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Abstract : We consider the optimization of the actuator problem 
for a Bernoulli-Euler beam. By using Riesz basis theory, we show, 
at high frequencies, that the optimal location of the actuator is t he 
middle of the beam. 
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1. Introduction 

In t his paper we st udy the opt imal location of the actuator for the pointwise 
stabilization of Bernoulli- Euler beam modelling the vibrations of a beam wit h 
pointwise damping. More precisely we consider the following initial and bound
ary value problem: 

a2n . a4
tt , . an t _ 

J;} 2 (.T , t) + "'> .Jr, t ) + !:)( ._, , t) D~ - 0, 0 <X< 7r , t > 0, 
ut OX ut 

azn 
n(O,t) = ax2 (0,t) = 0, t > 0, 

an a3 ·u 
~(7r ,t) = j;} 3(7r ,t) = 0, t > 0, 
ux ux 

an 
-u(x, 0) = n°(x), !:\(x, 0) = n1(x), 0 < x < 1r, 

ut 

(1.1 ) 

(1. 2) 

(1.3) 

(1.4) 

where 8E. is t he Dirac mass concentrated at the point~ E (0, 1r) . Simple calc:l.t
lations show that (1.1) is equivalent to the equations modelling the vibrations 
of two beams with a dissipative ioint. 
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The problem of finding the optimal decay rate for systems with distributed 
interior damping is difficult and in general has not fou nd a complete answer. We 
refer to S. Cox and E . Zuazua (1994, 1995), P. Freitas (1999) and to references 
therein. The novelty brought in by this paper is that we give, at high frequencies, 
the opt imal location of the actuator. More precisely, we show that the fastest 
exponentia l decay rate is obtained if the actuator is located the middle of the 
beam. A similar problem for a string was studied in K. Ammari, A. Henrot and 
M. Tucsnak (2000). One of the main ingredients of the proof is a result showing 
that the generalized eigenfunctions of the associated dissipat ive opera tor form 
a Riesz basis in the energy space. 

The paper is organized as follows. In t he next section we give precise state
ments of the main results. Section 3 contains some technical results needed in 
t he following sections. In Section 4 we give the proof of the main result . The 
last section is devoted to a remark for optimizing the location of the actuator 
in t he case of low frequencies. 

2. Statement of the main result 

If v, is a solution of (1.1)- (1.4) we define the energy of v, at inst ant t by 

1 r (1 8 12 I ·j2 12) E(n(t)) = 2 Jo 8~· (:r, t) + ~x~ (.1:, t) d:r . (2.1) 

Simple formal calculations show that a sufficiently smooth solution of (1.1)- (1.4) 
satisfies the energy estimate 

t 18 12 E(n(O))- E('U(t) ) = .fo 8~ (~, s) ds, v t 2:: 0. (2 .2) 

We check that equations (1.1)- (1.4) arc well posed in the space V x L2 (0, 1r) 
where 

V = { ¢ E H 2 (0,1r)ld¢(1r ) = (P(O) = o} . 
d.T 

Let n0 be fixed and sufficiently large. Introduce the notation 

Xno = { (n, v) = L O. n F ,\ ,. E v X L2 (0, 7r), O.n E l2
, a, = 0, Vn:::; no}, 

nE N 

where F;... ,. is defined by (3 .6). 

The uniform stability result is given in t he proposition below. This result 
was proved inK. Ammari and M. Tucsnak (2000) and R. Rcbarbcr (1995). 

PROPOSITION 2.1 The systcrn descTibcd by ( 1.1) - ( 1.4) is e:rponentially stable in 
V x L2 (0,1r) if and only if ~ is a rational number with copTime fa ctoTization 

7r 
p wheTe p is odd. 
q' 

(2.3) 
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In order to state the result on the optimal location of the actuator, we define 
the decay rate, as function of ~, as 

w1(0 = inf{wl there exists C = C(w) > 0 such that 

E(u(t)) :S C(w)e2
wt E(u(O)), 

for every solution of (1.1) - (1.4) with initial data in V x L2 (0,1r)}, (2.4) 

w2(0 = inf{wl there exists C = C(w) > 0 such that 

E(u(t))::; C(w)e2
w

1E(u(O)),] 

for every solution of (1.1 )- (1.4) with initial data in X110 }, ( 2-[j) 

where E(v.(t)) is defined by (2.1). Our main result on the optimal location of 
the actuator is 

THEOREM 2.2 1. If no is sufficiently large, then the inequalityw2(0 2': w2(~) = 
- ~ holds tTue joT any ~ E (0, 1r). In other words, for no sufficiently large, 
the fastest decay mte of the solutions of (1.1)-(1.4) with initial data in Xno 28 

obtained if the actuator is located in the middle of the beam. 
2. The inequality w1 ( 0 2': - ~ holds true faT any ~ E ( 0, 1r). 

3. Some technical results 

Take the following rotations 

Y = [H3 (0,1r) n H4 (0, 0 n H 4 (C 1r)] x H2 (0,1r), 

V(A) = {(u, v) E Y, u(O) = v(O) = 0, dd~ (1r) = ddv (1r) = 0, 
.T .X 

d2
tl d3u d3 ·rt d3

1t } 
-d 2 (0) = -d 3 (7r) = 0, -d 3 (~+)- -d .3 (~ -) = -v(O . 

X X X X 

Consider the unbounded linear operators: 

A: V(A)---+ V x L2 (0,1r), A (u) = ( d4u v ) 
v - dx4 - v(08~ 

where V(A) is defined in (3.2), 
and 

where 

V(Ac) = { (u, v) E H 4 (0, 1r) x 112 (0, 1r), u(O) = v(O) = 0, 

dl , d11 d2
" G[

3
o. } 

~(7r) = -(7r) = 0, -l ~ (0) = -~ : (7r) = 0 . 
d.1: dx c :r;- c.:.c 

(3.1) 

(3.2) 

(3 .3 ) 

(3.4) 
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First we give the following characterization of the eigenvalues and eigen
functions of A. This result is not stated nor proved in K. Ammari and M. Tuc
snak ( 2000). 

LEMMA 3.1 A complex number ). = ir2 , T = re;e, with r > 0, () E [- ~, 0], zs 
an eigenvalue of A if and only if 

-2TCh(nr) cos(nr)- i [-ch[r(~- 7r)Jsh(r~) cos(nr) 

+ ch(nr) cos[r(Jr- OJ sin(rOJ = 0. 

Moreover, the corresponding eigenfunction p_, is g-iven by 

where 

F ( ) - ( t¢>-(.7:)) 
" .7: - 4>>-(x) ' 

-ch[r( Jr -OJ cos( nr )sh( rx) 
+ch(nr) cos [r(Jr- OJ sin(rx), 
-sh(rO cos(nr)ch[r(Jr- x)]+ 
ch(nr) sin(r~) cos[r(Jr- :r)], 

(3.5) 

(3.6) 

(3.7) 

The following two propositions concern the spectrum of the operator A de
fined in (3.3). 

PROPOSITION 3.2 There is a family of eigenval-ues>., = i r~ of A for all suffi
ciently large positive integer n, satisfying the following asymptotic expression 

. 2 ( 2n - 1 ) ( 1 ) Re>.n = - Slll -2-~ + 0 ;:; · 

Before stating the second proposition we recall that a Riesz basis in a Hilbert 
space is, by definition, isomorphic to an orthonormal basis*. 

PROPOSITION 3.3 For an arbitrary~ E (0, 7r), the generalized eigenfunctions of 
A foTm a Riesz basis in V x L2(0, 7r). 

Proof of Proposition 3.2. It is easily verified that Ac is a skew-adjoint oper
ator in V x L2 (0,7r) with compact resolvent. We see that 

We write a characteristic equation (3.5), in a small neighborhood of 2
" 2-

1 

cos( T7r) = _!:_ [~cos( T7r) - cos[r( 7f - OJ sin( ro] + 0( e-" R eT). (3.8) 
2r 2 

* Let (un)n>O be an orthonormal basis in the Hi lbert space H, and let (v,)n>O C H. If 
there exists an isomorphism T from H onto H such that T(-un) = Vn, Vn 2: 0, thet1 ( Vn ) 11 >o 
is a Ricsz basis in H. -
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Applying Roucl1e's Theorem, we obtain that 

2n- 1 ( 1) Tn= --
2
-+0 ; (3.9) 

is a solution of (3.8). 
Substituting (3 .9) into (3.8), we find 

0 - = --Sltl --~ +0 -( 
1 ) i . 2 ( 2n - 1 ) ( 1 ) 
n 2n- 1 2 n 2 

and so 

_ . 2 _ . 2n - 1 . 2 2n - 1 c 1 
( ) 2 ( ) ( ) An- ZTn- Z --

2
- - Slll --

2
- <, + 0 ; . (3.10) 

This is achieves the proof. • 
Before giving the proof of Proposition 3.3, we need a technical lemma on Riesz 
basis generation for discrete operators in general Hilbert spaces. This lemma 
was proved in (B. Z. Guo and K Y. Chan , 2001, Theorem 2] (see e.g. , B. Rao, 
1997). 

LEMMA 3.4 Let { ~n, c }o be a Riesz basis in V x L2 (0 , 1r). If there are anN 2: 0 

and an w-linearly independentt subset of generalized eigenfunctions {;rin}N+l 
of A corresponding to Pn}N+l' where An is as in (3.10), such that 

00 

L ll~n ,c - ;j'inll~ x £2 (0 , 7r ) < 00, 

N+l 

then there are genemlized eigenfunctions {;rin}b" of A corresponding to {A,}b" 
such that {;rin}o forms a Riesz basis in V x L2 (0, 1r). Hence, CT(A) = {An, .\n}o 
counting algebraic multiplicity. Therefore An are algebraic simple for sufficiently 
large n as that they are distinct for sufficiently lmye n. 

REMARK 3.5 According to the preceding lemma, we remark in particular that 
except for at most a finit e set, all {An , >-n} determined by (3.10) consist of all 
eigenvalues of A. 

Proof of Proposition 3.3. A similar result , for a slightly different situation, 
was obtained in (B. Z. Guo and K Y. Chan, 2001, Theorem 4). But for the 
sake of completness we give a proof. 

t Let (gj )j"2:0 be a sequence of vectors in the Hilbert space H. Then, (gj )j "2: 0 is said to be w

linearly independent, if t he equality 2: ·>o Cj9j = 0 is impossible for 0 < 2: ·>o lei l2 llgj 1171 < oo. 
) _ ] _ 
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Let An = ·iT,~, T, = 2
"2-

1 + 0(~), for sufficiently la rge positive integer n, be an 
eigenvalue of A. Then the corresponding eigenfunction ( -}-- ¢ 11 , cjJ 11 ), where¢, is 
given by (3.7) with T = T,, has the following asymptotic ;xpression 

(3.11) 

Vx E (0 ,~) U (~,1r). 
We see that (3.11) is also valid for Tn = 2

" 2-
1

. Let 

<I> = ( 1.L ¢n,c) <J> = ( :,~ ~n ,c ) 
n,c ¢n,,c ' n,c r/>n, c 

be the eigenfunction of Ac corresponding to J.l.n = -ie"2-
1 

)
2 and ll, = -ie"2-

1 
)

2
, 

where ¢n,c is given by (3.7) with T = 2"2- l , ~n, c is the conjugate of ¢n,c· Then 
¢n,c satisfies (3.11 ). The set of eigenfunctions of Ac is { <I>n,c, <l>,,c}o . 
Since Ac is skew-adjoint in V x L2 (0, 1r) and its resolvent is compact, each eigen
value of Ac is geometrically simple and hence algebraically simple. We know that 
{ <I>,,c, <I>n,c}o fonns an orthogonal basis in V x L2 (0, 1r). From (3.11) and Propo-

sit ion 3.2 t here are an N > 0 and a family of eigenfunctions Wn = ( }¢~") of 

A corresponding to An= iT,~, r., being determined by (3.9), satisfying 

"' {II -r,rr,T, - 2".;-, rr;r,. 11 2 6 e '~'n- e - 'l.'n ,c Vx£2(0 ,1r) 

n>N 

II -f, 7r ,'j', - 2n.;- 11l' ,1~ 112 } + e '~'n- e - 'l.'n ,c Vx£2(0,rr) < 00 · 

....... 2n - 1 -::::::- 2n.- I -

Thus, since {<I>n,c = e----:r-rr<I>,,c , <I>n,c = e--2-1l'<I>n,c}o is a Ricsz basis in 
V x L2 (0, 1r ), then according to Lemma 3.4 , there arc generalized eigenfunctions 
{;r;, = e-Tn7ri!J,}~ of A such that {;r;, = e-r,rrw,,}0 forms a Riesz basis in 
V X £ 2 (0, 1r). • 

4. Proof of Theorem 2.2 

To prove Theorem 2.2 we need the following lemma: 

L EMMA 4.1 For any~ E (0, 1r) satisfying (2 .3), we have 

I (2n-1 )1 2 
1 sin -2- ~ ~ 2, \InEZ. ( 4.1 ) 



Optinml location of actuator for stab ilization of a Bernoull i- Eule r beam 63 

Proof. Since ~ sat isfies (2.3), ~ = ~ , where p is odd. Then, if j is integer 

. 2 (2n- 1 c . ) . 2 (p(2n- 1) ) sm --.,- J7r = sm 1r . 
2 2q 

Note that 

l
p_(-'-

2
-n-- _

1
_) 1r- j1r l = .!!..._ !p(2n -1)- 2qjl2 .!!..._. 

2q 2q 2q 
(4.2) 

The last inequality follows from the fact that p(2n - 1) is odd and 2qj is even. 
Therefore , the inequality ( 4.2) is optimal, i.e., 

mf Ir-Jir =-. . {l p(2n -1) · I} 1r 
jEZ,nEZ,pEN* 2q 2q 

(4.3) 

Suppose now that ( 4.1) is not true. Then, there exists n E Z such that 

I 

. (2n- 1 ) 1

2 

1 sm -2- ~ > 2' (4.4) 

so there exists j E Z such that 

According to ( 4.3) we deduce that % < fri, this implies q < 2 which shows that 
( 4.4) cannot be true and end the proof of the lemma. • 

By Proposition 3.2 we have 

'tiE. > 0, 3no E N, such that 

( 
2n - 1 ) ( 2n - 1 ) V!n! > no , - E. - sin2 
-

2
- ~ :::; Re>..n :::; c:- sin2 

-
2
- ~ . (4.5) 

Thus , for an arbitrary ~ E (0, 1r) such that ~ is a rational number with coprime 

factorization and ~ = ~,where pis odd, by Lemma 4.1 there exists an eigenvalue 

An of A such that R e An 2 -~ - c: . If we consider the solution of (1.1)-(1.4) 
with initial data 

where F;,n is an eigenfunction corresponding to t he eigenvalue An , we obviously 
get 
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so 

1 
w;(O 2:-2- c, Vi= 1,2, Vc > 0, v~ E (0,1f), satisfying (2.3). 

Then, 

1 
w;(O 2: -2, Vi= 1, 2, v~ E (0,1f), satisfying (2 .3). ( 4.6) 

On the other hand, for~= ~ , by ( 4.5) the eigenvalues An of A are such that 
R e An :=:; - ~ + E for sufficiently large integer n. We know from Proposition 3.3 

that the generali:wd eigenfunctions ;:[;n of A form a Riesz basis in V x L2 (0, 7r). 
Using this fact and Lemma 3.4 we obtain that , for initial data 

( ~~) = I>n;:[;n = L an;:[;"' (an) C l2 (C) a nd an= 0, Vn :S no, 
nEN n>no 

where no is a positive integer sufficiently large , the solution 

( 
u(t)) "' ,\ 1 ~ u'(t) = 6 ane n Wn, 

n>no 

of ( 1.1 )- ( 1.4) satisfies the estimate 

E(u(t)) :=:; C'e( -1+2<)t E(u(O)), Vt 2: 0, 

where C is a positive constant. It follows that 

Then, 

1 
< -- +c - 2 , 

1 
< -- 2' 

Vc > 0. 

Inequalities (4.6) and (4.7) give the conclusion of the t heorem. 

(4 .7) 

• 
5. Remark on optimal location of the actuat or at low fre-

quencies 

In order to see what happens in the case of pointwise stabilization at low fre
quencies of a Bernoulli-Euler beam one can make some numerical experiments. 
As an example we calculate the energy of numerical solution of problem (1.1) 
(1.4) given by finite difference discretisation . Figure 1 shows the energy of 
this numerical solution with pointwise damping concentrated in three differents 
points: 

6 = -fu (line 1.), 6 = ~ (line 2.), a nd 6 = 2
; (line 3.). We see that the fast est 
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decay rate of the energy is obtained with pointwise damping concentrated in 
the middle of the beam ( 6 = 7f). This results allows us to expect the same 
results as in previous sections a~1d the optimal location of t he actuator at low 
frequencies is also t he middle of the beam. 

3. 

6 l. 

4 
2. 

2 

oL-~~~~~~==~~~~~ 
0 20 40 60 80 100 120 

number of iterations 

Figure 1. Energy of numerical solution 

A related question 

A ques tion related to t he problem studied in t his paper is the optimal location 
of the actuator for the pointwise stabilization at high frequencies of a Bernoulli
Euler beam with moment feedback (sec R. Rebarber 1995 , for an appropriate 
model). 

References 

AMMAIU, K. and TUCSNAK , M. (2000) Stabilization of the Bernoulli- Euler 
beams by means of a pointwise feedback force. S'IAM . .!. Contml. Optim, 
39, 1160- 1181. 

AMMARl , K. , HENROT, A. and T UCSNA l<. M. (2000) Optimal location of the 
act uator for the pointwise stabilization of a st ring. C. R . Acad. S'ci. Pa1"is, 
S'c1·ie I Math ., 330, 275- 280. 

Guo , B.Z. and C HAN, I<:.Y. (2001 ) H.iesz basis generation , eigenvalues distri
bution , and exponentia l stability for a. Euler- Bernoulli beams with joint 
feedback control. Rev. Mat. Complut, 14. 



66 K. Alv!MARI, A. SAID! 

Cox, S . and ZUAZUA, E. (1995) The rate at which energy Decays in a string 
damped at one end . Indiana Univ. Math. J., 44 , 545- 573 . 

Cox, S. and ZUAZUA , E. (Hl94) The ra te at which energy decays iu a damped 
string. Comm. PaTtia.l DiffeTential Equations , 19, 213- 243. 

FREITAS , P. (1999) Optimizing the rate of decay of solutions of the wave equa
tion using genet ic a lgorithms: a counterexample to the constant clamping 
conjecture. SIAM J. Control Optim, 37 , 376- 387. 

RAO , B. (1997) Optimal energy decay rate iu the Rayleigh beam equation. 
Optimization Methods in PaTtial d~ffeTeniial Equations (Cox and Lasiecka, 
Eels), Contemporary Mathematics, Vol 209, 21 1- 229. 

REBARBER, R . (1995) Exponential stability of beams with dissipative joints: a 
frequency approach. SIAM. J. Control. Optim. , 33, 1-- 28. 


