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Abstract: The transfer matrix T(s) = C [Ins - Ar1 B of a 
linear system i = Ax + Bn, y = C.T can be always written in 
the standard form T(.s) = P(s)/d(s), where P(s) is the polyno
mial matrix and d(s) is the minimal common denominator. The 
irreducible transfer matrix is called normal if every nonzero sec
ond order minor of P(s) is divisible by d(s). It is shown that 
for an unnormal transfer matrix of the controllable system there 
exists a state-feedback gain matrix I< such that the closed-loop 
system transfer matrix T(.s) = C [Ins- (A+ BK)r 1 B is normal. 
In the case of the output-feedback the closed-loop transfer matrix 
Tc(s) = C [Ins - (A+ BFC)r 1 B can be made normal only if the 
system is controllable and observable. 

K eywords: linear system, transfer matrix, normalization, feed
back. 

1. Introduction 

Lampe and Rosenwasser (2000), Rosenwasser and Lampe (2000) investigated the 
relationships between the time-domain description and the frequency-domain 
description. They have shown, for example, that if the normal transfer matrix 
is written in the standard form T(s) = P(s)/d(s) (d(s) is the minimal common 
denominator), then every second order nonzero minor of P( s) is divisible by 
d(s). It was shown in Rosenwasser and Lampe (2000) that cyclic matrices 
are structurally stable, i.e. if the matrix A E Rnx 11 is cycl ic (the minimal 
polynomial is equal to the characteristic polynomial) and A0 E R"xn is an 
arbitrary matrix, there exists a positive number co such that for all lc:l < co the 
matrix A+ c:A 0 is cyclic. Some implications of this approach for the electrical 
circuits have been discussed in Kaczorek (2001) . The main subject of this paper 
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is to show that for an unnormal transfer matrix of the controllable system 
there exists a state-feedback gain matrix K such that the closed-loop system 
transfer matrix Tc(s) = C [Ins - (A+ BK)r1 B is normal. The normalization 
of transfer matrix by output-feedbacks will be also considered. 

2. Preliminaries 

Let Rmxn be the set of m X n real ma trices and R" := Rnxl . 
Consider the linear continuous-time system 

x =Ax + Bu 

y= Cx 

( 1a) 

(1b) 

where x = x(t) E R" is the state vector, ·u = u(t) E Rm and y = y(t) E RP 
are the input and output vectors, respectively, and A E Rnxn, B E Rnxm, 
C E Rp xn . It is assumed that rank B = m and rank C = p. 

The transfer matrix of the system (1) is given by 

T(s) = C [Ins- Ar 1 B (2) 

which can be written in the standard form 

T( ) = P(s) 
s d( s) (3) 

where P E RP x m [ s], RP x m [ s] is the set of p x m polynomial matrices and d( s) 
is the minimal common denominator of all entries of T( 8). 

In what follows the following elementary row or column operations will be 
used, see Gantmacher (1959), Kaczorek (1992- 1993). 

1. Multiplication of any row (column) by any nonzero number (scalar). 
2. Addition of any row (column) multiplied by a polynomial to another row 

(column). 
3. Interchange of any rows (columns). 

Using elementary row and column operations we may transform any polyno
mial matrix P E Rp xm [s] to its Smith canonical for m, see Gantmacher (1959), 
Kailath (1980) 

Ps(s) = diag [i1(s ), i2(s), ... , i,.(8), 0, ... , OJ E wxm[8] (4) 

where i 1 ( 8), ... , ir ( 8) are monic invariant polynomials satisfying the divisibility 
condition ik+l(s) I ik(s), i.e. ik+l(s) is divisible with zero remainder by ik(s), 
k = 1, ... ,r- 1 and r = rankP(s). 

The invariant polynomials can be determined by the relation 

. Dk(s) 
zk(s) = D ( ) 

k-1 s 
(Do(s) = 1), k = 1, ... ,r (5) 

where Dk(s) is the greatest common divisor of all the k x k minors of P(s). 
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The characteristic polynomial <p(s) = det [I,s- A] of the matrix A E R"x" 
and its minimal polynomial tli(s) are related by Gantmacher (1959). 

tli(s) = <p(s) 
Dn-l(s) 

From (4)--(6) it follows that tli(s) = <p(s) if and only if 

D1(.s) = Dz(s) = · · · = Dn - l(s) = 1. 

(G) 

(7) 

A matrix A E R"xn satisfying (7) (or equivalently tli(s) = <p(s)) is called cyclic. 
In what follows the following terminology will be used, sec Lampe and Rosen

wasser (2000), Rosenwasser and Lampe (2000). 
A full rank polynomial matrix A(s) E Rmxn[s], rankA(s) = min(m,n) is 

called latent if at least one of its invariant polynomials is non-unity and it is 
called alatent if all its invariant polynomials are equal to 1. 

A pair A(s) E Rnxn[s], B(s) E Rnxm[s] is called irreducible if the corre
sponding augmented matrix 

[A(s) ,B(s) ] E Rnx(n+ml[s] 

is alatent or equivalently if 

rank [A( s), B(s)] = n for all sEC (the field of complex numbers) (8) 

A polynomial matrix is called simple if only one of its invariant polynomials is 
not equal to 1. A matrix A E Rnxn is called cyclic if the polynomial matrix 
[Ins -A] is simple. 

Matrices A E R"x", B E R"xm, C E Rpxn satisfying (2) are called are
alisation of a given T(s) E RPx'"(.s). The realisation is called minimal if the 
matrix A has minimal dimension amongst all realisation of T(s). The realisa
tion is minimal if and only if the pair (A, B) is controllable and the pair (A, C) 
is observable, see Kailath (1980), Kaczorek (1992- 1993). A minimal realisation 
with a cyclic matrix A is called simple (Lampe and Rosenwasser, 2000, Rosen
wasser and Lampe, 2000). The irreducible matrix (3) with min(m,p) > 1 is 
called normal (Lampe and Rosenwasser, 2000, Rosenwasser and Lampe, 2000) 
if every nonzero second order minor of the polynomial matrix P( s) is divisible 
by the polynomial d( s). 

The rational matrix (3) is called irreducible if P(si) =f. 0 for all i = 1, ... ,q 
where Si is the root of the equation d(s) = 0. 

The following theorem is a slight modification of Theorem 1 from Lampe 
and Rosenwasser (2000). 

THEOREM 1. Let A(s) E R"x"[s] be nonsigular. Then the matrix 

A_ 1 (s) = adj A(s) 
det A(s) 

(9) 

is irreducible if and only if the g1·eatest common divisor of all entries of the 
adjoint matrix adjA( s) is equal to 1 or, equivalently, the matrix A( s) is simple. 
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Proof (compare with Lampe and Rosenwasser, 2000). It is well-known, Gant
macher (1959) , that 

det A(s ) = Dn - l(s)cpA(s) (10) 

where cpA(.s) is the minimal polynomial of A(s). 
If adjA(s) = Dn_1(s)A(s) then from (9) and (10) we have 

A-l(s) = A(s) 
cpA(s) 

and the mat rix (9) is reducible. The matrix (9) is irreducible if D 11 _ 1(s) = 1 or 
equivalently the matrix A(.s) is simple. • 

It can be shown that every second order nonzero minor of the polynomial 
matrix P(s) is divisible by d(s) if and only if q( .s ) = d(s) where q(s) is the 
Millan polynomial of T( s). 

In Lampe and Rosenwasser (2000), Rosenwasser and Lampe (2000) the fol
lowing two theorems have been proved. 

THEOREM 2. The transfer matrix (3) is iTreducible if and only if its realisation 
(A , B, C) is simple. 

THEOREM 3. The transfer matrix (3) admits a simple r·ealisation (A ,B , C) if 
and only if the matrix T( s ) is normal. 

3. Normalization of transfer matrix by feedbacks 

3.1. State-feedbacks 

Consider the system (1) with the state-feedback 

u=v+Kx 

where v E Rm and I< E Rmxn is a gain matrix. 
Substitution of (11 ) into (1a) yields 

x =(A+ BK) x + Bv. 

The transfer matrix of the closed-loop system is given by 

Tc(s) = C [Ins- (A + BK)r 1 B. 

(11) 

(12) 

(13) 

The problem of normalit.ation of transfer matrix by state-feedbacks can be 
stated as follows. Given the syst em ( 1) with A not cyclic and the pair (A , C) 
unobservable, find a gain matrix J( such that the closed-loop transfer matrix 
( 13) is normal. 
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THEOREM 4. Let the matrix of (1) be not cyclic and the pair (A, C) be unob
servable. Then there c:rists a gain matrix J( such that the transfer matri.r (JS) 
is noTmal if and only if the pair (A, D) is controllable. 

Proof. NECESSITY . It is well-known, Kaczorek (1992-1993), Kailath (1980), 
that. the pair (A+ BK, B) is controllable if and only if the pair (A, B) is con
trollable. If the pair (A, B) is uncontrollable then by Theorem 3 the transfer 
matrix (13) is not normal. Thus if the pair (A, B) is uncontrollable then there 
does not exist J( such that the transfer matrix (13) is normal. 
SUFFICIENCY. If the pair (A, D) is controllable then there exists a non-singular 
matrix T E Rnxn such that. 

jj = T D = r ~1 1' 
B,n 

A .. E Rd;Xdj 
'/) . ' 

where 

IJ = [·~.·] /, ' 
b, 

[ 
ij 

O.ij = ao b· = [o ... o 1 b ··+ 1 ... b .] L l. ,t 1.711 

and d1 , ... , d 111 arc the controllability indexes satisfying I:; .;'~\ di = n. 

Let 

b,n r~ .. ':' .•.•.. ::::1-1 
0 0 .. 0 1 

and 

K=U(1
], 

Using (14a) and (15) it is easy to verify that 

i3 = f3i3 = diag[b1, ... , bmJ, 
(T denotes the transoose) . 

(14a) 

(14b) 

(15) 

(16) 

(17) 
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Define 

j( = fj- 1J(T_1 = [ · . -~~L·n·1 · ~· ~":~ .1 .. ·] 
-Q,nm -- I +enm- t+l 

-an,- k 

(18) 

where ni = L:~= 1 rh , a,. is t he 'nit h row of the matrix A, e; is the 'ith row of 
I , and k is defined by (lG). 

Using (15), (17) and (18) it is easy to verify that 

Ac = T(A + BK )T-1 = A+ flKT-l = .4 + J3fjfj - l KT-l = A+ BR 
0 1 0 0 
0 0 1 () 

. .... . ...... ......... ( 19) 
0 () 0 1 

kr 1.:2 k:~ k, 

The matrix (19) is cyclic and k will be used Lo make t l! e pair (Ac, C) observable. 
In Appendix (Lemma A.1) it i · shown that if (Ac) has the Frobenius canonical 
form (19) then it is a lways possible to choose its ent ries k1 , ... , kn so that the 
pair (Ac, C) is observable. l3y Theorem 3 if t he mat rix Ac is cycl ic, the pair 
(Ac, B) is controllable and t he pair (Ac, C) is observable then the transfer matrix 
(13) is normal. • 

REMARK. In general case there exist ma ny different gain matrices J( normaliz
ing the transfer matrix . 

If the pair (A, B) is cont rolla ble then the gain ma trix cau he found by t he 
use of the following procedure. 

PROCEDURE 

STEP 1. Cornpute a non-singular matrix T t ransforming the pair (A , B) to the 

canonical form (14) and .A , fl, D, J]. 
STEP 2. Using (18) compute R and 

K = flRT 

with unknown row /,:. 

STEP 3 . C hoose the row vector /,; so that the pair (Ac, C) is observable. 

STEP 4. To find the desired f{ subst itute/,: (found in Step 3) into (20). 

EXAMPLE 1. Consider t he system (1 ) wit h 

A~ ~~ 
0 

~'1 I! ~1 - 2 () 
,B = c = [0 1 0 ~] , D = 0. 0 0 ' () 0 () 

() () -2 

(20) 

(21) 
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It is easy to check that the matrix A is not cyclic, the pair (A , B) is controllable 
and the pair (A , C) is unobservable. 

W I k. f . . l( [ k11 k12 k13 k14 ] h I I e are oo mg or gam matnx · = k
1 

k
2 

k
3 

k
4 

sue t 1at t 1e 

closed-loop transfer matrix (13) of the system is normal. 

Using t he Procedure we obtain 

STEP 1. The matrices (21) have already the canonical form (14) and 

r ~ 
1 0 

~1 j 
B ~ [ ~; l ~ r ~ ~ 1 A = [Au A12] = -2 0 

A21 A22 0 0 1 ' 
0 0 -2 

B = [ ~~ r 1 = [ ~ n -1 = [ ~ ~ 2 J , jj = f3i3 = r~ ~1 (22) 

STEP 2. Using (18) and (22) we compute 

and 

~ - [ 1 -2 ] [ 0 2 1 1 
K = BKT = 

0 1 -kl -k:2 -k3 2- k4 

= [ 2kl 2 + 2k2 1 + 2k3 2/;:4- 3 ] . 
-kl -k2 -k3 2 - k4 

(23) 

1 0 

r 1 J. j STEP 3. The pair (Ac , C) with Ac 0 1 
is observable for 

0 0 
/,;2 k3 

STEP 4. The desired gain matrix has the form (2:3) with k1 of. 0 a nd arbitrary 
k2 , k3, k4. 
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3.2. Output-feedbacks 

Now let us consider the system (1) wit h the output-feedback 

u = v + Fy (24) 

where FE Rm xp is a gain matrix. 
From (1) and (24) we have 

:i; = (A+ BFC) x + Bv. (25) 

The transfer matrix of t he closed-loop system is given by 

Tc(s) = C [Ins - (A+ BFC)r 1 B. (26) 

The problem of normalization of transfer matrix by output-feedbacks can 
be stated as follows . Given the system (1) with A not cyclic, the pair (A, B) 
controllable and the pair (A, C) observable, fi nd a gain matrix F such that the 
closed-loop transfer matrix (26) is normal. 

Note that if the pair (A, C) is unobserva ble then the pair (A+ BFC, C) is 
also unobservable and the dosed-loop transfer matrix (26) is not normal for any 
gain matrix F. Thus, the normalization problem of transfer matrix by ontput
feedbacks has a solution only if the pair (A, C) is observable. If, addit ionally, 
the pair (A , B) is controllable the normalization problem is reduced to finding 

a gain matrix such that the closed-loop system matrix }L = A+ BFC is cyclic. 
Let J( = FC. Then, using the approach given in the proof of Theorem 4 we 
may find J{ given by (20) such that the matrix Ac = A+ flJ( is cyclic. By the 
Kronecker- Capelli theorem eqnat ion I< = FC has a solution F for given C and 
K if and only if 

rank C = rank [ ~ ] . (27) 

Therefore, the following theorem has been proved. 

THEOilEM 5. Let the pai1· (A , B) be controllable, the pair (A , C) be observable 
and the matrix A of (1} be not cyclic . Then th eTe e.xists a gain matri:r: F such 
that the transfer rnatrix (2G} is noTmal if and only ·zf the condition (27} i:> 
satisfied. 

If (27) holds, tllen by applying suitable elementary column operat ions to 
I< = FC we obtain 

(28) 

and det C1 ::p 0 since C by assumption has full row rank. From (28) we have 

(29) 
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EXAMPLE 2. Consider the system (1) with 

[ ! 1 0 

~I 1 B- [ ~ ~ j A:::: 
-2 0 
0 0 - 0 

0 0 -2 0 

c== [ ~ 1 0 1 ] . 2 (30) 
2 1 1 

It is easy to verify that the pair (A, B) is controllable, the pair (A, C) is ob
servable and the matrix A is not cyclic. We arc looking for a gain matrix 

F :::: [ f
1

u 1
1

12 
] such that the closed-loop transfer matrix (26) of the system 

21 22 

is normal. 

In the same way as in Example 1 we may compute the state-feedback gain 
matrix and from (23) for k1 :::: 1, k2 :::: 0, k3 :::: - ~, k4 :::: 2 we obtain 

K:::: [ 2 2 
-1 0 

0 1 ] 
~ 0 . 

(31) 

In this case the condition (27) is satisfied since 

rank C :::: rank [ ~ 1 0 1 
] ::::rank [ ~ ] 2 

2 1 0 

= mnk [ ~ 
1 0 !1 =2 

2 1 
2 0 

-1 0 1/2 

By applying elementary column operations to the matrix 

we obtain 

From (29) we obtain the desired matrix 
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4. Concluding remarks 

It has been shown that for an unnormal transfer matrix of the controllable 
system ( 1) there exists the state-feed back ( 11) such that the closed-loop transfer 
matrix (13) is normal. In the general case the solution to the problem is not 
unique. A procedure for computation of the state-feedback gain matrix has been 
given and illustrated by a numerical example. 

The necessary and sufficient condit ions have been also established for nor
malization of t he t ransfer matrix of the system (1 ) by output-feedbacks. 

With minor modifications the considerations can be also applied to discrete
time linear systems. An extension of these considerations for singular linear 
systems will be presented in a next paper. An open problem is an extension of 
these considerations for standard and singular two-dimensional linear systems, 
Kaczorek ( 1992--1993). 

I wish to thank very much Professors Lampe and Rosenwasser for their 
comments and fruitful discussions. 

Appendix 

LEMMA A. l . If the matrix A has the Frobenius canonical form 

(A.1) 

then for any matrix C E RP x" it is possible to choose the row vectm· k of (A .1 ) 
so that the pair (A , C) is obse1"'vable. 

P roof. It is well-known , Ka.czorek (1992--1993), Kailat h (1980), t hat the pair 

(A, C) is observable if and only if rank [ Ins;; A ] = n for all s E C. Using 

elementary row and column operations it is always possible to reduce the matrix 

rank [ 
I,_s - A 

c 

8 -1 0 
0 s -1 

0 
0 

0 
0 

•• 0 • • ••• • • • •• ••• • • ••• •• ••• •••••••• 

0 0 0 s -1 
k1 k2 k3 kn-l s + k,. 
en C12 C13 Cl n - 1 C1n 

Cpn -1 

(A.2) 
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to the form 

where 

0 
0 

-1 0 
0 -1 

0 0 
Po(s) 0 
P1 ( s) 0 

0 
0 
0 

0 

0 
0 

- 1 
0 
0 

0 

Po(s) = s" + kns" - 1 + · · · + k2s + k1 , 

p-;(s) = Ci11 S
11

-
1 + · · · + C,;zS + Ci.1 , ·i = 1, .. . ,p. 

77 

(A.3) 

Note that we may perform elementary row operations on (A.3) and choose 
k1 , ... , kn so that 

0 -1 0 0 

0 0 -1 0 
• • 0 •••••• • •• ••• • • • • • • 0 

(A.4) 0 0 0 -1 
and a¥= 0. a 0 0 0 

0 0 0 0 

0 0 0 0 

The matrix (A .4) for a¥= 0 has full column rank and the pair (A, C) is observ

able. • 

Note that there exist many different k such that the pair (Ac, C) is observ
able. 

EXAMPLE. Given the unobserva ble pa ir 

A= [ ~~~ ~ 1 , 
0 -1 - 2 -3 

(A.5) 

find k = [k1 k2 !.:3 k4 ] such that the pair (Ac, C) is observable, where 

Ac = r 
0 1 0 0 
0 0 1 

0 1 0 0 0 1 . 

k1 k2 - 1 1.;3 - 2 k4 - 3 
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Using elementary column and row operations we reduce the matrix 

[ Ins- A ] c 

to the form 

0 -1 
0 0 
0 0 

Po(s) 0 
s 3 0 
s2 0 

s -1 0 
0 s -1 

0 

0 
0 
0 

••• 0 ••••••• 0 0 0 0 0 • •• 0 • • ••••••• 0 0 0 0. 

0 0 0 s -1 

k1 kz k3 k:n-1 S + kn 
c11 C12 C13 Ctn-1 Ctn 

Cpn-1 

0 () 

-1 () 

0 -1 
0 0 
0 () 

0 0 

(A.6) 

(A.7) 

Next using elementary row operations we can reduce (A.7) to the form 

0 -1 0 0 
0 0 -1 0 
0 0 0 -1 

(l-k2)s-k1 0 0 0 
0 0 0 0 
0 0 0 0 

For k1 1- 0, k2 = 1 and k3 , k4 arbitrary the matrix (A.8) has full column rank 
and the pair (Ac, C) is observable. 
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