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Abstract: The paper shows a method of solution of systems
of partial differential non-linear, second order equations for synovial
axial-symmetrical and unsymmetrical fluid flow in curvilinear or-
thogonal coordinates between two bone surfaces in human joint gap.
Theorems are formulated, describing unification method of solutions
of partial differential non-linear equations of synovial fluid flow.
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1. Introduction

This paper presents modelling and simulation for synovial fluid flow occurring
in gap between two co-operating bone surfaces in human joint. The present
paper gives an analysis of solutions of systems of non-linear, partial, differential
equations for synovial fluid flow in human joint gap. Fig. 1 shows the geometry
of various human joints.

In the hip joint the spherical rotational bone and the pelvis bone create a
spherical gap (Fig. 1). In this gap between two co-operating bones, synovial
fluid flows, see Mow (1969), Mow et al. (1984, 1990, 1991, 1994, 1998), Maquet
(1984), Ungethiim et al. (1990), Wislicki (1980), Wierzcholski et al. (1993, 1994,
1995), Wierzcholski (1993), Pytko et al. (1995), Dowson (1990).The flow of this
fluid is caused by the motion of the bone head. The theoretical considerations
of the synovial non-Newtonian fluid flow in thin joint gap, taking into account
boundary layer simplifications, have practical applications in theory of lubrica-
tion in medicine, see Dowson et al. (1998). Gruca (1993), Winters ct al. (1990).
The considerations in the present paper enable to find synovial fluid flow pa-
rameters and carrying capacity force in joint gap between two co-operating bone
surfaces in curvilinear orthogonal co-ordinates.



92 K. WIERZCHOLSKI

Figure 1. Geometry of human joint: 1—biobearing gap, 2—spherical rotational bone
head, 3—fibrous capsule, 4—synovial membrane, 5—fat pad, G6—articular cavity
containing synovial fluid, 7—articular cartilage, 8—ligament, 9—mnuscle, 10—tendon,

In opposition to the results of Mow (1969), Mow et al. (1990, 1998), the ones
obtained in this paper show the estimation of synovial fluid flow equations and
by virtue of present results we can apply various geometry of bone surfaces in
the human joint analyses.

As contrasted with papers by Batchelor et al. (1996), Hayes et al. (1993),
Maurel et al. (1998), Mow et al. (1984, 1991, 1994, 1998), Yao (1993), the
present paper shows a unification and analytical method of solutions of the
lubrication problem in human joint gap for various joints, for example with
spherical, parabolic or hyperbolic bone surfaces and for the non-Newtonian mi-
cropolar experimental properties of synovial fluid.

2. Formulation of the problem

The aim of the paper is:

2.1 To present the mathematical estimation of the terms of basic partial
differential non-linear equations of second order, for the fluid flow in the thin
joint gap between two bone surfaces for various geometry.

2.2 To formulate the theorems which describe the unification and the ana-
lytical method of solution of partial differential non-linear equations for axial-
symmetrical and unsymmetrical flow of synovial fluid in human joint gap.

3. Basic equations

In this section we show the basic equations describing the synovial fluid flow
in joint gap. Equations of conservation of momentum and continuity equation
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have for the stationary flow of synovial compressible fluid between two non-
rotational surfaces in the curvilinear orthogonal co-ordinates, the following form,
see Wierzcholski (1993):

1
p(grad FUV—UX rot v) = Div §, (1)

dive =0, (2)
where constitutive equations are as follows:
S= -—pI+ 27],) Td’ (3)

whereas the components of stress tensor S, unit tensor I, strain tensor Td, are
respectively: 7, 8i;, 6. We use the following notations:
8ij — Kronecker delta,
p — fluid density,
n, — dynamic viscosity of the synovial non-Newtonian fluid, strain component
dependent,
v — fluid velocity vector with components v;,
p — pressure,
f;; — components of strain tensor.
Geometrical dependencies between strain components and fluid velocity compo-
nents in orthogonal curvilinear coordinates have the form, see Truesdell (1972):

3
1[h; O /vy h; 0 /v; v Ohy
bij = 5 —'——(-—)+—J- (—’)+25UZ——~“—~ ; (4)
2 hj Oa \ h; hi Oa; \ h; o hihi Oag
morcover, hy, ho, hs are the Lamé coefficients, ay, as, ag-—curvilinear orthog-

onal coordinates; 7,7 = 1,2,3. We introduce equation (3) into right hand of
equation (1). Thus we have:

. 1 op
(Div S); = e B
1 [ @ ghib;; s g0:; O(h;)?
Lt ot ivij y 1 ij 4
ok { 2 3, (2”1’ h; > 22 [2’7" R oa; H (5)
j=1 §=1 I
less 8 JUk
0=dive = - — (2 ) 6
v g;aak<hk) ( )

where g = hyhohs and @ = 1,2,3. Expanding the left hand of equation (1) we
obtain finally:

v
p<grad et X rot 'u)
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4. Flow simulation for thin gap between two non-rotational
bone surfaces

CASE OF FLOW 4.1. When the orthogonal curvilinear co-ordinates oy, as, ag
coincide with curvature lines of the thin layer resting on non-rotational bone
surface in human joint gap, where oy —length direction, ag--—perpendicular di-
rection to the bone surface (in gap height direction), as —width surface direction,
then the Lamé coefficients for the thin layer surface with non-monotonic curva-
tures are as follows:

hy = hy(o, a3), hy =1, hs = ha(ay, a3), (8)

Sketch of proof. Let the vector equation of the surface have the following form
(Fig. 2):

Figure 2. Non rotational bone surface.

T = Tolay, a3). (9)

The position of any point in the space along the normal vector n in relation to
the surface is determined as follows:

q. = TD(01,03) 2 l'l'gn(r}_’l‘a';;). (10}

The square of the element of length is given by:

ar, n\? 9 9
(doy)® + (dag)”

(ds)? = (dagy)? = ( 2t arg
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ar, on\? 2
+(5&: +025a_3) (das)®. (11)

From the Rodrigues Law we have:

on 1 0drn, on 1 dr, (12)
80{1 - Rl 8(1’1 ‘ 80:3 - R3 3&3‘ E
where R, Ry denote the radii of curvature in directions oy and 3. We sub-
stitute equation (12) into equation (11) and we take into account the thin layer
simplifications, i.e. as/R; = 0, az/Ry = 0, and then we obtain:

ar,(ay, ag) Iry(ey, ag)
T e e I T (N TR 1 s 13
i 6(11 “ 3 az‘x;; ( )
This remark completes the case of flow 4.1. | |

5. Flow in thin gap between two rotational surfaces

CASE OF FLOW 5.1. [f orthogonal curvilinear coordinates oy, aa, avy are curva-
ture lines of a thin layer of synovial fluid resting on the rotational bone surface
in human joint gap, where oy —circumference direction, as—generating line of
rotational bone direction, oz —gap height direction, then Lamé coefficients for
thin layer with non-monotone generating line are as follows:

hy = hy(as), hy =1, hs = ha(ag), (14)
Sketch of proof. For the rotational surface the radius vector has the form:
7, = tR(a3) cosay + jR(ag)sin oy + kZ(a3), (15)

where 1, 7. k are the unit vectors in the Cartesian system and the projections Z
and R of the vector 7, indicated in Figs. 3 and 4 are the functions of a3 only.
We put equation (15) into equation (13), hence we obtain the dependencies (14),
which completes the proof of case of flow 5.1. |

CASE OF FLOW 5.2. For monotone generating line of rotational surface (see
Fig. 4) the Lamé coefficients have the following form:

hy = hy(as), ho=1, hy=1, (16)

Sketch of proof. For the monotone generating line of rotational surface (see
Fig. 4) the dependencies (16) are true by virtue of basic theory of differential
geometry, which completes the proof of the case of flow 5.2. =



96 K. WIERZCHOLSKI

Figure 3. Rotational spherical bone head surface with non-monotone generating
line ag.
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Figure 4. Rotational bone surface with monotone generating line as.
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LEMMA 5.1. Equations of conservation of momentum and continuity equation
for incompressible, stationary synovial fluid flow in thin fluid layer in human
joint resting on rotational bone surface with non-monotone generating line and
for orthogonal, curvilinear coordinates (o, as, ag) have the following form:

(U_l% " dny + 5 vy | vy Oy
hy 3(?1 *dary darn h3 8(1'3 hlha 3(13

dp 2 0 dvy vy Ohy d duy
~ | S ALY | Gt f 2
}10 tR h2 day [?" (3&1 * ha 8&3)] * Oas (ﬂ" 80:2)

1 & 3?!2 1 d 2 h] d "M 1 01)3
et e IR et ) bl TN LS
+hl das (?h 3&1) i h%hs Oay { "17lp [hd da (hl) o hy 80:1] } (17)
vy Ovg dua  wzdua\ _ Odp
(a:a—m e T aag) = " P0;

+1 d O i 1 vy i d s
B O e S B R Zorh
hy day lp das  hy day das e das

1 @ 1 dva  Ovs
=t B 18
+h,1h,3 dag [ H?}P(hg Oag ¥ 8&2)]' (1)
'{‘Jl a'UJ o dv U3 + 'U_3 O'UJ 'U% (')hl _i@.
h 0 (a3} ™ ()l‘.'l‘g hg 80'3 ’11:'!3 80'3 - !13 80.’3

L0 T 0 (m), 1o

hy ey o hs Oas \ hy hy Oy

d 1 31!2 8?!3 2 C) v U3
+a—ag[””(EM+ 3—@)] ® hlh%@_as[h (

'&_
2 O (0111 . 3h1) 2n, Ohg (8_3) (19)

Jil.lhu; pl’)(};; Bm 1'13 8(1‘3 .".’,3 303
v, duy
}338— + :"?11’?3()— 7+ —(h]‘li.;) = 0. (20)

We have in the direction of the length 0 < ay < 2w, in the direction of the width
by, < ag < by and in the direction of gap height 0 < as < e(ay,a3), whereas
b, bs are constant limits of lubrication in directions ay, aj.

Proof. We put equations (3), (4). (5), (6), (7) and (14) in equations (1), (2), thus
the conservation of momentum equations and the continuity equation for incom-
pressible, stationary, synovial fluid flow in the thin layer resting on rotational
surface with non-monotone generating line and in orthogonal, curvilinear coor-
dinates oy, g, vy have the form (17), (18), (19), (20). This remark completes
the proof of Lemma 5.1. |
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LEMMA 5.2. Estimation of dimensionless terms with evactness between 0.10000
and 1.00000 with respect to the neglected terms of order 0.0010, for equations
of conservation of momentum and continuily equation (17)-(20), in curvilinear
orthogonal coordinates (o1, o2, cvy), for incompressible, stationary, and unsym-
metrical synovial fluid flow in thin layer resting on rotational bone surface of
human joint gap, with non-monotone generating line, lead to following basic
equations

1 dp d dv
0= 5 7+ 3o (v ) 1)

hl 80.’1 80‘2

dp
0=—, 2
dag’ (22)
pn Ohy 1 Op d dua .
T hihs das s Oas * dag T dag ) | 23)
du; Jvg
0—.»"?36} -I-} ;’_;a +—(h1b‘d) (24)
where in the length, width and gap height divections, we have, respectively:
OSQI Szﬂ, bm S0‘35b5, US&'.’SE' [25)

Proof. The system (21)-(24) describes four unknowns, namely three components
of synovial fluid velocity v;(ay, a2, a3) for i = 1,2,3 and pressure p = (a3, a3).
If generating line of rotational thin layer surface in particular case is a monotone
function, then in (21)-(24) we have hz = 1. Now we are taking into account the
axial unsymmetrical synovial fluid flow. We assume the following dimensionless
values of the Lamé coefficients hyy, ha;; values of curvilinear coordinates: aq;,
a1, ayy; values of vector velocity components: vy, w21, v31; pressure p; and
dynamic viscosity 77;. Dimension values have then the following form:

h.} = Rh“‘ ."13 = !‘L;;l, ap =y, 0= lIf'R(.tgh a3 = R'Of;;l, (26)

v = Uy, g = Wl w9y, az = Wusy,

_ Do =
p= -‘I}—gpl, 7= . (27)

The following notations are used:
R — radius R; of the curvature in «; direction or radius of the rotational
surface,
R* — radius of the curvature in a3 direction or bearing length,
U — dimensionless radial clearance = ¢/R ~ 1074,
£ — gap height,
U — surface linear dimension velocity in o direction,
W — snrface linear dimension velocity in as direction,
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p; — estimated value of dimension pressure,
1, — value of dimensional dynamic viscosity of synovial fluid.
We insert dependencies (26), (27) in equations (17)-(20), hence we have:

’Un 01)11 8’011 RW V31 81’11 RW V11V31 (‘)11,11
Re U + w91 + -
1111 dany daoy R*U hg1 dazy R*U hq1hsy Oasy

__EuRe 1 9p1 202 9 dvny 2 RW ws; Oh1y
- 1\ 1111 dan h%l 0(111 Ba“ R*U hgl 0&31

0 OUII 2 1 8 8U21
P —
+8a2 (771 00101 ) * /),11 (r)(\/gl ™ aall
R 1 a h’ll a V11 W 1 0’1)31
_\;[/2________ 1/2 S e 1 w4 ’ 28
+R* h/%lhiil Oasy { "1 [/1.31 dagy <hu> M U h1 3()(11:| } ( )

O(Re %) = —E‘;Regf—; +0 <w2> (29)
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h11 0&11 da21 UR* ]1,31 0&31 W R* hn/l,gl 0(131
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v R* /7,31 8(1/31
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‘112
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R\* 1 9@ dvy1
2
e
e (R*) /l11h§1 0031 |:Lll7h<(()(l/31>:|

2\112 __@_7 8/),11 201)11 +£Ui 817,11
/I,%lll.gl R* it Oazy \ W daq, R* hgy Dagy

R . 1 0]7/31 81)31
—22 e . 30
(R*) h’gl (90!31 W <8a31 i ( )
oy 0 UR 0
h: 31 8(1; + hu] 318021 + WR* () (h11U31) 0, (31)

where Reynolds and Euler numbers have the form:

/JU € Po ‘
Re = Eu= 32
Ny " Uzp’ (32)
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and
¥=0(10"%), 0<Rec<l, 'I!% = 0(1), (33)

because W <« U. Now we have two possibilities.

2
fiy = (E) , EuRe \/EEZO(%),

Re v

2 * 2
; * n D !
£ =00 g o=do o
1 Do ,ORE P p2 ,052 (34)

and
v EuRe e _ P wnR? Y

Euhﬁ, 7 =1, if pl=wn, Po= g5 =7 (35)

The terms of inertia forces in equations (28)-(30) are multiplied by the factor
Re W. We neglect inertia forces terms and other terms (multiplied by the factor
Re¥ or U™ for n > 1, ¥ = 1073) which are of order (1073)" < 0.001 as
compared to the terms of order 1.000 or 0.100. Thus, the system of equations
(28)—(31) for axial-unsymmetrical, isothermal, stationary synovial fluid flow in
the film between two rotational surfaces with non-monotonic generating line
has in the curvilinear, orthogonal co-ordinates a;, a2, oy the dimension form
(21), (22), (23), (24). The term of centrifugal acceleration of order Re WU /W,
occurring in equation (30), can be not negligibly small, because W < U. This

2 Oh
term — 2oL 2L exists on the left hand of equation (23). Gap height may be
h] ."33 8{‘}3
a function of both variables oy, ag, i.e.: 1 = e;(a;,a3) where e & 2-107% m.
This remark completes proof of Lemma 5.2. |

6. Boundary conditions

The boundary assumptions for the pressure function p(ap,@s) in the human
gap joint, as shown in Fig. 5, follow Zimmermann (1995):

Figure 5. Boundary ranges of hydrodynamic pressure region on bone head in human
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play, a3 = by) =p:(a1),  pla1, az = by) = puwle),
play =0, az) =pi(as),  pla1 =0, as) = p,,(as) (36)

where: p.(a = a.) = pl,(ag = b)), pz(a1 = 0) = pl(ag = by, pl,(a5 = bs) =
pwlar = ae), pilaz = bs) = pular = 0), and p-(ay), pi(as) means pressure
value at the inlet of the articulation gap in directions «y, ary respectively, p(ay),
pi,(as)—pressure value at the outlet of the gap in directions ay., aj respectively.

The boundary conditions for the synovial fluid velocity components, related
to the rotational motion in «; direction of the surface, have the following form:

v, = why, vy =0, v3 =10 for as; =0, (37)

where w is the angular velocity of the bone. The cartilage of human joint is
motionless, therefore:

v =0, vy =0, vy =10 for as =e¢. (38)

Approximation formulae for the dynamic values for various shear rates have the
following form:

Ty = oo + % ~ 1 — (o = oo )OA+... for 0< OB <1, (39)
for other cases
= Mo = Tloo i 0271
Mp = oo + 11463 B2 ~ Mo — (Mo — Moo )OA — (15 — 10e )O° B + ... .(40)

where 7)o and 7,, expressed in Pas, mean the dynamic viscosity value of synovial
fluid for large and small shear rate values in s™1. Symbols A and B denote the
coefficients, which were obtained by Wierzcholski (1993) by virtue of the Cooke's
and D. Dowson’s (1990) experiments (see Fig. 6).
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Figure 6. Viscosity of normal and pathological human synovial fluid versus shear rate
(after D. Dowson).
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We have obtained A = 1.88307 s and B = 0.00458 s* for the normal human
joint and also A = 0.03349 s and B = 0.00131 s for the pathological human
joint. The shear rate has the form:

(—)ogo(%), = OV (41)

dag

7. Properties of analytical solutions

LEMMA 7.1. The involved solutions of the non linear partial differential system
of second order (21), (22), (23), (24), for synovial fluid flow velocity compo-
nents and pressure in human joint gap resting on rotational bone surfaces with
non monotone generating line for the boundary conditions (36), (37), (38) and
variable dynamic viscosity function (39) obtained from experiments, have the
following form:

- 1 8;.0 ay
vi(ay, o, a3) = 4%.9&1 (')al (1 = ?) + why (1 = ?)

1
1 [ 9y 1 az 9
] Al —— T d e T !" 4 El
va (g, g, v3) i)y Ba Qs 53-1."13/0 80:3( 11v3) das (43)
1 adp
va(a, @z, a3) = Sl b
IE 0:2—1—' l'f(l‘g
a2 1 a2 1 0 A
X / L) / davy ”*’11( ) ._ (44)
0 ?,‘,;1(&) 0 ??JJI(A) ff das
9 ”pl(A)
where the pressure function p satisfies equation:
B £
5'51’_1/0 vi(an, az, a3) dos
. / hi(as)vs(ar, az, as) das | = 0. (45)
Moreover,

a2
Posip, 81,4} = f SO ) s
0
- / \/ E(az,p,Cy, A) day, (46)
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_ Adp \° 24 0p
=) = | e Moo —
(a2,p,C1,A) <h1 aalag) + — I aa (AC) + 2100 — m0) 2
+2AC1 (2000 — M) + (AC1)* + 113, (47)
2o 1 9 1 g®
o I . LI P Z(a2,p,C1, A)day  (48)

A Zhl 8(11 A6

M0 ovy
—_— 4+ A——
da 210 — Aag,p, C1, A)
) A = b 3 A) = floo 4 =
7711( ) 77171(042,17,017 ) 0 +A3U1 Moo — Alaz,p,Cy, A) (49)
0012
A Op whl
= _ 9 il =(

Aag,p,C1,A) = o dal(g 209) ~ 2ne0 A + vV E(az,p,C1, A)

1 /¢ =
—E / \/;(ag,p, CI,A) daz (50)
0

for 0 < a1 < 27 in circumference direction, b, < asz < by wn width direction,
and 0 < ag < € in the gap height direction.

Proof. We integrate the equation (21) with respect to the variable s and obtain:

vy

0 _771,8 o

for Ql = —;——(12 & Cl (51)

where C is the integral constant. We put the formulae (40) and (41) into the
equation (51), and thus we obtain the following algebraic equation:

B1ies©® + (Aee — BQ1)O? + (1, — AQ1)O — Q) = 0. (52)

For 0 < ©2B <« 1 we can simplify equation (51) which obtains the following
form:

AN ®® + (1, — AQ1)O — Q; = 0. (53)

In this case, the proper solution of the equation (57) has the form

oy A% —7o+ ([ (1 — A1) + 44001

O=—= 4
Oan 2 AN )

For A equal zero, formula (54) has an indeterminacy point 0/0. We use the de
I'Hospital rule to obtain the limit of the formula (54) as A tends to zero, i.e.
when we consider the particular Newtonian case of the synovial fluid:

lim © = & (55)

A—0 MNA
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Let us find the solution for the small shear rates. We integrate equation (54)
twice with respect to as. Hence, we obtain the circumference velocity compo-
nent in the following form:

1 1 dp
C _
vi(ay, az,a3) = o (%1 aalag + 10-'2)

2A?? \f E(az, C1,A)day + Co (56)

where function Z(ag, p, C1, A) has the form (47) and C;, Cy are the integration
constants.

The boundary conditions (37), (38) for the velocity component (56) have the
following form:

o
a
2 A1 *

vy (e = 0) = why, vi(ag =€) = 0. (57)

We impose condition (57) on the solution (56) and hence we obtain Cy = why
and Cj(A) in the involved form (48). We introduce the dependence (48) for
constant C) into solution (36), and so we shall get circumference fluid velocity
component in the form (42), where function I' determines formula (46) for 0 <
ay <e, 0<a; <2, by, < aj < bs.

Now from equation (23) we determine the velocity component v3. We neglect
centrifugal acceleration term. Afterwards we integrate twice equation (23) with
respect to the variable as. Hence we obtain:

1 dp /“’ s /““ 1
= e — —das + C —_—— oy
Neohs Oag Jo i1 (2,p,C1, A) R p1 (a2, p, C1, A) >

+Ci (58)

where C3, Cy are integration constants. Dimensionless viscosity 7,1 = 7p/7eo
has, by virtue of equations (39), (41), (58) the form (49) whereas the function
Az, p, Cy, A) determines the formula (50). Now we impose the boundary
conditions:

v3(az = 0) =0, va(ap =€) =0, (59)

on the longitudinal velocity component (58). Thus we obtain constants:

£ 1
—da
1 8p f npl(A) 2

" Neohs Oaz 1
JO Tlp1 (&)

Bl (60)

We substitute constants (60) into solution (58) hence we obtain the longitudinal
velocitv combonent of svnovial fluid in the form (44). Now we integrate once
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the continuity equation (24) with respect to the variable as and thus we obtain
the radial velocity component of the synovial fluid in the general form:

1 2 duy
"t Jo 37&10{02 hlhd/ day U)oty + e, (BL)

where C5 is the integration constant. We impose the boundary condition
va(ay = 0) = 0 on the solution (59), hence we obtain the integration con-
stant C5 = 0. Thus the radial velocity component has the form (43). Now we
impose boundary condition wa(as = €) = 0 on the solution (61) and we take
into account the following identities:

v (@, (9, 003) =

P £ £
8%1 . -v;(ahuz,ns)daz=/ﬂ %ﬂ?as)dﬂg (62)

a F € O[hi(a3)vs(ay, asz, o
%/u hi(as)vs(ar, g, az) dag =j; [ha(as) ;Ex; 203)] dag, (63)

which are valid because vy(a;, as = €, a3) = 0 and v3(ay, as = ¢, a3) = 0.
Hence, we obtain the modified Reynolds equation (45), which determines the
unknown pressure function p. This result completes the proof of Lemma 7.1, W

THEOREM T7.1. Approzimately unknown particular solutions of the non-linear
partial differential system of second order (21), (22), (23). (24), for synovial
non-Newtonian fluid velocity components and pressure in human joint gap rest-
ing on rotational bone surfaces with non-monotone generating line, can be shown
to be composed of the following parts: the first part refers to the Newtonian prop-
erties of the synovial fluid, the second part is multiplied by the coefficient A and
presents the corrections caused by the non-Newtonian fluid properties, while the
subsequent parts are estimated by terms of the order of A*:

llf)p

- 1-— hy(1—
b 21]0 h] 0051 ad ( ‘;) iy ( S)
Ak 1 9p® €2 (1 6p©® i
B T e e b S il o L i
+O(4?), (64)

L3 g e[1d% 1 9 (h dp WK1E o y
v gl = )T,[f'-;a 2+ ks oAb )| g, *

y 11 0 [ 9p +1 1 9 [eh?ap®
hidaz \ Oay ) T Ahihs Oas \ ha Oom

1 9p® Oe 1 9p'% hy 0 } 1821~ s)
ARnan.

hi Ocer Ocxr 2ha Oevn ha Orva
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1 0 [28pO\° 1 9 [e39p® gp®
w | T (Y P (E e
hy 0ay \ hy 0oy hihs Oay \ hy day Oas

(13| L2 (L0 1 0 100 1 o0
h 8 f?l actj_ ' :’?.3 3(1'3 ;"1.3 3(.\‘3 h.l (')CI‘I
+0(A?), (65)
110 K1 1 ap®
O < o TR T il 0 )
va 21, ha C?ar‘;g &) 873903 e(l-s) hy dag
e2 (1 6p® 5
e o — 9
X [wh] -+ 3 (h-l D )(1 ._‘s)jl + O(A%), (66)
p=p@ + ApV) 4+ 0(4?) (67)

where functions p©, pV) satisfy the following modified Reynolds partial equa-
tions:

&3 (0) : 23 55(0) ;
e op™ 9 [ e c{p = Bk 28 de (68)
.-"?1 do:l 1)9 Bal hJ do/; hano oy day’
o 87)(” a [ hie® opV)
hl dm 70 dal h‘; dnzu; hane das

_ 19 smc]p(m 1 1 8 ([h3%x (me
- QWBQ:I Moo Oy hy Oces \ Nechs Oz

(69)

fors = agfe, 0 < ag < e, by, <azg b, 0 <ay; <27, =1/50 < Ky =
4 (??go _”07}00)/??3 < —1/25.

Proof. Formula (48) presents the involved equation with respect to the unknown
constant C7(A4). To obtain constant C; in the analytical form we expand the
right hand side of equation (48) in two terms of Taylor series in the neighborhood
of the point A = 0. We obtain:

Bl gty = 22
I 2;3-1 801

+ 0(A?), (70)

. _Of(AC)] A
+}lilil.10f(A,Cl) -+ [’1111110 ——-—}

dA 1

where
1

Mo il .
facy= - 2 [ [Ea,p,Cr, A) day (70°)
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Since an indeterminate form of type 0/0 is obtained as A tends to zero, we use
the de I'Hospital’s rule to obtain the limits in the above formulae (70), (70*). In
this way from formula (70) we obtain the square algebraic equation with respect
to the constant C1(A). The proper real root of this square algebraic equation
has the following form:

o ek, A 1 Op
Gl = 24K [1 7,  hy dag H(A)] )
where:
ekiA 1 Op whl
II(A - = —_—
()= \/ 3( Mo /710011) Fimd ()

As A tends to zero, we obtain the indeterminate form of type 0/0 in C;(A).
Hence, by applying the de I'Hospital’s rule, we find:
1 1 dp  why

lim Ci(4) = ——ce——— — —1. 73

A0 ) = 2 hl()al e 7%
Now we remove the constant C; in the circumference fluid velocity component
(42), i.e. we remove constant C; from function Z(C}), see equation (47), and
from function I'[Z(Cy)] , see equation (46). After this elimination we obtain:

A ()p € Mo % ' s
E(ag,p, A) = {111 B (az - 2) [1 - I{A)] + 29 - no}

—Nl’l]g (74)

We use de I'Hospital’s rule to obtain the limit of the last term on the right
hand side of equation (46) as A tends to zero. In these calculations we take into
account equation (47). We obtain finally:

lim

Moo =1 1 ple) Qs
o, p, A) = ~ R sk (1--). 75
A0 ,‘ZAnool(a2 p,4) ¢ e € LH5)

AneNe  h1 Jay

Hence, as A tends to zero, the circumference velocity component assumes the
following classical form:

11 Op("> 2
i s et s (1__._) L wl <1__>’
Al-»mo = 21, hy Oay € — €

where p© = p(A =0) (76)

The circumference velocity component (42) (after elimination of Cy in functions
EC; and I'[ECY] ) is expanded in two terms of Taylor series in the neighborhood
of the point A = 0 in the form:

) o] A 9
v = }11310 v + [llm m] + O(A~). (77)
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Now we calculate the first derivative of the function (42) with respect to A:

24 = 94| T s (1= 52) #om (1- )

A(oI'/oA) - T 1 apV
2421, 47}0013.1 Doy

fPléi A)} g (1—?) (78)

2ANs0

whereas
Q_ 2 6"/dAd oy cIZ/0A
A” Jo TE T b 2/E

From equations (47), (46) it follows that functions =, I and their first deriva-
tives with respect to A have in point A = 0 the following values:

das. (79)

EA=0=7n’ T(A=0)=0, (80)
(%)Azn = 2(2000 — 10) [% %ﬁ) (ae - %) - %%}

(7)1 (1) i Frentena) g
(gi‘;),mo =32 (%%)2 [a% — o€ + -jig? _ .ég'-’m?%;i;m]

why 1 dp € why \? 9 i
~4Tn h_lﬂ_al (az - 5) + 5 [2?}0 + dasr1mg (2N0e — ?}[))] y

The first derivative of function v; with respect to A, see equation (78),
has indeterminate form of type 0/0 as A tends to zero. Therefore we use de
I'Hospital’s rule to find the limit of function (78) in the following form:

. 2 (1)
lim (-331 -—l—- lim g1 . 8p (1 — —E-)

NS 83
A—=0 OA ~ dne A—00A2  dngohy do:l (83)

We use the first derivative (80) and we calculate the second derivative in the
following form:

921 1/“2 1 1 [0E\* 1 o=
—_— - —— —_— 4+ ———| das
dA? 2 /s 252/= \ 04 V= A2

lagl 5| 1 1 fo=\? 1 o=
523 [‘52 :(ﬁ) t o | (&)
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Into equation (77) we introduce equations (76) and (83). Afterwards in formula
(83) we substitute the limits of function (84) as A tends to zero. To obtain these
limits we must use the values (81), (80) and the value of the second derivative of
function = with respect to A in point A = 0. After calculations we obtain finally
the expression (64), which determines the circumference velocity component.

The longitudinal velocity component (44) is expanded in two terms of Taylor
series in the neighborhood of the point A = 0 in the following form:

Ovs | A 5
s(a1, a2, a3) = lim vs(aq, ag, a: lim — O(A%). 85
vy(ay, ag, az) Alglovd(al g, az) + [ml ()A] + O(A*) (85)
It is easy to see by virtue of equation (47) that function (50) A =
A(ay, a9, a3) = Alag,p,C1, A] tends to zero if A tends to zero. Hence the
longitudinal fluid velocity component (44), as A tends to zero, approaches the
following classical form:

Lo
27]0]13 803

.‘lliln[] vy (g, a2, a3) = o8 — eag) : (86)

Now we calculate the first derivative of the function (44) with respect to A:

Ovs 1 0Op /(12 0 2 fOE asY dao
_—= o —[Y]dag — Yldoyg=—m———
FA ~ oo hzdas { | ggYlde— | olY]day JEY das
1 ap /“2 1 { / ) /
el § Wiy d | ¥y | Vi
'I’ooh:} aa’g " 2[]'05)/(1@2]2 5 20A[ ] 2 5 2

_/OE asY das /;%[Y]dag}, (87)

where Y =

n_fl(T)' From equation (49) we obtain the first derivative of the
P
reciprocal of viscosity function n,; with respect to A in the following form:

2= 2 [2%0 - A] _ 20 —m) 53
0A JdA 29 — A (2770 - A)2

= W(A). (88)

We substitute expression (88) in formula (87). Hence, the first derivative of
function vz with respect to A has following indeterminate form of type 0/0 as
A tends to zero:

0vs 1

lim —2 =
A0 0A  neohs

. dp a2 o2 fOE arY das
X }1131() s {/0 asW(A) dasy —/0 W(A)das - W
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Eip
i d
7;00.-‘13 A—»ﬂ day _/ Y da

{fﬂ aaW(A)day [; Y day — ;u Y das [§ W(A) a‘:rxz}

s v]*

To obtain the limit of formula (89), we must calculate the limits of expressions
W, see (88) and the limit of the first derivative of A, see (50), with respect to
A as A tends to zero:

A (oo —m0) 1 3p why

g o) e Ml 0 0 W0 g M- )
.-lll—lPﬂ dA Tlo hy day ( 20’2) 2” € (9( )

(89)

_ (”co — o) ("Ico = 7.'0) 1 8}0 hl

]
un 29, hl 00:1

Illimﬂ W(A) = (e —2a9) + Moo —— | . (91)

Now, into equation (85) we introduce limits (86), (89) obtained by virtue
of expressions (90), (91). After calculations we obtain finally the longitudinal
velocity component in the form (66). We insert the longitudinal and circumfer-
ence fluid velocity components (66), (64) in equation (45). After calculations
we equate the coefficients of the same power k of small parameter A* to zero.
For k =0 and k = 1 we obtain the classical (68) and modified Reynolds equa-
tions (69).

Equation (68) determines the pressure function p!” and equation (69) de-
termines the pressure corrections p(*) which are caused by the non-Newtonian
fluid properties.

We put the circumference and longitudinal velocity components (64), (66)
in the formula (43) and we take into account equations (68), (69), and thus we
obtain finally the form (65) of the radial velocity component.

This result completes the proof of Theorem 7.1. |

8. Example illustrating the capability of solutions

By virtue of the presented theory we determine the analytical solutions of a
particular case of pressure distribution for the axial symmetrical flow between
two rotational hyperbolic bone surfaces and variable gap height. In this case
synovial fluid flow will be given as axial symmetrical in thin gap, thus the
hyperbolic coordinate system will be taken in the form (see Fig. 7):

o |
a = gy, g = Epargy, o3 = A" ag. (92)
The Lamé coefficients are as follows:

hy = acos™? (azA), ha =1,

hy = cos™? (asA) \/l + 4 (aA)® tan? (azA). (93)
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whereas

A=b""Wwal, 0<ap <2, 0<ay <e,

las| < A~ arccos \/a (a+w) ™. (94)

We use the following notations: a—the smallest radius of the bone cross section,
a; = a+ w—the largest radius of the bone cross section, 2b—the joint length,
ei1(az1) = e(az)/e,—dimensionless gap height, e,—dimensional average value
of gap height.

Ficure 8. Human gap height in spherical coordinates for deformation ahilitv eartilace



112 K. WIERZCHOLSKI

Pressure distribution depends on variable a3 only. In this case we obtain
the function of pressure by virtue of equations (68), (69) for coefficients (92) in
the following form:

b b =3
- nplﬂh o 7?_»19.'1
plas1) = pw + (Pz: — Pu / dag) / : doy
( ) { ) ( gy 6?(031) ) ( bma ef(aiﬂ)

+ : pw?a® { [sect (bs1) — sec? (bm1)] /b“ 1Sl d
— L : s1) — m £
20 ! . - e(as1) o

. /bsl ?}I,[Qh d - [50C4{b } 4( )] (95)

3 0031 = |S€C (0s1) — 8€C (31 ) ]
E"ml 6‘;’(031)

where: b1 = b < a3 < bpsA = b1, 0 S apyp S ae <27, 0 < ay =

asfe, < e1(azy). Symbols b,y and b,y denote the dimensionless upper and

lower limits of the lubrication region, respectively. Moreover, we introduce

following dimensionless notation:

Q, = \/1 +4a(a; — a) b=2 tan? (aa;) (96)

Now for axial unsymmetrical synovial fluid flow for the gap resting on spher-
ical bone surface in human hip joint (see Fig. 8) we have the following Lamé
coefficients:

hy = Rsin(9/R),  ha=1, hy=1, (97)

where R is radius of sphere. We denote: oy = ¢ circumference direction, ag = 7
gap height direction, ag = ¥ (meridian) direction. The Reynolds equation (68)
has following form:

a (€ op? s . (O O [e2ap . (¥
7% (;; 9% )-E-R sin (E) 9 [:.';—(')?9 sin (ﬁ)]

Jde v
o §OE -
=6wR atpsm (R) (98)

in 2 region: 0 < p < w, 7R/8 <9I < wR/2. Gap height has the following form:
e(p,/R) = Aeycospsind/R + Aeysingpsind/R — Aegcosd/R - R
+[(Aey cos psind/R + Aeasin psind/R — Aes cosd/R)?
+(R + €min)(R + 2D + €1min)]*°. (99)

The center point of the bone head (see Fig. 8) can be written down in the
following form: Oy(z — Aey, y — Aea, z + Ae), while D is the distance between
the rentre of hone head and the acetabulnm (sleeve) centre.
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9. Deformation ability gap height

The minimum of gap height, see Dowson (1998), for spherical hip joint is ob-
tained from the formula:

. P 0.6
i‘.]l'l: ¢2—H8?4 (UJR 1}) 5 S] ":_—H‘——C

R C

1-vi 1-v3
( Eq # Ey ) (100)

where E;, Es,vy, vy are the elastic modules and Poisson ratios for bone head
and cartilage, C—load, and quantities: 7, w, R are as defined previously. De-
pendence (39) for © ~ wR /ey, can be written in the following form:

wR%y _ S | Moo L J_L“J";_:m S, = why,
C "5 \m 1+85-8 *="BR"

“ Emin

1

5=

I =

Sy = Aw. (101)

By combining equations (101), (100) we obtain the system of two equations
for determination of two unknown cuantities, namely the dynamic viscosity
1 of synovial fluid and the minimal value e, of gap height, where clastic
deformations of cartilage are taken into account. If we assume the following
data: R=2.6-10"2m, £ =2-10° Pa, wR = 3-10"! m/s, 70c = 0.10 Pas,
27 R/C = 3-107* m/N, 1,/nec = 1000, A = 1.88 s, C = 544.26 N, then from eqs.
(101), (100) we obtain: &,,;, = 0.0000208z m = 20.88u m and 7 = 0.1036 Pas.
If we take in the computations the following quantities: A = 1.88 s, n, =
100.00 Pas, 100 = 0.10 Pas, R = 0.020 m, C = 544 N, 0.50s™* < w < 10.00 s~ L
2.10°Pa < E < 2-107 Pa, then we obtain the minimal value of the gap height
in the interval: 0.292 m < £, < 1990 m.

10. Numerical example

We solve equation (98) for the region (¢, ) resting on bone head and indicated
in Fig. 5. We assume atmospheric pressure on the boundary of the region
Q(ay,a3). For this region we caleulate also the capacity values. In numerical
calculations we assume the following values for the joint gap: As; = 5Spum,
Aes = 5um, Aey = 5pm, radius of bone head R = 0.026575 m.

Now we calculate the normal hip joint. For angular velocity of bone head
w = 3571 and average valuc of synovial fluid dynamic viscosity 1, = 1.00 Pas, we
obtain the smallest gap height £,,;,, = 10.0m for normal joint and hence hydro-
dynamic pressure p{®) has maximal value equal 35.30 - 10° N/m? ~ 35.30 at
and capacity Cioi = 2133 N, sec Fig. 9. Lubrication surface has value
7 R? cos( /8) ~ 20.50 cm?.
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R=0.026575[m]

w=3 [1/s]

n=1 [Pas]

Pma=35.30°10° [Pa]
Emin=10.01tm

Cwe2133 [N]

Lubrication surface=20.5 [cm 2]

Figure 9. Pressure distribution in normal spherical hip joint gap for hydrodynamic
lubrication caused by rotation.

Numerical calculations were performed with Mathead 2000 Professional Pro-
gram, with the help of the Method of Finite Differences. This method satisfies
the requirement of stability of numerical solutions to the partial differential
equations (98).

11. Final comments

The present paper shows the method of determination of approximate solu-
tions to partial non-lincar differential equations of non-Newtonian, asymmetri-
cal synovial fluid flow in the thin gap ocenrring in human joint in curvilinear,
orthogonal co-ordinates.

The method presented enables to obtain solutions in the form of Taylor
series with increasing powers of the small parameter A obtained in experimen-
tal way for synovial fluid. In the particular case of the symmetrical flow we
can, by virtue of theory presented, find analytical solutions in a simple form.
The percentage corrections of velocity .u,{” and of pressure p!) caused by the
non-Newtonian properties of the synovial fluid. see equations (64)-(67), are
examined numerically through following ratio form:

ApM) + O(A?)
p(ﬁ‘)

For large shear rates: 100s™! < © < 1000s™!,the viscosity of synovial fluid is
small and has values 107! Pas < 5 < 1 Pas, see Fig. 6. In this case we obtain

100 in percent. (102)
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from eq. (102) small pressure changes from 2% to 4%. For small shear rates:
1071571 < © < 1057, when viscosity is large, i.e. 10Pas< n < 100 Pas we
obtain from eq. (102) pressure changes from 7% to 15%.
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