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Abstract: In this paper, the robust asymptotic stability prob­
lem for a class of nominally stable uncertain singularly perturbed 
systems with multiple non-commensurate time delays is considered. 
A delay-dependent criterion is first proposed in this paper to guar­
antee robust asymptotic stability of the system under consideration. 
Based on this result, the range of allowable bounds of the pertur­
bation matrices preserving the closed-loop stability can easily be 
found. Moreover, a simple criterion is also proposed to guarantee 
asymptotic stability of the nominal system. Furthermore, a simple 
estimation of the stability bound c* is proposed such that the nomi­
nal system is asymptotically stable for any c E (O,c*). It can be seen 
that the stability bound proposed in this paper is less conservative 
than that presented in recent research. Finally, a numerical example 
is provided to illustrate our main results. 
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1. Introduction 

Most of the dynamic systems contain some uncertainties that may arise, to 
name a few, from modeling errors and/or linearization approximation (Phoo­
j aruenchanachai et al., 1998). Moreover, the time-delay factors always exist in 
various engineering systems, such as long transmission lines, electric networks, 
chemical processes, pneumatic systems, or hydraulic systems. Its existence fre­
quently causes the undesirable system responses. Therefore, the robust stability 
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problem of time-delay systems has been a main concern of the researchers over 
the years (Phoojaruenchanachai et al., 1998, Lien et al. , 1998). 

Many physical systems contain some small parameters such as capacitances, 
small time constants, masses, etc. These small parameters tend to increase 
the order of the dynamic systems and thus complicate the system analysis. 
Fortunately, the singular perturbation method provides us with a powerful tool 
for the order reduction and separation of time scales; see, for example, Hsiao et 
al. (1999), Kokotovic et al. (1986), Shi et al. (1998), Xu et al. (1997), and the 
references therein. Shao and Sawan (1993) proposed a robust stability criterion 
for a class of linear time-invariant singularly perturbed systems, which have 
parametric uncertainties bounded by the HcO<o-norm, but in which the time delay 
has not yet been considered and the upper bounds of the perturbation matrices 
depend on specific system matrices. Shao and Rowland (1995) proposed some 
stability criteria for a class of singularly perturbed systems with single time 
delay in the slow states. Moreover, the time delays in the fast states and the 
uncertain perturbation of the system matrices have not been considered. Pan 
et al. (1996) proposed a frequency-domain stability criterion for linear time­
invariant singularly perturbed systems with multiple time delays in which the 
uncertainty was not investigated. Howe~er, the factors of uncertainties and time 
delays do exist in most of the dynamic systems .. Consequently, it is crucial to 
take them into consideration. This is due not only to theoretical interest but 
also to the relevance of this topic for the control engineering applications. 

To the authors ' knowledge, the robust stability problem of nominally stable 
uncertain singularly perturbed systems with multiple non-commensurate time 
delays subject to unstructured perturbations has not yet been well explored. 
Consequently, it is the purpose of this paper to investigate the robust stability 
problem of uncertain multiple time-delay singularly perturbed systems. More­
over, the range of allowable bounds of the perturbation matrices preserving the 
closed-loop stability will be proposed. Furthermore, a simple estimation of t he 
stability bound c-* will be proposed such that the nominal system is asymptot­
ically stable for any c E (0, c-*). It can be shown that the stability bound c-* is 
less conservative than that of Shao and Rowland (1995). 

2. Problem formulation and preliminaries 

First, we define some notation that will be used throughout this paper 

IIAII :=spectral norm of matrix A; IIAII := [>-max(A* A)]112
, 

H(s) E S(C+) := H(s) is analytic in C+, where C+ is the right-half 

s - plane, 

IIH(s)lloo := Hoo-norm of H(s); IIH(s)ll oo = sup IIH(jw)ll· 
wE!lt 

In this paper, we will consider the following uncertain singularly perturbed 
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system with multiple time delays: 

n n 

i:(t) = :2)A1i + .6.A1i)x(t- hi)+ :2)A2i + .6.A2i)z(t- hi), (la) 
i=O 

n n 

c:z(t) = L(A3i + .6.A3i)x(t- hi)+ L(A4i + .6.A4i)z(t- hi), (lb) 
i=O i=O 

x(t) = ~d(t), z(t) = CfJd(t), t E [-T, 0], 

where A1i, A2i, A3i and A4i , are constant matrices with appropriate dimensions , 
h0 = 0, hi are non-negative numbers, T is the maximum of hi , and .6.A1i are the 
perturbation matrices, j E 1:. The positive scalar c: is the singular perturbation 
parameter, which often occurs naturally due to the presence of small parameters 
in various physical systems. 

LEMMA 1 (SHAO AND ROWLAND 1995) If H(s) is ann x n complex matrix, 
H(s) E S(C+), and IIH(s) ll oo ::::; /3, where /3 is a constant and 0::::; /3 < 1, then 
[I- H(s)]-1 E S(C+) with II[I- H(s)]-1ll oo::::; (1- /3)-1. 

LEMMA 2 Suppose that 

where Pi, i E 1:, are constant matrices with appropriate dimensions and IIPill ::::; 
di, di 2: 0. Then we have IIPII::::; IIQII· 

Proof. Let x = [xf xrJT. By the definition of the induced norm, we have 

IIPII = sup 11 [ P1x1 + P2x2 ] 11 llxll=1 P3x1 + P4x2 

= sup {IIP1x1 + P2x2ll2 + IIP3x1 + P4x2 ll 2
}
1/2 

llxll=l 
::::; sup {IIP1II 2IIxlll2 + 2IIP1II ·IIPzll·llx1ll·llx211 + IIPzl l2llx2ll 2 

llxll=l 
+ II P3 11 2 II xl ll 2 + 2IIP311 ·IIP4II·IIx1ll· llxzll + IIP4II2IIxzll 2

}
112 

::::; sup { dillx1ll 2 +2dldz · ll xl ll ·l l xzll+d~l l x2 ll 2 +d~llxl ll 2 +2d3d4 ·llx1ll·llxzll 
llxll=l 

+ d~llxzll 2 } 
= sup [(d1llx1ll + dzllxzll)2 + (d3llx1ll + d411x211)2]112 

llxll=l 

= 11~~~111 [ ~~ ~~ ] . [ ~~~~~~ ] 11 = II QI I· • 
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3. Stability of the uncertain system 

Consider the following nominal system of the uncertain singularly perturbed 
system (1) described as 

n n 

x(t) = L A1ix(t - hi) + L A2iz(t - hi), (2a) 
i=D i=O 

n n 

cz(t) = L A3ix(t - hi)+ L A4iz(t - hi), (2b) 
i=D i=D 

x(t) = ~n(t), z(t) = CfJn(t), t E [- T, O] . 

Let cPn(t) = [x(t)T z(t)TJT. Then, the nominal system (2) can be rewritten as 

n 

~n(t) = L Aic/Jn(t - hi) , (3a) 
i=D 

where 

Ai = [ A~1~E A~i2/E ] . (3b) 

Taking the Laplace transform of (3) , we have 

n -1 

<I>n(s) = (si - L Aie-h;s) cPn(O). 
i=D 

Obviously, the nominal system (2) is asymptotically stable if and only if 

n 1 

(si - L Aie-h,s )- E S(C+)· (4) 
i=O 

Now let c/;a(t) = [x(t)T z(t)TJT, then the uncertain system (1) can be rewritten 
as 

n n 

~a(t) = L Aic/;a(t - hi) + L b.Aic/Ja(t - hi), (Sa) 
i=O i=O 

where 

(5b) 

THEOREM 1 Assume that the nominal system (2) is asymptotically stable for 
c E (0, c*). Then, for a given singular perturbation parameter c =eo E (0, c*) , 
the uncertain system ( 1) is asymptotically stable if 

(6a) 
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where 

(6b) 

with lll:..Ajill oo :S dji and dji, j E 1_, non-negative constants. 

Proof. Taking the Laplace transform of (5a) yields 

n -1 n -1 

<I>d(s) =[I- (si- l:Aie-h's) l:t:..Aie-h's] 
i=O i=O 

n 1 

(si- '2:: Aie-h,s)- </Jd(O). 
i=O 

According to (5b), (6b), Lemma 2, and the fact that ll l:..Aie-h'slloo = lll:..Ailloo 
(Shao and Rowland 1995), we obtain 

Due to ( 6a) and Lemma 1, we have 

Moreover, since the nominal system (2) is asymptotically stable, we obtain 

n 1 

(si- l:Aie- "' 8r E s(c+) 
i=O 

in view of (4). Consequently, we have <I>d(s) E S(C+), i.e., the uncertain singu­
larly perturbed system (1) is asymptotically stable. This completes our proof . 

• 
4. Stability of the nominal system 

In Theorem 1, it is required that the nominal system be asymptotically stable. 
In this section, we propose a simple criterion to guarantee the stability of the 
nominal system (2). In this section, A40 is assumed to be Hurwitz. 
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The slow and fast subsystems of the nominal system (2) are first derived as 
follows. By setting E = 0, the slow subsystem of (2) is obtained as 

n n 

X8 (t) = L A1;X 8 (t - h;) + L A2;Z8 (t- h;), (7a) 
i=O i=O 

n n 

0 = L A3;X8 (t- h;) + L A4;Z8 (t- h;), (7b) 
i=O i=O 

where x8 (t) and z8 (t) are the slow components of x(t) and z(t), respectively. 
Taking the Laplace transform of (7) and letting 

n 

Ajn(s) = l:Aj;e-h;s, j E 1:, (8) 
i=O 

we obtain 

Z 8 (s) = - A4,;(s)A3n(s)Xs(s), Xs(s) = Ms(s)xs(O), (9a) 

where 

(9b) 

Let ZJ(t) = z(t) - z8 (t) and x(t) = X8 (t). Note that the slow varying state 
zs(t) is almost constant with respect to the fast state ZJ(t) . Thus, we have 
ij(t)+is(t) ~ iJ(t). Consequently, according to (7b), (2b) can be approximated 
by 

n 

cit(t) = I: A4;z J(t- h;) . (10) 
i=O 

Hence the dynamics of the fast subsystem (10) is independent of the slow varying 
states x 8 (t) and z8 (t). Taking the Laplace transform of (10) yields 

(11) 

LEMMA 3 Assume 
n 

ii(si - A4o)-l ll oo ·11 LA4;e-h;slloo = A< 1. 
,=1 

(12) 

Then we have 

(a) A4,; ( s) E S ( C +). 
(b) The fast subsystem ( 10) is asymptotically stable for all E > 0. 

(c) [si- A4n(s)]- 1 E S(C+)· (13) 
(d) The slow subsystem (7) is asymptotically stable if 

113( s) I loo < 1, (14a) 
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where 

Proof. (a) Making use of (8), we obtain 

n -1 

A4~(s)= (I+A40
1 LA4;e-"'•) ·A40

1
. 

i=l 

Owing to (12) , we have 

n n 

IIA4o
1 L A4;e-h,s ll oo :S ll (si - A4o)-

1
lloo · 11 L A4;e-"' •l loo < 1. 

t=l t= l 

By virtue of Lemma 1, we have (I +A4l 2::~ 1 A4;e-h's )- 1 E S(C+)· Hence we 
get A4~(s) E S(C+) · 

(b) Based on ( 11), we have 

Mt(s ,c:) = [c:si- A4n(s)] - 1 

n -1 

= [I- (c:si- A4o)- 1 
( L A4;e-h,s) J (c:si- A40)-1

. 

i=1 

Since A4o is Hurwitz and ll(c:si- A4o)- 1 lloo = ll(si -A4o)- 1 ll oo, from Lemma 1 
and (12), we obtain 

n -1 

(c:si- A4o)- 1 E S(C+), [I- (c:si- A4o)- 1 (LA4;e-h;• )] E S(C+) , 
i =1 

with 

n 

III- (c:si- A4o)- 1 LA4;e-h's ll oo:::; (1- .A)-1
. 

t=1 

Hence we obtain M1(s , c:) E S(C+) for all c: > 0. 
(c) The result follows immediately from part (b) by setting c: = 1. 
(d) From (9b) , we have 

(15) 

According to Lemma 1, if the inequality (14a) holds, then [I- 3(s )]- 1 E S( C+ ). 
Moreover, [si- A4n(s)]- 1 E S(C+) in view of (13). Consequently, we have 
M 8 (s) E S(C+) · By the result of part (a), we have A4,~(s) E S(C+)· This 
shows that the slow subsystem (7) is asymptotically stable in view of (7), (8), 
and (9). • 
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LEMMA 4 (Pan et al., 1996) Suppose that the slow subsystem {1) is asymptoti­
cally stable and {12) holds. Then the nominal system {2) is asymptotically stable 
if 

(16a) 

where 

THEOREM 2 Suppose that the slow subsystem {1) is asymptotically stable and 
{12) holds. Then the nominal system {2) is asymptotically stable for any c E 
(0, c*), where 

1->. 
c* = ll sM.(s)A2n(s)A4,;(s)l loo li( si - A4o) - 1ll oo iiA3n(s) ll oo. (

17
) 

Proof. By Lemma 3, we have M 5 (s), A4,;(s), [csl- A4n(s)]-1 E S(C+)· Using 
(16b), we obtain 

IIHl(s,c)l loo 
:::; cllsMs(s)A2n(s)A4,;(s)ilooll[csl- A4n(s)]-1lloo ii A3n(s)iloo· (18) 

As a consequence of (8), (15) , and the fact that ll (csl- A4o)-1lloo = ii (sl­
A4o)-1il=, we get 

(19) 

Consequently, as a result of (17) , (18), and (19), if c < c*, then we have 

IIH1(s, c) li= 

:::; 
1 
~A ii sMs(s)A2n(s)A4,;(s)ii=i i(si - A4o) - 1ii= II A3n(s) il = < 1. 

Hence the nominal system (2) is asymptotically stable according to Lemma 4.• 

REMARK 1 Consider the special system with a single time delay {Shao and Row­
land 1995) described in our notation as 

x(t) = A10x(t) + Anx(t- h1) + A2oz(t), 

ci(t) = A3ox(t) + A31x(t- hl) + A4oz(t). 

By Theorem 1.2 in Shao and Rowland {1995) , the stability bound ci is given by 

c~ = [ii( sl - A4o)-1il= · (IIA3olloo + II A31 II=) · iisMs(s) ii = 

·IIA2oA4o1 il= l-\ 
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where 

Ms(s) =[si - (A10 - A2oA4"0
1A3o)- (An - A2oA40

1A31) · e-h1 s]- 1. 

Since A in (12) is zero, it is clear that (12) is trivially satisfied. By Theorem 2 
of this paper, the stability bound .::2 is given by 

Since 

ll sMs(s)A2oA4o1ll ooll(sJ - A4o)-1ll oo ii (A3o + A31e-h18 ) ll oo 

~ ll sMs(s) ll oo ii A2oA4o1ll oo ll(sJ- A4o)-1ll oo( IIA3o ll oo + II A31e-h1 slloo) 

= ll sMs(s) ll oo ii A2oA4o1ll oo ll(sJ- A4o)-1ll oo( II A3o ll oo + II A31 IIoo), 

We have .::i ~ .::2. Hence, the result of our Theorem 2 is less conservative than 
Theorem 1.2 in Shao and Rowland (1995). 

REMARK 2 The utility of our results is stated as follows . First, we may use 
Theorem 2 to obtain an .::* -bound for the stability of the nominal system (2). 
Then we may use Theorem 1 to check the stability of the uncertain system (1). 

5. Numerical example 

Consider the following uncertain time-delay singularly perturbed system: 

2 2 

x(t) = 2:)A1i + ~A1i)x(t - hi) + 2:)A2i + ~A2i)z(t- hi), (20a) 
i=O i=O 

2 2 

ci(t) = 2__)A3i + ~A3i)x(t - hi)+ 2:)A4i + ~A4i)z(t - hi), (20b) 
i=O i=O 

where 

A10 = [ ~~66 ~:~ ] , Au = [ =~:~ ~i~2 ] , A12 = [ ~~23 =~:~ ] , 
A2o = [ -02.6.5 -1.5 ] A - [ -0.7 0.8 ] A - [ 0.5 -0.7 ] 

0.7 ' 21 - 0.3 - 0.5 ' 22 - 0.2 1.2 ' 

A3o = [ ~~38 =~:~ ] ' A31 = [ ~~32 !i\ ] ' A32 = [ ~\3 !0~4 ] ' 

A [ -4.6 -1.5 ] A [ - 0.6 0.5 ] A [ - 0.4 -0.5 ] 40 = 1.2 -2.5 ' 41 = - 0.3 0.2 , 42 = 0.2 -0.8 ' 

(x1(0), X1(T)) = (x2(0) , X2(T)) = (z1(0), Z1(T)) = (z2(0), z2(T)) = (2, 0), 

T E [-0.15 , 0), ho = 0, h1 = 0.1 , h2 = 0.15. 
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Since 

2 

A= ll(sJ- A4o)-1lloo ·11 LA4ie-h'slloo = 0.5480, ll2(s)lloo = 0.6726 
t=l 

the inequalities (12) and (14a) are satisfied. By Theorem 2, the stability bound 
of the nominal system is given by c:* = 0.2418. Moreover, the perturbation 
bound in ( 6a) is given by 

(21) 

Suppose the singular perturbation parameter of uncertain system (20) is given 
by c: 0 = 0.2316. According to Theorem 1, the uncertain system (20) is asymp­
totically stable if upper bounds of the perturbation matrices dji, j E 1_, satisfy 
the inequality (6a). For instance, suppose the perturbation matrices are given 
by 

[ 
-0.02 

l:..A10 = -0.03 

[ 
-0.03 

l:..A 12 = 0.02 

[ 
-0.02 

l:..A21 = 0.02 

[ 
-0.01 

l:..A3o = -0.01 

[ 
-0.02 

l:..A32 = -0.01 

[ 
-0.01 

l:..A41 = -0.01 

Then we have 

0.01 ] l:..A [ -0.06 0.02 ] 
0.01 ' 11 = -0.02 0.02 ' 

-0.02 ] [ -0.03 -0.01 ] 
-0.02 ' l:..A20 = -0.01 -0.02 ' 

0.01 ] l:..A [ 0.02 -0.01 ] 
-0.02 ' 22 = 0.02 -0.03 ' 

-0.03 ] l:..A [ -0.02 0.01 ] 
-0.01 ' 31 = 0.01 -0.02 ' 

0.03 ] l:..A [ -0.03 -0.02 ] 
-0.02 ' 40 = 0.02 -0.03 ' 

0.01 ] [ -0.01 -0.03 ] 
0.02 ' l:..A42 = 0.02 -0.02 . 

llt:..A10IIoo = 0.0396, 

lll:..Aulloo = 0.0683, 

lll:..Adloo = 0.0370, 

lll:..A4olloo = 0.0361, 

lll:..A2olloo = 0.0362, 

lll:..A21IIoo = 0.0356, 

lll:..A22IIoo = 0.0413, 

lll:..A41IIoo = 0.0230, 

lll:..A3o lloo = 0.0341, 

lll:..A31IIoo = 0.0300, 

lll:..A32IIoo = 0.0383, 

lll:..A4zlloo = 0.0362, 

Choose dji = lll:..Ajilloo, j E 1_, i E 2. From (6b), we have 

2 

L IIDilloo = 0.6352. 
i=O 

(22) 
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As a result of (21) and (22), the inequality (6a) holds and hence the uncertain 
system (20) is asymptotically stable. For c:0 = 0.2316, the time responses of 
system (20) are depicted in Fig. 1. 

x
1 
(t);x1 (t}, z

1 
(t },z2 (t) 

3 

-1 

-2 

-3 L---~L---~----~-----L-----L----~----~--~ 

0 1 2 3 4 5 6 7 t 8 

Figure 1. Time responses of system (20) for eo = 0.2316 

6. Conclusions 

A delay-dependent criterion has been proposed in this paper to guarantee the 
robust stability of a class of nominally stable uncertain singularly perturbed 
systems with multiple non-commensurate time delays. Based on this result , the 
range of allowable bounds of the perturbation matrices preserving the closed­
loop stability can easily be found. Furthermore, a simple estimation of the 
stability bound c:* has also been proposed such that the nominal system is 
asymptotically stable for any c E (0, c:*). We have shown that the stability 
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bound c* is less conservative than that of Shao and Rowland (1995). A numer­
ical example has been provided to illustrate our main results. It is not clear 
whether our results can be immediately extended to singularly perturbed sys­
tems with distributed delays or time-varying delays. For these systems, some 
other methodologies might be needed. These constitute interesting future re­
search topics. 
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