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1. Introduction 

An abiding problem in choice theory has been the one of characterizing those 
choice functions which are obtained as a result of some kind of opt imisation. 
Specifically, the endeavour has concentrated largely on finding a binary relat ion 
(if there be a ny) whose best elements coincide with observed choices. An ade
quate survey of this line of research t ill the mid eighties is availa ble in Moulin 
(1985). More recently, the emphasis has focused on binary relations defined on 
non-empty subsets of a given set, such that t he choice function coincides wi th 
the best subset corresponding to a feasible set of alternatives. This problem 
has been provided wi th a solution in Lahiri (1999) , although the idea of binary 
relations defined on subsets is a concept which owes its analytical origins to 
Pattanaik and Xu (1990). 

Given a binary relation, t he idea of a function which associates with each 
set a non-empty subset of the given set ha..s a long history whose exact origin 
is very difficult to specify and in any case is unknown to the author. Laslier 
(1997) provides a very exhaustive survey of the rela ted theory when the given 
binary relat ion is reflexive, complete and anti-symmetric. 

In this paper we extend the above set of binary relations to include those 
which are not necessarily anti-symmetric. Such binary relations which are refl ex-
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as weak tournaments. Given a weak tournament, a solution is a function which 
associates to each non-empty subset a non-empty collection of elements from 
the subset, on the basis of the given weak tournament. Lucas (1992) has a 
discussion of abstract games and related solution concepts. The concept of an 
abstract game is originally due to von Neumann and Morgenstern and t hey are 
very similar to the weak tournaments that we study in this paper. Much of 
what is discussed in Laslier (1997) and references therein carry through into 
this framework. An important consequence of both these frameworks is that 
often a set may fail to have an element which is best with respect to the given 
binary relation. To circumvent this problem the concept of the top cycle set is 
introduced, which selects from among the feasible alternatives only those which 
are best with respect to the transitive closure of the given relation. The top 
cycle set is always non-empty and in t his paper we provide an axiomatic char
acterization of the top-cycle solution. It is subsequently observed that the top 
cycle solution is the coarsest solution which satisfies two innocuous assumptions. 

An alternative x is said to cover another alternative y if and only if :r is 
preferred to y and for every other third element z if (a) y is at least as good 
as z, then so is x; (b) if y is preferred to z then so is x. Given any feasible 
set, its uncovered set is the set of all elements in the feasible set which are not 
covered by any other element in the same set. The question that naturally arises 
is the following : Given a choice function, under what condition does a binary 
relation exist, whose uncovered sets always coincide with the values of the choice 
function? This problem is answered in this paper, where instead of defining the 
covering relation globally, we consider the covering relation for each individual 
feasible set, by simply looking at the restriction of the comparison function to 
that set. In such a situation that fact that :r covers y in a particular feasible set 
does not imply that x covers y globally. In effect, we are then concerned with 
what Sen (1997) calls 'menu based' relations. In this paper we also address the 
problem of axiomatically characterizing the uncovered solution (where 'covering' 
is now defined as a 'menu-based' concept). 

In Peris and Subiza (1999) it is shown that a considerable portion of the 
theory developed in the context of tournaments, carry through to weak tourna
ments as well. Our axiomatic characterizations are, however, different from the 
ones available in Peris and Subiza (1999). 

In a final section of this paper we revert to the context of classical rational 
choice theory. By exploiting the close similarity between a solution and a choice 
function, we discuss the necessary implications of the results established in the 
earlier sections of the paper, which apply to choice functions. This leads to a 
modest extension of the theory that has been summarized in Moulin (1985). 

2. Solutions 

Let X be a finite, non-empty set and given any non empty subset A of X, let 
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denotes the set of all non-empty subsets of X. If A E [X], then #(A) denotes 
the number of elements in A . If A , B E [X], then A cc B, is used to denote 
"A is a proper subset of B". 

A binary relation Ron X is said to be (a) reflexive ifV::c EX: (.T,:r) E R; 
(b) complete if Vx, y E X with .T "I y, either (.7:, y) E R or (y, :r) E R; (c) 
transitive if Vx, y, z E X, [(.7:, y) E R&(y , z) E R implies (x , z ) E R]; (d) anti
symmetric if [Vx, y EX , (x , y) E R&(y, ;c) E R implies x = y]. Given a binary 
relation Ron X and A E [X], let RIA= R n (A x A) . Let II denote the set of 
all reflexive and complete binary relations. If R E II , then R is called a weak 
tournament. Given a binary relation R , let P(R) = {(x , y) E Rj(y , x) 'f. R} 
and I(R) = {(x , y) E Rj(y, x ) E R}. P(R) is called the asymmetric part of R 
and I(R) is called the symmetric part of R . Given a binary relation R on X 
and A E [X], let G(A, R) = {.x E AjVy E A : (:r, y) E R} . Given A E [X], let 
L1(A) denote the diagonal of A i.e. L1(A) = {(x, x)jx E A} . 

The following example shows that given R E II and A E [X], G(A, R) may 
be empty: 

EXAMPLE 1 Let X = { :r , y, z} and let R= L1(X) U { (x , y) , (y , z ), (z, .T)} . Clearly, 
G(X , R) is empty. 

Given R E II , A E [X ], let T(RIA) be a binary relation on A defined as 
follows: (x , y) E T(RIA) if and only if there exists a positive integer J( and 
x1 , ... ,XJ( in A with (i) ::c 1 =x, Xg =y: (ii) (xi,l:i + 1) E RVi E {1, .. . K -1}. 
T(RIA) is called the transitive hull of R in A. Clearly T(RIA) is always transi
tive. 

Given R E II, A E [X], G(A, T(RIA)) is called the top cycle set of R in A . 
Clearly, G(A , T(RIA)) is non-empty whenever R E II and A E [X]. 

Let, R belong to II . An R -based sol?ttion on X is a functionS : [X] -+ [X ] 
such that: 

(i) VA E [X] : S(A) c A; 
(ii) Vx,y EX: x E S({x,y}) if and only if(.x , y) E R. 

Tlws, in particular, R = R5 := u{S({x,y}) x {l:,y}jx,y EX} 

If VA E [X ], G(A, R) is non-empty valued then the associated solution is 
called the R-based best solution on X. In further com·se of the paper, whenever 
there is no scope for confusion, an R-based solution will be simply referred to as 
a solution. 

The Top Cycle solution denoted TC : [X] -+ [X] is defin ed as follows: VA E 

[X] : TC(A) = G(A, T(RIA)). 
Given R E II , A E (X ] and x , y E X , we say that x covers y via R in A if: 

(i) :r, y E A; 
(ii) (.x , y) E P(R); 

(iii) Vz E A: [(y, z) E R implies (x, z) E R]; 



442 S. LAHIRI 

Given R E II , let R(A) = {(:z:,y ) E Ax Ajx covers y via R in A}. Let 
UC(A) = {x E A/ ify E A then (y,x) ~ R( A )}. It is easy to see that VA E [X], 
R(A) is a transitive binary relation on A . Thus UC(A) f.¢ whenever A E [X]. 
Hence, (i) VA E [X]: UC(A) c A; (ii) Vx,y EX: .r E UC ({ x, y}) if and only 
if(:r:,y)ER. 

The solution UC: [X] --+ [X] is called the uncovered solution. 

OBSERVATION 1 VA , B E [X] and x , y E A : [(x , y) E R(A) and B C A] implies 
[(x, y) E R(B)]. 

The proof of this observation follows immediately from the relevant defini
tions. Given A E [X] and :r: EX let s(.r, A) = #{y E Aj(x, y) E P(R)}- #{y E 
Aj(y, x ) E P(R)}. The Copeland solution Co: [X]--+ [X ] is defined as follows: 
VA E [X] : Co(A) = {x E AjVy E A: s(.T , A) 2 s(y , A )} . 

OBSERVATION 2 VA E [X] : Co(A) C UC(A). 

Proof of Observation 2. Let A E [X] and x E Co(A). Towards a contradiction 
suppose x ~ UC(A). Then, t here exists yEA, such that (y , x) E R(A) . But 
then, {z E Aj(x , z) E P(R)} C {z E Aj(y,z) E P(R)} and {z E Aj(z ,y) E 
P(R)} CC {z E Aj(z ,x) E P(R)}. T hus, s(y, A) > s(x,A), contradicting 
x E Co(A) . This proves the observation. • 

The following proposition is an extension of a result valid for tournaments 
which is available in Laslier (1997): 

PROPOSITIO N 1 VA E [X] : Co(A) C UC(A ) C TC(A). 

The proof is provided in the Appendix. 

EXAMPLE 2 Let X = {x, y, z} and let R = .1(X) U {(;r;, y), (y, z ), (z , y) , (x, z ), 
(z, x) }. Now, Co(X) = {x} cc {.1:, z } = UC(X) cc X= TC(X). 

3. Axioms for the Top Cycle Solution 

A solution S on X is said to satisfy: 
Strong Condorcet (SC): if VA E [X ]: [x E A] and [Vy E A\{x}: (.1:, y) E P(R)] 
implies [S (A) = {x }] ; 

Expansion Independence (EI): if VA E [X] : [.1; E S(A) , yEA , (y , z ) E R] 
implies [x E S(A U {z})]; 

Existence of an Inessential Alternat ive (EIA): if VA E [X] with #(A) 2 2 
and V.1: E S(A), there exists y E A (possibly depending on A and :r) such that 
x E S(A\{y}). 
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Proof. It is clear that TC satisfies SC , EI and EIA. Hence let S be any 
solution that satisfies SC, E I and E IA . Let A E [X] . If #(A) is one or two 
there is nothing to prove , since S(A) = TC(A) by definition. Thus, suppose 
S(A) = T C(A ) whenever #(A) = 1, .. . k. Let #(A) = k + 1. Let x E A. 
If Vy E A\{x}: (x,y) E P(R)] then S(A) = {x} = TC(A). Hence , suppose 
"1:~: E A there exists y E A\{x } such that (y,x) E R. 

Let .'C E TC(A). Since TC satisfies E I A , there exists z E A such that :r E 
TC(A\{ z } ). By the induction hypothesis S(A\{ z }) = T C(A\{ z } ). If (x, z ) E R 
then by E I , x E S(A). If (x , z ) rf_ R , then, since x E TC(A) = G(A, T (R IA)) 
there exists wE A such that(:~;, w) E T(R IA) and (w , z) E R. Then by EI once 
again x E S(A). Hence, TC(A) c S(A) . 

Now, suppose x E S(A) and towards a contradiction suppose x rf_ TC(A). By 
EIA there exists z E A such that x E S(A\{z}). By the induction hypothesis 
S(A\{ z }) = TC(A\{z}). If (:r, z ) E R then by EI applied to TC, x E TC(A). 
Hence, suppose (x, z) rf_ R. Thus, (z, x ) E P(R). Let y E TC(A). Clearly, 
y # x. Suppose y :f. z. Thus y E A\{ z }. Thus (x , y) E T(RIA) which combined 
withy E TC(A) gives us x E TC(A). Hence, y = z . If for some wE A\{x,z} 
we had (w ,z ) E R , then since x E TC(A\{z}) and wE A\{ z } we would get 
x E TC(A). Thus, Vw E A: (z, w) E P(R) . But t hen, by SC , S(A) = {z}, 
contrad icting :r E S(A). Thus :r; E TC(A). Hence, S(A) C TC(A). Thus, 
S(A) = T C(A) . 

By a standard induction argument it now follows that VA E [X] : S(A) = 
TC(A). • 

A solution S on X is said to satisfy: 
Converse Condorcet ( CC): if VA E [X] and .'C E A : [Vy E A\ {.1:} : (y, x) E 

P(R) ] implies [x rf_ S(A)J; 
Weak Existence of an Inessential Alternative (WEI A): if VA E [X] with 

#(A) 2: 4 and Vx E S(A) , there exists yEA (possibly depending on A and x) 
such that x E S(A\{y}) . 

Since TC satisfies EI A it also satisfies WI EA. In fact , we can now prove 
the following: 

THEOREM 2 Let S be any solution on X which satisfies SC, CC and WEIA. 
Then, VA E [X]: S(A) C TC(A). 

Proof. Step 1: Let S be any solution on X which satisfies SC and CC. Then, 
VA E [X] with #(A) 2: 3: S(A) c TC(A). 

Proof of Step 1. For #(A) 2: 2 there is nothing to prove since by the definition 
of a solution all of them agree on such sets. Hence, suppose #(A) = 3. Let A = 
{x, y , z} with x :f. y :f. z :f. x. Suppose, without loss of generality that x E S(A) . 
If (x , y), (x, z ) E R, then x E TC(A). Thus, suppose without loss of generality 
that (y, x) E P(R). If (z , x) E P(R) then by CC, 1: rf_ S(A), contradicting what 
···~ 1.~ .. ~ ~ --~· ··~~ rl u~"~~ ( ~ N\ "" ' ~ ~ 1-~ 1 ~"~ ~ ~ D Tf ( N "' \ ,- D 1-h nn n~n ; n 
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x E TC(A). If (y, z) E P(R), then by SC, S(A) = {y}, contradicting x E S(A). 
Thus S(A) c TC(A). 

Step 2: LetS be any solution on X such that \fA E [X] with #(A) 2 3: S(A) C 

TC(A). SupposeS satisfies SC, WEIA. Then, \fA E [X]: S(A) c TC(A). 

Proof of Step 2. Suppose that \fA E [X] with 3::; #(A) ::; rn: S(A) C TC(A). 
Let #(A) = m + 1. Thus #(A) 2 4. Let x E S(A). By WEI A, there exists 
y E A such that .7: E S(A\{y}). By the induction hypothesis S(A\{ y}) C 

TC(A\{y}). Thus, x E TC(A\{y}). If (x,y) E R, then clearly x E TC(A). 
Suppose (y,x) E P(R). If\fz E A\{y } : (y,z) E P(R), then by SC, S(A)={y}, 
contradicting x E S(A). Hence, there exists z E A\ { :r, y} such (z, y) E R. Since, 
x E TC(A\{y}) and z E A\{y}, (z,y) E R implies x E TC(A). Thus S(A) c 
TC(A). Step 2 combined with Step 1 and a st andard induction argument proves 
the theorem. • 

In fact, the above proof reveals the following: 

THEOREM 3 Let S be any sol"Ution on X which satisfies SC and EIA. Then, 
\fA E [X]: S(A) c TC(A). 

CC is not required once we replace WEI A by EI A, since then the induction 
argument can begin from #(A) 2 2. 

4. The uncovered solut ion 

A solution S on X is said to satisfy: 
Expansion (E): if \fA, BE [X ]: S(A) n S(B) c S(A U B). 
It is easy to see that both TC and UC satisfy E: 

(i) Let A, B E [X] and suppose .7: E UC( A )nUC(B). Towards a contradict ion 
suppose that x 'f. UC(A U B). Hence there exists yEA U B, such that y 
covers x via R in AU B. Without loss of generality suppose y E A. By 
Observation 1, y covers x via R in A. This contradicts x E UC(A). Thus, 
U C satisfies E. 

(ii) Let A, BE [X] and suppose x E TC( A)nTC(B ). Towards a contradiction 
suppose that x 'f. TC(A U B). Hence there exists y E AU B, such that 
(x, y) 'f. T(RIA U B). Without loss of generality suppose y E A. Thus 
(x, y) 'f. T(RIA U B) implies that (x, y) 'f. T(R IA). This contradicts x E 

TC(A). Thus, TC satisfies E. 

Moulin (1986) has established the following: 

PROPOSITION 2 Let S be any solution satisfying SC and E. If [\fA E [X] with 
#(A)= 3 we have UC(A) c S(A)] then [\fA E [X]: UC(A) c S(A)]. 
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Contraction (Con): if \iA E [X] with #(A) 2: 4, [x E S(A)] implies [there 
exists a positive integer K 2: 2 and sets A1, . .. , AK E [A]\{A} such that (i) U 
{Ak/k = 1, ... K} =A; (ii) x E n{S(Ak)/k = 1, ... K} ]. 

Dutta and Laslier (1999) establish that UC satisfies Con. However, TC does 
not as the following example reveals: 

EXAMPLE 3 Let X = {x,y,z,w} wheTe x,y,z,w aTe all distinct. Let R = 
Ll(X) U {(x , y),(z,x),(w,x),(y,z),(w ,y),(z,w)}. CleaTly, x E TC(X) . Let 
A E [X]\{X}, with #(A) 2: 2. Suppose that y tJ. A. Then, x tJ. TC(A). Hence , 
:r E TC(A) and #(A) 2: 2 implies y E A. Suppose x, y E An B wheTe A , B E 

[X]\{X} , A =f. B, A ct. B ct. A. Without loss of genemlity S1tppose that A= 
{ x, y, z} and B = {.r, y, w}. Then, x tJ. TC(B). Thus , TC does not satisfy Con. 

A solution S on X is said to satisfy: 

Tie Splitting (TS): if \iA, BE [X ] with An B = ¢:[Ax B c I(R) implies 
S(A u B) = S(A) u S(B)]; 

Strong Type 1 Property (ST1P): if \ix , y, z E X; [(y, x) E P(R), (x , z) E 

P(R), (z , y) E R] implies S({x,y,z}) = {x,y , z }. 

Note: Let S be any solution satisfying E. If S satisfies STlP then [\i A E [X] 
with #(A) = 3 we have UC(A) C S(A) ]. 

PROPOSITION 3 LetS be a soltttion on X such that S(A) = UC(A)\iA E [X] . 
Then, S satisfies SC, CC, TS, STlP, E and Con. 

Proof. We have already seen that UC satisfies E, and SC, CC, TS, STlP being 
easy to verify let us show that S satisfies Con. Let A E [X] with #(A) 2: 4 and 
.r E S(A). T hus, y E A, y =f. x implies either [(.r, y) E R] or [there exists zy E A 
with either ((x, zy) E Rand (y, zy) tJ. R) or ((x, zy) E P(R) and (y , zy) tJ. P(R))]. 
Let Ao = {y E A/(x, y) E R}. Clearly, Ao =f. ¢ , since x E Ao. Further, since 
there does not exist y E A0 , such that y covers x via R in Ao, x E S(Ao). 

Case 1. A0 = A. Since #(A) 2: 4, there exists y E A\ { x} such that 
A\ {x, y} =f.¢. Let A1 = {x, y} and Az =A- {Y}. Clearly, A1 cc A, Az cc A 
and A1 u Az =A. Further, :r E S(Al) n S(A2 ). 

Case 2. Ao CC A. In this case, let A1 = Ao and for y E A\A1, let Ay = 
{x , y,zy}· Since #(A) 2: 4, Ay CC A whenever y E A\A1. Further, \iy E 

A\A1 : x E S(Ay) · Also, A1 U (U yEA\A, Ay) =A. Hence, S satisfies Con. • 

LEMMA 1 If #(X) :::; 3 and S is a solution on X which satisfies SC, TS and 
STJP, then Sis the uncoveTed solut·ion. 

Proof. Let S and X be as in the statement of the lemma. If #(X) = 1 or 
2, there is nothing to prove since S(A) = UC(A)\iA E [X] by the definition 
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S(A) = UC(A). Thus suppose A = X= {x, y,z} with :~; =f y =f z =f x . If there 
exists a EX : (a, b) E P(R)Vb E X, then S(X) = {a} = UC(X ), by SC of both 
Sand UC. Hence, suppose that Va EX , there exists bE X\{a}: (b,a) E R. 

Case 1. I(R) =X. Then by TS of C and UC , S(X) = UC(X) =X. 
Thus, without loss of generality suppose that (x , y) E P(R). Hence, by what 
has been mentioned before, in Case 1, ( z , x ) E R. 

Case 2. (z, x ), (y , z) E P(R). 
By ST1P , S(X) = {x , y,z} = UC(X). 

Case 3. (z, x) E P(R) , (y , z) E I(R) . 
By ST1P , S(X) = {x, y , z} = UC(X). 

Case 4. (z, x) E I(R), (y, z) E P(R) . 
By ST1P, S(X) = {x , y, z } = UC(X) . 

Case 5. (z, x) E I(R), (y, z ) E I(R ). 
Thus, {z } x {x,y} c I(R ). By TS , S(X) = S({z }) u S({ x, y}) = {x, z} = 
UC(X). This proves Lemma 1. • 

A look a t the proof of Lemma 1 reveals that we have essentially proved the 
following: 

L EMMA 2 Let S be a solution on X which satisfi es SC, TS and STJP. Then 
VA E [X] with #(A) :S 3, S (A) = UC(A) . 

The above observation follows by noting that UC(A) depends on the restric
tion of R to A only. 

Note. If in Lemma 1 (or, for that matter , in Lemma 2) , we replace SC by CC 
and E we do not get the desired result as the followi ng example reveals: 

EXAMPLE 4 Let X= {x, y,z} with x =f y =f z =f x . Let S(X) = {x, y} , where 
R = L\(X) U {(y , x) , (y, z), (x, z)}. S satisfies CC , E , TS and ST1P , the last 
two properties being satisfied vacuously. However, UC(X) = {y} =f S(X). Note 
that S does not satisfy SC , since (y ,x) ,(y,z ) E P(R) and yet S(X) =f {y}. 

In Dutta and Laslier (1999) we find the following property for a solution S 
on X: 

Type One Property (T1P): Vx, y,z EX: [(y, x) E P(R), (x , z ) E P(R), 
(z , x ) E I(R)] implies S({x , y,z}) = {x, y,z }. 

Clearly, T1P is weaker than ST1P. In fact, if we replace ST1P by T1P 
in Lemma 1 (or Lemma 2), we do not get the desired result as the following 
example reveals . 

EXAMPLE 5 Let X= {x, y,z} with x =f y =f z =f x . Let S (X ) = {x}, where 
R= L\(X)U{(x , y),(y, z ),(z ,x)}. Clearly, S satisfiesSC, TS , E, CC andT1P 
(all vacuously). However, S violates ST1P, which under the present situation 
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We are now equipped to prove the following theorem: 

THEOREM 4 A solutionS on X is the uncovered solution ·if and only if S satisfies 
SC, TS, STJP, E and Con. 

Proof Proposition 3 tells us that the uncovered solution satisfies all the proper
tics mentioned in the theorem. Hence, let S be a solution on X satisfying SC , 
TS , STIP and Con. Let R E II. By Lemma 2, S(A) = UC(A)\fA E [X ] with 
#(A) :::; 3. Suppose S(A) = UC(A)\f A E [X] with # (A) = 1, ... , m, and let 
B E [X] with #(B) = m + 1. Let x E S(B). Suppose rn + 1 2 4, for otherwise 
there is nothing to prove. Hence, by Con there exists a positive integer K and 

}" y 
non-empty proper subsets B1 , .. . , BK such that fl = U;~ 1 and x E ni~ l S(B;). 
Clearly #(B;) :::; m whenever i E {1 , ... , K}. 

By our induction hypothesis , S(Bi) = UC(B;)Vi E {1 , ... , K} . Thus, x E 
[" 

n;~ 1 UC(B;), and by E, .7.: E UC(B). Thus, S(B) c UC(B) . I3y an exactly 
similar argument with the roles of S an UC interchanged, we get UC( B ) C 
S(B). By a standard ind uction argument , the theorem is established . • 

Note. The above t heorem is not valid without E or Con. 

EXAMPLE 6 Let X = {x,y,z,w} where all of them ar·e distinct . Let S(X) = 
{.1.:}, S(A) =A if#(A) = 3, where R = L1(X) U {( x,y),( y ,z ),(z,w), (w , x), 
(x ,z), (z,x ),(y ,w) , (w , y)}. S satisfies SC , ST1P , TS (vacuously). Further·, 
let A1 = {.1:,y} and A2 = {x,z, w} . x E S(X) andx E S(AI)nS(A2) · FuTther, 
A1 U A2 = X, with A1 CCX and A2 CCX. Tlms , S satisfies Con. However, 
UC(X) = X -:j; {:~; } = S(X). Obser·ve that S does not satisfy E , since y E 

S( {x, y ,z }) n S( {y ,z,w}) butyrf.S(X) . 

EXAMPLE 7 Let X be as above. Let S(X) = {x , y}, S(A) = {x} ifx E A, 
S(A) =A if .r rf. A where R = L1(X) U ({x} X X) U ({y,z,w} X {y,z,w}). 
Clearly, S satisfies SC, ST1P (vacuous ly) , TS and E . ButS does not satisfy 
Con: y E S(X). If we take any finit e number of non-empty proper- Stlbsets of X 
whose union is X, at least one must contain 'x ' and thus its choice set cannot 
contain 'y '. 

5. Choice functions and extensions of rational choice the
ory 

In this section we discuss the implications of the analysis reported in earlier 
sections of this paper, in the context of classical rational choice t heory. 

A choice function (on X) is a function C : [X ] --+ [X] such that: \fA E 
[X ] : C(A) C A. Given a choice function C, the binary relat ion revealed by 
C denoted Rc is defined as follows: Rc = {(.1.:,y)jx E C({x, y})}. Clearly, 
Rc E II. A choice funct ion C is said to be a top-cycle choice function if 
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uncovered choice function if \lA E [X] : C(A) = {x E A/ if y E A then 
(y,x) ¢ _Rc(A)}, where _Rc(A) = {(x,y) E Ax Ajx covers y via Rc in A} . 

A choice function C is said to satisfy: 

Strong Condorcet (SC): if \lA E [X]: [x E A] and [Vy E A\{x}: (x,y) E 
P(Rc)] implies [C(A) = {x }]; 

Expansion Independence (EI): if\IA E [X]: [x E C(A), yEA, (y,z) E Rc] 
implies [x E C(A U { z} )]; 

Existence of an Inessential Alternat ive (EIA): if \lA E [X] with #(A) 2 2 
and \lx E C(A), there exists yEA (possibly depending on A and x) such that 
x E C(A\{y}). 

As a consequence of the analysis reported earlier it follows that: 

THEOREM 5 A choice function C is a top cycle choice function if and only if C 
satisfies SC, EI and EIA. 

A choice function C is said to satisfy: 

Converse Condorcet (CC): if \lA E [X ] and x E A: [Vy E A\{x}: (y,x) E 
P(Rc)] implies [x ¢ C(A)]; 

Weak Existence of an Inessential Alternative (WEI A) : if \1 A E [X ] with 
#(A) 2 4 and \lx E S(A), there exists yEA (possibly depending on A and x) 
such that x E C(A\{y}). 

Since TC satisfies EI A it also saisfies WI EA. In fact we can now prove the 
following: 

THEOREM 6 Let C be any choice function which satisfies SC, CC and WEIA. 
Then, \lA E [X]: C(A) c G(A, T(RciA)). 

THEOREM 7 Let C be any choice functi on which satisfies SC and EIA. Then, 
\lA E [X]: C(A) c G(A, T(RciA)). 

CC is not required once we replace WEIA by EIA. 

A choice function C is said to satisfy: 
Expansion (E): if\IA,B E [X]:C(A)nC(B) c C(AuB). 

The relevant proposition in Moulin (1986) now translates to the following: 

PROPOSITION 4 Let C be any choice function satisfying SC and E. Ij[\1 A E [X] 
with #(A)= 3 we have {x E A/ if yEA then (y,x) ¢ _Rc(A)} C C(A)] then 
[VA E [X]: {x E A/ ify E A then (y,x) ¢ _Rc(A)} c C(A)]. 

A choice function C is said to satisfy: 

Contraction (Con): If \lA E [X] with #(A) 2 4, [.'C E C(A)] implies [there 
exists a positive integer K 2 2 and sets A1 , . .. , AK E [A]\ {A} such that ('i) U 
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A choice function C is said to satisfy: 

Tie Splitting (TS): if\iA,B E [X] with AnB =¢:[Ax B c I(Rc) implies 
C(A u B)= C(A) u C(B)]; 

Strong Type 1 Property (STlP): if \ix, y, z EX: [(y, x) E P(Rc), (x, z) E 
P(Rc), (z,y) E Rc] implies C({x,y,z}) = {.1:,y,z}. 

We now have the following theorem: 

THEOREM 8 A choice function C is an uncovered choice function if and only if 
C satisfies SC, TS, STJP, E and Con. 

The analysis reported in this section reveals the close similarity between 
two distinct approaches to rational choice theory. In the first approach given 
a binary relation which reflects choice between pairs of elements, we try to 
axiomatically characterize solutions in terms of the given binary relation. In 
the second approach the binary relation that we consider is the one revealed 
by the choice set for pairs of elements, and we try to axiomatically characterize 
choice functions, in terms of the revealed binary relation. 
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Appendix 

Here we provide a concise proof of Proposition 1. Let us prove the following 
proposition (and then Proposition 1 follows as a consequence of t his and Obser
vation 2 preceding the statement of Proposition 1): 

PROPOSITION. VA E [X]: UC(A) C TC(A). 

Proof. Clearly the proposition holds for #(A) = 1 or 2. Hence assume that the 
proposition holds for #(A) = 1, ... , ]{ and now let #(A) = J( + 1. Suppose 
x E UC(A). If [Vy E A\{x } : (1:,y) E R] then .'C E TC(A). Hence, suppose 
that there exists y E A\{1:} such that (y,x ) E P(R). Clearly, x E UC(A\{y}). 
By the induction hypothesis x E TC(A\{y} ). If [Vz E A\{v} : (y, z) E P(R)J, 
then UC(A) = {y} , contradicting x E UC(A). Hence, there exists z E A\{v}: 
(z , y) E R . Since z E A\{y} and x E TC(A\{y}) clearly, (x , z ) E T(RIA). Thus 
(x, y) rf T(RIA) . Thus, TC(A). The proposition now follows by induction on 
the cardinality of A. • 


