
Control and Cybernetics

vol. 31 (2002) No. 2

Binary neural networks for N-queens problems
and their VLSI implementations

by

Nobuo FunabikF, Takakazu Kurokawa2, and Masaya Ohta3

1 Department of Communication Network Engineering,
Okayama University, Okayama, 700-8530, Japan

2 Department of Computer Science,
National Defense Academy, Yokosuka , 239-8686, .Japan

3 Department of Electrical and Electronic Systems,
Osaka P refecture University, Sakai, 599-8531, .Japan

Abstract: Combinatorial optimization problems compose au
important class of mathematical problems that include a variety of
practical applicat ions, such as VLSI design automat ion, communica­
tion network design and control, job scheduling, games, and genome
informatics . These problems usually have a large number of vari­
ables to be solved . For example, problems for VLSI design automa­
tion require several million variables. Besides, their computational
complexity is oft en intractable due to NP-hardness. Neural net­
works have provided elegant solutions as approximation algorithms
to these hard problems due to t heir natural parallelism and their
affini ty to hardware realization. Particularly, binary neural networks
have great potential to conform to current digital VLSI design tech­
nology, because any state and parameter in binary neural networks
are expressed in a discrete fashion. T his paper presents our stud­
ies on binary neural networks to the N-queens problem, and the
three different approaches to VLSI implementations focusing on the
effi cient realization of the synaptic connection networks. Reconfig­
m able devices such as CPLDs and FPGAs contribute t he realization
of a scalable architecture with the nltra high speed of computation.
Based on the proposed architecture, more than several thousands of
binary neurons can be realized on one FPGA chip.

Keywords : binary neural network , NP-hard , combinatorial op­
timization, VLSI design, algorithm

1. Introduction

Since Hopfield and Tank introduced an innovative idea of solving an N P-hard

272 N. FUNABII<I , T. I~UROKAWA , !VI. OHTA

field and Tank, 1985), the studies on neural network approaches have played
active roles in various areas such as computations, algorithms, VLSI designs ,
signal processing, and machine learning. Although the deficiencies of their works
have been strongly criticized, (Wilson and Pawley, 1988; Paielli, 1988), several
ideas and new methods have been presented, means toovercorne this difficulty
and open the door to a new era. These new approaches include the binary
neural network, (Takefuji , 1992), the Boltzmann machine, (Hinton, Sejnowski
and Ackley, 1984) , the Cauchy machine, (Takefuji and Szu , 1989) , the chaotic
neural network, (N07;awa, 1992), the mean field annealing (Jagota, 1995) , the
Lagrange multiplier method (Wieselheicr, Barnhart and Ephremides, 1994), and
the gradient ascent learning, (Wang, Tang and Cao, 2002).

The Boltzmann machine incorporates the mechanism of stochastic state
transitions in the parallel computation of neural networks, to avoid local min­
imum convergence. The stochastic state transitions originated from simulated
annealing, (Kirkpatric, Gelatt Jr. and Vecchi, 1983). The Cauchy machine is
based on a different distribution from the Boltzmann machine, so as to speed
up convergence. The chaotic neural network introduces the chaotic behavior
of state transitions to the neural network so that it can avoid the undesired
local minimum convergence. However , it suffers from the troublesome require­
ment of adjusting many parameters for better performance. The mean field
annealing is an approach to dynamically change the state of the system from
continuous to discrete , so that it can avoid the local minimum convergence.
The computation of the meaning fi eld annealing is usually slow in terms of
convergence. The discrete usually generates more local minima than the con­
tinuous one. The Lagrange multiplier method dynamically changes coefficients
of the energy function to be minimit~ed during the state update computations.
The energy function describes the constraints and the objective function of the
problem, and is usually given by the linear sum of the terms representing the
conditions. The gradient ascent learning dynamically changes coefficients of the
energy funct ion for the positive gradient direction of the energy function.

The binary neural network adopts the binary neuron model, which has a
long history in the neural network research since McCulloch and Pitts (1943)
proposed the first neuron model in the binary form. In addition to the binary
discrete state of neuron outputs, our binary neural network requires the discrete
state for neuron inputs and the integer formulations of the system parameters
including state transition thresholds for neuron outputs and coefficients for the
energy function. The integer neuron input may take a limited range such as
[-32 , +31] or [-64 , +63] so that the required bit width for neuron inputs be­
comes only six or seven. This limited bit requirement provides a great advantage
when the binary neural network is actually implemented on VLSI hardware.

As the past research has expressed the deficiency, however, the discrete form
of the solution search can easily bring on the problem of the local minimum
convergence. The neural network in the local minimum cannot move to other

Binary neural networks for N-queens problems and VLSI implementations 273

network always generates a number of undesired local minima because of the
discrete state definition. In order to deal with this negative fact, several heuris­
tic methods have been proposed to escape from the local minimum so that the
binary neural network can be applied to a variety of N P-hard combinatorial
optimization problems. The first method is the hill-climbing term that encour­
ages the necessary number of neurons to have nonzero outputs. This term is
actually added to the motion equation as an additional term besides the neces­
sary terms that are derived from the energy function. As seen later, the motion
equation usually provides each neuron more negative force than positive force so
as to satisfy the constraints of the problem. The hill-climbing term supplements
the positive force to satisfy the constraints. The second method is the omega­
function as another form meant to alleviate the negative force of the motion
equation. The omega-function allows the negative force to be active only for
the neurons that have nonzero outputs. Besides, the reinforced self-feedback in
the motion equation is effectively introduced as another method to avoid the
local minimum convergence.

It is a huge advantage for the binary neural network to form a massive
parallelism in a natural manner, and to be suitable for the VLSI implementation.
Thus, we present VLSI implementations of the binary neural network in this
paper, focusing on the efficient realization of the synaptic connection networks .
Our implementations include a bus-connected architecture of the binary neural
network, a systolic array implantation, and a logical synaptic connection in the
maximum neural network with the reinforced self-feedback.

The paper is organized as follows: Section 2 briefly runs through the rela­
tionship between the combinatorial optimization problem and the binary neural
network. Section 3 reviews the application of the binary neural network for the
N -queens problem and presents a new binary neural network approach called the
"maximum neural network with the reinforced self-feedback". Section 4 presents
three VLSI implementations of the binary neural network for the N-queens
problem. Finally, Section 5 provides the concluding remarks of this paper.

2. Binary neural network and combinatorial optimization
problem

Let x = (x1,x2, ... ,xn) be a set of n variables whose values should be found
in a combinatorial optimization problem. Then, the combinatorial optimization
problem requires finding an integer value assignment to each of n variables, such
that a set of the constraints is not only satisfied, but also the objective function
is optimized. A constraint in a problem may be described by:

f(x) = 0 (1)

where the function f(x) is usually nonlinear for N P-hard problems. An objec­
tive function may be described by:

274 N. FUNABIKI, T. KUROKAWA, M. OHTA

Generally, each variable :r; for a combinatorial optimization problem takes
an integer value within certain range. However, through the variable transfor­
mation, we can always adopt a binary formulation of variables Yij, such that
Yii = 1 represents X; = j, and Yij = 0 represents x; "I j. Thus, we can focus on
a combinatorial optimization problem with binary variables.

In a binary neural network in this paper, each neuron has an integer input
U;j and a binary output v;j, and a nonlinear, non decreasing function called the
neuron function, to compute the output using the input:

Vi1 = s(U;j). (3)

The simplest form of the neuron fnnction is the binary model by McCulloch and
Pitts:

if U;j > 0 then s(U;j) = 1, else s(U;j) = 0. (4)

Thus, a binary neural network can be seen as a nonlinear function connecting
multiple inputs and multiple outputs. Then, the outputs are fed back into the
inputs through a set of differential equations, which is called the motion equa­
tion. After the initial states for neuron inputs and outputs are given, this closed
loop between neuron inputs and outputs cause dynamical state transitions, un­
til the state of the binary neural network reaches a stable state. The stable
state may represent a solution of the problem. Here, the binary output directly
corresponds to the binary variable of the combinatorial optimization problem,
and the state of the binary neural network means the state of neuron outputs.

The energy function should be defined to solve each combinatorial optimiza­
tion problem by a binary neural network. The output of the energy function
becomes minimum when the state of the binary neural network reaches a solu­
tion of the problem. The energy function E is a linear sum of terms representing
the constraints and the objective function:

E = Af(V) + Bg(V) (5)

where A and Bare weight coefficients and V is a vector of neuron outputs. Note
that these coefficients are constant in the binary neural network, whereas they
are dynamically changed in the Lagrange multiplier method and the gradient
ascent learning. The details on the application of the binary neural network to
combinatorial optimization problems will be discussed in the following section.

Then, the motion equation is derived through the partial derivative of the
energy function:

(6)

We note that, Wang (1997), shows that Eq. (6) does not always lead to con­
vergence for an arbitrary energy function. The motion equation determines the

Binary neura l networks for N-queens problems a nd VLSI imple mentations 275

constraints and the objective function in the target combinatorial optimization
problem. The motion equation guides the state transitions so that the final
stable state represents a solution of the problem. In the final stable state, it is
requested that all the constraints of the problem be satisfied and the objective
function minimized.

3. Application to N -queens problem

In this section, we introduce two binary neural network approaches to the N­
queens problem. TheN-queens problem is a typical combinatorial optimization
problem of finding a set of locations of N queens on an N x N chessboard
subject to the constraint that no pair of queens may be in each other 's line of
movement . Since Gauss failed to find all of the 92 different solutions for the 8
queens problem, Falkowski and Schmitz (1986) , theN-queens problem has been
widely used as a benchmark problem to evaluate a variety of search algorithms,
such as the backtracking method, Bitner, Reingold (1975); Stone and Stone
(1987), t he branch-and-bound method , Abramson and Yung (1989), and the
variable ordering heuristic method, Kale (1990). An algorithm for finding at
least one solu tion for every N has also been proposed, using the symmetry of
the solution , Reichling (1987); Falkowski and Schmitz (1986) .

3.1. Binary neural network and three updating modes

In this subsection, we show the binary neural network formulation for the N­
queens problem from Yoshio, Baba, Funabiki and Nishikawa (1997), so as to
introduce a binary neural network approach for a combinatorial optimization
problem. Then, we compare the performance of three modes to update the state
of the neural network, namely, the sequential mode , the N -parallel mode, and
N 2-paralle mode. T he binary neural network is composed of N x N neurons to
solve theN-queens problem. In the sequential mode, the state of each neuron is
updated sequentially, where a state represents the input and the output of the
neuron. In other words, states of no two neurons are updated simul taneously. In
theN-parallel mode, the N 2 neurons are first divided into disjoint N groups such
that each group is composed of N neurons. The st ates of N neurons in the same
group are updated simultaneously, while each group is updated sequentially.
Actually, in this binary neural network , the N neurons representing N diagonal
locations of (('i + k mod N) + 1, (j + k mod N) + 1) for k = 1, ... , N, are grouped
together into the same group. Note that "mod" represents the modulo function.
Then , each of N neurons for the same row or column is assigned to different
groups. In the N 2-parallel mode, all the states of N 2 neurons arc updated

276 N. FUNABIKI, T. KUROKAWA, M. OHTA

3.1.1. Energy function and motion equation

In a binary neural network approach, the binary output of a neuron should
be defined to solve the N-queens problem. The binary output V;j represents
whether a queen be assigned at the i- th row and the j-th column, or not . The
output V;j = 1 represents a queen assigned there , and the output V;j = 0
represents no assignment. Then, the computational energy function E must be
defined as described in Section 2. The energy function becomes zero, if and
only if every constraint of the N-queens problem is satisfied. Actually, two
constraints must be satisfied for this problem: 1) one queen must be located in
each row and each column, and 2) no more than one queen must be located in
any diagonal line. The corresponding energy function is given by:

ANN 2 N N 2

E=-{2:(2:Vik-1) +2:(2:vk1-1)} 2 . .
•=1 k=l J=l k=l

B N N

+ 2 2: 2: V;j (2: Vi+k,j+k
i=l j=l l~i+k,j+k~N,k#O

+ 2: Vi+k,j-k) (7)
l~i+k,j-k~N,k#O

where A and B are coefficients. The A-term in Eq. (7) represents the first
constraint, and the B-term represents the second one.

Then, the motion equation is derived to seek the state of the neural network
satisfying E = 0 by the gradient descent method:

N N

t.uij =-A{ (L Vik- 1) + (L vkj- 1)}
k=l k=l

- s(2: Vi+k,j+k + 2: Vi+k,j-k)
l~i+k,j+k~N,k#O l~i+k,j-k ~ N,k#O

N N

+ c { h (I: Vik) + h (2: vkj)} (8)
k=l k=l

where A = B = 1, and C = 4 if (t mod 20 < 5), C = 1 otherwise; t is the
number of iteration steps for solving the motion equation by the first-order
Euler method. The C-term is the hill-climbing term for escaping from local
minimum. The hill-climbing function h(x) = 1 if x = 0, 0 otherwise. The
C-term is activated when no neuron for each row or column has output = 1.

3.1.2. Performance comparison bet ween three modes

The neural network for N-queens problem is simulated on three computation

Bina ry ne ura l networks for N-queens problems a nd VLSI imple mentations 277

Table 1. Simulation results of the binary neural network for N-queens problem.

N sequential N -parallel N~-para1lel

rate step rate step rate step
8 94% 24 89% 97 54% 66
10 88% 122 80% 114 26% 88
20 100% 66 99% 79 47% 131
50 100% 50 100% 60 90% 169
100 100% 56 100% 63 90% 171
200 100% 67 100% 77 0% -
300 100% 65 100% 91 0% -
400 100% 75 100% 93 0% -

500 100% 95 100% 107 0% -

a tota l of 100 simulation runs are performed from different randomized initial
states of the neurons, and the convergence rate and the average number of iter­
ation steps required for convergence are evaluated . The iterative computation
of the neural network is terminated by the time-out procedure when it cannot
converge to a solution after 500 iteration steps have passed. T he convergence
rate is the number of simulation runs among 100 runs in which the neural net­
work can find a solution of locating N queens without violating the constraints
within 500 steps. Table 1 shows the simulation results for this neural network,
where the average number of iteration steps is calculated from the results only
where the neural network converges to a solut ion. "-" in the table means that
no result is obtained t here because of no convergence.

The results in Table 1 indicate that the sequential mode provides the best
performance in terms of the convergence rate and the speed, while the N 2-

parallel mode does the worst one. In the sequential mode, any neuron updates
its state to minimize the energy function aft er all the states of the other neurons
are updated to the latest ones. On the other hand, in the N 2-parallel mode, any
neuron updates its state based on the previous states of neurons. This delay of
state updating causes t he oscillation of the state transitions. In the N-parallel
mode, the N neurons for the same row or column, which are competing each
other, are updated sequentially, while the N neurons for the same diagonal line
are updated simultaneously. This combination of the sequential updating and
the parallel updating realizes the highly parallel computation with the suppres­
sion of oscillations at the same time.

3.2. Max imu m neural network with reinfor ced self-feedback

The maximum neural network (MNN) has been proposed in Lee , Funabiki and

278 N. FUNABIKI , T. KUROKAWA, M. OHTA

neural network. MNN can always satisfy one constraint in a combinatorial opti­
mization problem. MNN is also suitable for t he computation on the N-parallel
mode. However, MNN often suffers from the problem of the local minimum con­
vergence. Thus, we combine t he idea of the chaotic neural network (CNN) from
Nozawa (1992) with MNN to alleviate this negative effect. A neuron in CNN
has a negative self-feedback to cause the chaotic oscillation , Ohta, Ogihara,
Takamatsu and Fukunaga (1995), so that the state in CNN can escape from a
local minimum by using its chaotic behavior. Ohta, Anzai, Yoneda and Ogihara
(1993); Ohta, Ogihara and Fukunaga (1994) have clarified that the self-feedback
connection between neurons in the binary neural network is very effective for
avoiding local minima. Ohta (1999; 2002) have shown that the control algo­
rithm for the self-feedback gain named the reinforced self-feedback improves the
performance of CNN. This subsection presents the introduction of the reinforced
self-feedback into MNN. The MNN with the reinforced self-feedback can be re­
alized with much smaller efforts than CNN, although our MNN and CNN are
both based on the non-periodical behavior so as to overcome the problem of the
local minimum convergence.

3.2.1. Energy function and motion equation

In MNN for theN-queens problem, the output of the maximum neuron always
satisfies the constraint that one and only one queen is assigned to each row.
Thus, the output V;j in MNN is given by

V: _ { 1 if Uij = maxk {Uik }
"
1

- 0 otherwise.
(9)

Then, the energy function of MNN for the N-queens problem is defined by

1
N N N

E = 2 L L L l/ij vkj
j=l i= l k = l

k#i

1
N N

+ 2 :L :L :L v;j v;+kj+k

i= l j=ll~i+k,j+k~N,k-#0

1
N N

+2 :L :L :L v;j v;+kj-k

i=l j=ll~i+k,j-k~N, k-#0

(10)

The first term represents the first constraint of the N-queens problem. While
the second and third terms represent the second constraint .

The motion equation to update the neuron input Uij is given by

TT
aE __ TT

Binary neural networks for N-quee ns problems and VLSI implementations

N

-(L:vk1 +
l:::;i+k,j+k:::;N,kfO

Vi+kj+k + I: Vi+kj-k)

l:::;i+k ,j-k:::;N,kfO

279

(11)

where r is the dumping constant to satisfying lrl < 1, and T;j is the self-feedback
gain for the ijth neuron. In this MNN , the state of neurons arc updated on the
N -parallel mode. However , in this MNN, the states of N neurons for the same
row are updated simultaneously, whereas the states of N neurons for t he same
column are updated sequentially clue to t he nature of the maximum neuron
model in Eq. (9).

In this MNN with the reinforced self-feedback, the self-feedback gain T;j

should be positive when the state of MNN needs to converge to a local minimum,
and be negative when it needs to escape from the local minimum by causing the
non-periodical behavior. Thus, we propose the control algorithm of the self-feed
back gain as follows:

T; . = { T;j - 8T if Vii = 1
1 w otherwise

(12)

where 8T (2: 0) is a constant small value for the self-feedback gain control, and
w is the default value for the gain. This algorithm indicates t hat when a neuron
becomes active (Vi1 = 1), the self-feed back gain starts decreasing gradually, and
when t he neuron becomes non-active (V;1 = 0) , it is reset to t he default value.
Eq.(ll) shows that when the neuron is active, the self-feedback term increases
the input U;j when the gain is positive, and it decreases the input when the
gain is negative. Thus, by reaching a negative gain by deCI·easing it , the input
also decreases for the nenrons with active outputs, and it encourages other
neurons to be eventually act ive. That is the mechan ism of escaping from a local
minimum by changing the state in our MNN. Here, the time to cha nge from a
positive gain to a negative gain is varied for each neuron . Thus, it avoids the
oscillation of t he state by simultaneous state updates. Note that this method
docs not guarantee the convergence to a local minimum, and the convergence
to a solu tion must be checked at every iteration step.

3.2.2. Performance evaluation

We evaluate the performance of MNN with the reinforced self-feedback for the
N -queens problem. The problem si11e N is fixed at N = 1, 000, the default
value of t he self-feedback gain is w = 0.0, and the decrement is 8T = 0.01. Note
that 8T = 0.0 is used to evaluate MNN without the reinforced self-feedback.
Because the proposed MNN with the reinforced self-feedback usually converges
to a solution very quickly unlike the conventional binary neural network of
Section 3. 1, the maximum number of iteration steps is set at 20. Here, we note
that MNN with 8T = r = 0 is equivalent to the min-conflict algorithm., which is
one of the well-known methods in heuristic approach for constraint satisfaction

l ' r - ~ _ 1 ! .. .L _ ll ; _______ 'T"L.: __ l ___ ; J.. L ___ .c: __ J.. 1--- L -- --- __ _ _ ...,_ ,.. J.. L

280 N . FUNABIKI, T. KUROKAWA, M. OHTA

row randomly. Then, it continues to locate a queen at the location that has
minimum number of attacking queens in each row. It has been known that this
min-conflict algorithm is surprisingly effective for many constraint satisfaction
problems, and is able to solve the million-queens problem in an average of less
than 50 iteration steps, Russell and Norvig (1995).

"' '§ 60

~
c:
Q)

~ 40
~
0
0

20

20

18

g-16
1ii
c:

~14
~

12 .

10

..
· ..

"+- ······ +·

0.2 0.6 0.8

(a) Convergence rate

0.2 0.4 0.6 0.8

(b) Average number of iteration steps

Figure 1. Performance sensitivity of the proposed MNN to dumping constant r
(N = 1,000).

Fig. 1 (a) and (b) shows the convergence rates and the average number
of iteration steps among 200 simulation runs with different initial states. We
note that convergence means that MNN found out the solution satisfying all

Binary neural networks for N-queens problems and VLSI implementations 281

iteration steps. Fig. 1 (a) shows that the proposed scheme of the reinforced self­
feedback improves the convergence rate from 88.5 % with 8T = r = 0, to 98.5 %
with 8T = 0.01, r = 0.1. Fig. 1 (b) shows that the average number of iteration
steps decreases from 11.2 to 8.1. Fig. 2 shows the change of the convergence

100 ~---~----~---~---~

90

80

~ 70
Q)

"§ 60

~ 50
c
Q)

~ 40
Q)

~ 30
0
() 20

10

00 0.05 0.1 0.15 0.2

(a) Convergence rate

20~---~----~----,---~

a.
Q)

18

16

U:i 14
c
.Q

"§ 12
~

0.05 0.1 0.15 0.2

(b) Average number of iteration steps

Figure 2. Performance sensitivity of the proposed MNN with repsect to 8T (N=l,OOO) .

property, when 8T is varied from 0 to 0.2 among 500 simulation runs, while
r is fixed to 0.1. For example, when 8T is set at 0.01, the convergence rate
becomes 96.2% and the average number of iteration steps is 9.1. Fig. 3 shows
the change of performance between two algorithms when the number of queens
N is varied from 100 to 10, 000 among 200 simulation runs. In the 10, 000-
queens problem, our proposed MNN improves the convergence rate from 75.5%

282 N. FUNABIKI, T. KUROKAWA, !VI. OHTA

The performance of our MNN is not disproved as N increases. Therefore, we
conclude that our MNN with the reinforced self-feedback is very effective in
solving large size N-queens problem.

95 MNN with Self-Feedbacks

··· -· · · ····· +-
T ' •· . , ..,.,

Ql
Min-Conflict

g 85
Ql

··+- ········· · -+.

~
Ql
>
§ 80
u

'+- · · ··
75

70L-----~~--~~~~L---~--~~~~~~

1 00 1000 1 0000

(a) Convergence rate

14 Min-Conflict
,... .. ··· +··· ···· ·

13

.+· ····· · ···
... ·

10

8 L-----~~--~~~~L-----~~--~~~~

100 1000 10000

(b) Average number of iteration steps

Figure 3. Performance sensitivity of the proposed MNN with repsect to problem size.

Lastly, the proposed MNN is compared with the conventional CNN and CNN
with the reinforced self-feedback from Ohta (in printing). The problem size N is
set at 1, 000 and the maximum number of iteration steps is 1, 000 for CNN, and
20 for the proposed MNN. The results of Table 3.2.2. show that the proposed
MNN achieves a far better convergence property with much smaller number of

Bina ry neural networks for N-queens problems and VLSI implementations 283

Table 2. Comparison of CNN and MNN (N= l,OOO) .

method Convergence rate [%] Average steps
Conventional CNN
CNN with reinforced self-feedback
MNN with reinforced self-feedback

30 795.5
90

98.5
666.5
8.1

4. Hardware implementation of b inary neural networks

The hardware implementation of a neural network can improve its computa­
tional ability by fully taking advantage of parallel computation by a massive
number of neurons. There have been many approaches to implement neural
network hardware systems, Shriver (1988); Sundararajan and Saratchandran
(1998). Particularly, binary neural networks arc very suitable for implemen­
tation on digital VLSI circuits. However, when we consider the digital VLSI
implementation of a binary neural network for a combinatorial optimi~ation
problem, we encounter a serious problem that the implementation of synaptic
connections between neurons occupies enormous area on a VLSI chip. For this
problem, we restrain the chip area by limiting the applicable combinatorial op­
timization problem by the neural network. In this section, we propose three
architectures for hardware implementation of binary neural networks focusing
on the effi cient synap tic connection network.

4.1. Bus connected architecture

In this subsection, we propose a bus connected archi tectme for the bina ry neu­
ral network, adopting the sequential mode to update the state of the binary
neural network. The bus connected architecture is a simple static network that
is typically used for mutual communication in a multiprocessor system. In this
architecture, the communication t hrough the common bus becomes the bottle­
neck of the performance improvement when the number of processing elements
increases. First , we have checked the necessary volume of data communicated
through the bus when a binary neural network is solving a combinatorial op­
timization problem. In this architecture, the information on active neurons
must be broadcasted to every processing clement to realize the nemon function
through the bus. Thus, the number of active neurons becomes proportional
to the total volume of communicated data. As an example, we have consid­
ered the binary neural network for the (16, 20, 5, 4, 1)-BIBD problem from
Kurokawa and Takefuji (1992). Fig. 4 illustrates the change of the number of
active neurons during the computation of the binary neural network. This data
was derived aft er 1, 000 simulation runs have been performed. Here, the number
of act ive neurons is about 20 among the total of 1, 820 neurons in the network .
This fact supports the feasibility of using the bus connected architecture for the

284 N. FUNABIKI, T. KUROKAWA, M. OHTA

Number of
active neurons
24~---------------------,

20
16 ~

12
8

4-
0
~0-1~0~2~0~3~0-4-0~5~06~0~7~0-8~0~9-0-1~00

Iteration

Figure 4. The transition of the number of active neurons for the (16, 20, 5, 4, 1)-BIBD
problem.

4.1.1. Architecture

Figure 5 depicts our proposed bus connected architecture for the binary neural
network. Each binary neuron has a unique ID number and one local arbiter to
decide a bus master in parallel. The decision process of the bus master is the
same as that of Futurebus system from IEEE (1988).

Arbtration Bus

Figure 5. Bus connected neural network system.

Binary neural networks for N-queens problems and VLSI implementations 285

1. Each active neuron has the right to participate in arbitration.
2. Among all participating neurons, one neuron that has the largest ID num­

ber is selected as the bus master.
3. The arbitration bus holds the inverse bit pattern of the bus master's ID

number.
4. All neurons receive the ID number of the bus master through the arbitra­

tion bus, buffer, and address bus, and calculate their inputs by the motion
equation.

5. All neurons update their outputs by the binary function.
6. If the state of the binary neural network converges to a local minimum,

terminate the iteration, else if more than one neurons have not become bus
masters, go to Step 1 after denying the participation right of the present
bus master, else permit the right of all active neurons and then go to
Step 1.

By limiting the rights of active neurons to participate in arbitration, we can
reduce the number of bus accesses drastically.

4.1.2. Implementation

In our architecture, a single binary neuron is actually implemented as the combi­
nation of a synaptic connection memory, five term-generation units, an output­
generation unit, a local arbiter, and a controller as shown in Fig. 6. The synaptic
connection memory stores the information of a neuron's synaptic connection to
the other neurons. Each of the term-generation units calculates one term in the

Neuron Address Bus

Local Address Bus
Data Bus

10

to each circuit

Arbitration Bus 9

286 N. FUNABIKI, T. KUROKAWA, M. OHTA

motion equation. After analyzing a variety of binary neural networks for com­
binatorial optimization problems, we have concluded that five term-generation
units are sufficient in this architecture. The output-generation unit calculates
the output of a binary neuron by adding the outputs of term-generation units
to its input.

Fig. 7 shows the printed circuit board of our implementation, named a
"neuron-board". This board includes eight binary neurons. The binary neu­
rons are actually implemented on the combination of an FPGA, a PLA, a
2kbyte S-RAM, and several SSis. Five term-generation units and one output­
generation unit are realized on an FPGA including 9, 000 system gates (Xilinx
XC3090PC84). The local arbiter and the synaptic connection memory are re­
alized on a PLA (Palce16V8HD) and a 2kbyte S-RAM (MN4416S-l5), respec­
tively. As a prototype, we have actually developed five neuron-boards that are
stored in a VME bus rack. Because this VME bus rack can store 512 boards,
this developed system can equip up to 4, 096 binary neurons by adding the
neuron-boards.

Figure 7. Neuron board.

Let us consider the maximum size of the N-queens problem to be solved
by this architecture when we adopt Xilinx XC2V10000 in Virtex II family for
FPGAs. This chip has 10M system gates that can contain about 1, 000 binary
neurons. So , 512 neuron-boards with 8 XC2V10000 chips for each board can
contain about 2, 000 x 2, 000 binary neurons. Thus, up to the 2, 000-queens
problem can be solved on this architecture using the current FPGA technology.
A personal computer controls the neuron boards as a host computer with two

Binary neura l ne tworks fo r N-queens problems a nd VLSI implementat ions 287

4 .1.3. E valua t ion

The proposed architecture requires lOOns to determine a bus master and to
broadcast its ID number through the arbitration bus. The output computa­
tion using the motion equation by binary neurons requires 200ns . Thus, binary
neurons can update their inputs by receiving an ID number of an active neu­
ron within 300ns. Thousands of simulation runs reveal that the binary neural
network to solve 6-queens problem with 36 binary neurons requires 15.3 itera­
tion steps to converge to a solution on average. The total computational time
was 27.6J.LS. This computational time was about 28.6 times less than that by a
software simulation on a 400MHz II3M PC/ AT. The features of the developed
binary neural network architecture are summarized in Table 3.

Table 3. Features of binary neural network system.

Number of boards 5 (Max=512)

Number of neurons 8
in a Neuron Board

Number of neurons 40 (Max=4,096)

in the whole system

Clock frequency IOMHz

Arbitration time lOOns

Calculation time of neuron 200ns

Performance 156.5MCPS

Data transfer rate 6.0MB/s

Power Whole system 116.28W

consumption one Neuron 4.89W
Board

4.2 . Systolic array a rch it ectu r e

In this subsection , we propose a systolic array architecture for the binary neural
network adopting the N 2-parallel mode to update the state of the binary neural
network . Conventional researches for systolic arrays have concentrated on the
VLSI design as systolic cells, Fortes (1987) . The advancement of VLSI technol­
ogy enables us to realize a special purpose chip with reconfigurable devices such
as CPLDs and FPGAs. A hardware system with reconfigurable devices intro­
duces a flexible scalability. Following these circumstances, we have developed
a prototype of a systolic array architec ture composed of 9 x 9 systolic cells to

288 N. FUNABIKI , T . KUROKAWA, M. OHTA

4.2.1. Architecture

For the N-queens problem, we present the architecture of N x N systolic cells
arranged in the 2-D matrix fashion similar to a chessboard. Each systolic cell
accords with a hysteresis neuron, where an active neuron means that a queen is
placed at the corresponding position of the chessboard as shown in 3.1.1. The
octagonal cell shown in Fig. 8 represents a systolic cell that is placed at the (i , j)­
th position in our architecture. When this architecture starts the neural network
computation, all systolic cells are connected in a line. Then, N x N initial
values for inputs Uij (i,j = 1, 2, ... , N) are randomly generated with negative
integers at a host computer. These values are transmitted to N x N systolic
cells synchronizing with the system clock from the host computer systolically,
and are stored at "U-Reg." in each systolic cell. At the same time, "V-Reg."
in each systolic cell is initialized to zero.

Vi-lj

Vi+ l j

Figure 8. Block diagram of a systolic cell.

During the neural computation process, the systolic cell at the (i , j)-th po­
sition receives the information on active neurons from the systolic cells placed
in the same row, the same column, and the same diagonal directions. For this
purpose, the systolic array transmits the neuron output v;j (i, j = 1, 2, ... , N)

• 11 . I. 11 I ll \ '1

Binary neural networks for N-queens problems a nd VLSI implementat ions 289

movements. Then, the hysteresis function block ("HYS") calculates the neuron
input U;j. After that , the systolic cells update their values on "V-Reg." and
"U-Reg.". This procedure is repeated in 500 iteration steps in our experiments.
If the binary neural network finds a solution of anN-queens problem within 500
iteration steps, the host computer receives the final neuron inputs U;1 from all
the systolic cells through the same systolic path as the initial load. Otherwise,
the host computer begins the next computation by changing initial values of
neuron inputs U;j .

The neuron outputs Vi1 are transmitted through the connected lines as shown
in Fig. 9 systolically by synchronizing with the system clock. Each systolic cell
is connected with its adjacent eight cells for these systolic data movements
as shown in Fig. 9. The total of N clock cycles are required for these data
movements in the row direction and the column direction. For the diagonal
direction, the required number of clock cycles differs by the position of a cell.
We prepared a "stop" signal to prevent the unnecessary data movements in
these directions.

Systolic Cell

. .

Figure 9. Structure of our systolic array.

4.2 .2. Implementation

As the prototype, we have developed a circuit board named "Systolic array
board". This board includes 11 CPLDs (XC95108-PC84) with 2, 400 usable
gates for each one. Fig. 10 shows our systolic array board containing: (a) 9
CPLDs as a systolic array, (b) 9x9 LEDs arranged in 2-D array fashion, (c)

~· • I "t\ "' ..-......-....,........... "' ' 1

290 N. FUNABIKI , T. KUROKAWA, M. OHTA

between the host computer and our systolic array board, and (e) a clock oscil­
lator. In our systolic array board, we have designed 9 systolic cells within one
CPLD. Thus, t he board contains 81 systolic cells totally. Table 4 summarizes
the evaluation result of our systolic array architecture from the standpoints of
features and required resources.

Figure 10. The developed systolic array board.

This proposed architecture is based on the systolic array with a flexible scal­
ability using reconfigurable devices. Therefore, our architecture can be easily
expanded by adding extra systolic cells and/or by changing the size of recon­
figurable devices. Let us assume that we use XC2V10000 in Virtex II family
instead of CPLDs. This chip can contain about 4,500 systolic cells. So, 3 x 3
XC2V10000 chips for the systolic array can contain about 200x200 binary neu­
rons to solve up to the 200-queens problem. However, the N 2-parallel method
could not find a solution over 100-queens problems. Currently, we are modifying
this architecture toN-parallel method.

Table 4. Features of the developed systolic board.

Systolic cells 81
Operation Frequency 17.6MHz
Computation Time 14. 1usec

Computation Speed 3.71GCPS
CPLD Chip XC95 108-PC84

Macrocells 100 (92%)
Product terms 350 (64%)
T/() nin" h d {(}')0/n \

Binary neural networks for N-queens problems and VLSI implementat ions 291

4.3. Logical synaptic connection architecture

In t his subsection, we propose a logical synaptic connection architecture for t he
maximum neural network with reinforced self-feedback. As described before,
our architecture for MNN adopts the N-parallel mode. In our MNN for the
N -queens problem, the neuron input can be updated, if the information on the
existence of active queens on the same column and its diagonal lines is given
there. When a neuron encounters no violation from conflicting neurons, a queen
should be located on the corresponding place. Therefore, the proposed architec­
tme has only logical sum (OR-gate) to realize connections between neurons (see
Fig. 11). This logical sum operation calculates whether the neuron encounters
violations or not.

~ynaptic weight

loput =m- Output

/ Neuron

(a) Conventional model.

Input Output

(b) Proposed model.

Figure 11. Logical synaptic connection.

4 .3.1. Logical synaptic connection

In our architecture, the motion equation for the N-queens problem, (11) , is
slightly modified as

U;j = rU;j + T;j Vi1

N

-(U vkj u U v;+kj+k u U Vi+kj-k) ·

k =l l ~i+k,j+k~N,kfO l~i+k,j-k~N,kfO
kfi

(13)

In this motion equation, t he sum of neuron inputs is replaced by the logical
sum of them. It is proven mathematically that Eq. (13) has the same equilibrium
points as Eq. (11). This modification can reduce the hardware size necessary to
implement our MNN.

Fig. 12 shows the performance of our MNN with this modified motion equa-

292 N . FUNABIKI, T. KUROKAWA, M. OHTA

r = 0.125 among 1, 000 runs. The maximum number of the iteration steps is set
to 100. The convergence rate is 99.9% and the average number of iteration steps
for convergence is 30.2 at 8T = 0.001. Although the number of iteration steps
increases about 3 times from Eq. (11), it still keeps the high convergence rate.

~ 80
!'!
~ 70

"' 0

5i 60
~
~50
c
0
(.) 40

30

20 L_ ______ _L ________ L_ ______ _L ______ ~

80

70
a.
!'!
"'60 c
.2
'§so
~

40

30

0 0.005 0.01 0.015 0.02

(a) Convergence rate

0.015 0.02

(b) Average number of iteration steps

Figure 12. Change of performance with various 8T.

4.3.2. Architecture

Now, we present our implementation of the maximum neural network with the
reinforced self-feedback by the logical synaptic connection architecture. Fig. 13
shows the architecture for the N-queens problem. This architecture consists of
the neuron array, the processing units, and RAM. The neuron array consists of
N x N processing elements that realize the neurons arranged on a chessboard.
The detailed structure of each processing element is illustrated in Fig. 14. The D
flip-flop (DFF) stores 0-1 neuron output v; j, and three lookup tables (LUT1,2,3)
implementing OR-gates calculate the logical sum of outputs from the other neu-

Binary neural networks for N-queens problems and VLSI implementations 293

state of MNN is updated in theN-parallel mode. So, there are N units for this
state update in the system. At each iteration step, each processing unit loads
the neuron input U;j and the self-feedback gain T;j from RAM. Then, it updates
U;j, V;j and T;j, using V;j and the logical sum generated from the neuron array.
Lastly, it stores V;j in the neuron array, and inputs U;j and T;j into RAM.

Neuron Array

0

Processing unit for updating
Vij, Uij, and Tij

RAM for Uij and Tij

Figure 13. Architecture of MNN with reinforced self-feedback.

Vij

CE

CLK

LTI LTO RTO RTI Qij-1 Vii

294 N. FUNABIKI, T. KUROKAWA, M. OHTA

4.3.3. Implementation

We have designed the single element of this neuron array on an FPGA (Xilinx
XCV200 with 230k system gates). This device contains 2, 352 slices, and one
slice consists of two configurable logic blocks (CLBs). Each CLB contains two
function generators based on lookup tables, which can implement any function
of four input variables. The single element of the neuron array in Fig. 13 occu­
pies three slices in our design, thus the device can contain 784 elements. The
processing unit in Fig. 13 occupies 69 slices in our design, and the device can
contain 34 units. Hirai (1998) proposed a 1, 000-neuron VLSI system with one
million 7-bit physical interconnections based on the pulse-density-modulating
(PDM). It consists of 1,120 chips, where each one is fabricated using CMOS
gate array with 250k gates. This system can be applied to solve the 31-queens
problem. Although our architecture is only applicable to limited problems, the
architecture for the 31-queens problem can be built with only three chips.

The neuron array in our architecture has a simple structure, and several
chips for the array can be connected in cascade to build a system for a large
scale problem. Besides , if the neuron array consists of reconfigurable FPGAs,
we can rewrite all connections between neurons in the neuron array to solve
other combinatorial optimization problems.

5. Conclusions

The paper presented the maximum neural network with the reinforced self­
feedback as a new binary neural network approach to the N-queens problem,
and three VLSI implementations for this typical combinatorial optimization
problem, after a brief review of the background and the conventional approach.
Our VLSI implementations focus on the efficient realization of the synaptic con­
nection networks between neurons, because they usually occupy a large area on a
VLSI chip. Besides, we adopt reconfigurable devices such as CPLDs and FPGAs
to realize the scalable hardware with very high speed of computation. Although
the actually implemented hardware systems contain less than a hundred binary
neurons, we estimate that more than several thousands of binary neurons can
be implemented with the current FPGA technology. In our experiments we
have introduced several new ideas and methods to make use of this attractive
approach. The binary neural networks have open-ended possibilities of solving
hard problems in real worlds. Through active research in this field, we would
like to contribute to the advancement of this innovative technology in the future.

References

ABRAMSON , B. and YUNG, M. (1989) Divide and conquer under global con­
straints: a solution to the N-queens problem. J. Para. Dist. Comp., 6,

Binary neural networks for N-queens problems and VLSI implementations 295

BITNER, J. R. and REINGOLD, E . M. (1975) Backtrack programming tech­
niques. Commun. ACM, 18, 651-656 .

FALKOWSKI, B .-J. and SCHMITZ 1. (1986) note on the queen's problem. Inf.
Proc. Lett., 23, 39-46.

FoRTES, J. A . B (1987) Systolic arrays: A survey of seven projects, IEEE
Computer, 20 91-103.

HINTON, G . E., SEJNOWSKI, T. J. and ACKLEY , D. H. (1984) Boltzmann
machines: constrained satisfaction networks that learn. CMU-CS-84-119,
Carnegie Mellon University.

HIRAI , Y. (1998) A 1,000-Neuron System with One Million 7-bit Physical Inter­
connections, in M.J.Jordan, M.J.Kearns and S.A.Sola eds., Advances in
Neura l Informat ion Processing Systems, 10, The MIT Press , Cambridge ,
Massachusetts, 705 - 711.

ht tp:/ jwww.viplab.is.tsukuba.ac.jp/PDM/
HOPFIELD, J. J. and TANK, D. W. (1985) Neural computation of decisions in

optimization problems. Bin. Cybern., 52, 141-152.
IEEE (1988) IEEE standard backplane bus specification fo r micmpmcessor at·­

chitecture; Futureb·ns, ANSI/IEEE Std.896.1-1987.
JAGOTA , A. (1995) Approximating maximum clique with a Hopficld network.

IEEE Trans. Neural Networks, 6, 724-735 .
KALE, L. V. (1990) An almost perfect heuristic for theN nonattacking queens

problem. Inf. Proc. Lett ., 34, 173-178.
KIRKPATRICK, S., GELATT JR., C . D. and VECCHI, M.P. (1983) Optimization

by simulated annealing, Science, 220, 4598.
KUROKAWA, T. and TAKEFUJI , Y. (1992) Neural network parallel computing

for BIBD problems, IEEE Tmns ., CAS., 39, 243-247.
LEE, K. C., FUNABIKI, N. and TAKEFUJI, Y. (1992) A parallel improvement

algorithm for t he bipartite subgraph problem, IEEE Tmns. Neural Net­
woTks, 3, 139- 145.

McCuLLOCH, W. S. and PITTS, W . H. (1943) A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115.

NOZAWA, H . (1992) A neural network model a._c; a globally coupled map and
applications based on chaos . Chaos, 2, 377-386.

0HTA, M. (1999) On the Self-Feedback Controlled Chaotic Neural Network
and its Application to N-Queen Problem, Proc. Int. Joint Conf. Neuml
Networks.

OHTA, M . (2002) Chaotic neural networks wit h reinforced self-feedbacks and
its application toN -Queen problem, Mathematics and ComputeTs in Sim­
ulation, 59, 305-317.

0HTA, M., ANZAI, Y., YONEDA, S. and 0G IH ARA , A. (1993) A Theoreti­
cal Analysis of Neura l Networks with Nonzero Diagonal Elements, JEICE
Trans . Fundamentals, E76-A, 284- 291.

0HTA, M . , 0GIHARA , A . and FUKUNAGA, K . (1994) Binary Neural Network
11 1 l ,.

296 N. FUNABIKI, T. KUROKAWA, M. OHTA

IEICE Trans. Inf. Syst., E77-D, 459- 465.
OHTA, M., OGJHARA, A., TAKAMATSU, S. and FUKUNAGA, K. (1995) A Study

on the Mechanism of the Minimum Searching by the Chaotic Neural Net­
work, Proc. IEEE Int. Conf. Neural Networks, 1517- 1520.

PAIELLI, R. A. (1988) Simulation tests of the optimization method of Hopfield
and Tank using neural networks. NASA Tech. Memo. 101047.

REICHLING, M . (1987) A simplified solution of the N queen 's problem. Inf.
Proc. Lett., 25, 253-255.

RUSSELL, S. and NORVIG, P. (1995) Artificial Intelligence A Modern Approach,
Prentice Hall.

SHRIVER, B. D. ed. (1988) Artificial Neural Systems, IEEE Computer, 21 ,
8-117.

STONE, H. S. and STONE, J. M. (1987) Efficient search techniques: an empirical
study of the N-queens problem. IBM J. Res. Dev., 31, 464-474.

SUNDARARAJAN, N. and SARATCHANDRAN, P. (1998) Parallel Architectures for
Artificial Neural Networks: paradigms and implementations, IEEE Com­
puter Society Press, Los Alamitos, California, 379.

TAKEFUJI, Y. (1992) Neural network parallel computing, Kluwer Academic Pub­
lishers.

TAKEFUJI, Y. and Szu, H. (1989) Design of parallel distributed Cauchy ma­
chines. Proc. Int. Joint Conf. Neural Networks.

WANG , L. (1997) Discrete-time convergence theory and updating rules for neu­
ral networks with energy functions. IEEE Trans . Neural Networks, 8, 445-
447.

WANG, R.-L., TANG , Z. and CAO, Q .-P., A. (2002) A near-optimum par­
allel algorithm for bipartite subgraph problem using the Hopfield neural
network learning. IEICE Trans . Fundamentals, E85-A, 497-504.

WIESELHEIER, J. E., BARNHART, C. M. and EPHREMIDES, A. (1994) A neu­
ral network approach to routing without interference in multihop radio
networks. IEEE Trans. Commun., 42, 166-177.

WILSON, G. V. and PAWLEY , G . S. (1988) On stability of the travelling sales­
man problem algorithm. Biological Cybernetics, 58, 63-70.

YOSHIO, H., BABA, T., FUNABIKI, N. and NISHIKAWA, S. (1997) Proposal of
anN-parallel computation method for a neural network for the N queens
problem. Elect. Commun. Japan, Part 3, 80, 12-20.

