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Abstract: The paper considers an optimization problem in
which the minima of a finite collection of objective functions sat-
isfy some unilateral constraints and are linked together by a certain
subdifferential relationship. The governing relations are stated as a
variational inequality defined on a nonconvex feasible set. By the
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1. Introduction

Consider the problem of finding minimizers &; € R of a finite collection of
convex objectives V; : R} — RU {+o0}, j = 1,...,m. The minimizers are
assumed to fulfill unilateral constraints of the form (Ajm, z;) < ¢;(m), deter-
mined via given functions ¢;(-). A vector w € R"} should be found together with
x; by means of the postulated subdifferential relation 2}":1 A?:L'J- € 0P, ()
with ®4(-) being a convex function.

The main feature of the aforementioned problem is that the feasible set of
the corresponding variational inequality for the unknowns o, z;, j=1,... ,m,
is nonconvex and, hence, the standard theory of variational inequalities (sce
Kinderlehrer and Stampacchia, 1980, Ekeland and Temam, 1976) cannot be
used to obtain solutions. The approach presented here does not include the no-
tion of Pareto optimum nor of its generalizations (see Pallaschke and Rolewicz.
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1997, Luc, 1989, Lee et al., 1998, Hadjisavvas and Schaible, 1998 and the ref-
erences therein) but, roughly speaking, is based on the calculation of objec-
tives’ parametrized constrained minima. Some ideas from Naniewicz and Pana-
giotopoulos (1995) concerning the general treatment of nonmonotone inequality
problems are applied.

The aim of this paper is to:

1. Formulate the general existence result for the aforementioned problem
involving 7 and x; as the basic unknowns;

2. Formulate conditions ensuring the existence of positive solutions = > 0
only;

3. Formulate conditions under which only a trivial solution = = 0 is avail-
able;

4. Discuss the problem of the existence of ideal minima for the vectorial
objective V' = (V1, V5);

5. Provide the explicit form of solutions for quadratic objective function
V=W,...,Va).

The organization of the paper is as follows. In Sections 3 and 4 the exis-
tence result is obtained by reduction of the problem to the following variational
inequality with = € R, as the basic unknown:

(’R('.?r), T—7)+ &4 (1) - D4 () 20, VT eR],

involving a certain not necessarily monotone, multivalued, upper semicontinuous
mapping R : R} — 2% In Section 5 the conditions ensuring the existence of
solutions mentioned in points 2. and 3. are formulated. Section 6 is devoted to
the study of existence of an ideal minimum for a vectorial objective of the form
V(:) = (Vi(:),Va(-)). In Sections 7 and 8 the case of quadratic objectives is
investigated and, in particular, the explicit form of solutions for two guadratic
objectives defined on Ri is provided.

The motivation for this work comes from mathematical economics (see, e.g.,
Von Neumann, 1945-46, Nash, 1950, Arrow and Intrilligator, 1982, Arrow and
Debreu, 1954, Nagurney, 1999, Nagurney and Siokos, 1997, Panek, 2000 and the
references quoted there). Assume that in the economy the budgets of traders
are given in terms of financial holdings and the amounts of commodities are sup-
posed to be known. The problem consists of finding a market equilibrium which
is understood as a system (m,zy,... ,2,,), where 7 represents the price vector
while 2; is a bundle of commodities corresponding to j's trader, j = 1,... ,m.
The vectors  and x; are assumed to maximize the trader’s utility function —V;
under the budget restrictions (Ajﬂ', :cj> < ¢;(m) and fulfill the market equilib-
rium conditions expressed by the subdifferential relation 3772 | A;ra:j € 0P (m).
If A; = Identity, ®4(7) := (S,7), ¢;(7) := B;, VT € R}, where § > 0 rep-
resents a vector of the total amount of commodities on the market and B; > 0
is the budget of j's trader. then this relation can be expressed equivalently as
m € dindes(d 1, x;) and state that the market clears for a commodity if the
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equilibrium price is positive; otherwise, there may be an excess supply of the
commodity in equilibrium, in which case its price will be zero.

Some results in the case of the subdifferential market equilibrium condition
of the form 7 € dind<s(3°7_, #;) can be found in Nagurney and Naniewicz
(2000) where the utility functions have been assumed to be strictly concave
and differentiable. The case of the equality market equilibrium condition has
been studied by making use of the homotopy methods in Eaves (1972), Hirsh
and Smale (1979), Smale (1976) (see also Chichilnisky, 1993 and the references
quoted there).

2. Statement of the problem

First, the basic notations are presented and then some preliminaries introduced.

By R" we denote the Euclidean vector space of all vectors x = [xl,. .. ,:c,,],
x; € R, i =1,...,n, equipped with the inner product ( ) :R'"XR"— R
defined as

<1r!m) = ZI-ipr's T = [xl!--- -;In]- ™= [Pl‘--- spn] € R".
i=1
By R"™" we denote all n x n real valued matrices. Moreover, the following

notations will be used:

Ri={aceR:a2>0}
1={:z:=[2:1,...‘2:,,]GR“::5,-20, ¥ Tsank
R " ={A=(An)c R4 20, Yik=1,... 1}
R’l:{wz[ml....,:n,l] eR":2; <0, Vizlw..,n},

7r=[p1.....pn]>04:> pi >0, Yi=1,00 ;0.

Throughout the paper it will be assumed that

Vi : R" = RU {400}, =2 T (1)
are convex, proper and lower semicontinuous functions;

¢j: R} — Ry with ¢;(7) >0, VTe€R], § = Ry 1 (2)
are continuous functions with positive values;

Ay e BT A; >0, Ker A4; = {0}, f=1,...,m, (3)
where Ker A; = {7 € R} : Aj7 = 0}. Further, assume

¢:R" — RU{+o0}, Dom @ N Int(RY) # 0, (4)
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to be convex, proper and lower semicontinuous function. Denote by 9¢: R" —
28" its subdifferential. Recall that for a convex function ¢ : H — RU {40},
H being a Hilbert space, the subdifferential dp: H — 2/ is defined by

dp(u) = {w € H: p(v) — p(u) > (w, v - u), Vv € H},

provided that ¢(u) < +oo and dyp(u) = 0, otherwise.
Now we are in a position to formulate the problem to be studied.

Problem (P): Find 7 € R} and z; € R},j = 1.... ,m, which satisfy for
each j = 1,...,m the conditions:

Vj(z;) = min {V}(:z:) <Aj7r, z) < ¢pj(n) and z € R} }, (PM);
(-'ZAﬁ"mJ-, T—‘n’>+¢‘('r)—‘1>(1’l‘)20, YT € RY. (PE)
i=1

The symbol A:{ is used to denote the transpose of A; € R"*".

3. Minimization problem (PM);

Throughout this section let us fix j € {1,...,m} and w € R with 7w # 0.
In order to reformulate the problem (PM); we introduce V;:R"—= RU
{+00} by setting

V_.‘; = i"} + illdRi, (5)
where ind gy () is the indicator function of R}, ie.

0 if x€ R}
400 otherwise.

i11d31(:c) = {
Moreover, define a linear operator Aj, : R" — R by

Ajn = (A;x, ), z e R". (6)
If ind<y, ()(+) denotes the indicator function of {t € R: t < ¢;(m)}, i.e.

0 if t<¢j(m)
+00  otherwise,

i]ldsé-‘(“}(t) = {

then by dinde<y, (my: R — 28 will be denoted its subdifferential in the sense of
convex analysis (Ekeland and Temam, 1976).
Now we are ready to reformulate (PM); as follows:

Prahlam I‘ﬁ\ T o= inf IVA{'T'.] 4+ ind.. !_\{A;.—ﬂ?‘! T e Rnl i



On some optimization problem related to economic equilibrium 145

Following the Fenchel duality theory (see Aubin, 1993) the dual problem
of (P;) can be formulated. For this purpose let A%, : R — R" denote the
transpose of A, which takes the form

Ao = aAm, a € R. (7)

We also let V; : R" — RU {+00} denote the conjugate of V;, defined by

Vitw = swp {{n=)-Vi@}, peR" (8)

which under the hypothesis 9V ; = aV; + ail’ldﬁl, Dindn-;{‘) being the subdif-
ferential of indgy (+), has the property (see Aubin, 1993)

— & » _1
v, = (31{, + 3111(131) ; (9)

From now on, this hypothesis will be assumed to hold throughout the paper.

According to the Fenchel theory the dual problem of (F;) reads:
v; = inf {V} (= A},0) +indy, () (@): @ € R},
where

indg, (@) = sup {oat} = ad;(w) +ind g, (@), a € R, (10)
= t<o;(m)

is the conjugate of ind<g (x)(-), R4 = {t € R: ¢ > 0}. Using (7) and (10) the
dual of (P;) can be written equivalently as

Problem (P;)  v;:= inf{V;(—(ij‘rr) +agi(m):a€ R+}.

From the Fenchel theorem (see Aubin, 1993) it follows that
vj+uy; 20 (11)

To formulate the next result based on the Fenchel theorem let us introduce
the notations: for any set K the symbol “Int K stands for the interior of K
and “DomU” is the effective domain of U.

ProprosITION 1 Assume that in the algebraic sense it holds that
0 €Int {A;xDomV; — {t € R: t < ¢j(m)}}. (12)
Then

T+, =0 (13)
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and there exists o; € Ry such that

V;(_A* @j) + a;d;i(m) = ( ajAjT) + ajd;(m) = Y; (14)
(a; is a solution of (B;)). If additionally,

Dom 87; DA, (15)

then there exists z; € R} with (A;m,z;) — ¢j(7) = Ajnz; — dj(m) <0, such
that

Vi(z;) =7; (16)
(xz; is a solution of (P;)). Moreover,

—ajA;m € OV j(x;) (17)

a; € dindy,(m) ((4;m,2;)). (18)

REMARK Notice that if A; > 0, Ker A; = {0} and DomV; D R, then the
hypothesis (12) is fulfilled for any = € R} \ {0}.

COROLLARY 1 Under the hypotheses (12) and (15) the following compatibility
conditions hold

Vi(z;) +V (—ajAjm) = —a;{Ajm,z;)
a;((A;m,2;) — pj(m)) = 0.

COROLLARY 2 Under the hypotheses (12) and (15), a; satisfies the variational
inequality

(Ajm, =0V (—ej Ajm))(t - a;) + ¢;(m)(t — ;) 20, ¥VE>0.  (20)

(19)

Proof. From (17) and (18) it follows that

z; € OV (~a;Ajm) and (A;m, z;) € dindy (my(a;) (21)
which, thanks to (10), leads ecasily to (20), as desired. O
LEMMA 1 If a; € Ry satisfies (20) and 9V ; = 9V, + dind gy then

a; ((Ajm, zjo) — 6;(m))

€ (Vj(z;) = aVj(@jo), ; — jo) — (Ajs Tjo) — (Njo. ;). (22)
where

z; € 0V, (-a;Ajm),  xjo € IV, (0)

Aj € dindgy (), Ajo € dindry (zj0).
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Proof. Let z; € OVJ-*(—&_?—AJ-W) and zjo € OV;(O). Then, by the well
known result of the subdifferential calculus we get —a; A;jw € 9V (z;) and
0 € 9V (zjo). Since dV; = dV; + dindpy, there exist A; € dindgy (z;) and
Ajo € indgy (o) such that
—(IJ‘AJ:‘?I.' € al{,(:cj) + /\J', 0e ()1’;(:!:10) + Ajg. (23)

Hence we get

(-ajAjm, @ - xjo) € (IVj(@)) - IVj(wjo), @; ~ Tjo)

+(A; = Ajo. z; — Tjo),

which thanks to (19) and the compatibility conditions Ajex; = 0 and Ajpex ;o =
0 (!) leads to (22). The proof is complete. =

PROPOSITION 2 Let the hypotheses of Proposition 1 be satisfied. Moreover sup-
pose that there exists a constant M; > 0 such that

E;:= {z € R}: min{(dV;(z), z)} < 0}
C{y e RL: |y| £ M;}, M; > 0. (24)

Then the set Aj() of all solutions of (20) is nonempty, conver, closed and
bounded.

Proof. The existence of solutions has been already established in Proposi-
tion 1, so Aj(w) # 0. Furthermore, Aj(w) as the set of all solutions of
variational ineguality (20) involving maximal monotone mapping G;(t) :=
(Ajm, —BV;(—tA_.,-fr}) is convex and closed (see Ekeland and Temam, 1976).
For the boundedness recall that (A;m, z;) < ¢;(w) and z; € (')V;(—a_-,-Ajn'),
so that

~0J'Ajﬂ€8"’}($j)+/\jq Aj Ef)illdﬁ:(iﬂj). Ajex; =0, (25)
and consequently

—aj(A;jm x;) € (Vj(xj).z)).

Since —a; (A m, ;) < 0, due to (24), the boundedness of {z;} follows. When
combined with

min{(9V;(z;),z;)} 2 Vi(z;) = V;(0),
and lower semicontinuity of V; this implies the existence of m; > 0 such that

min{{dV;j(x;), z;)} = Vj(z;) — V;(0) > —m;.

For any @,y € R" the notation zx e y = [.-::;-;“ A ‘.'r:,,y“] is used.
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Now, according to (19) we get either a; = 0 or (A=, ;) = ¢;(), therefore
we finally conclude that
m
aj S ‘—‘-“i:-'

¢;(m)
The proof is complete. i}

It has been proved in Proposition 2 that to any = € R, \ {0} one can assign
the set Aj(m) of all solutions of variational inequality (20), which is nonempty,
closed, convex and bounded. Now observe that if = € R’} \ {0} is small enough
then (A;m, zj0) < ¢;(m) for z;0 € OV (0) which, by (22), yields A;(m) = {0}.
Since ¢(0) > 0, we obtain easily that A;(0) = {0} and, hence, the continuity
of A;() at 0 follows. It turns out that A;(:) treated as a multivalued mapping
from R’ into 2R+ is upper semicontinuous.

PROPOSITION 3 Assume that the following hypotheses hold:

DomV; D R}, (26)
DomdV; D R", (27)
{z € R} : min{(0Vj(z), z)} <0} is bounded. (28)

Then A; : R — 2B+ is an upper semicontinuous mapping from R into 2B+
j + pp pping +
with nonempty, closed, convex and bounded values.

Proof. It has been already proved in Proposition 2 than Aj(-) has nonempty,
closed, convex and bounded values. Thus it remains to show its upper semicon-
tinuity. For this purpose assume that {m;} C R} and ai € Aj(my) are such
that wp — 7* and ar — a* for some 7* and o* € R, respectively. Our aim
now is to show that o* € A;(7").

From (17) it follows that

—apAjmy € OVi(zr) + Ax, Ak E ailldﬁi (zr),
which implies
—ar(Ajmr, i) € (OVi(zh), Th).

But the left hand side of this relation is nonpositive. Therefore, by the hy-
pothesis (28), the boundedness of {zy} results. Consequently, one can suppose
that zx — x* for some z* € R (by passing to a subsequence, if necessary).
According to (17) and (18) we get

~opAjmy € OV, (k)
a € dindey, () ((Ajmr, Th)),
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or equivalently

—arAjTy € 3V;(:1:k)
<Aj7l’k, mk) - ¢j(ﬂk) € 3i11d2|}(0£k),

which allows passing to the limit as k& — co. By the continuity of ¢;(-), the
maximal monotonicity of 37;(-) and dind>g(-), we get

~a*A;m* € 87;(3:‘)
(AJ"II'*, :I:i> = qﬁj('.*r*) € 3i11d2[;(0‘*).

But the last inclusion can be written equivalently as
a* € dindgy, () (4,77, 7)),
from which we deduce that a* € Aj(m*), as desired. The proof is complete. W

The results of Proposition 1 and Proposition 3 can be summarized as follows.

THEOREM 1 Assume that for j = 1,...,m the hypotheses below hold:

DomV; D R, (29)
DomdV, > R", (30)
E; = {z € R}: min{(0V,(z), z)} < 0}

c{yeRy: [y <M;},  M;>0, (31)

Then, for any © € R the optimization problem: Find ; € R such that
Vj(z;) = min{V;(y): Yy € R} with (A;m, y) < ¢;(w)} (32)

has at least one solution. Moreover, there exists aj € Aj(m), Aj(m) being the
set of all solutions of the variational inequality

(Ajm, =0V (~a;Ajm))(t — a;) + ¢j(m)(t — ;) 20, YE>0, (33)
with the property that
z; € IV, (—a; Ajm). (34)

Additionally, Aj : R} — 2R+ has nonempty, closed, convex and bounded values
and it s upper semicontinuous from R, into g
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4. Problem (PE)

Let us recall that ® : R" — RU {400} has been assumed to be a convex, lower
semicontinuous function with Dom® N Int(RY) # @ and the problem (PE)
consists in finding 7w € R’} such that

m

(-ZA}“a:,-. T—?r>+q)(’r]—¢(7r)2[], Ve R (35)
i=1

Taking into account (34) we can introduce a multivalued mapping R : R} —
2R by setting
m
R(m) =~y AJOV;(-Aj(w)A;m), w€R], (36)
i=1
which leads to the consideration of the following variational inequality with
multivalued operator R: Find w € R". such that

(R(m), T = =) + &(r) = (x) >0, VreRL (37)

By a solution of (37) we mean cach w € R for which there exists X € R(m)
with the property that

(X, 7-m)+®(1)-®(x) >0, VreR]. (38)

PROPOSITION 4 Under the hypotheses of Theorem 1, R given by (36) is a mulli-
valued, upper semicontinuous mapping from R, into 2RY with nonempty, con-
vex, closed and bounded values.

Proof. According to Theorem 1, A; : R} — 2R+ js an upper semicontinuous
mapping with nonempty, closed, convex and bounded values. Further, as max-
imal monotone E)‘V; : R = 2% has closed, convex and, by the hypothesis
(30), nonempty values. Thus we easily deduce that values of R are nonempty
and closed.

For the convexity we show that BV;(—alAJ-ﬂ') = UV;{—GQAJ-W) for any
ai,az € Aj(m), m € RY. To this end, assume that Z,, T, € BV;(—AJ-(W)A_,W).
There exist oy, a2 € Aj(m) with the property that

T € 8V;(-—01Aj1r) and @ € E)V;(—QQA_;TI')‘

For t € [0,1] set Z; = tZ; + (1 — t)&2. Since &, and Z, are solutions of (32), we
have

Vi(@1) = V;(@2) = Vj(20),
Vj(ik) +- V;(—ﬂ!kAJ"JT) = —ak<A_,-'n'._ Eﬁk>,
ar((A;m, Ti) — ¢;(m)) =0, k=1,2
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Firstly, we consider the case @y = 0. Then z; € OV;(O) and the foregoing
relations imply V;(Z») +V;(0) = 0. Hence &, € 3-17;(0) which by convexity
of 87;(0) yields z; € BV;((]). Secondly, we suppose that aq,ay # 0. Taking
into account that —apA;w € ij(:"ék), k= 1,2, we obtain
(leAJ‘ﬂ'sy—§1>+"3(y)“"3(5§1)2“‘ ‘v’yGRi,
(Ajm, y—Z2) + Vj(y) - Vj(Z2) 20, Yye R}
Since in such case, (A;m, Zx) —¢;(m) = 0, k = 1,2, we are allowed to conclude
that (A;m, &) — ¢;(m) = 0, and consequently

(mAjm, y—Z)+V(y) - Vj(@) 20, VyeR],

(a2 Ajm, y—Z,) + V(y) - Vj(@) 20, VyeR].
Hence, by adding these inequalities multiplied by ¢* and 1 — t*, ¢* € [0,1],
respectively, we arrive at

<f—¥t-Ajﬁ', Y- 51) +Vi(y) = Vi(z) >0, Vye R:_?

ape i=1ray + (1 - t")as,

from which we deduce casily that z, € BV;(—Q,-A_,W) for any t,t* € [0,1].
Thus, BV;(—rrAjw) does not depend on o € Aj(w). Thanks to the maximal
monotonicity of BV;, the convexity and closedness of BV;(T) results for any
T € R}, with the same forwarded to R(m).

The boundedness is a consequence of (31). Indeed, if z; € IV, (~A;(w)A;m),
w € R}, then —a;Ajm € OV (x;), a; € Aj(m), ensuring that (9V;(z;), ;) 3
—a;¢;(mw) < 0. This, by (31), leads to |z;| < M;. Since — Y-, A] z; € R(w),
the boundedness of R follows. The proof is complete. &

THEOREM 2 Assume that the hypotheses (29)-(31) hold and suppose that for
some M > 0,

{reR:;: @(r)ﬁZdy(rH—@(U)} c{reR.: |r| <M} (39)
i=1
Then the problem: Find w € Rl such as to satisfy the variational inequality
(R(m), T — )+ ®(1) = ®(m) >0, VT€R], (40)
has at least one solution.

Proof. Let Baar = {7 € RY: || < 2M}. Consider the following problem: Find
7 € Boyy satisfying the variational inequality

(R(m), 7 —w) + (1) — ®(7) >0, V7€ By, (41)
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Since Bays is compact, R is upper semicontinuous from R into 27+ and has
nonempty, closed, convex and bounded values, while ® : R} — RU {+o0} is
convex, proper and lower semicontinuous, the existence of w € Bays fulfilling
(41) can be derived by the use of the classical results concerning variational
inequalities with multivalued mappings (see Browder, 1968, Browder and Hess,
1972). Substituting 7 = 0 into (41) yields

(_ i ATg;, —1'I'> +®(0) > &(r)
j=1

for some x; € OV (~A;(m)A;jm). In view of

m

(3 ATzj,m) = 3 (o5, Aym) <3 5(m),
J=1 j=1

g=1

we are led to the conclusion that

m

®(m) < 3 d5(m) + 2(0),
j=1
which, thanks to (39), gives |r| < M. Accordingly, having in mind the validity
of (41) for any T € Baay, we easily deduce (40). The proof is complete. O

Theorems 1 and 2 allow to draw the conclusion concerning our basic problem.

THEOREM 3 Assume that the hypotheses (29)-(31) and (39) hold. Then there

exists at least one w € Ri and z; € il'_, j=1,...,m, such that
Vi(z;) = min{V;(y): y € R} and (A;m, y) < ;(m)}, (PM);
(-ZA}":.;,“ T—Tr)-{-‘I’{T)—‘I’(?T)ZU, VreR: (PE)
i=1

Furthermore, the mapping A;(-), which to any T € Rl assigns all solutions
a € Ry of the variational inequality

(1, -0V (—aA;T))(t — a)+¢;(m)(t—a)>0, V>0, j=1,...,m,  (42)

has nonempty, closed, convex and bounded values, is upper semicontinuous from
R into 2R+ and has the property that

x; € 8?:(—Aj(ﬂ)AjW], F =T (43)
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Additionally, = satisfies the variational inequality
(R(m), 7 —m) +®(r) - ®(7r) >0, VreER], (44)

where

m

R(m):=—Y ATOV;(-Aj(r)A;x), weR], (45)
7=1

is a multivalued, upper semicontinuous mapping with nonempty, convezx, closed
and bounded values.

5. Special cases

From Theorem 3 it follows that solutions z;,m € R} of (PM);~(PE), j =
1,...,m, fulfill the condition
Z Alz;ed(®+ indgy )(w) = 0®(m) + dind gy (), (46)
F=1
(Int(RY}) N Dom® # 0, (see Rockafellar, 1970, Ekeland and Temam, 1976).
Thus, in particular, if 7 = [py,... ,p,] € R} has only positive coordinates, i.e.
pi>0forall j=1,... ,m, (m > 0), then instead of (46) we have
Y ATx; € 09(m), (47)
j=1
because dind gy (w) = {0}.
Similarly, if 0 g A;(7) for each j € {1,...,m}, then instead of the inequality
constraints in (PM);, we obtain the equalities

(Ajm, ;) = ¢;(m), j=1,...,m (48)

Now we formulate conditions under which (47) and (48) are available. For
this purpose notice that from (46) it follows that

m™m

m e o0y (Y Afw;)
i=1

where @3 : R" — RU {+0o} is the conjugate of ® +indgy . Hence, we get

o} (ZAI%') < ®L(0)+ Y (Ajm z;) < BL(0)+ D hi(m)
i Jnt j=1

< ®%(0) + sup Zr,bj(r) = My < +00.
|T|<M 4=1

This allows the formulation of the followine resnlt.
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COROLLARY 3 Assume all the hypotheses of Theorem 3. Moreover, let w,z; €
R} be solutions of (PM);(PE), j = 1,... ,m. Then the following conditions
are satisfied:

(1) If for any y € R} with y = E;-":lA.'j-ryj_. y; € Ej; j =1,...,m, and
% (y) < My, we have

Ve {low st 7T sl
such that (A7 0V;(y;)),n (A7 (RY)), =0, (49)

then ™ > 0 and instead of (PE) we get the stronger (47) (the symbol AJ-_]
denotes the inverse of A;).

(i1) If for any y € R! withy = E}":l A}"y}-, y; € Ej, j=1,...,m, and
@ (y) < My, we have

Vie{l,....m} 3ie{l,...,n} such that (OV;(y;)),N Ry =0, (50)

then (48) holds, i.e. the inequality constraints in (PM); become, in fact, the
equalities.

Proof. We shall have established the assertion if we show that (i) implies that
0 & Aj(m) for each y = 1,... ,m and that (ii) ensures w > 0.
From (25) we get easily that for any j =1,... .m,

—a;A;m — A € dVj(x;), Aj € Oindgy (z;). aj € Aj(m).  (51)

First we claim that if (i) holds then for each j € {1,... ,m}, 0 € A;(m). Indeed,
if we assume that for some j € {1,...,m}, 0 € Aj(ar) then from (51) we get
—Aj € 0Vj(z;). Since —A; > 0, the contradiction with (50) follows.

Now suppose that (ii) holds and, on the contrary, for some i € {1,... ,n} we
have p; = 0. From (51) we obtain (A;I(—Aj))i € (A;‘avj-(a:j))i for each
Jj = Ll....,m. Thus, in particular, if j corresponds to i as stated in (49), we
arrive at the contradiction because —A; > 0. The proof is complete. =

Now we consider the case in which only the trivial solution 7 = 0 is available.

COROLLARY 4 Assume all the hypotheses of Theorem 3. Morcover, suppose that
for any zjo € OV, (0), j=1,... ,m,

<r, o A}"z,-n> < ®(r) - B(0), VreR:\{0}. (52)
=1

Then =0 and x; € 67;{0), J=1,...,m, are the only solutions of (PM);-
(PE).



(5]

On some optimization problem related to economic equilibrium 15

Proof. On the contrary, suppose that © # 0 and z; € BV;(—AJ-(ﬂ)AJ-?r) are
solutions of (PM);—~(PE), j = 1,... ,m. If 0 € A;(m), then <Aj1r, :I:jn) S
¢j() for some z;0 € IV, (0) and (A;m, x;) = ¢;(m). This allows us to define

= _ [ if0enm
7 Vzjo OEA(R), j=1,...,m,

with the properties that Z;o € 9V, (0) and (A;m, Zj0) > (A;m, z;) for any
j=1,...,m. Hence

(m iA}":"é@ > <11', iA}"a;j). (53)
j=1 j=1
Now, from (PE), by substituting 7 = 0, we get
(, iA}"mj) > &(x) — B(0).
j=1
Combining this with (53) yields
(. iA;‘-'ﬁ‘:m> > @(m) - 2(0),
j=1

which, due to 7 # 0, contradicts the hypothesis (52). The proof is complete. W
(F){L-:M(ARK Notice that the assumption (52) is stronger than Z;.'f_-l Ai-":z:_,-g €
0P, (0).

6. Ideal minimum
Let us define a vector function V : R" — (RU {+00})? as
V(z):= (U(z), W(z)), z € R}, (54)

and let £ be a nonempty subset of R} .
Recall that * € F is said to be Pareto optimal if there are no other @ € F
such that (sce Aubin, 1993):

U(z) < U(z*) and W(z) < W(z"),

with at least one of the foregoing inequalities being strict. An element z* € E
is said to be an ideal minimum on £ if

V(z*) < V(z), VzekE.
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Now we consider the problem concerning the existence of an ideal minimum:
For a given § > 0 find E C {y € R : y < S} and * € E such that

V(z*) < V(z), VzekE, (55)

i.e. * is an ideal minimum of the vectorial objective V' on E.
In order to get the existence result for (55) an auxiliary problem will be
formulated. Let us define

Vi(z) :=U(z) and Vi(x):=W(S - z), z € R}, (56)
and consider the problem: Find w € R and x;,x; € R such that

Vi(z;) = min{V;(y): y € R} and (m,y) < B}, j=1,2, (57)

T+ =8. (58)

The existence of solutions for the problem (57)-(58) can be derived from Corol-
lary 3. Indeed, when setting A; = I, ¢;j(w) =B >0, j =1,2, and

®(7) =(8,7), T €R", (59)

we get @} = (@ +indgy)* = indcs, where ind<g stands for the indicator
function of {y € R} : y < S}. Now from Corollary 3 one can obtain the result..

PROPOSITION 5 Assume that Vi and Va given by (56) fulfill (29)-(31). More-
over, let ®: R" — RU{+4o00} be defined by (59). If for anyy € RY, withy < S
it holds that

Vie{l,...,n} 3je{1.2} such that (OV;(y)), N Ry =0, (60)

then there exist @ > 0 and xy,x2 € RY, such that (57)-(58) hold. If, in
addition,

Vie{1,2} 3ie{l,....n} such that (OV(y)),N Ry =0, (61)

then the inequality constraints in (57) become the equalities, i.e. (mw.x;) = B,
Ta—

Now observe that if  and z,, 5 are the solutions of (57)-(58) then * := x,
is an ideal minimum of V in E = {y € R} : (7,y) < Band y < S}.
The results obtained allow for the formulation of the following theorem:

THEOREM 4 Assume that U : R" — RU {+o00} and W : R" — RU {+00} are
such that the corresponding Vi and Va given by (56) fulfill all the hypotheses of
Theorem 3, i.e. (29)-(31) hold (notice that (39) holds immediately). Moreover,
let for any y € R} with y < S the following hold

Vie{l,...,n} 3je€{1,2} such that (3Vi(y)),N Ry =0, (62)
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then there exists w > 0 such that the problem (55) admits at least one ideal
minimum z* on E := {y € R} : (m,y) < B andy < S}, i.c.

(U(z*),W(z*) < (U(y),W(y)). YyeE. (63)
If, in addition, for any y € R} withy < S,
Vie{1,2} Jie{l,...,n} such that (3Vj(y)),n Ry =0, (64)

then (m,z*) = B.

7. Quadratic functions

Consider the case in which V; are quadratic, A; = I, j = 1,...,m, I being

the identity and ®(r) = (S,7) with S € R} and S > 0, ¢;(1) = B; > 0,
J=1,...,m. We assume V; to be of the form:

1 n -

Vj(z) := E(Cja:.:e:) -(Dj,z), =z€R], (65)

where C; € R}, is a symmetric n X n, positive definite matrix, D; € R},

Let us introduce the notations: for any X = (X;) € R", [X]* = (X}'),
[X]~ = (X[), where

v [X ifxzo L [Xx ifXx<o
0 if X <0, 0 if X >0.

It is not difficult to check that Vj, j =1,... .m, given by (65), fulfill all the
requirements of Theorem 3. In this case we have

dVj(x)=Cjz-D;, =z€R} (66)

S : o -1
OV} (u) = (dl{; + amdﬂ.l.) (1)
- o b " -
=[C;j'n+C;'D;]", peR.. (67)
In particular,
AT i +
av;(0) = [c7'D;]".

Further, Aj(w) = {aj(7)}. 7 = 1,... .m, where a;(-) are continuous. bounded
functions, determined by the conditions:

<'ﬂ', —[C;lDJ]+> +BJ' 20 = a; =0,

(m, -[C7'D;]")+B; <0 = (r, [0;C;'w - C;'D;j]") + B; =0.
(68)
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The operator R takes the form

LS

R(p) =) [aj(w)Cj'n-C;'D;]”, peR}. (69)
Fe=1

If # € R is a solution of (44) with R given by (69), then the corresponding
xj, j=1,...,m, can be derived from (43), which in the case considered takes
the form

¢ ==[a(m)C'x-C;'D;]", j=1,...,m.
All these results can be summarized as follows.

THEOREM 5 Suppose that V; are defined by (65), where C; € Ry are assumed
to be symmetric n x n, positive definite matrices, D; € R, B; > 0, j =
1,...,m, (1) = {T.S), T € R}, where $ > 0,i=1,... ,n. Then there exist

at least one w € R and the corresponding x; € R, fulfilling the conditions:

Vi(z;) = min{V;(y): y € R} and (m,y) < B;}, j=1,... ,m, (70)
<~Za:j+S,T—1r>20, VreR,. (71)
=1

Moreover, the conditions

(ro-[C7'D ) + By 20 = a;=0,
(r,-[C;'D;]")+ Bj <0 = (7, [;C;'w-C;'D;]") +B; =0,

(72)
determine bounded, continuous functions aj(-), j = 1,... ,m, with the property
that & 1s a solution of the variational inequality

<1"-—ﬂ', Z[crj(fr)C;"w—C;le]ﬂ+S> >0, Vrte€R], (73)
j=1
and xj, j=1,...,m, are given by the formulas
2; = —[oj(m)C; ' - C7'D;]”, j=1,...,m. (74)

Now we consider the question concerning conditions under which a solution
= In.....n.] € RY of (73) has positive coordinates, i.e. p; > 0 for all



On some optimization problem related to economic equilibrium 159

J =1,...,m. Notice that in such a case instead of variational inequality (73)
the equality

m
~q -1 =

Y [ej(m)Cila - C7'D,;]” +8=0 (75)

j=1
results, or equivalently, 3°" ) ; = S.

To formulate the pertinent result, Corollary 3 will be used. For this purpose

we have to adopt its hypotheses to our case.
Firstly, we check that ®} = ind<s, where ind<s is the indicator function of
{y € R": y < S}. Secondly, let us assume that

Vie{l,...,n}Vje{l1,...,m} (D;): >0, (76)
and define K by setting
yeK = Vie{l,...n}Vje{l,...,m} (C;j'y-D;);<0.

Further, for any § > 0 define Kg := {y € R}:y < §}. Due to (76), for
sufficiently small S we have Kg C K. On the basis of Corollary 3 we are
allowed to formulate the following result.

COROLLARY 5 Assume all the hypotheses of Theorem 5 and suppose that (76)
holds. Then for any S > 0 with Ks C K the problem: Find 7 > 0 andx; € R,
j=1,...,m, such that

Vi(z;) = min{V;(y): y € R} and (m,y) < B;}, gl (77

and

m

¥ mj=4, (78)
=]

has at least one solution. Moreover, <7r,:l:j> = Bas 3= Lsvas M

Consider the case in which S is large enough. On the basis of Corollary 4
one can formulate the result.

COROLLARY 6 Assume that all the hypotheses of Theorem 5 hold. Moreover,
suppose that

S > i[cngj]+. (79)

=1

Then the only solution of (70)-(71) is the system ™ =0 and x; = [CJ-_le]“L,
9= Lyawu o
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Proof. Recall that {z;} = E}V*(O) where ; = [C7*D;]*. Thus (79) can be

written as — 3727, z; + S > 0, or equivalently,

> (Y zr), VreRp\{o}.
Jj=1
Therefore (52) is fulfilled and finally, by Corollary 4, the assertion follows. H

8. Examples
Assume V/ : R* — R, j=1,2, to be of the form

. 1 ¢l oo T 2
VJ(:B) e E[Il,:i:g] [ 01 Cj:| ]:;1: ] [ lsD ] { } s x € R, (80)
where CJ,C} > 0 and DJ,D? > 0, j = 1.2. Morcover we assume that & :
Ri — R is given by Q’(T)_ = <S,T).. TE Ri, where S = [S1, 8], S1,52 > 0.
Then the corresponding o/(-), § = 1,2, derived from (72), are given by

(0 if p1CJD] + p2CD}
~BCiC} <0
Di‘ P )2
i i p2 > 3'2( }3_,'0}
mDy — B'Cy if piDy - BICy
(m1)? BCj
. J
(™) =4 Dpi(pz)
. v . > T ey
peD} — BiC) -1 "7 mDi- B0
(p2)? N BIC)
P2 =
D
nCiDi +meiD}-BGle]
k Cé (Pl )2 e C.]f (pz)z otherwise.

(81)

Governing relation (73) leads to finding 7 € Ri such that

(1 — pl)([—ﬁaliﬂ)g} =t ] 4 [(—w——xz(w)cp,% - D%] i Sl) +

- . 2()p2 — D3
+(72‘P2)([01(ﬂ}£,i Dé} +[ﬂ (?T)p; DJ] +32)

>0, VreR:. (82)
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The strategy for finding solutions of (82) is to consider each of the cases:
Case 1. My 1= DI1C? + D3C] — 5;C}C} > 0 and
A2 := D3C2 + DZC} — S,C1C% > 0,

Case 2. Ay > 0 and Ay < 0,

Case 3. Ay > 0 and Ay = 0,

Case 4. A\ < 0 and Ay <0,

separately, and to extend the results by symmetry. In this paper we confine
ourselves to the most important cases leaving the remaining ones to the reader.

Solutions:

Casg 1. If Ay > 0 and Ay > 0 then (82) reduces to the system of equations:

al(m)py — DI o*(mw)py — D}

0= S
C’ll Cf + 51
al(m)ps = Dy oa*(m)ps — D3
= - So.
0 021 022 + 52

A. If we are looking for solutions in I'y C Ri, where

_ PlD% - 31011

2
Gy 2w

D‘Z _BZCZ
Tely < <al(7r) = I_JQ*_L)

(p1)?

then we get

_B'+B?
p1= 5—1
- (DACE + D3C) — S,CLC2)(BY + B?)?
P2 = 5 BI(DICE + DCL — 8,C1C?) + $,B*(DICE + D2CI — 5,C2CY)

Sl 2
ot () = (TWTBT)Z(BID% + B2D! - BClS)
S . _,
o?(w) = mwlpf + B2DE - B0 8y),

provided that [py,ps] € T 4.

B. If we are looking for solutions in I'g C Ri, where

1_ plot
Telp < ((Xl(ﬂ'):ﬂ—gl(—)g—g7 a2(7r):0>,
P
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then we obtain
- BYCT
= ner-Df
_ _ B\(C}P(C3D} - O(D3 - 5:3))
C3(5:C - D})(CiD] - C{(8:CF - DY)’
5,C% — D?
1 _ 1 1
(M) = "picrp

P2
(CiD{ - C1(5:CF - DY),

provided that [py,p2) € I'p.
C. If we are looking for solutions in I'c C Ri, where

mD} — B'C]
(p1)? '

1l

2 2
nﬁ(n)=M). (83)

mele & [al(n)
¢ ( () (Pz)z

and, moreover, yp := C3C} — C}C? # 0, the results are

£ B2C}o

] =

- tD370 — tA2CF + M C3
tBECE‘m

P2

T tD%y0 — thaCE + MCE

where £ > 0 is a positive solution of the equation
t* A2 B2CLC3 + 2 B*C3 (D}no — MC3) — tB'C} (D30 — AC3)
- AaBicic? =0,

provided that [py,ps] € Te.

D. If we are looking for solutions in I'p C Ri, where

_ piCiDY + poCLDY — BICICH
B C3(p1)? + C} (p2)?
_ D3 - B3C3

(p2)?

a'(m)
weElp <

a?(m)

and, moreover, vy # 0, we get

2B2C2v,

P = D30 — thaCE + M C3
B tB2C27yy

P2 = iD% — th2C? + A\ C3




On some optimization problem related to economic equilibrium 163

where ¢ > 0 is a positive solution of the equation
t°0 B2 CC}C + 2 B*C3 (M(C3)? — %C3 D} — 7C}iD})
+t(A2B2CIC3 + B'CLC3 (70 D3 — A2C})) + M(B' + B%)C{C3C) = 0,

provided that [p;,ps] € I'p.

E. If we are looking for solutions in I'y C R}, where

_ mCiD} + pCi D} — BICIC)

- C3(p1)? + Ci(p2)?

_ piC3D} + paCED3 — B2C3CE |
B C3(p1)? + C3(p2)?

a(m)

o ()

and, moreover, 7y # 0, the following results are available:

~ (240 B1CI O}

P! = 1230(CID} + CID}) - (MG} + thCh)(C} + C)
t70B'CLC}

P2

= Py(CIDI + CID]) — (\CI + tACH)(2C] + CT)
where ¢ > 0 is a positive solution of the equation

210(C} D} + C1D}) — (MG} + taCl)(2C} + C})
BICICI

_ 2%(C3D} + CID3) — (MC3 + thC})(2C3 + C})
- B2CiC3 ’

provided that [py,ps] € T'g.

CASE 2. A; >0 and X < 0.
In this case we have

ol (m)pa — D3]~ " o?(m)p2 — D3
cl c2

] +8 >0, VYmeR%,

therefore pa has to be 0. This implies that p; > 0 and at least one of a's has to
be positive in order to fulfill the equation
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A.If B2D} - BY(8,C} — D}) > 0 and B*D} — B*(5,C} — D}) > 0 then

_B'+-B?
= S
p2=0
S
al(m) = W(Bw{ - B'(S:C} - D}))
S " ;
o?(m) = m(slf); ~ B?(8,C? - D})).

B.If B! > B*/(S;C} — D}) > 0 and C1D? — C3(S;CL — DY) > 0 then
_ BEC’I1
= st~ o
p2=10
al(w) =0
51Cf — D}
B(CT?
CAseE 3. Ay > 0 and Ay = 0.

This case can be treated analogously as the previous one due to the fact that
matrices C7, j = 1,2, are diagonal (only p, = 0 is admissible).

o?(w) = (C1D} - C¥(S:Ct - D})).

CAsE 4. A} < 0 and A2 < 0.
This is a trivial case with the only solution p; = ps = 0.
In order to get x?, j = 1,2, we use the formulas

" . _[[fr‘(r)pn = D" [e(m)p2 = D;]v]

Cl c1
B e [@*(m)pr = D}]~ [0 (7)p2 = D3]~
o R— a3 :

derived from (74).
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