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Abstract: In this paper a control algorithm is presented for a 
nonlinear system defined by a nonlinear mapping F : Rn f--7 Rn of 
input states to output states of the system, for the problem of motion 
in the R" space of output states along the given trajectory. The 
application of this algorithm in nonlinear optics is presented, for the 
control of light polarization transmitted through the Fabry-Perot 
resonator filled with a material with nonlinear optical properties. 
The calculated trajectory in the space of polarization states of output 
light leads to the phenomenon of optical bistability, i.e. sudden 
changes of output polarization induced by small variations of the 
input parameters, and the dependence of the current state of light 
polarization on the history of the system. 
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1. Introduction 

In recent years the physicists working in the field of nonlinear optics, Boyd 
(1992), began to investigate the phenomena connected with vector properties of 
light, i.e. when polarization of light is important for the results of experiments. 
Earlier , only phenomena which fall within the scope of the scalar theory were 
taken into account, when the intensity of light was the only parameter describing 
the state of the light beam. 

Particularly, the field of nonlinear optics includes the phenomenon of optical 
bistability, Gibbs (1985) , in which the light transmitted through the nonlinear 
optical resonator changes its intensity in a nonlinear way. The phenomenon of 
hysteresis is observed, when the intensity of light outgoing from the resonator 
is not a unique function of the intensity of the incident light, but depends on 
its previous values , and is subject to frequent sudden changes with the small 
rh;:l nP"P nf thP U~ 1J113 n f inn11t .;n+ ol"tc;h r 
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The theory of this phenomenon is relat ively simple. In order to determine the 
theoretical dependence of the intensity of the outgoing light x on the intensity 
of the incoming light y one has to invert the graph of the function y = F( x), 
which determines the transmittance properties of the resona tor. This function is 
determined by a solution to the appropriate Maxwell equations wi th nonlinear 
terms, which describe the propagation of light in t he media with nonlinear 
optical properties, together with the boundary condi t ions, which determine the 
reflection of light from the mirrors of the resonator. 

In the case, when in the experiment the polarizat ion of light is taken into 
account, the sta tes of input and outpu t light beams y and x are described 
not by one real number, but by three so called Stokes parameters, Born and 
Wolf (1965). Therefore, .1: a ndy arc three-dimensional real vectors , and we will 
denote them in the following by f and fj. There is no simple mathematical 
receip t for obtaining the inverse of a funct ion y = F(.i) , where f, y E R 3

. Since 
in the experiment it is convenient to fix t he polarizat ion of the incident beam, 
and only its intensity is varied, t he problem is reduced to t he de termination of 
the image x(1·) of a given trajectory y(t) , with the known nonlinear mapping 
F: x ~---+ y. 

This problem belongs to the fie ld of the so called "inverse modelling" which 
is widely used e.g. in geophysics, oceanology and climatology, where such values 
of parameters of a given mathematical model are looked for, which correspond 
the best to t he real situation described by that model. For example, having a 
certain model of the Earth 's climate one t ries to find the parameters which cor­
respond in the best manner to the observed values of at mospheric pressure and 
tempera ture. In our case, we will seek to determine the whole set of states ( tra­
jectory in the phase space of t he system). Below, a certain numerical a lgorithm 
to solve this problem will be presented . 

2. An algorithm for determining the control of the system 
described by a nonlinear mapping 

The input state of the system is described by a vector x composed of n real 
numbers. The output state of the system is described by a vector 77 composed 
of m real numbers. Below, because of the application considered, we will assume 
n = m. This assumption is not crucial to the working of the algorithm. The 
output state is uniquely determined by t he input state, by means of a certain 
nonlinear mapping: 

v=F(x). (1 ) 

The problem considered is to control t he system, i. e in t his case to select such 
an input state, which corresponds to the required output state. 

The definition of "control" used in this paper is somewhat different from 
th"'t r.f tho m !> thr.•m <d cif' !> l f'nnt.rnl t.hr.•nrv Tt. is mnt-.ivaJ.fYl hv t hr. annlication of 
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Figure 1. A nonlinear non-monotonic mapping F for a system with two degrees of 
freedom, and the corresponding trajectories in the spaces of input and output states. 

an algorithm which will be presented here, to physical experiments in optics, 
where one "controls" or "adjusts" the input laser light in order to obtain the 
required polarization and intensity of the output laser light. 

More precisely, for a given trajectory fj = fj(t), we want to determine the 
corresponding trajectory .i = x(r), such as to fulfill the equation: 

fj(t) = F(.i(r)), (2) 

where t and r· are the parameters of the respective traj ectories (see Fig. 1). 
Because the mapping F is in general not single-valued, the inverse mapping 

p- 1 may not exist, and the determination of the appropriate trajectory .i(r), 
which should satisfy Eq. (2) may not be straightforward, because in such a case 
we cannot apply p(- 1) to fj(t). 

In the one-dimensional case the solution is simple, it is sufficient to invert 
the graph of the mapping F. As can be seen from Fig. 2, control of the system 
is affected by the non-monotonic character of the mapping F. It leads to the 
phenomenon of bistability (multistability) , i.e. sudden changes of the output 
state of the system caused by a small variation of the input state. The current 
state of the system depends on its history, i.e. for the motion along the trajectory 
fj(t) the resultant traj ectory .i(1·) is different from the motion in the opposite 
direction fj( -t) (see Fig. 2). 

y X 

X 

Fignre 2. A mapping F describing a system with one degree of freedom and its inverse 
leading to the bistability of the system. 
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The proposed algorithm of control of the system given by the maping F 
proceeds as follows: 

1. Create an objective function: 
Tun = J(F(x)) (3) 

where the function f(Jl) 2': 0 determines the deviation of the point if from 
the required trajectory y(t). 

2. Move in the space of input states x in such a way as to minimize the value 
of the objective function J(x). 

The approximate position of the next point x (O) is determined by extrapolation 
of positions of previous points, i.e. the curve which approximates the trajectory 
is extrapolated at length A, which is the length of the single step along the 
trajectory x( r). To determine the exact placement of the next point x the pro­
cedure of minimization of the objective funtion J(x) is called, with the starting 
point x(O) (see Fig. 3). 

At these points, where the mapping F is non-invertible, i.e. when the Ja­
cobian det F = I aiJ I a.i\ vanishes, the trajectory .i( r) may not be differentiable 
and can sharply change its direction. In this case, the expected place of the 
next point x<0) on the trajectory is shifted by a random displacement vector j] 
of the length >., in order to place the next point x on the second branch of the 
trajectory x(r) (see Fig. 4). 

x, 

Figure 3. The expected placement :i(o) 

of the point x on the trajectory i(r) ob­
tained by a polynomial extrapolation. 

Figure 4. The random displacement iJ 
of the expected placement of a point on 
the trajectory near the singularity of the 
mapping. 

3. Bistable changes of polarization of light transmitted 
through the nonlinear resonator 

The nonlinear system that we consider is the beam of a laser light transmitted 
through the optical resonator (cavity) fi lled with the medium with nonlinear 
optical properties, Petykiewicz (1992). T he state of the system is the polariza­
tion state of light, i.e. the vector of the electric field E of the light wave. The 
state of light which is completely polarized is described by three parameters: 
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two real Cartesian components Ex and Ey of the elect ric field vector E, which 
is perpendicular to the direction of propagation along the z axis, and the phase 
shift ei<P between them. Two complex Cartesian components Ex and Ey of the 
electric field are often utilized, in which case their common phase factor has 
no physical meaning. Then, the so called matrix of coherence J is introduced, 
which is defined by Born (see Born and Wolf, 1965): 

Jij = EiEj where i,j = x, y (4) 

and then three Stokes parameters follow, which describe the polarization of light 
in the most convenient way: 

1 
81 = 4(Jccy + J.vx) 

z 
S2 = 4(Jxy- Jy x) (5) 

1 
S3 = 4(Jxx- Jyy) · 

The fourth Stokes parameter so = (Jccx + Jyx)/4 depends on the other three: 

so= Jsi + s~ + s5, and is equal to the intensity of light. 

The input and output states of our system are hence described by vectors 
of three polarization parameters s= (s1,s2,s3) from the space R 3. 

We assume that the light beam passes through the resonating cavity, i.e 
through the system of two half-reflecting mirrors and is subject to partial re­
fl ection (see Fig. 5). As a result of multiple reflections, there arises a system 

Z=O Z=L z 

Figure 5. The nonlinear optical resonance cavity with the system of light waves running 
through it .. 

of two running waves in the cavity, one of them, with the electric field vector 
A(z), is propagating in the direction of the z axis, and the second with the 

electric field vector B( z), propagates in the opposite direction. The boundary 
conditions on the boundary planes of the cavity of the length L can be written 
as follows (Petykiewicz , 1992): 

£ref= r£in A(O) = t.E in+ r B(O) for z = 0 (6) 



134 M. WIERZBICKI 

£out= tA(L) for z = L , (7) 

where r a nd t denote the respective refl ection and transmission amplitude co­
efficients of the mirrors , E in, E out and E ref denote the elect ric fi eld vectors of 

the incident, the transmitted and the refl ected wave, respectively. 
Let us note that it follows from t he boundary conditions (6) and (7) that 

t he output state, i.e vector E out , uniquely determines t he input state, i. e vector 
E iu_ In t he opposite direction there is no such unique mapping, because to 
determine the output state from t he input state it would require to know the 
reflected wave E ref , which is usua lly not measured in the experiment. 

In the experiment , the polarization state of the input laser beam is usually 
fixed and its intensity is varied , and the changes of pola rization and intensity of 
the output wave arc regis tered . Let us note that clue to the peculiar character 
of the boundary conditions (G) and (7), we will use the above described control 
algorithm to change the out put state according to the required tra jectory (fixed 
polarization) at input. ---

We assume that t he optical cavity is filled wi t h a medi um with nonlinear 
opt ical properties. Then, the evolut ion of t he polari zation state of the light 
transmi tted t hrough such a cavity is described by a set of nonlinear ordina ry 
differential equations , derived from Maxwell 's equations in the customary ap­
proximations of nonlinear optics. For an example, we will consider a cavity filled 
with the magnetic superlattice with the antiferromagnetic spiral structure. In 
t his case t he nonlinear differential equat ions describing propagation of light in 
the cavity are the following, Wierzbicki and Kocinski (1999): 

dAI - . r A* A2 dz - -z t t 2 

dA2- . r A* A2 
dz - - z 2 2 t 

dflt dB2 
dz = dz = O, 

(8) 

where At , A2 , Bt and B 2 are the so called circular components of t he electric 
fi eld vectors A and B of two waves running in the cavity: 

A"'·Y = At ± iA2 
Bx, 11 = B1 ± iB2, (9) 

and Tt and F2 are material constants . The medium considered here is a kind 
of an "optical valve" , because only the wave running forward is t he subject 
of nonlinear interaction. This peculiar phenomenon is caused be the spiral 
structure of t his medium. 

The nonlinear mapping F : R 3 ~----> R 3 from Eq. (1) is determined in t he 
following steps: 

1. A vector of Stokes parameters gout of output light polarization is given. 
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2. It is transformed to two circular components Et't and E2out. 

3. From boundary conditions (7) we determine the circular components A1 (L ), 
A2(L), B 1(L) and B2(L) of waves running inside the resonator , at the sec­
ond mirror (for z = L). 

4. Numerical integration of Eqs. (8) is carried out, from the point z = L 
backwards to the point z = 0, and thus the values A1 (0), A2(0), B 1 (0) 
and B2(0) inside the resona tor at the first mirror a rc determined. 

5. From t he boundary conditions (6) we determine t he circular components 
Ef" and Edn of the wave incident at t he resonator. 

6. From them we calcnlatc the vector of Stokes parameters s in of the incident 
beam polarizat ion. 

To obtain the description of a real experimental sit uat ion, we fix t he polarization 
of t he incident beam, e.g. we choose the linear polari :<~at ion , where the elect ric 
field vector vibrates in a fixed plane. For the :1:z plane: E,, = 0, ami t he Stokes 
parameters of t he incident beam according to Eqs. ( 4) and (5) should fulfi ll the 
fo llowing conditions: 

S t = so are free to change . (10) 

Therefore, the function J from Eq. (3), which determines the deviat ion from 
the given trajectory will be: 

(11) 

To minimize the objective function J(F(sout)) from Eq. (3) the subspace search­
ing method for uncons trained minimiY-ation was utiliz;ed, Rowan (1990) , due to 
its simplicity, available som ce code, and because other methods require knowl­
edge of the gradient of t he minimized funct ion . In t he case considered , the 
minizcd function is determined from a set of nonlinear differential equations 
coupled with the algebraic boundary conditions, which prohibits an efficient 
way of calculating the derivatives of such a function . Numerical integration of 
Eqs. (8) was carried out by the Runge -Kutta method of the fifth order, for the 
para meters rl = 1.1 , rz = 0.9. 

The extrapolat ion scheme, utilized to determine the starting point for min­
imization, was Lagrange's polynomial extrapolat ion with 4 points, Press ct al. 
(199G). For the rnultidimensional case here, i. e. for the polynomial interpola­
tion of a curve in N dimensions , the independent variable is the length of t he 
t rajectory, which was approximated by lengths of intervals between consecutive 
points on the t ra jectory. The interpolated values were coordinates of points , 
and for N-dimensional space N interpolating polynomials are required. 

Fig. G presents the numerically calculated trajectory of the system in the 
space of three output Stokes parameters, which is the result of the nonlinear 
mapping of the input trajectory of fixed polarization from Eq. (10). F igs. 7 and 
8 present t he dependence of polariz;ation parameters of t he oupnt light on t he 
input light parameter sn. i.e . on the intensitv of the incident lie:ht . 
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0 

Figure 6. The trajectory of the system in the space of three Stokes parameters 81, 82 

and 8 3 of the transmitted wave, with the assumption that the linearly polarized light 
is incident on the cavity, with the polarization plane :rz. 
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Figure 7. The dependencies of the intensity and 81 polarization parameter of the 
output light on the intensity of the linearly polarized light at input. 
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10 20 30 40 10 20 30 40 

so (in) so (in) 

Figure 8. The dependencies of s2 and s3 polarization parameters of t.he output light 
on the intensity of the linearly polarized light at input . 

The figures presented do not yet correspond to the real experiment , in which 
the intensity s0 of incident light is a monotonic function of time (it is increased 
and consecutively decreased). For certain values of the input light intensities, 
for which the trajectory in the space of output polarization parameters reverses 
its direction, there appears a sudden jump of values of the output light param­
eters on the neigbouring branch of the trajectory. Moreover, this jump occurs 
for a different value of input light intensity, when the intensity is increased or 
decreased, respectively (see Fig. 9). The above described phenomenon is called 
"optical polari :~;ation bistability" . 

Figure 9. A part of a theoretical dependence of the output pola rization of light out­
going from the cavity on the input. light intensity, and t.he real dependencies as should 
be observed in t.he experiment , when the intensity of input light is increased and 
decreased, respectively. 

Figs. 10 and 11 present the dependence of Stokes parameters of the light 
wave transmitted through the cavity on the input light intensity, taking into 
account the jumps between branches of the trajectory. These figures exhibit 
characteri tic orooerties of the ontica.l nolari:r.ation histahilit.v. 
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5,-----------------------. 

-1 

10 20 30 40 10 20 30 40 

s0 (in) so(in) 

Figure 10. The dependencies of intensity and 8 1 polarization parameters of output light 
on the intensity of input light. , taking into account the jumps between the branches of 
the trajectory in the phase space. 

0 
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·31------,-----,-----,----~ 
10 20 30 40 10 20 30 40 

so(in) s0 (in) 

Figure 11. The dependencies of 82 and s3 polarizat ion parameters of output light on 
the intensity of input light, taking into account the jumps between the branches of the 
trajectory in the phase space. 

4. Summary 

The control algorithm presented in this paper seems sufficiently general to find 
an application in problems of inverse modelling of systems described by a non­
linear mapping (1), which do not necessarily belong to the field of nonlinear 
optics. The phenomenon of bistable changes of values of argument x is a gen­
eral property of nonlinear mappings ( 1) , when the trajectory in the phase space 
_ £ •1- - ~--~ '-~"' ~ .. j- ~ j-J,~A"N), l-ha "" r><> lJ corl f'l• it.if'" ' ~lll'fl'l.rP~ . in thp t0.rminologv of 
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theory of catastrophes, i.e. surfaces of the vanishing Jacobian determinant of 
the mapping, Gilmore (1981). 
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