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Abstract: We have developed a chaotic neurodynamical search
ing method for solving the lighting design problems. The goal of this 
method is to design interior lighting that satisfies required illumi
nance distribution. We can obtain accurate illuminance distribution 
by using the radiosity method to calculate interreflection of lights. 
We formulate the lighting design problem that considers the inter
reflection of lights as a combinatorial optimization problem, and 
construct a chaotic neural network which searches the optimum so
lution of the lighting design problem. The calculated illuminance 
distribution is visualized using computer graphics. We compare this 
optimization method with the conventional neural network with gra
dient dynamics, simulated annealing, and the genetic algorithm, and 
clarify the effectiveness of the proposed method based on the chaotic 
neural network. 
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1. Introduction 

Optimization is important in many fields of science and engineering. In par
ticular, the combinatorial optimization problems, which are NP-hard problems 
including the travelling salesman problem and the quadratic assignment prob
lem as examples, have been studied very intensively, and various methods have 
been developed for their solutions; for example, the simulated annealing, the 
tabu search, the genetic algorithm and the chaotic dynamic search. In this pa
per, we explore an optimization problem for the lighting design by using the 
chaotic neural network. We optimize the arrangement and the types of light 
sources like bulb lamps and fluorescent lamps that have different luminous in
tensity distributions. We choose the chaotic neural network (Aihara et al. 1990) 
for searching the optimal design, since the chaotic dynamics is considered effec
tive for combinatorial optimization. In the lighting design field, it is well known 
that calculating interreflection of lights is very costly and optimization of the 
lighting design considering interreflect ion is very difficult. 

First , we construct a framework of the lighting design that uses the chaotic 
neural network. We show that this method has an ability to find good nearly 
optimum solutions. Second, to evaluate the effectiveness of this method, we 
compare the performance of the proposed method with those of other optimizing 
methods based on the conventional neural network with gradient dynamics, the 
genetic algorithm, and simulated annealing. 

2. Related work 

2.1. Optimization by chaotic neural networks 

Chaotic dynamics is complicated dynamics generated by deterministic nonlinear 
dynamical systems. Many nonlinear systems with chaot ic dynamics exist in the 
real world. For example, the chaotic dynamics in nerve membranes has been 
investigated (Aihara et al., 1986) , and it is implied that the chaotic dynamics 
is important in information processes in the brain. On the other hand, various 
artificial neural network models have been proposed for applications in engi
neering and industry, related to learning, optimization, etc. The chaotic neural 
network (Aihara et al., 1990) is one of the artificial neural network models that 
can also be applied to various problems, with the use of chaotic dynamics. 

The chaotic neural network model is based upon the Caianiello neuronic 
equation (Caianiello, 1961) and the Nagumo-Sato neuron model (Nagumo and 
Sato, 1972). By introducing an analog sigmoidal function for the output of such 
neurons with the refractory effect, the chaotic neuron model can be derived. 

The application of a neural network with chaotic dynamics to combinatorial 
optimization problems (Nozawa, 1992) brings an improved performance of the 
minimum searching method using the Hopfield-Tank neural network (Hopfield 
-- -1 "'-- '- 1nor::\ ... 1..:-1. 1..- - - .... -1: __ ,. ..:1----~ : -- l.l.. .. l. ~+•-- +-11 - : .. • ~ .... ..:1 -- :··-"-1-
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local minima. By using chaotic dynamics, the search escapes from local min
ima and finds better solutions. Moreover, to find an optimum solution within 
a huge search region, chaotic dynamics is expected to be more efficient than 
the stochastic method. Since the attractor of the chaotic dynamics usually has 
a fractal structure and the Lebesgue measure of the attractor is 0, the search 
dynamics of the chaotic dynamics may be more effective compared with the 
stochastic search, which has no fine structure. To analyze the search dynamics 
of chaos quantitatively, the Lyapunov spectrum, which quantifies the orbital 
instability of the chaotic attractor, has been estimated. Through such an anal
ysis, it has been shown that the dynamics of a chaotic neural network effective 
for combinatorial optimization has a small positive maximum Lyapunov expo
nent, that corresponds to weak chaotic dynamics (Yamada and Aihara, 1997, 
Hasegawa et al., 1995). For improvement of the performance of the chaotic 
dynamics approach, Chen and Aihara (1995) proposed chaotic simulated an
nealing. However, the sizes of problems to which these methods arc applicable 
were not so large. A more realistic chaotic approach that is applicable to very 
large combinatorial optimization problems is a chaotic search method based on 
heuristic searches (Hasegawa et al., 1997). The chaotic neural network in this 
approach is utilized for controlling heuristic methods applicable to very large 
problems. The performance of this method is higher than those of the conven
tional search methods, such as the conventional simulated annealing and tabu 
searches, even on very large combinatorial optimization problems (Hasegawa et 
al., 2000, 2002). 

2.2. Lighting design 

The conventional interior lighting design problem considers both direct lights 
and interrefl.ection of lights, and the ray-tracing method and the radiosity meth
od are indispensable for the problem (on the ray-tracing method, see Whitted, 
1980, and on the radiosity method, sec Cohen and Greenberg, 1985 and Nisita 
and Nakamae, 1985). The number of light sources, luminous intensity distribu
tion, light source arrangement, and light source colors, etc. are the quantities to 
be optimized. To optimize these quantities, the Hopfield neural network and the 
genetic algorithm have been used. Previous paradigms which optimize lighting 
can be classified into two approaches. One involves calculating the illuminance 
distribution inside a closed environment given light sources with fixed luminous 
intensity distributions and the specified number of light sources. This approach 
is often called the forward approach. To render the lighting effects in a room, the 
radiosity method, a lighting model taking into account interreflection of lights 
between surfaces, was proposed by Cohen and Greenberg (1985) and Nishita 
and Nakamae (1985). Since then, several methods have been proposed to in
crease the realism of the generated images and decrease calculation time. The 
general radiositv method of Immel et al. (1985) considers specular reflection. 
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Dobashi et al. (1995), a method of quickly generating images by expressing the 
luminous intensity distribution with spherical harmonic functions was proposed. 

The other approach is called the inverse problem. In this approach, the 
desired illuminance distribution is specified first, then the luminance intensity 
distribution, light source color etc. are calculated so that the difference between 
the specified illuminance and calculated illuminance is as small as possible. 
Schoeneman et a!. (1993) calculates the luminance intensity distributions and 
the colors of the light sources that most closely match a target image painted by 
the designer. Kawai et a!. (1993) proposed a method of designing illumination 
in a computer simulated environment based on goal directed modeling. In Taka
hashi eta!. (1993), luminous intensity distributions of multiple light sources are 
optimized by using the Hopfield neural network. Neural networks with symmet
ric mutual connections have a property t hat their energy converges to a local 
minimum value. Thus, by adjusting neuron's connection weights and threshold 
so that the neural network energy corresponds to the objective function we want 
to minimize, we can get a local minimum solution. In this case, the objective 
function to be minimized is the sum of the squares of the differences between the 
desired luminance and the luminance of surfaces lit by light sources which have 
the optimized luminance intensity distributions. However, it is very hard to 
get a globally optimum solution. For optimization, the chaotic neural network 
is superior to the Hopfield neural network because the former has the ability 
to escape from local minima. If we use the Hopfield neural network, we must 
choose by trial and error the initial conditions in order to prevent the network 
from falling into a local minimum with insufficient performance. In contrast, 
if we use the chaotic neural network, the trial and error is not required and 
we have more possibilities of finding good solutions because of chaotic neural 
network's ability to escape from local minima. 

In Dobashi et a!. (1998) , on the other hand, a method to calculate the 
luminance intensity distributions or the colors of the light sources that satisfy 
the desired illuminance distribution was proposed using a genetic algorithm. Its 
calculation time can be significantly decreased by using a Monte Carlo method. 
Moreover, an extension of the method of Dobashi et a!. (1995) can handle not 
only point light sources but also linear light sources. 

Forward approach methods can calculate accurate luminance distributions, 
but require a trial and error process of changing the locations and luminous 
intensity distributions of the light sources. On the other hand, inverse approach 
methods that consider both direct lights and indirect interreflection of lights 
cannot solve the lighting design problem in a well-posed way. However, by using 
the chaotic neural network, both direct lighting and indirect lighting can be 
effectively treated as an inverse problem. We use the inverse approach combined 
with the chaotic neural network to calculate the arrangements and the tvoes of 
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3. Optimizing methods 

3.1. Overview 

The chaotic neural network is used to calculate the optimum number, arrange
ment and types of the light sources which satisfy the desired illuminance dis
tribution in a three-dimensional space. When the space is lit by light sources, 
the illuminance values in the specified regions increase. To get these values, we 
render an image for each light source . In each image, only one light source is 
turned on. We call t hese images intermediate images. By using these images, 
we can get the illuminance values of the specified regions lit by light sources. 
We measure the extent to which the calculated solution satisfies the illuminance 
condition specified by the user as follows. First , we calculate the square of the 
difference between the calculated illuminance and the user specified illuminance 
at all positions where the user specified the illuminance values. Next, we sum up 
the squares and call this value the obj ective function. This objective funct ion 
is the difference between the calculated solution and the specified illuminance 
condition. Therefore, by minimizing this objective function, we can get t he 
optimum solution. To minimize this objective function, our system uses the 
chaotic neural network. 

3.2. System descriptions 

3.2.1. Light sources and their arrangement 

Many kinds of artificial light sources are used in the real world. The most 
popular are bulb lamps and fluorescent lamps (Fig. 1). Our system assumes 
that all light sources are white. The positions user can put the light sources 
at arc specified in advance. We cannot put multiple light sources at the same 
position. In the optimization process, the system decides where to put a light 
source among the specified posit ions and which type of light source to use . 

---------·-........_ 
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3.2.2. Correspondence of light source and the chaotic neuron 

In our system, each light source corresponds to one chaotic neuron. The total 
number of the chaotic neurons is the product of the number of places and that 
of light source types. The intermediate images numbering all the light sources 
are rendered. These images are used to get the illuminance value of the specified 
position when the space is lit by each light source. 

3.3. Formulation of lighting problem using chaotic neural network 

First, we explain the chaotic neural network and parameters used to express it. 
Second, we describe the correspondence between the quasi-energy function of 
the chaotic neural network and the cost function to be minimized . 

3.3.1. Chaotic neuron model 

The chaotic neural network consists of multiple chaotic neurons (Fig. 2). The 
chaotic neurons are mutually connected to each other (Fig. 3). The chaotic 
neuron model (Aihara et a!., 1990) is an extension to the Caianiello neuronic 
equation (Caianiello, 1961) and the Nagumo-Sato neuron model (Nagumo and 
Sato, 1972) which includes a refractory effect. 

f-----~ Outij 

Figure 2. Chaotic meuron model 

In the proposed method, each (i,j)th neuron is labeled as follows: i identifies 
a position where the user can put a light source; if the number of such positions 
is N, the range of i is from 0 to N - 1; .i is the light source type identifier. Each 
chaotic neuron has an internal state I;;, and receives the output signals from 
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is obtained by using a logistic function G. The chaotic neuron has inhibitory 
self-feedback (refractory effect) (Fig. 2). Because of this negative self-feedback, 
the behavior of the chaotic neural network is completely different from that of 
the Hopfield neural network composed of neurons, which have no self-feedback . 

Figure 3. Chaotic neural network 

The dynamics on the internal state of the ( i, j)th chaotic neuron with graded 
output and relative refractoriness, I;j ( t), is described as follows ( Aihara et a!. , 
1990): 

I;j(t + 1) = LPij,mnOUtmn(t) + (1- kd)% + kdiij(t)- aOut;j(t), (1) 
nt,n 

where t is the discrete time step (t = 0, 1, 2, ... ), Outmn(t) is the output of 
the (m, n)th neuron with a continuous value between 0 and 1 at time step 
t. In this system, if the output of the chaotic neuron is close to 1, the light 
source corresponding to this neuron is turned on. Then, Pij,mn is the synaptic 
connection weight from the (m, n)th neuron, kd is the decay factor between 0 
and 1, q;j is the bias parameter and a is the refractory scaling parameter. The 
output values of neurons can be obtained by using the following logistic function 
G: 

Out;j(t + 1) = G(I;j(t + 1)) = ( -h(t + 1)), 
1 + exp --"-1-'---..;, 

c 

1 
(2) 

where r:: is a positive steepness parameter, and the smaller the steepness param
ptf:q· t h P ..-.:: toP nPr t hfl ~lnnf"\ h f-l turoon n ~\nrl 1 ( (,:,(_"\p Pi o· .d \ 
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Out ij 1.0 ,------.--------,.----=-------, 

Logistic function G 

0.8 

0.6 

0.4 

0.2 

OL-----~~--~---~---~ 
-1 -0.5 0 0.5 1.0 lij 

Figure 4. Logistic function 

3.3.2. Correspondence of quasi energy function and cost function 

The solution to this lighting design problem can be evaluated using the cost 
function ¢ given below. The optimum solution corresponds to the minimum 
of¢. 

¢ = ¢1 + ¢2, 

c/J1 = A(L(lightk- Rk) 2
), 

k 

¢2 = B { L ( L Out;j - 1) 2}, 

Rk = L L Out;jb·ijk, 
j 

(3) 

(4) 

(5) 

(6) 

where k is the identifier of a position where the user specified an illuminance 
value, b;jk is the illuminance value at position k when the (i,j)th neuron fires, 
lightk is the illuminance value specified by the user, Rk is the summation of 
illuminance values of the intermediate images lit by the light sources correspond
ing to the firing neurons at position k, ¢1 is the summation of the square of 
the differences between the calculated illuminance values Rk and the specified 
illuminance values lightk, and ¢2 represents the constraint term to satisfy the 
feasibility condition of the light source arrangement by penalizing the infeasi
ble arrangements. Since we cannot put multiple light sources in one position 
at the same time, multiple chaotic neurons with the same i cannot fire at the 
same time. Both A and B are scaling parameters. The quasi energy function of 
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equation : 

1 
E = -2 L L L LPijmnOut;jOUtmn - L L q;jOUtij · (7) 

· · m n · · 

The quasi energy funct ion is utilized to monitor t he dynamical behavior of the 
chaotic neural network, and it decreases monotonously as time step t increases 
in the conventional Hopfield-Tank neural network (Hopfield and Tank, 1985). 
This property can be ut ilized in the light ing design optimizat ion problem. In 
this paper , the loca l minimum problem of such a conventional neural network 
is solved by applying chaotic dynamics for searching better solutions. 

3.3.3. Obtaining connection weights and bias values 

The neuronal connection weights PiJ ,mn and the bias q;j can be calculated by 
comparing the coefficients of the cost function and those of the quasi energy 
function . F irst, c/Jl in ( 4) can be transformed as follows: 

¢1 =A ( L (light~c- R~,l) 
k 

=A{ L(light ~.:) 2 - 2 'Ltigld~.:Rk + L(R~.:) 2 }. (8) 
k k k 

Since the first term is always constant and Rk = L:; L:j O·ut;jbijk, 

c/J1 = -2A L {l ight~.; ( L L Outijbijk )} +A L { L L Otd;jbijk} 
2 

k i j k .. j 

+ A L(light~.: ) 2 = -2A L L ( L light~,;Out ij bij k) 
k: . j k 

+ALL L L L Out;jOUtmnbijkbmnk +A L(lightk)2 

k n 

= - 2A L L { ( L lightkbijk ) Out;j } 
. j k 

+ALL L L { Out;jOUtmn ( L bijkbrrmk)} +A L(light~.;) 2 . (9) 
· · m n k k 

Second, c/J2 (5) can be t ransformed as follows, 

c/J2 = B { L ( L Out;j - 1) 2} 
i j 

= B r L { ( L Outij) 
2 

- 2 2::: Outij + 1 ~ l 
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= B [ L { L Outij L Outin - 2 L Outij + 1} J 
i j n j 

= B L { L L OutijOutin- 2 L Out;j + 1}. 
i j n j 

Since 1 = (1- Djn) + Djn· 

1/Y2 = B L { L L(l- Djn)Out;jOUtin 
i j n 

+ L L DjnOut;jOutin- 2 L Outij + 1 }· 
j n j 

Because the outputs of chaotic neurons Out;j are almost 0 or 1 when E is small 
enough, 

where 

1/Y2 ~ B L { L L(l- Djn)Out;jOUtin + L Out;j- 2 L Out;j + 1} 
i j n j j 

= B L { L L(l- Djn)Out;jOUtin - L Outij + 1} 
i j n j 

= B{ L L L L D;m(1- Djn)Out;jOutmn- L L Outij + L 1} 
ijmn ij i 

j m n 

{
1 (i=m) 

b;m = 0 (i =/:- m). 

j 

Therefore the cost function ¢ becomes: 

¢ = L L L L ( Bb;m(1- Djn) +A( L bijkbmnk) )out;jOUtmn 
i j m n k 

- L L ( 2A L lightkbijk + B) Out;j 
i j k 

+A L(lightk)2 + B L 1. (10) 
k 

By comparing the coefficients of¢ with t he coefficients of E in (7), the connec
tion weights and the biases of the chaotic neurons can be obtained as follows: 

Pij,mn = -2A L bijkbmnk - 2Bbim(1- Djn), 
k 

qij = 2A L lightkbijk +B. 
(11) 
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3.4. Optimizing method using the conventional neural network 

To compare the abilities of finding the optimum solution among different a l
gorithms, we have also implemented t he methods which use the conventional 
neural network, the genetic algorithm, and simulat ed annealing. The conven
tional neural network method uses the same cost function as in the method of 
the chaotic neural network , so both the weight parameters and the bias param
eters are the same. However, the conventional neural network does not have 
the refractory effect. Namely, the internal state of the (i , j)th neuron, Iij(t) , is 
simply described as follows: 

(1 2) 
m,n 

The output values of neurons are obtained by using the logistic function of 
Eq. (2). 

3.5. Optimizing method using genetic algorithm (GA) 

In this subsection, we describe the method based on a simple genetic algorithm 
(See Goldberg, 1989, for details) . Each individual has a gene whose length is 
equal to the number of posit ions at which users can put light sources. T he gene 
that we usc is shown in Fig. 5. 

Elements of a gene 

/1~\~ 
2 2 

Figure 5. Example of a gene 

The number recorded in each element of a gene is the light source type 
number, which is defined in subsection 3.3 .1. To get an opt imum solut ion, we 
continue to refine the genes of the individuals. The cost function we should 
minimize is 

c/J1 = A ( 2 )tightk- Rk) 2
) 

k 

= A{ 2 )tightk)2
- 2 L lightkRk + L (Rk)2 

} , 
(13) 

k k k 

where Rk is the obtained illuminance in position k, and lightk is the illuminance 
value specified by the user. To minimize t his cost function, we use reproduc
tion , crossover, and mutation. In the reproduction stage, good individuals are 
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method is called the elite strategy. In the crossover stage, we select two indi
viduals from a set of comparatively superior individuals, and if they have the 
same row of genes partly, we combine these two individuals to create a new 
individual. In the mutation stage, we select individuals at random, and change 
their gene values at random. 

3.6. Optimizing method using simulated annealing (SA) 

In this subsection, we describe the method that uses simulated annealing (see 
Kirkpatrick et a!., 1983, for details). In this method, we repeat the changes of 
the light sources according to a stochastic rule. If the value of the cost function 
is decreased by changing a light source, we always adopt the change. However, if 
the value of the cost function increases, we decide whether to adopt a change of 
the light source which is turned on or not as follows. The respective probability 
is basd on temperature, defined as follows: 

T = log(t: 2.0)' (14) 

where p is a constant value and t is a time step. The probability is defined as 
follows: 

p ~ I 0 (·~ en<"gy )' ( 15) 
. + exp T 

where 6. energy is the change in the cost function. The cost function is defined 
in Eq. (13). 

4. Experiments and results 

4.1. Comparison with other methods (neural network, GA and SA) 

In this section, we compare the performance of the proposed method using the 
chaotic neural network with other conventional optimization methods. First, 
we apply these methods to a small size problem which has only 6 positions for 
placing light sources. The problem is small enough that we can search for the 
optimum solution using all the states in the searching region. By applying to 
such a small problem, we can check whether the proposed method or other con
ventional methods can actually find the optimum solution or not. The behavior 
of the objective function¢ of the chaotic neural network is shown in Figure 6. It 
is clearly seen that the state of the chaotic neural network does not converge to 
any state but keeps fluctuating chaotically. This avoids trapping at undesirable 
local minima and enables an efficient search for the optimum solution. Table 1 
summarizes the results of the conventional neural network search with gradient 
dynamics, the chaotic neural network search, the genetic algorithm search, and 
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obtained minimum values of the objective function (the sum of the differences 
between the illuminance values specified by the user and the obtained illumi
nance values), over ten runs. All methods, except for the conventional gradient 
neural network, can obtain the optimum or nearly optimum solution to the 
problem. 

5 
energy 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

0.5 

Average solution 

cost function 

Figure 6. Behavior of the cost function 

Optimum Neural Chaotic Genetic Simulated 
solution network network algorithm annealing 
0.0000 0.3983 0.0000 0.0003 0.0000 

Table 1. Results for a small problem of 6 light sources 

Next, we show the results for a medium-sized problem in which the number of 
positions for light sources is 12. For this problem, the globally optimum solution 
is unknown because we cannot find an exact optimum solution by comparing 
all states of the search region in a reasonable time. Table 2 shows the results 
on the medium size problem. "Average solution" is the average over 10 runs. 
"Best solution" indicates the best result among 10 runs. "CPU time 1" is the 
whole CPU time which is consumed by the search. The CPU time for obtaining 
each optimum result is also shown in the Table 2 as "CPU time 2" . We allotted 
almost the same "CPU time 1" to all methods. Because the conventional neural 
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"CPU time 2" are equal. Table 2 shows t hat the proposed method provides the 
best performance among all methods. The difference between the best solution 
of the proposed method and that of the simulated annealing method is very 
slight. However, the average result of the proposed method is obviously superior 
to the other methods. 

Neural Chaotic Genetic Simulated 
network network algorithm annealing 

Average solution 111.6105 11.9918 20.8843 29.2012 
Best solution 69.4518 9.6081 10.4602 9.6356 

CPU time 1(sec) 0.0129 73.89 81.38 78.52 
CPU time 2(sec) 0.0129 46.62 59.65 43.66 

Table 2. Results for a medium-sized problem of 12 light sources 

Finally, we show the results for a large problem. In this problem, the number 
of positions in which the user can put a light source is 24. The optimum solution 
is unknown also for this problem. Table 3 shows the results. The definitions of 
"Average solution", "Best solution", "CPU time 1", and "CPU time 2" are the 
same as for the medium-sized problem. Our method gives the best "Average 
solution" and the best "Best solution". The larger problem obviously requires 
more time, but these results show that our method can find a fairly good solution 
in a reasonable time. 

Neural Chaotic Genetic Simulated 
network network algorithm annealing 

Average solution 343.85 111.1873 183.7608 126.2916 
Best solution 299.1785 106.1020 134.4682 112.5485 

CPU time 1(sec) 0.0137 212.8719 236.7853 232.5402 
CPU time 2(sec) 0.0137 82.4353 155.5983 140.5285 

Table 3. Results for a large problem of 24 light sources 

4.2. R esults images 



Chaotic neural network applied to lighting design 263 

Figure 8. Intermediate images 

Figure 9. Example of office room lighting design 

We optimized the lighting in two environments. Figs. 7 and 9 show the solutions 
obtained by the chaotic neural network method. The images are generated by 
combining the intermediate images in Figs. 8 and 10, respectively, each of which 
-------- --- .l - J.. _ ... .C - ! - - _.. .... .... _ ........... : "" ~1... ...... ,...]... ...,,... +~ .... ""'"' ,,.. ..,. 1 nnf-u-, r"\,..lr l=i'irr 11 c 'hnurc f-h D 
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ceiling lights seen from the floor. Fig. 12 shows the distribution map of the 
obtained illuminance values. The higher the brightness value of the pixel in 
the image is , the brighter the place is. Fig. 13 shows the specified illuminance 
values. 

Figure 10. Intermediate images 
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Figure 12. The illuminance distribution map 

150 190 150 

Figurel3. Specified illuminance values 

5. Conclusions 

In this paper, we have proposed the method based on the chaotic neural network 
to solve the lighting design problem. We have compared the proposed method 
with other methods based on the conventional neural network, the genetic algo-

. . . 
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other methods except the conventional gradient dynamics neural network have 
an ability to find an optimum solution of a small size problem. Then, we have 
applied these methods to larger problems. Compared with other methods, the 
proposed method using the chaotic neural network has the property that does 
not require very much time to find a good solution. These experiments imply 
that as the size of the problem increases, the proposed method shows better 
performance compared with other methods. It should be noted, however, that 
the methods with the conventional neural network, the genetic algorithm, and 
the simulated annealing can be a lso improved by adding further contrivances. 
We have examined the obtained images by making an illuminance distribution 
map and an image seen from the floor. T he results show that the chaotic neural 
network can effectively solve the lighting design problems. 
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Appendix 

1 Overview of the user interface 

Our lighting design system has two phases. The first phase is the preprocess
ing phase in which we set the viewpoint and illuminance values users desire. 
The second phase is the optimization phase and by using several programs of 
Radiance, where Radiance is a collection of free programs about lighting visual-

, r 
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in consideration of interreflection of lights, image processing, and display, and 
the optimization program using the chaotic neural network, we render the inter
mediate images, and extract the illuminance values of each intermediate image 
and calculate the optimum solution and render the final output image. The flow 
chart of this system is shown in Fig. 14. 

Loading 3D-geometric model data 

t 
Specifying Viewpoint / 

t 
/ Specifying Illuminance values / 

t 
/ Rendering intermediate images / 

t 
Extracting illuminance values where a user specified from 

intermediate images 

I Optimizing by using the chaotic neural network/ 

t 
Rendering a final image based on the optimum solution 

calculated by the chaotic neural network 

Figure 14. The flow chart of the proposed system 

2 Preprocessing program 

First, we input the 3D object data in which we design interior lighting. Second, 
we set the viewpoint. To set illuminance values we desire in the next step, 
we need to make the positions at which we set the illuminance values visible. 
By changing these x, y and z coordinates, we change the viewpoint and rotate 
the space. Last, we set the illuminance values users want. We can set the 
illuminance values at multiple points. 

3 Optimization program 

First, intermediate images which have only one light source each are rendered. 
Second, the brightness values of pixels where users specified the illuminance 
values are extracted from all intermediate images. Third, by consulting the 
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the optimum solution. The internal states of the neurons are updated asyn
chronously. The solution which has the smallest quasi energy function is always 
memorized, and after finite time steps, the solution with the smallest energy 
is output. Last, according to the best solution, we render the final outputted 
image. 
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