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Abstract: The transfer matrix 7(s) = C[[,s — A]_l B of a
linear system @ = Az + Bu., y = Cx can be always written in
the standard form T(s) = P(s)/d(s), where P(s) is the polyno-
mial matrix and d(s) is the minimal common denominator. The
irreducible transfer matrix is called normal if every nonzero sec-
ond order minor of P(s) is divisible by d(s). It is shown that
for an unnormal transfer matrix of the controllable system there
exists a state-feedback gain matrix K such that the closed-loop
system transfer matrix T(s) = C[I,,s — (A + BK)]_1 B is normal.
In the case of the output-feedback the closed-loop transfer matrix
To(s) = C[Ins — (A+ BFC)]™' B can be made normal only if the
system is controllable and observable.
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1. Introduction

Lampe and Rosenwasser (2000), Rosenwasser and Lampe (2000) investigated the
relationships between the time-domain description and the frequency-domain
description. They have shown, for example, that if the normal transfer matrix
is written in the standard form T'(s) = P(s)/d(s) (d(s) is the minimal common
denominator), then every second order nonzero minor of P(s) is divisible by
d(s). It was shown in Rosenwasser and Lampe (2000) that cyclic matrices
are structurally stable, i.e. if the matrix A € R"™" is cyclic (the minimal
polynomial is equal to the characteristic polynomial) and Ag € R"*" is an
arbitrary matrix, there exists a positive number ep such that for all |e] < g¢ the
matrix A + A4y is cyclic. Some implications of this approach for the electrical
circuits have been discussed in Kaczorek (2001). The main subject of this paper
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is to show that for an unnormal transfer matrix of the controllable system
there exists a state-feedback gain matrix K such that the closed-loop system
transfer matrix T,(s) = C [[,,s — (A + BK))™ B is normal. The normalization
of transfer matrix by output-feedbacks will be also considered.

2. Preliminaries

Let R™*™ be the set of m x n real matrices and R" := R"*! .
Consider the linear continuous-time system

&= Az + Bu (la)
y=Cx (1b)

where = z(t) € R" is the state vector, u = u(t) € R™ and y = y(t) € R?
are the input and output vectors, respectively, and A € R"*", B € R"*™,
C € RP*". 1t is assumed that rank B = m and rank C' = p.

The transfer matrix of the system (1) is given by

T(s) = C[l.s — A]"' B (2)
which can be written in the standard form
_ P ,

where P € RP*™[s], RP*™[s] is the set of p x m polynomial matrices and d(s)
is the minimal common denominator of all entries of T(s).

In what follows the following elementary row or column operations will be
used, see Gantmacher (1959), Kaczorek (1992-1993).

1. Multiplication of any row (column) by any nonzero number (scalar).

2. Addition of any row (column) multiplied by a polynomial to another row

(column).

3. Interchange of any rows (columns).
Using elementary row and column operations we may transform any polyno-
mial matrix P € RP*™[s] to its Smith canonical form, see Gantmacher (1959),
Kailath (1980)

Ps(s) = diag ir(s), i2(s), .-, in(5),0, .., 0] € RP*™g] (4)
where #;(s),...,i,(s) are monic invariant polynomials satisfying the divisibility
condition ix41(8) | ik(s), i.e. igq1(s) is divisible with zero remainder by ix(s).
k=1,...,7—1 and r = rank P(s).

The invariant polynomials can be determined by the relation

Ds
ik(s)=#ﬁl) (Do(s) =1), k=1,..,7 (5)

where D(s) is the greatest common divisor of all the k& x & minors of P(s).
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The characteristic polynomial ¢(s) = det [[,,s — 4] of the matrix 4 € R"*"
and its minimal polynomial ¥(s) are related by Gantmacher (1959).

- P .

V(s) = Doa(3)’ (6)
From (4)-(6) it follows that ¥(s) = ¢(s) if and only if

Dl(b‘) = DQ(S) == D,,_l(s) = (7)

A matrix A € R"*" satisfying (7) (or equivalently ¥(s) = ¢(s)) is called cyclic.

In what follows the following terminology will be used, see Lampe and Rosen-
wasser (2000), Rosenwasser and Lampe (2000).

A full rank polynomial matrix A(s) € R™*"[s], rank A(s) = min(m,n) is
called latent if at least one of its invariant polynomials is non-unity and it is
called alatent if all its invariant polynomials are equal to 1.

A pair A(s) € R"*"[s], B(s) € R"*™[s] is called irreducible if the corre-
sponding augmented matrix

[A(S),B(S)] = Rnx(n-{—m)[sl
is alatent or equivalently if
rank [A(s), B(s)] = n for all s € C (the field of complex numbers)  (8)

A polynomial matrix is called simple if only one of its invariant polynomials is
not equal to 1. A matrix A € R™*™ is called cyclic if the polynomial matrix
[I,s — A] is simple.

Matrices A € R"™*", B € R™*™, C € RP*™ satisfying (2) are called a re-
alisation of a given T'(s) € RP*™(s). The realisation is called minimal if the
matrix A has minimal dimension amongst all realisation of T'(s). The realisa-
tion is minimal if and only if the pair (A4, B) is controllable and the pair (4, C)
is observable, see Kailath (1980), Kaczorek (1992-1993). A minimal realisation
with a cyclic matrix A is called simple (Lampe and Rosenwasser, 2000, Rosen-
wasser and Lampe, 2000). The irreducible matrix (3) with min(m,p) > 1 is
called normal (Lampe and Rosenwasser, 2000, Rosenwasser and Lampe, 2000)
if every nonzero second order minor of the polynomial matrix P(s) is divisible
by the polynomial d(s).

The rational matrix (3) is called irreducible if P(s;) # 0 for all i = 1,...,q
where s; is the root of the equation d(s) = 0.

The following theorem is a slight modification of Theorem 1 from Lampe
and Rosenwasser (2000).

THEOREM 1. Let A(s) € R"*"[s] be nonsigular. Then the matriz

o adjA(s)
A 1 = 9
(5) det A(s) )
s 1rreducible if and only if the greatest common divisor of all entries of the
adjoint matriz adjA(s) is equal to 1 or, equivalently, the matriz A(s) is simple.



70 T. KACZOREK

Proof (compare with Lampe and Rosenwasser, 2000). It is well-known, Gant-
macher (1959), that

det A(s) = Dy—1(s)pals) (10)

where @ 4(s) is the minimal polynomial of A(s).
If adjA(s) = D, —1(s)A(s) then from (9) and (10) we have

A(s)
wals)

A_l(s) =

and the matrix (9) is reducible. The matrix (9) is irreducible if D, _1(s) = 1 or
equivalently the matrix A(s) is simple. |

It can be shown that every second order nonzero minor of the polynomial
matrix P(s) is divisible by d(s) if and only if g(s) = d(s) where ¢(s) is the
Millan polynomial of T'(s).

In Lampe and Rosenwasser (2000), Rosenwasser and Lampe (2000) the fol-
lowing two theorems have been proved.

THEOREM 2. The transfer matriz (3) s trreducible if and only if its realisation
(A, B,C) is simple.

THEOREM 3. The transfer matrix (3) admits a simple realisation (A, B.C) if

and only if the matriz T(s) is normal.

3. Normalization of transfer matrix by feedbacks
3.1. State-feedbacks
Consider the system (1) with the state-feedback
u=v+ Kz (11)

where v € R™ and K € R™*" is a gain matrix,
Substitution of (11) into (1a) yields

= (A+ BK)z+ Bo. (12)
The transfer matrix of the closed-loop system is given by
T,(s) = C[I.s - (A+ BK)]™" B. (13)

The problem of normalization of transfer matrix by state-feedbacks can be
stated as follows. Given the system (1) with A not cyclic and the pair (A, C)
unobservable, find a gain matrix K such that the closed-loop transfer matrix
(13) is normal.
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THEOREM 4. Let the matriz of (1) be not cyclic and the pair (A,C) be unob-
servable. Then there exists a gain matriz K such that the transfer matriz (13)
is normal if and only if the pair (A, B) is controllable.

Proof. NECESsITY. It is well-known, Kaczorek (1992-1993), Kailath (1980),
that the pair (A + BI, B) is controllable if and only if the pair (4, B) is con-
trollable. If the pair (A, B) is uncontrollable then by Theorem 3 the transfer
matrix (13) is not normal. Thus if the pair (A, B) is uncontrollable then there
does not exist I such that the transfer matrix (13) is normal.

SUFFICIENCY. If the pair (A, B) is controllable then there exists a non-singular
matrix 7' € R"™*" such that

A - Amm By
A=TAT V= | o nirvrinsinns B=TB=| : ,
Aml Am’m Bm
Aij = R(l,-X(lj" Bi = 1{(1,><m, (14")
where
( i .
0:dg—
dll forfj,:j,
- 0
Az=47F 4 B = .
for i 4, ¥
[ —aij

A5 = |:(IE)] a,ij ”’j[i-—l] § bi = [0 001 [).,",'+1 {),11,1‘] (141))

and dy, ..., d,, are the controllability indexes satisfying Z;';ll di =1
Let

hg;i- o 1 bl? blm, -
Bl | =¥ 1 bam (15)
4 A 2
and
K= rfl. ,  KyeRmUxn k= (ky ky .- k,] € R". (16)

Using (14a) and (15) it is casy to verify that
E:Bﬁzcliag[él,...,é,,l], bi=[0---0 1T e R%

(T denotes the transpose).

(17)
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Define
—fly, + Cny41
f{=ﬁ—l!{T—l =, [ 18
— iy, |+‘?n -141 ( )
Ap,, — K

where n; = Z:::l di, a,, is the n;th row of the matrix A, e; is the ith row of
I, and k is defined by (16).
Using (15), (17) and (18) it is casy to verify that

Ac=T(A+BK)T™ = A+ BKT'= A+ BBB'KT ' = A+ BK

0o 1. 0 .-+ 0
0O 0o 1 .- 0
e . (19)
6 0 0 - 1
.1.1 A.‘g f-; A,,

The matrix (19) is eyclic and & will be used to make the pair (A.. C) observable.
In Appendix (Lemma A.1) it is shown that if (A.) has the Frobenius canonical
form (19) then it is always possible to choose its entries ky, ..., &, so that the
pair (A, C) is observable. By Theorem 3 il the maftrix A, is eyclic, the pair
(Ae, B) is controllable and the pair (A,., C') is observable then the transfer matrix
(13) is normal. |

REMARK. In general case there exist many different gain matrices K normaliz-
ing the transfer matrix.

If the pair (A, B) is controllable then the gain matrix can be found by the
use of the following procedure.
PROCEDURE
STEP 1. Compute a non-singular matrix T transforming the pair (A, ) to the
canonical form (14) and A, B, I, .
Step 2. Using (18) compute K and

K = BKT (20)

with unknown row k.
STEP 3. Choose the row vector & so that the pair (A., C) is observable.
STEP 4. To find the desired K substitute & (found in Step 3) into (20).

ExAMPLE 1. Consider the system (1) with

0 1 0 0 00
g =3 p =} 1 2 0100
= = iz =0. (2
A=lg o0 o 1| B=|0 o|*© L)n 0 J'D 0. (28]
8] 0 n -2 0 1
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It is easy to check that the matrix A is not cyclic, the pair (A4, B) is controllable

and the pair (A, C) is unobservable.

kip kg kiz kg

]»'1 11,'2 lﬂg 1\’14

closed-loop transfer matrix (13) of the system is normal.
Using the Procedure we obtain

We are looking for gain matrix K = [ } such that the

STEP 1. The matrices (21) have already the canonical form (14) and

0 110 O 0 0
A_'A11 Ap] 10 =2]0 -1 g |B] | L2
- \_Agl Ago - 0 0 0 1 ¢ - B - 0 0
0 0|0 -2 1
1 1 & &
= [bi] 1 2] 1 =2 ~ == |10
B—_bg] _[O IJ _[0 1}’ el 0 0 (22)
0 1
STEP 2. Using (18) and (22) we compute
= | —@y+teg | 0 2 1 1
= =@y == k - —A'l —1172 —11‘73 2 - II\I4
and
N 0 2 ! 1
I“BKT‘[O 1 H—kl oy =y 2-@]
. i i Oh,
- 2k 24 2ky 14 2kg ..A4 3 . (23)
—/\,'1 —/»‘2 —k‘g 2 - l|74
0 1 0 0
.7 . 0 0 1 0 :
STEP 3. The pair (A.,C) with A, = 00 0 1 is observable for
/:,1 I\IQ 1\3 k4
k1 # 0 and arbitrary ko, k3, k4, since
0 1 0 0
(@ 0 0 1
rank [ CA, ] = rank 000 1L 0= 4
/»11 l\?g 1\73 ]1",4

for k; # 0 and arbitrary ks, ks, ky.

STEP 4. The desired gain matrix has the form (23) with & # 0 and arbitrary
]\’72, /\‘,3, k4.
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3.2. Output-feedbacks

Now let us consider the system (1) with the output-feedback
u=uv+Fy (24)

where F' € R™*P is a gain matrix.
From (1) and (24) we have

= (A+ BFC)x+ Bv. (25)
The transfer matrix of the closed-loop system is given by
To(s) = C[I,s — (A + BFC)| ™" B. (26)

The problem of normalization of transfer matrix by output-feedbacks can
be stated as follows. Given the system (1) with A not cyclic, the pair (A, B)
controllable and the pair (A.C) observable, find a gain matrix F' such that the
closed-loop transfer matrix (26) is normal.

Note that if the pair (A, C) is unobservable then the pair (A + BFC,C) is
also unobservable and the closed-loop transfer matrix (26) is not normal for any
gain matrix F'. Thus, the normalization problem of transfer matrix by output-
feedbacks has a solution only if the pair (A, C) is observable. If, additionally,
the pair (A, B) is controllable the normalization problem is reduced to finding
a gain matrix such that the closed-loop system matrix A, = A+ BFC is cyclic.
Let K = FC. Then, using the approach given in the proof of Theorem 4 we
may find K given by (20) such that the matrix A, = A+ BK is cyclic. By the
Kronecker-Capelli theorem equation K = F'C has a solution F for given C and
K if and only if

rank C' = rank [ i ] . (27)

Therefore, the following theorem has been proved.

THEOREM 5. Let the pair (A, B) be controllable, the pair (A, C') be observable
and the matriz A of (1) be not cyclic. Then there exists a gain matriv F' such
that the transfer matriz (26) is normal if and only if the condition (27) is
satisfied.

If (27) holds, then by applying suitable elementary column operations to
K = FC we obtain

(K, 0] = F[C, 0], K, € R™*?, C) € RP*¥ (28)
and det Cy # 0 since C' by assumption has full row rank. From (28) we have

F=KC™ (29)
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ExXAMPLE 2. Consider the system (1) with

01 0 0 00
g =2 0 =1 1 2
A=1g9 0 0 1 |° B=lo ol

0 0 0 -2 0 1

[1 1 0 &
C‘_0211]‘ P

It is casy to verify that the pair (A, B) is controllable, the pair (4,C) is ob-

servable and the matrix A is not cyclic. We are looking for a gain matrix

Fi= ;11 ;12 such that the closed-loop transfer matrix (26) of the system
21 Jfa22

is normal.

In the same way as in Example 1 we may compute the state-feedback gain

matrix and from (23) for by = 1, ko =0, k3 = —-%, k4 = 2 we obtain
2 2 0 1
e=[2201) -
In this case the condition (27) is satisfied since
110 1 4
o S 2 T —
1ankC—1(mk[ 1 2 1 0 ] = mnk[ K ]
1 1 0 3
0 2 1 1
= rank 9 9 0 117 2
-1 0 1 0

By applying elementary column operations to the matrix

we obtain

Cr 0
K, 0

From (29) we obtain the desired matrix

l?
Fe Byt = [ 21 }
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4. Concluding remarks

It has been shown that for an unnormal transfer matrix of the controllable
system (1) there exists the state-feedback (11) such that the closed-loop transfer
matrix (13) is normal. In the general case the solution to the problem is not
unique. A procedure for computation of the state-feedback gain matrix has been
given and illustrated by a numerical example.

The necessary and sufficient conditions have been also established for nor-
malization of the transfer matrix of the system (1) by output-feedbacks.

With minor modifications the considerations can be also applied to discrete-
time linear systems. An extension of these considerations for singular linear
systems will be presented in a next paper. An open problem is an extension of
these considerations for standard and singular two-dimensional linear systems,
Kaczorek (1992-1993).

I wish to thank very much Professors Lampe and Rosenwasser for their
comments and fruitful discussions.

Appendix

LEMMA A.1. If the malriz A has the Frobenius canonical form
A= %dnzt| e Roxn. o[k by oo k) (A1)

then for any matriz C € RP*" il 1s possible to choose the row vector k of (A.1)
so that the pair (A, C') is observable.

Proof. It is well-known, Kaczorek (1992-1993), Kailath (1980), that the pair
I,s— A
C

elementary row and column operations it is always possible to reduce the matrix

(A, C) is observable if and only if rank [ =n for all s € C. Using

s =1 0 0 0
0 s -1 0 0
Ins — A 0 0 0 s -1
Ratk [ Cc ] B i"] ko ;'3 k".._l 9+!'n (A‘z)
‘11 G2 O3 Cln-1 Cin
[Cp1 Cp2 Cp3 Cpn—1 Cpn
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to the form

0 -1 0 0

0 0 -1 0

0 0 0 -1
pols) 0 O 0 (A8)
pi(s) 0 0 0
pp(s) 0 0 0 |

where
po(s) = 8" + knas™ 1+ oo + kas + Ky,
pi(s) =cins" '+ Fes+en,  i=1.,p

Note that we may perform clementary row operations on (A.3) and choose
kyi....,k, so that

0 -1 0 0

0 0 -1 0

0 0 0 =1

e 0 0 0 and a # 0. (A.4)
0 0 0 0

0 0 0 0|

The matrix (A.4) for a # 0 has full column rank and the pair (A, C) is observ-
able. |

Note that there exist many different & such that the pair (A., C) is observ-
able.

EXAMPLE. Given the unobservable pair

01 0 0
00 1 0 0001 :
il I T C—{UUIO] (A5}
0 -1 -2 -3

find k = [ﬁ;l ky ks !.'4] such that the pair (A., C) is observable, where

0 1 0 0
0 0 1 0
Ae= 0 0 0 1

L'-] kg—'l L'.,-:,—Z k4—3
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Using elementary column and row operations we reduce the matrix

s =1 0 0 0
0 s -1 0 0
I,s— A o 0 0 .. s -1
[ c ]‘ R Y T (4.6)
€11 €12 €13 ' Cla-1 Cln
_Cpl Cp2 Cpz ' Cpn-1 Con _J

to the form

0 -1 0 0
0 0 -1 0

0 0o 0 -1
po(s) 0O 0 0 |’
s 0 0 0
2 0 0 0
po(s) = s* + (3 — ka)s® + (2 — k3)s® + (1 — kz)s — k. (A7)
Next using elementary row operations we can reduce (A.7) to the form
[ 0 -1 0 0
0 0 -1 0
0 0 0 -1
(1—ko)s—=ky 0O 0 0
0 0o 0 0
L 0 0o 0 0

For ky # 0, k2 = 1 and ks, k4 arbitrary the matrix (A.8) has full column rank
and the pair (A., C) is observable.
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