- f( x) :r, .- 1111 t . 
tlO 

DEFINITION 2 (Clarke, 1983) We say that a Lipschitz f1t.nction f is regular at 
point x if the directional derivative f'(x; h) e.xists in any direction h and equals 
the generalized directional derivative f 0 ( x; h). 

The definition above is ident ical with that of a quasidifferentiable function, 
used in Mifflin (1977) . In the present paper we shall make use of the terminology 
from Clarke (1983). 

DEFINITION 3 (Mifflin, 1977) Let X be any subset of R". A function f : X ---+ 

R is called semiconvex at x E X if 

a) f is a Lipschitz function on some ball containing the point x, 
b) f is regular at point x, 
c) x +hE X and f 0 (x; h) 2: 0 imply the inequality f( x +h) 2: f( x). 

We say that a function f is semiconvex (regular) on a subset X C R" if it 
is semiconvex (regular) at each point of the set X. 

REMARK 1 In Definition 3, as a matter of fact, the assumption of the regularity 
of the function f at the point x may be omitted. The regularity assumption was 
added in (Mifflin, 1977) in o1'der to carry out the proof of the theorem contain
ing a sufficient condition for optimality of the optimization problem considered. 
This proof is based, among other things, on the theorem below in which this 
assumption is indispensable. 

THEOREM 1 (Mifflin, 1977) If f is semiconvex on a convex subset X of R", 
x E X and x + h E X, then 

£{ •• t ' - \ / .£1 -- \ rO r .. r. \ ..,.. n lr.\ 
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DEFINITION 4 (Reiland, 1990) Let f : X ---> R be a Lipschitz fun ction on X, 
where X is an open subset of R", then f is called in vex with r-espect to 7] (or
shortly w. r. t. ry) on X if there exists a function 7] : X x X ---> R" such that 

f( x )- f(y) ~ f 0(x; 17(x, u)), V.'C , u E X. (3) 

DEFINITION 5 Jf x E X is a point such that 0 E a f( x ), then x ts called a 
stationary point of the function f . 

THEOREM 2 (Phuong, Sach, Yen, 1995) Let f : D _, R be a locally Lipschitz 
on an open set n containing a nonempty s1~bs e t X. Th e function f is invex on 
X if and only if each stationary point over X is a global minimum off on X. 

C OROLLARY 1 Let X be an open subset of R", and f : X ---> R - an in vex 
function on X. Then u E X is a global minimum point of the f1mction f on X 
if and only ifO E af(x). 

3. A sufficient condit ion for optimality 

Consider an optimization problem of the form: 

f(x)---> min 

g(.'C ) ::; 0 

where g(x) := maxi::;i::;m9i(x), x E R". 

(P) 

DEFINITION 6 We say that x E Rn is a feasible point of pmblem ( P) if g( x) ::; 0 , 
and a strictly feasible point when g(x ) < 0. 

DEFINITION 7 We say that x E Rn is an optimal point of problem (P) if it is 
feasible and the inequality f (x) ::; f ( x) is satisfied for all feasible points x . 

In (Mifflin, 1977, Theorem 9), which includes a sufficient condition for the 
point x to be the optimal solution of problem (P), it was indispensable to assume 
that both the objective function f and the constraint function g should be 
semiconvex. In reality, as was stated by the author himself (Mifflin, 1977), in the 
proof of this theorem in the case when g(x) = 0, he needed a stronger assumption 
to prove optimality of the point x, namely, instead of being semiconvex , the 
function g should be quasidifferentiable and satisfy some additional property. 
The above statement corresponds, in fact, to Mangasarian's optimality condition 
Mangasarian ( 1969), namely: 

Ifx satisfies the generalized Karush- Kuhn- Tucker conditions, .f ·is semicon
ve.T, and is quasidifferentiable and quasiconvex, then x is the optimal point of 
problem (P). 

In the theorem given below, which is a sufficient condition for optimality, the 
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from Mifflin (1977), mentioned above. Also in the proof of this theorem the 
assumption of the quasidifferentiability of the constraint function has turned 
out to be dispensable and we have not made use of a certain additional property 
by which the constraint function in t he proof of Theorem 9 in Mifflin (1977) 
had to be characterized. 

The main role in proving a sufficient condition for optimization problem (P) 
is played by a multivalued mapping M ( x) : Rn --> 2Rn defined as follows: 

{ 

af(x) if g(x) < 0, 
M(x) := conv{af(x) u ag(x)} if g(x) = 0, 

ag(x) if g(x) > 0, 
(4) 

The above mapping was introduced by Merrill (1972) for optimization prob
lems with differentiable and/or convex functions, i.e. problems with functions 
which possess gradients and/or subgradients. This mapping is also useful in 
the proof of our theorem including a sufficient condition for the optimality of 
optimization problem (P) in which the respective functions possess generalized 
gradients. 

We prove our main result. 

THEOREM 3 (a sufficient condition for the optimality of problem (P)) If func
tions f and g are in vex w. r. t. TJ on Rn and x is a point of Rn, such that 
0 E M (x), then the following propositions are satisfied: 

a) If g(x) > 0, then g(x) 2: g(x) > 0 for all x E Rn, that is, the optimization 
problem has no solutions. 

b) If g(x) :::; 0, then at least one of the following conditions holds: 

i) x is an optimal sol1Lfion, 
ii) g(x) 2: 0 for all x E Rn, that is, the optimization problem has no 

strictly feasible points. 

Proof. a) If g(x) > 0, then the assumption 0 E M(x) and the definition of the 
mapping M imply that 0 E ag(x). Since g is an invex function w.r.t 17, we have 

g(x)- g(x) 2: l(x;17(x,x)) 2: o, Vx,x E R", 

where the second inequality follows from the fact that 0 E g(x) and from the 
definition of the generalized gradient of g. The above inequality means that 
g(x) 2: g(x) > 0 for all x E Rn, t hat is, the optimization problem has no 
solution. 

b) If g(x) < 0, then the assumption 0 E M(x) and the definition M imply 
that 0 E af(x), and thus, by Corollary 1, the point xis the optimal solution of 
problem (P). 

If g(x) = 0, then it follows from the definition of the mapping M that 
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By assumption 0 E M(x) we deduce that there exist A E [0, 1] and f E Of(x), 
f E fJg(x), such that 

(5) 

If A = 0, then it follows from (5) that [ = 0, and this means that x is the 
minimum point of the function g on Rn, and thus g(x) 2: g(x) = 0 for all 
x E R'\ that is, proposition b) ii) holds. 

If A > 0, then from (5) we get 

- (1-.\)~ 
~+-A-~=0. (6) 

By assumption, f and g are invex w.r.t. 17 , therefore, the following inequalities 
are true: 

g(x)- g(x) 2: l(x;17(x,x)), 

f(x)- f(x) 2: f 0 (x; rJ(x, x)), 

Since g(x) = 0, we obtain from the first of the above inequalities 

g(x) 2: l(x;rJ(x,x)), Vx E R11
• (7) 

Then, for all feasible points x E R11
, that is, in conformity with the definition , 

such that g(x) :S: g(x) = 0, from the fact that [ E fJg(x) and from (7) we get 
the following relations: 

Consequently, by (8), we obtain 

([;rJ(x ,x)) :S: 0, Vx E R11 such that g(x) :S: 0, 

and since 1 ~.\ 2: 0, condition (6) implies 

([;rJ(x,x)) 2:0 Vx E R11 such that g(x) :S: 0. 

Since f is invex w.r.t. rJ and from f E fJj(x) it follows that 

f(x)- f(x) 2: f 0 (x;rJ(x,x) 2: (f;tJ(x,x)) 2:0 for Vx ERn 

such that g(x) :S: 0. 

Upon writing this inequality in a suitable form, we find that 

f(x) 2: f(x) for all x ERn such that g(x) :S: 0. 

(8) 

This, in turn, means that xis an optimal solution of problem (P) , that is, the 
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In order to illustrate the results obtained, we shall give an example of an 
optimization problem in which the sufficient condition for the optimality of the 
point x will be obtained by the application of our theorem, whereas it will 
be impossible to apply for this purpose the theorem including the sufficient 
condition from Mifflin (1977). 

EXAMPLE. Consider the optimization problem ( P} , where the objective fun c
tion is assumed to be 

f( x) = { ~ for x < 0, 
2x for x 2:: 0, 

and the constraint function (m = 2) is of the form: 

g(x) = max{gi(x),g2(x)} = {0, x2} = { x02 ffo ·r x < 00, 
or x 2:: . 

It can be shown that, in the problem under consideration, the directional 
derivative of the objective function at point x is not equal to the generalized 
directional derivative. Since J'(O; h) f. f 0 (0; h), it follows from Definition 2 
that f is a nonregular function (in the sense of Clarke). 

Since the objective fun ction f in the optimization problem considered is not 
regular, use cannot be made of the sufficient condition for optimality, included 
in (Mifflin, 1g77, Theorem 9} in which the regularity of functions occurring in 
the optimization problem is an indispensable assumption. 

In order to examine whether x = 0 is an optimal point of the considered 
problem, we can be apply o·ur sufficient condition for optimality from Theorem 3. 
It can be proved that the assumption 0 E M(x) is satisfied and the objective 
function f and the constraint function g are invex with respect to the same 
function TJ, for example, of the form 

{ 

X-U for X 2:: 0, U > 0 V X < 0, U < 0, 
17(x,u) = ~x-u forx 2:0, u ::=; 0, 

2x- u for x < 0, u 2: 0. 

In this way, since g(x) = 0, case b) of Theorem 3 holds, that is, we can ascertain 
that x = 0 is the optimal point of our problem and the problem possesses no 
strictly f easible points because g( x) 2:: 0 for all x E R. 
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