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Abstract: The paper shows a method of solution of systems 
of partial differential non-linear, second order equations for synovial 
axial-symmetrical and unsymmetrical fluid flow in curvilinear or­
thogonal coordinates between two bone surfaces in human joint gap. 
Theorems are formulated, describing unification method of solutions 
of partial differential non-linear equations of synovial fluid flow . 
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1. Introduction 

This paper presents modelling and simulation for synovial fluid flow occurring 
in gap between two co-operating bone surfaces in human joint . The present 
paper gives an analysis of solutions of systems of non-linear, partial, differential 
equations for synovial fluid fl ow in human joint gap. Fig. 1 shows the geometry 
of various human joints. 

In the hip joint the spherical rotational bone and the pelvis bone create a 
spherical gap (Fig. 1). In this gap between two co-operating bones, synovial 
fluid flows , see Mow (1969), Mow et al. (1984 , 1990, 1991 , 1994, 1998), Maquet 
(1984), Ungethi.im et al. (1990), Wislicki (1980), Wierzcholski et al. (1993, 1994, 
1995),Wierzcholski (1993), Pytko et al. (1995), Dowson (1990).The flow of this 
fluid is caused by the motion of the bone head. The theoretical considerations 
of the synovial non-Newtonian fluid flow in thin joint gap, taking into account 
boundary layer simplifications, have practical applicat ions in t heory of lubrica­
tion in medicine, see Dowson et al. (1998) , Gruca (1993), Winterset al. (1990) . 
The considerations in the present paper enable to find synovial fluid flow pa­
rameters and carrying capacity force in joint gap between two co-operating bone 
surfaces in curvilinear orthogonal co-ordinates . 
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Figure 1. Geometry of human joint: 1- biobearing gap, 2-spherical rotational bone 
head , 3-fibrous capsule, 4-synovial membrane, 5---fat pad, 6-articular cavity 
containing synovial fluid , 7- articular cartilage, 8-ligamcnt, 9-musclc, 10--tendon, 

In opposition to the results of Mow (1969), Mow et al. (1990, 1998), the ones 
obtained in this paper show the estimation of synovial fluid flow equations and 
by virtue of present results we can apply various geometry of bone surfaces in 
the human joint analyses. 

As contrasted with papers by Batchelor et al. (1996), Hayes et al. (1993), 
Maurel et al. (1998), Mow et al. (1984, 1991, 1994, 1998), Yao (1993), the 
present paper shows a unification and analytical method of solutions of the 
lubrication problem in human joint gap for various joints, for example with 
spherical, parabolic or hyperbolic bone surfaces and fo r the non-Newtonian mi­
cropolar experimental properties of synovial fluid. 

2. Formulation of the problem 

The aim of the paper is: 
2.1 To present the mathematical estimation of the terms of basic partial 

differential non-linear equations of second order, for the fluid flow in t he thin 
joint gap between two bone surfaces for various geometry. 

2.2 To formulate the theorems which describe the unification and the ana­
lytical method of solution of partial differential non-linear equations for axial­
symmetrical and unsymmetrical flow of synovial fluid in human joint gap. 

3. Basic equations 

In this section we show the basic equations describing the synovial fluid flow 
in joint gap . Equations of conservation of momentum and continuity equation 
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have for the sta tionary flow of synovial compressible fluid between two non­
rotational surfaces in t he curvilinear ort hogonal co-ordinates, the following form , 
see W ierzcholski (1993): 

p(grad~vv-vxrotv) =DivS, 

div v = 0, 

where constitutive equations arc as follows: 

S = -pi + 2171' T d, 

(1) 

(2) 

(3) 

whereas the components of stress tensor S, uni t tensor I, st ra in tensor T d' are 
respectively: Tij, biJ, () ij. We usc t he following notations: 
bij - Kronecker delta, 

p - fluid density, 
'T}p -- dynamic viscosity of the synovial non-Newtonian fluid, strain component 

dependent , 
v - fluid velocity vector with components v;, 

p - pressure, 
()ij - components of strain tensor. 
Geometrical dependencies between stra in components and fluid velocity compo­
nents in orthogonal curvilinear coordinates have the form, see Truesdell (1972): 

3 

() i j =~[hi _!!_ (Vi)+ hj _!__ (Vj ) + 2b;j L ~ 8h; ] , (4) 
2 hj ao:.j h; h; ao:.; hj k=l h,hk ao:.k 

moreover, h1 , h2 , h3 are the Lame coeffi cients, o:. 1 , 0:.2, o:. 3-·-curvilinear orthog­
onal coordinates; i,j = 1, 2, 3. We introduce equation (3) into right hand of 
equation (1). Thus we have: 

(Div S); := 2_ ~ 
h; ao:.i 

1 { ~ a ( ghieij ) 1 ~ [2 9oij a(hj ). 
2

] } +- ~ -- 27]p-- --~ 7]p_2____ ' 
gh.i . ao:.1· h1· 2 . h

1
. ao:., 

J = l J=l 

3 

0 = div v = ~ L _!!_ (gvk ) , 
g ao:.k hk 

k=l 

(5) 

(6) 

where g = h1h2h3 and i = 1,2,3. Expanding the left hand of equation (1) we 
obtain fina lly : 

(7) 



94 K. WIERZCHOLSI<I 

4. Flow simulation for thin gap between two non-rotational 
bone surfaces 

CASE OF FLOW 4 .1. When the or-thogonal cur-vilinear co-or-dinates lXI, a 2 , a 3 

coincide w-ith c·urvature lines of the thin layer r·esting on non-rotational bone 
surface in human joint gap, where lXI --length dir-ection, a 2 --- perpendicular di­
rection to the bone surface {in gap height direction), 1X3 - width surface direction, 
then the Lame coeffici ents for- the thin layer surface with non-monotonic curva­
t·ur-es are as follows: 

(8) 

Sketch of proof. Let the vector equation of the surface have the following form 
(Fig. 2): 

X 

Figure 2. Non rotational bone surface. 

(9) 

The position of any point in the space along the normal vector n in relation to 
the surface is determined as follows: 

(10) 

The square of the element of length is given by: 
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(ll) 

From the Rodrigues Law we have: 

an 1 oro 

aa3 R3 aa3 ' 
(12) 

where R1, R2 denote the radii of curvat ure in directions a 1 and a3. We sub­
stitute equation (12) into equation (11) and we take into account t he thin layer 
simplifications, i. e. azl R1 => 0, az/ R2 => 0, and then we obtain: 

(13) 

This remark completes the case of flow 4.1. • 
5. Flow in thin gap between two rotational surfaces 

CASE OF FLOW 5.1. If orthogonal curvilinear coordinates a 1 , a2, Ct3 are curva­
tnre lines of a thin layer of synovial flu id resting on the rotational bone sU?j ace 
in human j oint gap, where a 1 - circumference direction, Ct3 - generating line of 
rotational bone direction, a2 - gap height direction, then Lame coefficients for 
thin layer with non-monotone genemting line are as follows: 

( 14) 

Sketch of proof. For the rotational surface the radius vector has the form : 

(15) 

where i, j , k are the unit vectors in the Cartesian system and the projections Z 
and R of the vector r 0 indicated in Figs. 3 and 4 are the functions of a 3 only. 
We put equation (15) into equation (13), hence we obtain the dependencies (14), 
which completes the proof of case of flow 5.1. • 

CASE OF FLOW 5 .2. For monotone genemting line of rotational surface (see 
Fig. 4) the Lame coefficients have the following form: 

h 2 = 1, (16) 

Sketch of proof. For the monotone generating line of rotational surface (see 
Fig. 4) the dependencies (16) are true by virtue of basic theory of differential 
geometry, which completes the proof of the case of flow 5.2. • 
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Figure 3. Rotational spherical bone head surface with non-monotone generating 
line 003. 

z 

.y 

X 

Figure 4. Rotational bone surface with monotone generating line 003. 
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LEMMA 5.1. Equations of conservation of momentum and continuity equation 
for incompressible, stationary synovial fluid flow in thin fluid layer in human 
joint resting on rotational bone surface with non-monotone generating line and 
for orthogonal, c11rvilinear coordinates ( a1, az, a3) have the following form: 

( 
V1 OV1 OV1 'V3 OV1 V1 V3 oh1) 

p - -+v2- +--+----
h1 00:1 . 00:2 h3 00:3 h1h3 00:3 

(17) 

(18) 

(19) 

(20) 

We have in the direction of the length 0 :S a 1 :S 21r , in the direction of the width 
b,, :S 0!3 :S bs and in the direct·ion of gap height 0 :S az :S c( a 1, a3), whereas 
b, , b8 are constant limits of lubrication in directions a1, 0:3. 

Proof. We put equations (3), (4) , (5), (6) , (7) and (14) in equations (1) , (2), thus 
the conservation of momentum equations and the continuity equation for incom­
pressible, stationary, synovial fluid flow in the thin layer resting on rotational 
surface with non-monotone generating line and in orthogonal, curvilinear coor­
dinates a 1, a2 , a3 have the form (17) , (18) , (19) , (20). This remark completes 
the proof of Lemma 5.1. • 
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LEMMA 5.2. Estimation of dimensionless terms with exactness between 0.10000 
and 1.00000 with respect to the neglected terms of orde1· 0.0010 , for equations 
of conservation of momentum and cont1:nuity equation (17) - (20), in curvilinear­
orthogonal coordinates ( cx 1 , a2, a 3 ) , for incomp1·essible, stationary, and 1msym­
metrical synovial fluid flow in thin layer resting on rotational bone su1jace of 
human joint gap, with non-monotone genemting line, lead to following basic 
equations 

ap 
0 

= aa2 ' 

where in ihe length, width and gap height directions, we have, 1·espec tively: 

(21) 

(22) 

(23) 

(24) 

(25) 

Proof. The system (21 )- (24) describes four unknowns , namely three components 
of synovial fluid velocity v; (a1 , a 2, a3) for ·i = 1, 2, 3 and pressure p = (a1, a 3). 
If generating line of rotational t hin layer surface in particular case is a monotone 
function , then in (21)- (24) we have h3 = 1. Now we are taking into account the 
axial unsymmetrical synovial fluid flow. We assume the following dimensionless 
values of the Lame coeffi cients hu , h31 ; values of curvilinear coordinates: a u , 
a21, a31; values of vector velocity components: vu, v21, v31 ; pressure p1 and 
dynamic viscosity 171. Dimension values have then the following form : 

h1 = Rhu , h3 = h:n , a 1 = a u , a2 = ll'Ra21, a3 = R*a31 , (26) 

_Po 
p = ~Ir2]Jl , 17 = 1Jo1]1. (27) 

The following notations are used: 
R - rad ius R 1 of the curvature in a 1 direction or rad ius of the rotationa l 

surface, 
R * - radius of the curvature in a 3 direction or bearing length , 
II' - dimensionless radial clearance = c/ R ~ w-4

, 

E - gap height, 
U - surface linear dimension velocity in a 1 direction , 

W - smfar.P linear dimension velocitv in cx:1 direction, 
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p~ -- estimated value of dimension pressure, 
1]0 - value of dimensional dynamic viscosity of synovial fluid . 

We insert dependencies (26), (27) in equations (17)- (20), hence we have: 

R 
.T, ( 11n Civu Civu RW 1131 Civu RW 11n 1131 Cihn) 

e'~' ---+v21--+-----+-------
h118au 8a21 R*U h31 8a31 R*U huh31 8a31 

8 ( Civu ) .T, 2 1 8 ( 81121) +-- 171-- +'I' --- 7]1--
8a21 8a21 hu 8a21 Clan 

R 2 1 8 { 1 2 [hu 8 (vu) W. 1 8v31 ]} +-w ----- I 111 --- -- + ----
R· hi1 h31 8a31 ll h31 8a31 hu U hu Clan ' 

EuRe R 1 8p1 
-------

w R* h31 8a31 

2 1 8 { [ U R hn 8 ( 11n ) 1 Civ::n ] } +'ll --- 7]1 --. ---- - +--.-
hn Clan W R h31 8a31 hu hn Clan 

where Reynolds and Euler numbers have the form: 

Re =pUc:, 
1]o 

E - p~ 
u = u? , -p 

(28) 

(29) 

(30) 

(31) 

(32) 
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and 

0 < Re < 1, 
u 

w w = 0(1), (33) 

because W « U. Now we have two possibilities. 

EuRe =~=a(]_) w 10 ' 

(34) 

and 

W Eu Re _ p~ w17R2 

Eu = Re' -Ill-= 1, if p: = W1], Po= wz = ~· (35) 

The terms of inertia forces in equations (28)- (30) are multiplied by the factor 
Re W. We neglect inertia forces terms and other terms (multiplied by the factor 
Re W or wn for n 2: 1, W ~ 10-3 ) which are of order (1o - 3)n :::; 0.001 as 
compared to the terms of order 1.000 or 0.100. Thus, the system of equations 
(28)- (31) for axial-unsymmetrical, isothermal, stationary synovial fluid flow in 
the film between two rotational surfaces with non-monotonic generating line 
has in the curvilinear, orthogonal co-ordinates a:1, a:2, 0:3 the dimension form 
(21), (22), (23), (24). The term of centrifugal acceleration of order Re WU jW, 
occurring in equation (30), can be not negligibly small, because W « U. This 

pvr ah1 . . . 
term --

1 
h -;:;-- extsts on t he left hand of equatwn (23). Gap hetght may be 

11 3 U0:3 

a function of both variables a: 1 , 0:3, i.e.: c1 = c1 ( a: 1 , a:3 ) where c ~ 2 · 10- 5 m. 
This remark completes proof of Lemma 5.2. • 

6. B oundary conditions 

The boundary assumptions for the pressure function p( a: 1 , 0:3) in the human 
gap joint, as shown in Fig. 5, follow Zimmermann (1995): 

Figure 5. Boundary ranges of hydrodynamic pressure region on bone head in human 
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p(a1, Ct3 = bm) = Pz(al), 

p(a1 = 0, a3) = p:(a3), 

p(a1, Ct3 = bs) = Pw(al), 

p(a1 = 0, a3) = p;;,(a3) 

101 

(36) 

where: Pz(al = ae) = p;;,(a3 = bm), Pz(al = 0) = p;(a3 = bm), P-~u(a3 = bs) = 
Pw(al = ae), p;(a3 = bs) = Pw(al = 0), and Pz(al), p;(a3) means pressure 
value at the inlet of the articulation gap in directions a 1, a 3 respectively, Pw( a l) , 
P~u(a3)-pressurc value at the outlet of the gap in directions a 1, a3 respectively. 

The boundary conditions for the synovial fluid velocity components , related 
to the rotational motion in a 1 direction of the surface, have the following form: 

for a2 = 0, (37) 

where w is the angular velocity of the bone. The cartilage of human joint is 
motionless, therefore: 

V1 = 0, V3 = 0 for a2 =c. (38) 

Approximation formulae for the dynamic values for various shear rates have the 
following form: 

~-~ 2 
T/p = 1Joo + AG ~ 1Ja- (17a- 1J00 )8A +... for 0 < 8 B « 1, (39) 

1 + -
for other cases 

1)o - 1)oo ( ( ) 2 ( ) 
T/p = 1Joo + 

1 
+ AG + BG2 ~ 1Jo- 7Jo - TJoo)GA- 7Jo- 7Joo 8 B + ... 40 

where T/oo and 1)0 , expressed in Pas, mean the dynamic viscosity value of synovial 
fluid for large and small shear rate values in s- 1. Symbols A and B denote the 
coefficients, which were obtained by Wierzcholski (1993) by virtue of the Cooke's 
and D. Dowson's (1990) experiments (see Fig. 6). 

., 
" !::. 

"' .... ,... 
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00 

0 
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... 1. Normal joint 
i\=1.88307 • 

JF0,00458 s2 

~ lO -2 1----c::-=---+--:--,---J~~.l-"'""""'~J----l 
~· 2 Patholoeical _joint 
;: 

10
-3 A=0,03349s : B=O,OOI s2 

to·1 1,0 101 102 t n3 t0 4 

SHEAR RAT~: 0 (s-t ] 
Analytical values of viscosity __ - - • 

Expeoirnental values of viscosity 
after Dowson 

Figure 6. Viscosity of normal and pathological human synovial fluid versus shear rate 
(after D. Dowson). 
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We have obtained A = 1.88307 s and B = 0.00458 s2 for the normal human 
joint and also A = 0.03349 s and B = 0.00131 s2 for the pathological human 
joint. The shear rate has the form: 

(41) 

7. Properties of analytical solutions 

LEMMA 7 .1. The involved solutions of the non l·inear partial differential system 
of second orde1· (21) , {22) , (23), (24) , for synovial fluid flow velocity compo­
nents and pressure in human joint gap resting on rotational bone surfaces with 
non monotone genemting line fo1· the boundary conditions (36), (37), (38) and 
variable dynamic viscosity function (39) obtained f rom e.xpe1·iments, have the 
following form: 

1 +-
2
A r(a2 ,p, C1 , A) , 

1]oo 

where the pressure function p satisfies equation: 

Moreover, 

r(a2, p, C1 , A)= 1°2 

Js(a2,p , C1 , A) da2 

- :
2 t Js(a2, p, C1, A) da 2, 

( 42) 

(43) 

(44) 

(45) 

(46) 
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+2AC1 (217oo -1Jo) + (AC1) 2 + 116, 

21]oo 1Jo 1 ap 1 1° v~ C1 = --wh1 +-- --c:-- .::(az,p,C1,A)da2 
E A 2hl aal Ac: 0 

!!!!___ + A av1 
1]oo Oaz 

1 +A av1 
aaz 

103 

( 47) 

(48) 

(50) 

for 0 ::::; a1 ::::; 27r in circttmference direction, bm ::::; a3 ::::; bs in width direction, 
and 0 ::::; a 2 ::::; c: in the gap height direction . 

Proof. We integrate the equation (21) with respect to the variable az and obtain: 

(51) 

where C1 is the integral constant. We put the formulae ( 40) and ( 41) into the 
equation (51), and thus we obtain the following algebraic equation: 

(52) 

For 0 < 8 2 B « 1 we can simplify equation (51) which obtains the following 
form: 

(53) 

In this case, the proper solution of the equation (57) has the form 

avl AOl -1]o + V(1Jo- A01) 2 + 4A011]oo 
e = - = -----'---,---------

aaz 2A1Joo 
(54) 

For A equal zero, formula (54) has an indeterminacy point 0/0. We use the de 
!'Hospital rule to obtain the limit of the formula (54) as A tends to zero, i.e. 
when we consider the particular Newtonian case of the synovial fluid: 

(55) 
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Let us find the solution for the small shear rates. We integrate equation (54) 
twice with respect to a 2 . Hence, we obtain t he circumference velocity compo­
nent in the following form: 

(56) 

where function 3(a2 ,p , C1,A) has the form (47) and C1, C2 a re the integration 
constants . 

The boundary conditions (37), (38) for the velocity component (5G) have the 
following form: 

v1(a2 =e-)= 0. (57) 

We impose condition (57) on the solut ion (56) and hence we obtain C2 = wh1 
and C1 (A) in the involved form (48). We introduce the dependence (48) for 
constant C1 into solution (56) , and so we shall get circumference fluid velocity 
component in the form ( 42) , where function r determines formula ( 46) for 0 :::; 
a2 :S c, 0 :S a 1 < 27f , bm :S a3 :S bs. 

Now from equation (23) we determine the velocity component v3 . We neglect 
centrifugal accelerat ion term. Afterwards we integrate twice equation (23) with 
respect to the variable a2. Hence we obtain: 

(58) 

where C3 , C4 are integration constants. Dimensionless viscosity 'T/pl = 1Jp/17oo 
has, by virtue of equations (39) , (41), (58) the form (49) whereas the function 
.6.(a 2 ,p,C1,A) determines the formula (50). Now we impose the boundary 
conditions: 

(59) 

on the longitudinal velocity component (58). Thus we obtain constants: 

(GO) 

We substit ute constants (60) into solution (58) hence we obtain the longitudinal 
w~locitv comnonent of svnovial fluid in t he form ( 44 ). Now we integrate once 
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the continuity equation (24) with respect to the variable a 2 and thus we obtain 
the radial velocity component of the synovial fluid in the general form: 

1 1"2 

av1 1 1"2 

a v2 (a1,a2,a3) = - -
1 

~ da2- -
1 

h ~ (h1v3) da2+Cs,(61) 
11 0 U0!1 11 3 0 U0!3 

where C5 is the integration constant. We impose the boundary condition 
v2(a2 = 0) = 0 on the solution (59), hence we obtain the integration con­
stant C5 = 0. Thus the radial velocity component has the form (43). Now we 
impose boundary condition v2(a2 = c:) = 0 on the solution (61) and we take 
into account the following identities: 

8 1E J·E av1(a1,a2,a3) 
~ 'V1(a1,a2,a3)da2 = a da2 
ua1 0 o a1 

(62) 

(63) 

which are valid because v1(a1, a2 = c:, a3) = 0 and v3(a1, a2 = c:, a3) = 0. 
Hence, we obtain the modified Reynolds equation (45), which determines the 
unknown pressure function p. This result completes the proof of Lemma 7.1. • 

THEOREM 7 .1. Approximately unknown particular solutions of the non-linear 
partial differential system of second order (21), (22), (23) , (24), joT synovial 
non-Newtonian fluid velocity components and pressure in httman joint gap rest­
ing on rotational bone surfaces with non-monotone generating line, can be shown 
to be composed of the following parts: the first part Tejers to the Newtonian prop­
erties of the synovial fluid, the second paTt is multiplied by the coefficient A and 
presents the cor'Tections caused by the non-Newtonian fluid properties, while the 
subseqttent parts aTe estimated by terms of the order of A 2 : 

1 1 ap ? 
v1 = -- - -sc (1- s) + wh1 (1- s) 

21]a h1 aa1 

An;1 1 ap(O) [ c: 2 
( 1 ()p(

0
) ) ] --sc: (1- s) --- 2wh1 +- --- (1- 2s) 

877oo hl 8al 37]o hl 8a1 

(64) 
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(65) 

(66) 

(67) 

where functions p(O), p(l) satisfy the following modified Reynolds partial equa­
tions: 

(68) 

(69) 

for s = 0.2/r::, 0 ~ 0'.2 ~ E, bm ~ 0'.3 ~ bs, 0 ~ O' J < 27r, -1/50 ~ h:J = 
4 (17~ -1]o17oo )/1J; ~ -1/25 . 

Proof. Formula ( 48) presents the involved equation with respect to the unknown 
constant C1 (A) . To obtain constant C1 in the analyt ical form we expand the 
right hand side of equation ( 48) in two terms of Taylor series in the neighborhood 
of the point A = 0. We obtain: 

21]00 E Up cl = --whl---
E 2hl UO'.J 

[
. Df(A,C\)]A 2 + lim f(A, C1) + lun DA 1 + O(A ), 

A-o A-o 1. 
(70) 

where 

(70*) 
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Since an indeterminate form of type 0/0 is obtained as A tends to zero, we use 
the de !'Hospital's rule to obtain the limits in the above formulae (70), (70*). In 
this way from formula (70) we obtain the square algebraic equation with respect 
to the constant C1 (A). The proper real root of this square algebraic equation 
has the following form : 

c1 (A) = __!!_<:___ [1 - EK;I A . ~ ap - II(A )] 
2At.;l 'r/o h1 EJo:1 

(71 ) 

where: 

II(A) := 1 _ ~ ( cK:1A . ~ ap )
2 

+ 41\; 1Awh1_ 
3 7]0 h1 EJo: 1 c 

(72) 

As A tends to zero , we obtain the indeterminate form of type 0/0 in C1(A). 
Hence, by applying the de !'Hospi tal's rule, we find: 

. 1 1 EJp wh1 
hm C1(A) = -- E--- -1]0 • (73) 
A -+ 0 2 h1 EJo:1 c 

Now we remove the constant C1 in t he circumference fluid velocity component 
(42), i.e. we remove constant C1 from function 3(C1 ), see equation (47), and 
from function r[3( CI)] , see equa tion ( 46). After this elimination we obtain: 

{ }

2 _ A EJp E 1)0 
::::(o:2,p, A)= -- (o:2 - -) +- [1- II (A)]+ 21700 - ''7a 

hl EJo: l 2 2;;;1 

(74 ) 

We use de !'Hospital 's rule to obtain t he limit of t he last term on t he right 
hand side of equation ( 46) as A tends to zero. In t hese calculations we take into 
account equation (47). We obtain finally: 

lim - A
1 

f( o:2,p,A) = 
A-+0 2 7)00 

(75) 

Hence, as A tends to zero , t he circumference velocity component assumes the 
following classical for m: 

where p(o) = p(A = 0) (76) 

The circumference velocity component (42) (after elimination of C1 in functions 
3 C1 and r[2C1] ) is expanded in two terms of Taylor series in the neighborhood 
of t he point A = 0 in the form: 

v1 = lim v1 + [li m ~VAt] ~1 + O(A2
). (77) 

A -+ 0 A-+0 u 1. 
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Now we calculate the first derivative of the function ( 42) with respect to A: 

1 ] A(ar;aA)-r 1 op(1l ( o:2 ) +-
2

A f(o:2,p,A) = 
2

A 2 - -
4

-
1
--,-o:2E 1-- , (78) 

1]00 1]00 1]00 L1 u0:1 E 

whereas 

ar j·a2 o3foA o:2 l " o3foA - = --- do~~ - - --- do:2. 
aA o 2v'2 - c: o 2v'2 (79) 

From equations ( 4 7), ( 46) it follows that functions 3, r and their first deriva­
tives with respect to A have in point A = 0 the following values: 

3(A = 0) = 1]~ , r(A = 0) = 0, (80) 

(83) [ 1 ()p(o) ( E) wh1] - = 2 (21]oo -1]o) --- 0:2-- -1]o -
8A A=O h1 00:1 2 E 

(
ar) 1 (1]oo ) 1 ()p(o) - = - - - 1 - --0:2 ( 0:2 - E) · 
oA A=O 2 1]0 h1 00:1 

(81) 

( 823) ( 1 op ) 
2 

[ 2 1 2 1 2 21]oo - 1]0] -- = 2 -- 0:2- 0:2E + -E - -E l\;1---
oA2 A=O h1 00:1 4 6 1]o 

wh1 1 op ( c:) (wh1)
2 

2 
-4-E-1]o h

1 
oo:

1 
0:2- 2 + -E- [277o + 4o:21\;177o (21Joo- 7Jo)]. (82) 

The first derivative of function v1 with respect t o A, see equation (78), 
has indeterminate form of type 0/0 as A tends to zero. Therefore we use de 
!'Hospital's rule to find the limit of function (78) in the following form: 

. ov1 1 . 82f 1 op(l) ( 0:2) hm- = -- hm-- ----o:2E 1-- . 
A-+0 oA 41]oo A-+0 oA2 41]ooh1 00:1 E 

(83) 

We usc the first derivative (80) and we calculate the second derivative in the 
following form: 

(84) 
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Into equation (77) we introduce equations (76) and (83). Afterwards in formula 
(83) we substitute the limits of function (84) as A tends to zero. To obtain these 
limits we must usc the values (81), (80) and the value of the second derivative of 
function:=: with respect to A in point A = 0. After calculations we obtain finally 
the expression (64), which determines the circumference velocity component . 

The longitudinal velocity component ( 44) is expanded in two terms of Taylor 
series in the neighborhood of the point A = 0 in the following form: 

(85) 

It is easy to see by virtue of equation (47) that function (50) t:. = 
t:.(a1,az,a3) = t:.[az ,p,C1 ,AJ tends to zero if A tends to zero. Hence the 
longitudinal fluid velocity component ( 44), as A tends to zero , approaches the 
following classical form: 

(86) 

Now we calculate the first derivative of the function ( 44) with respect to A: 

1 ap 1 <>2 1 {1" a 1" --h-8 Y daz " 2 az {)A [Y] daz Y da 2 
1Joo 3 0!3 o [1

0 
Y da2] o o 

-1" a2Y dazl" 0~ [Y] da2 }, (87) 

where Y = _!.___( ") . From equation ( 49) we obtain the first derivative of the 
1)pt '-' 

reciprocal of viscosity function 1}pl with respect to A in the following form: 

!.___ [YJ = !.___ [ 21]00
- 6] = 2(77oo- 1Jo)~ = W(A). 

8A 8A 2170 - t:. (2170 - t:.) 
(88) 

We substitute expression (88) in formula (87). Hence, the first derivative of 
function v3 with respect to A has following indeterminate form of type 0/0 as 
A tends to zero: 

. OV3 1 
hm- = - ­
A-->0 8A 1]00 h3 

!:l {lao l et ·> f E Yd } up - - Jt az 0!? 
x lim ~ a2 W(A) daz - W(A) daz · ~" -

A-->0 ua3 0 0 0 Y daz 
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(89) 

To obtain the limit of formula (89), we must calculate the limits of expressions 
W , see (88) and the limit of t he first derivative of b. , see (50), with respect to 
A as A tends to zero: 

I
. f) b. 
1m !:)A= 

A-+Ou 

lim W(A) = 
A-+0 

(90) 

( f!oo - 1Jo) [ ( f/oo - 1/o) 1 fJp ( ) W h 1 ] 
-'-----,?~-'- E - 20:2 + 1]00 - • 

f/6 2170 h1 fJa:1 c: 
(91) 

Now , into equation (85) we introd uce limits (86), (89) obtained by virtue 
of expressions (90) , (91). After calcu lat ions we obta in finally the longitudinal 
velocity component in the form (66) . We insert the longitudinal and circumfer­
ence fluid velocity components (66), (64) in equation (45). After calculations 
we equa te the coefficients of the same power k of small parameter Ak to 11ero. 
For k = 0 and k = 1 we obtain the classical (68) and modified Reynolds equa­
tions (69). 

Equation (68) determines t he press ure function p(o) and equation (69) de­
termines t he pressure corrections p(l ) which are caused by the non-Newtonian 
fluid properties. 

We put the circumference and longitudinal velocity components (64) , (G6) 
in the formula (43) and we take into account equations (68) , (69) , and t hus we 
obtain finally t he form ( G5) of the radial velocity component. 

This result completes the proof of Theorem 7.1. • 

8. Example illustrating the capability of solutions 

By virtue of the presented t heory we determine the analytical solutions of a 
particular case of pressure distribution for the axial symmetrical flow between 
two rotational hyperbolic bone surfaces and variable gap height. In this case 
synovial fluid flow will be given as axial symmetrical in thin gap, t hus the 
hyperbolic coordinate system will be taken in t he form (see Fig. 7): 

(92 ) 

The Lame coefficients are as follows: 

(93) 
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whereas 

(94) 

We use the following notations: a- the smallest radius of the bone cross section , 
a 1 = a+ w- t he largest radius of the bone cross section, 2b- thc joint length, 
c: 1(a3I) = c:(a3)/c:0 --dimensionless gap height , E0 - dimensional average value 
of gap height. 

Capacity 

F igure 7. Radial elbow joi nt in hyperbolic co-ordinates and hip joint. 

z 

Figure 8. Human gaD height in snherical coordinates for o P.form<~.t.ion :1.hi lit.v r.art.il rtP'P . 
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Pressure distribution depends on variable 0:3 only. In this case we obtain 
the function of pressure by virtue of equations (68), (69) for coefficients (92) in 
the following form: 

(95) 

where: bml = bmA ::::; 0:31 ::::; bbsA = bs1, 0 ::::; O: u ::::; O:e ::::; 21f , 0 ::::; 0:21 = 
o:2/c0 ::::; c1(o:31). Symbols bm1 and bs1 denote the dimensionless upper and 
lower limits of the lubrication region, respectively. Moreover , we introduce 
following dimensionless notation: 

(96) 

Now for axial unsymmet rical synovial fluid flow for the gap resting on spher­
ical bone surface in human hip joint (see F ig. 8) we have the following Lame 
coefficients: 

h1 = Rsin({)IR), (97) 

where R is radius of sphere. We denote: o:1 = r.p circumference direction, o:2 = T 

gap height direction, 0:3 = {) (meridian) direc tion. The Reynolds equation (68) 
has following form: 

!__ ( c
3 

()p(o)) + R 2 sin (~) !__ [ c
3 

()p(o) sin(~)] 
ar.p 1Jo ar.p R (){) 17o 8{) R 

= 6w R
2 
;; sin

2 
( ~ ) (98) 

in n region : 0 ::::; r.p ::::; 1r, 1r Rl8 ::::; {) ::::; 1r Rl2. Gap height has the following form : 

c( <p, {)I R) = .6.c1 cos r.p sin{) I R + .6.c2 sin r.p sin{) I R- .6.c3 cos{) I R - R 

+[(.6.c1 cos r.p sin{) I R + .6.c2 sin r.p sin {) I R- .6.c3 cos{) I R) 2 

+(R + Emin)(R + 2D + E111 in)]0·5. (99) 

The center point of t he bone head (see Fig. 8) can be written down in the 
following form: 0 1 (x- .6.c1, y- .6.c2, z + D.c ), while D is t he distance between 
th., rPnt.rP nf hnnP h Parl anrl t.h P ar:r.t.ahnlnm (s!P.P.vr.) c.P.ntre . 
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9. Deformation ability gap height 

The minimum of gap height , see Dowson (1998), for spherical hip joint is ob­
tained from the formula : 

E min = s~30 . 4 ':!___!}_ 
( 

R2 )0.6 
R - V27r 1 c ' 

(100) 

where E 1 , E 2 ,v1 , v2 a re the elastic modules and Poisson ratios for bone head 
and cartilage, C-load, and quantities: 17 , w, R are as defined previously. De­
pendence (39) for 8 ~ wR/Emin can be written in the following form : 

S = wR1]0 

2 - ER' S3 :::: Aw. (101) 

By combining equations (101), (100) we obtain the system of two equations 
for determination of two unknown q uantities , namely the dynamic viscosity 
17 of synovial fluid and the minimal value Emin of gap height , where elastic 
deformations of cartilage are taken into account. If we assume the following 
data: R = 2.6 · 10- 2 m , E = 2 · 105 Pa, wR = 3 · 10- 1 m/s, 1]00 = 0.10 Pas, 
21rR/C = 3· 10- 4 m/N, 1]0 / 1]00 e:: 1000 , A= 1.88 s, C = 544.26 N, then from eqs. 
(101), (100) we obtain: E min = 0.0000208/.L m = 20.88/.L m and 17 = 0.1036 Pas. 
If we take in t he computations the following quanti ties: A = 1.88 s, 1Jo = 
100.00 Pas, 1700 = 0.10 Pas , R = 0.020 m, C = 544 N, 0.5os- 1 S w S 10.0o s- 1

, 

2 · 105 Pa S E S 2 · 107 Pa, t hen we obtain the minimal value of t he gap height 
in the interval: 0.29/.L m S Emin S 19.90 jJ. m. 

10. Numerical example 

We solve equat ion (98) for the region 0( <p , il) resting on bone head a nd indicated 
in Fig. 5. We assume atmospheric pressure on the boundary of the region 
0( a 1, a 3 ) . For this region we calculate also t he capacity values. ln numerical 
calculations we ass ume the following values for the joint gap: b.c1 = 5p.m , 
b.c2 = 5J.Lm, b.c3 = 5J.Lm, radius of bone head R = 0.026575 m. 

Now we calculate the normal hip joint. For angular velocity of bone head 
w = 3 s - 1 a nd average value of synovial fluid dynamic viscosity 1]0 = 1.00 Pas, we 
obtain the smallest gap height En•in = 10.0 m for normal joint and hence hydro­
dynamic pressure p (o) has maximal va lue equal 35 .30 · 105 N/m2 ~ 35.30 at 
and capacity Ctot = 2133 N, sec Fig. 9. Lubrication smface has value 
1r R 2 cos( 1r /8) ~ 20.50 cm2

. 
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R=0.026575[m] 
w=3 [1 /s] 
11=1 [Pas] 
Pmu=35.30•1 O' [Pa] 
Em;,= I 0.0 ).lm 
c.,,=2I33 [NJ 
Lubrication surface=20.5 [em 2

] 

K. WIERZC HOLSKI 

p [Pa] 

Figure 9. Pressure distribution in uormal spherical hip joint gap for hydrodynamic 
lubrication caused by rotation. 

Numerical calculations were performed with Mathcad 2000 Professional Pro­
gram, with the help of the Met hod of Finite Differences. This method satisfies 
the requirement of stability of numerical solutions to the par tial differential 
equations (98) . 

11. Final comments 

The present paper shows the method of determination of approximate solu­
tions to partial non-linear differential equat ions of non-Newtonian, asy mmetri­
cal synovial fluid fl ow in t he th in gap occurring in human joint in curvilinear, 
orthogonal co-ordinates. 

The method presented enables to obtain solutions in the form of Taylor 
series wi th increasing powers of the small parameter A obtained in experimen­
tal way for synovial fluid. In the particular case of the symmetrical flow we 
can, by virtnc of theory presented, find analytical solutions in a simple form. 

The percentage corrections of velocity v? ) and of pressure p(ll caused by the 
non-Newtonian properties of the sy novial fluid , sec equations (64) -(67), arc 
examined numerically through following ratio form: 

Ap(l ) + O(A2 ) 
100 p (o) in percent. (102) 

For large shear rates: 100 s- 1 :::; 8 :::; 1000 s- 1, the viscosity of synovial fluid is 
small and has values 10- 1 Pas :::; ry :::; 1 Pas, sec Fig. 6. In this case we obtain 
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from eq. (102) small pressm e changes from 2% to 4%. For small shear rates: 
10- 1 s- 1 ::; 8 ::; 10 s-1, when viscosity is large , i.e. 10 Pas::; 17 ::; 100 Pas we 
obtain from eq. (102) pressure changes from 7% to 15%. 
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