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Abstract: In this paper a control algorithm is presented for a
nonlinear system defined by a nonlinear mapping F' : R" — R" of
input states to output states of the system, for the problem of motion
in the R" space of output states along the given trajectory. The
application of this algorithm in nonlinear optics is presented, for the
control of light polarization transmitted through the Fabry-Pérot
resonator filled with a material with nonlinear optical properties.
The calculated trajectory in the space of polarization states of output
light leads to the phenomenon of optical bistability, i.e. sudden
changes of output polarization induced by small variations of the
input parameters, and the dependence of the current state of light
polarization on the history of the system.
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1. Introduction

In recent years the physicists working in the field of nonlinear optics, Boyd
(1992), began to investigate the phenomena connected with vector properties of
light, i.e. when polarization of light is important for the results of experiments.
Earlier, only phenomena which fall within the scope of the scalar theory were
taken into account, when the intensity of light was the only parameter describing
the state of the light beam.

Particularly, the field of nonlinear optics includes the phenomenon of optical
bistability, Gibbs (1985), in which the light transmitted through the nonlinear
optical resonator changes its intensity in a nonlinear way. The phenomenon of
hysteresis is observed, when the intensity of light outgoing from the resonator
is not a unique function of the intensity of the incident light, but depends on

its previous values, and is subject to frequent sudden changes with the small
chanoe af the valne Af innut intancitr
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The theory of this phenomenon is relatively simple. In order to determine the
theoretical dependence of the intensity of the outgoing light & on the intensity
of the incoming light y one has to invert the graph of the function y = F(x),
which determines the transmittance properties of the resonator. This function is
determined by a solution to the appropriate Maxwell equations with nonlinear
terms, which describe the propagation of light in the media with nonlinear
optical properties, together with the boundary conditions, which determine the
reflection of light from the mirrors of the resonator.

In the case, when in the experiment the polarization of light is taken into
account, the states of input and output light beams y and 2 are described
not by one real number, but by three so called Stokes parameters, Born and
Wolf (1965). Therefore, 2 and y are three-dimensional real vectors, and we will
denote them in the following by # and . There is no simple mathematical
receipt for obtaining the inverse of a function § = F(&), where #, 7 € R*. Since
in the experiment it is convenient to fix the polarization of the incident beam,
and only its intensity is varied, the problem is reduced to the determination of
the image #(r) of a given trajectory 7(¢). with the known nonlinear mapping
F:iw 7.

This problem belongs to the field of the so called “inverse modelling” which
is widely used e.g. in geophysics, oceanology and climatology, where such values
of parameters of a given mathematical model are looked for, which correspond
the best to the real situation described by that model. For example, having a
certain model of the Earth’s climate one fries to find the parameters which cor-
respond in the best manner to the observed values of atmospheric pressure and
temperature. In our case, we will seek to determine the whole set of states (tra-
jectory in the phase space of the system). Below, a certain numerical algorithm
to solve this problem will be presented.

2. An algorithm for determining the control of the system
described by a nonlinear mapping

The input state of the system is described by a vector & composed of n real
numbers. The output state of the system is described by a vector 7 composed
of m real numbers. Below, because of the application considered, we will assume
n = m. This assumption is not crucial to the working of the algorithm. The
output state is uniquely determined by the input state, by means of a certain
nonlinear mapping:

=]

= F(F). (1)

The problem considered is to control the system, i.e in this case to select such
an input state, which corresponds to the required output state.

The definition of “control” used in this paper is somewhat different from
that af the mathematieal contral theorv 1t is motivated hv the aoolication of
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Figure 1. A nonlinear non-monotonic mapping F for a system with two degrees of
freedom, and the corresponding trajectorics in the spaces of input and output states.

an algorithm which will be presented here, to physical experiments in optics,
where one “controls” or “adjusts” the input laser light in order to obtain the
required polarization and intensity of the output laser light.

More precisely, for a given trajectory # = #(t), we want to determine the
corresponding trajectory @ = F(r), such as to fulfill the equation:

Jt) = F(E(r)), (2)

where ¢ and r are the parameters of the respective trajectories (see Fig. 1).

Because the mapping I is in general not single-valued, the inverse mapping
F~! may not exist, and the determination of the appropriate trajectory i(r),
which should satisfy Eq. (2) may not be straightforward, because in such a case
we cannot apply F(=1 to y(t).

In the one-dimensional case the solution is simple, it is sufficient to invert
the graph of the mapping F. As can be seen from Fig. 2, control of the system
is affected by the non-monotonic character of the mapping F. It leads to the
phenomenon of bistability (multistability), i.e. sudden changes of the output
state of the system caused by a small variation of the input state. The current
state of the system depends on its history, i.e. for the motion along the trajectory
7(t) the resultant trajectory #(r) is different from the motion in the opposite

-

direction (—t) (see Fig. 2).
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Figure 2. A mapping F describing a system with one degree of freedom and its inverse
leading to the bistability of the system.
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The proposed algorithm of control of the system given by the maping F
proceeds as follows:

1. Create an objective function:

(@) = J(F(@)) 3)
where the function f(7) > 0 determines the deviation of the point § from
the required trajectory g(t).
2. Move in the space of input states & in such a way as to minimize the value
of the objective function f(Z).
The approximate position of the next point # (%) is determined by extrapolation
of positions of previous points, i.e. the curve which approximates the trajectory
is extrapolated at length A, which is the length of the single step along the
trajectory #(r). To determine the exact placement of the next point & the pro-
cedure of minimization of the objective funtion f(f) is called, with the starting
point #(? (see Fig. 3).

At these points, where the mapping /' is non-invertible, i.e. when the Ja-
cobian det F' = |9§/0F| vanishes, the trajectory #(r) may not be differentiable
and can sharply change its direction. In this case, the expected place of the
next point #© on the trajectory is shifted by a random displacement vector
of the length )\, in order to place the next point & on the second branch of the
trajectory #(r) (see Fig. 4).

Figure 4. The random displacement 3

Figure 3. The expected placement (% of the expected placement of a point on
of the point x on the trajectory #(r) ob- the trajectory near the singularity of the
tained by a polynomial extrapolation. mapping.

3. Bistable changes of polarization of light transmitted
through the nonlinear resonator

The nonlinear system that we consider is the beam of a laser light transmitted
through the optical resonator (cavity) filled with the medium with nonlinear
optical properties, Petykiewicz (1992). The state of the system is the polariza-
tion state of light, i.e. the vector of the electric field Z of the light wave. The
state of light which is completely polarized is described by three parameters:
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two real Cartesian components E, and E, of the electric field vector E, which
is perpendicular to the direction of propagation along the z axis, and the phase
shift e’? between them. Two complex Cartesian components E, and E, of the
electric field are often utilized, in which case their common phase factor has
no physical meaning. Then, the so called matrix of coherence 7 is introduced,
which is defined by Born (see Born and Wolf, 1965):

Jij = E:E} where i,j = z,y @)

and then three Stokes parameters follow, which describe the polarization of light
in the most convenient way:

1
8 = Z(-:'r,i:y + J,l'.‘l‘)
89 = i(;?:y o Jyz) (5)

1
83 = Z(J.r:. = ]yy} '

The fourth Stokes parameter sy = (Jpz + Jy2)/4 depends on the other three:
80 = /8% + s} + s}, and is equal to the intensity of light.

The input and output states of our system are hence described by vectors
of three polarization parameters &= (sy, s2,s3) from the space R>.

We assume that the light beam passes through the resonating cavity, i.e

through the system of two half-reflecting mirrors and is subject to partial re-
flection (see Fig. 5). As a result of multiple reflections, there arises a system

Ein
> \K‘ |——
L Eout
£
= B
Eref
- .
=0 2=l %

Figure 5. The nonlinear optical resonance cavity with the system of light waves running
through it.

of two running waves in the cavity, one of them, with the electric field vector
g(z), is propagating in the direction of the z axis, and the second with the
electric field vector B'(::), propagates in the opposite direction. The boundary
conditions on the boundary planes of the cavity of the length L can be written
as follows (Petykiewicz, 1992):

E*f=rE™  A(0)=tE™+rB(0) for 2=0 (6)
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E’-out o t/I(L) g( L)i= ?J{LI foi- 221, (7)

where r and ¢ denote the respective reflection and transmission amplitude co-
efficients of the mirrors, E™, E°" and £ denote the electric field vectors of
the incident, the transmitted and the reflected wave, respectively.

Let us note that it follows from the boundary conditions (6) and (7) that
the output state. i.e vector Eout, uniquely determines the input state, i.e vector
E™. In the opposite direction there is no such unique mapping, because to
determine the output state from the input state it would require to know the
reflected wave B . which is usually not measured in the experiment.

In the experiment, the polarization state of the input laser beam is usually
fixed and its intensity is varied, and the changes of polarization and intensity of
the output wave are registered. Let us note that due to the peculiar character
of the boundary conditions (6) and (7), we will use the above described control
algorithm to change the output state according to the required trajectory (fixed
polarization) at input.

We assume that the optical cavity is filled with a medium with nonlinear
optical properties. Then, the evolution of the polarization state of the light
transmitted through such a cavity is described by a set of nonlinear ordinary
differential equations, derived from Maxwell’s equations in the customary ap-
proximations of nonlinear optics. For an example, we will consider a cavity filled
with the magnetic superlattice with the antiferromagnetic spiral structure. In
this case the nonlinear differential equations describing propagation of light in
the cavity are the following, Wierzbicki and Kocinski (1999):

dA E———

d—‘ = —i N AL A2

dA: . N

_d-zi = —i [ A3 A (8)
ﬂfB1 _ d.Bz —0

dz2 ~ dz ~

where Ay, Az, By and Bs are the so called circular components of the electric
field vectors A and B of two waves running in the cavity:

Apy = Ay £id,
B,, =B, +iB,, (9)

and I} and I are material constants. The medium considered here is a kind
of an “optical valve”, because only the wave running forward is the subject
of nonlinear interaction. This peculiar phenomenon is caused be the spiral
structure of this medium.

The noulinear mapping F : R* — R? from Eq. (1) is determined in the
following steps:

1. A vector of Stokes parameters 5" of output light polarization is given.
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o

It is transformed to two circular components Ef’“" and EQ"‘“‘.

3. From boundary conditions (7) we determine the circular components Ay (L),
As(L), B1(L) and Ba(L) of waves running inside the resonator, at the sec-
ond mirror (for z = L).

4. Numerical integration of Eqs. (8) is carried out, from the point z = L

backwards to the point z = 0, and thus the values A;(0), A2(0), B1(0)

and B>(0) inside the resonator at the first mirror are determined.

From the boundary conditions (6) we determine the circular components

E/" and EJ* of the wave incident at the resonator.

6. From them we calculate the vector of Stokes parameters 5

beam polarization.

To obtain the description of a real experimental situation, we fix the polarization

of the incident beam, e.g. we choose the linear polarization, where the electric

field vector vibrates in a fixed plane. For the 2z plane: F, = 0, and the Stokes
parameters of the incident beam according to Eqs. (4) and (5) should fulfill the
following conditions:

(2

of the incident

s9=83=0 $1 = s¢ are free to change. (10)

Therefore, the function f from Eq. (3), which determines the deviation from
the given trajectory will be:

f(3") =85 +53. (11)

To minimize the objective function f(F(5°")) from Eq. (3) the subspace search-
ing method for unconstrained minimization was utilized, Rowan (1990), due to
its simplicity, available source code, and because other methods require knowl-
edge of the gradient of the minimized function. In the case considered, the
minized function is determined from a set of nonlinear differential equations
coupled with the algebraic boundary conditions, which prohibits an efficient
way of calculating the derivatives of such a function. Numerical integration of
Eqs. (8) was carried out by the Runge-Kutta method of the fifth order, for the
parameters [ = 1.1, I, = 0.9.

The extrapolation scheme, utilized to determine the starting point for min-
imization, was Lagrange’s polynomial extrapolation with 4 points, Press et al.
(1996). For the multidimensional case here, i.e. for the polynomial interpola-
tion of a curve in N dimensions, the independent variable is the length of the
trajectory, which was approximated by lengths of intervals between consecutive
points on the trajectory. The interpolated values were coordinates of points,
and for N-dimensional space N interpolating polynomials are required.

Fig. 6 presents the numerically calculated trajectory of the system in the
space of three output Stokes parameters, which is the result of the nonlinear
mapping of the input trajectory of fixed polarization from Eq. (10). Figs. 7 and
8 present the dependence of polarization parameters of the ouput light on the
input light parameter sa. i.e. on the intensitv of the incident lieht.
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Figure 6. The trajectory of the system in the space of three Stokes parameters s, s2
and s3 of the transmitted wave, with the assumption that the linearly polarized light
is incident on the cavity, with the polarization plane xz.
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Figure 7. The dependencies of the intensity and s; polarization parameter of the
output light on the intensity of the linearly polarized light at input.
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Figure 8. The dependencies of sz and s3 polarization parameters of the output light
on the intensity of the linearly polarized light at input.

The figures presented do not yet correspond to the real experiment, in which
the intensity so of incident light is a monotonic function of time (it is increased
and consecutively decreased). For certain values of the input light intensities,
for which the trajectory in the space of output polarization parameters reverses
its direction, there appears a sudden jump of values of the output light param-
eters on the neigbouring branch of the frajectory. Moreover, this jump occurs
for a different value of input light intensity, when the intensity is increased or
decreased, respectively (see Fig. 9). The above described phenomenon is called
“optical polarization bistability”.

out out out
S1 S1 S1

So So So

Figure 9. A part of a theoretical dependence of the output polarization of light out-
going from the cavity on the input light intensity, and the real dependencies as should
be observed in the experiment, when the intensity of input light is increased and
decreased, respectively.

Figs. 10 and 11 present the dependence of Stokes parameters of the light
wave transmitted through the cavity on the input light intensity, taking into
account the jumps between branches of the trajectory. These figures exhibit
characteristic properties of the ontical nolarization histahilitv
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Figure 10. The dependencies of intensity and s, polarization parameters of output light
on the intensity of input light, taking into account the jumps between the branches of
the trajectory in the phase space.
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Figure 11. The dependencies of sz and s polarization parameters of output light on
the intensity of input light, taking into account the jumps between the branches of the
trajectory in the phase space.

4., Summary

The control algorithm presented in this paper secems sufficiently general to find
an application in problems of inverse modelling of systems described by a non-
linear mapping (1), which do not necessarily belong to the field of nonlinear
optics. The phenomenon of bistable changes of values of argument 7 is a gen-
eral property of nonlinear mappings (1), when the trajectory in the phase space
AL LLn nrenbnna anke theanoh tha en rallad rritieal enrfaces. in the terminoloov of
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theory of catastrophes, i.e. surfaces of the vanishing Jacobian determinant of
the mapping, Gilmore (1981).
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