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Abstract: Combinatorial optimization problems compose au 
important class of mathematical problems that include a variety of 
practical applicat ions, such as VLSI design automat ion, communica­
tion network design and control, job scheduling, games, and genome 
informatics . These problems usually have a large number of vari­
ables to be solved . For example, problems for VLSI design automa­
tion require several million variables. Besides, their computational 
complexity is oft en intractable due to NP-hardness. Neural net­
works have provided elegant solutions as approximation algorithms 
to these hard problems due to t heir natural parallelism and their 
affini ty to hardware realization. Particularly, binary neural networks 
have great potential to conform to current digital VLSI design tech­
nology, because any state and parameter in binary neural networks 
are expressed in a discrete fashion. T his paper presents our stud­
ies on binary neural networks to the N-queens problem, and the 
three different approaches to VLSI implementations focusing on the 
effi cient realization of the synaptic connection networks. Reconfig­
m able devices such as CPLDs and FPGAs contribute t he realization 
of a scalable architecture with the nltra high speed of computation. 
Based on the proposed architecture, more than several thousands of 
binary neurons can be realized on one FPGA chip. 

Keywords : binary neural network , NP-hard , combinatorial op­
timization, VLSI design, algorithm 

1. Introduction 

Since Hopfield and Tank introduced an innovative idea of solving an N P-hard 



272 N. FUNABII<I , T. I~UROKAWA , !VI. OHTA 

field and Tank, 1985), the studies on neural network approaches have played 
active roles in various areas such as computations, algorithms, VLSI designs , 
signal processing, and machine learning. Although the deficiencies of their works 
have been strongly criticized, (Wilson and Pawley, 1988; Paielli, 1988), several 
ideas and new methods have been presented, means toovercorne this difficulty 
and open the door to a new era. These new approaches include the binary 
neural network, (Takefuji , 1992), the Boltzmann machine, (Hinton, Sejnowski 
and Ackley, 1984) , the Cauchy machine, (Takefuji and Szu , 1989) , the chaotic 
neural network, (N07;awa, 1992), the mean field annealing (Jagota, 1995) , the 
Lagrange multiplier method (Wieselheicr, Barnhart and Ephremides, 1994), and 
the gradient ascent learning, (Wang, Tang and Cao, 2002). 

The Boltzmann machine incorporates the mechanism of stochastic state 
transitions in the parallel computation of neural networks, to avoid local min­
imum convergence. The stochastic state transitions originated from simulated 
annealing, (Kirkpatric, Gelatt Jr. and Vecchi, 1983). The Cauchy machine is 
based on a different distribution from the Boltzmann machine, so as to speed 
up convergence. The chaotic neural network introduces the chaotic behavior 
of state transitions to the neural network so that it can avoid the undesired 
local minimum convergence. However , it suffers from the troublesome require­
ment of adjusting many parameters for better performance. The mean field 
annealing is an approach to dynamically change the state of the system from 
continuous to discrete , so that it can avoid the local minimum convergence. 
The computation of the meaning fi eld annealing is usually slow in terms of 
convergence. The discrete usually generates more local minima than the con­
tinuous one. The Lagrange multiplier method dynamically changes coefficients 
of the energy function to be minimit~ed during the state update computations. 
The energy function describes the constraints and the objective function of the 
problem, and is usually given by the linear sum of the terms representing the 
conditions. The gradient ascent learning dynamically changes coefficients of the 
energy funct ion for the positive gradient direction of the energy function. 

The binary neural network adopts the binary neuron model, which has a 
long history in the neural network research since McCulloch and Pitts (1943) 
proposed the first neuron model in the binary form. In addition to the binary 
discrete state of neuron outputs, our binary neural network requires the discrete 
state for neuron inputs and the integer formulations of the system parameters 
including state transition thresholds for neuron outputs and coefficients for the 
energy function. The integer neuron input may take a limited range such as 
[-32 , +31] or [-64 , +63] so that the required bit width for neuron inputs be­
comes only six or seven. This limited bit requirement provides a great advantage 
when the binary neural network is actually implemented on VLSI hardware. 

As the past research has expressed the deficiency, however, the discrete form 
of the solution search can easily bring on the problem of the local minimum 
convergence. The neural network in the local minimum cannot move to other 
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network always generates a number of undesired local minima because of the 
discrete state definition. In order to deal with this negative fact, several heuris­
tic methods have been proposed to escape from the local minimum so that the 
binary neural network can be applied to a variety of N P-hard combinatorial 
optimization problems. The first method is the hill-climbing term that encour­
ages the necessary number of neurons to have nonzero outputs. This term is 
actually added to the motion equation as an additional term besides the neces­
sary terms that are derived from the energy function. As seen later, the motion 
equation usually provides each neuron more negative force than positive force so 
as to satisfy the constraints of the problem. The hill-climbing term supplements 
the positive force to satisfy the constraints. The second method is the omega­
function as another form meant to alleviate the negative force of the motion 
equation. The omega-function allows the negative force to be active only for 
the neurons that have nonzero outputs. Besides, the reinforced self-feedback in 
the motion equation is effectively introduced as another method to avoid the 
local minimum convergence. 

It is a huge advantage for the binary neural network to form a massive 
parallelism in a natural manner, and to be suitable for the VLSI implementation. 
Thus, we present VLSI implementations of the binary neural network in this 
paper, focusing on the efficient realization of the synaptic connection networks . 
Our implementations include a bus-connected architecture of the binary neural 
network, a systolic array implantation, and a logical synaptic connection in the 
maximum neural network with the reinforced self-feedback. 

The paper is organized as follows: Section 2 briefly runs through the rela­
tionship between the combinatorial optimization problem and the binary neural 
network. Section 3 reviews the application of the binary neural network for the 
N -queens problem and presents a new binary neural network approach called the 
"maximum neural network with the reinforced self-feedback". Section 4 presents 
three VLSI implementations of the binary neural network for the N-queens 
problem. Finally, Section 5 provides the concluding remarks of this paper. 

2. Binary neural network and combinatorial optimization 
problem 

Let x = (x1,x2, ... ,xn) be a set of n variables whose values should be found 
in a combinatorial optimization problem. Then, the combinatorial optimization 
problem requires finding an integer value assignment to each of n variables, such 
that a set of the constraints is not only satisfied, but also the objective function 
is optimized. A constraint in a problem may be described by: 

f( x ) = 0 (1) 

where the function f(x) is usually nonlinear for N P-hard problems. An objec­
tive function may be described by: 
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Generally, each variable :r; for a combinatorial optimization problem takes 
an integer value within certain range. However, through the variable transfor­
mation, we can always adopt a binary formulation of variables Yij, such that 
Yii = 1 represents X; = j, and Yij = 0 represents x; "I j. Thus, we can focus on 
a combinatorial optimization problem with binary variables. 

In a binary neural network in this paper, each neuron has an integer input 
U;j and a binary output v;j, and a nonlinear, non decreasing function called the 
neuron function, to compute the output using the input: 

Vi1 = s(U;j ). (3) 

The simplest form of the neuron fnnction is the binary model by McCulloch and 
Pitts: 

if U;j > 0 then s(U;j) = 1, else s(U;j) = 0. (4) 

Thus, a binary neural network can be seen as a nonlinear function connecting 
multiple inputs and multiple outputs. Then, the outputs are fed back into the 
inputs through a set of differential equations, which is called the motion equa­
tion. After the initial states for neuron inputs and outputs are given, this closed 
loop between neuron inputs and outputs cause dynamical state transitions, un­
til the state of the binary neural network reaches a stable state. The stable 
state may represent a solution of the problem. Here, the binary output directly 
corresponds to the binary variable of the combinatorial optimization problem, 
and the state of the binary neural network means the state of neuron outputs. 

The energy function should be defined to solve each combinatorial optimiza­
tion problem by a binary neural network. The output of the energy function 
becomes minimum when the state of the binary neural network reaches a solu­
tion of the problem. The energy function E is a linear sum of terms representing 
the constraints and the objective function: 

E = Af(V) + Bg(V) (5) 

where A and Bare weight coefficients and V is a vector of neuron outputs. Note 
that these coefficients are constant in the binary neural network, whereas they 
are dynamically changed in the Lagrange multiplier method and the gradient 
ascent learning. The details on the application of the binary neural network to 
combinatorial optimization problems will be discussed in the following section. 

Then, the motion equation is derived through the partial derivative of the 
energy function: 

(6) 

We note that, Wang (1997), shows that Eq. (6) does not always lead to con­
vergence for an arbitrary energy function. The motion equation determines the 
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constraints and the objective function in the target combinatorial optimization 
problem. The motion equation guides the state transitions so that the final 
stable state represents a solution of the problem. In the final stable state, it is 
requested that all the constraints of the problem be satisfied and the objective 
function minimized. 

3. Application to N -queens problem 

In this section, we introduce two binary neural network approaches to the N­
queens problem. TheN-queens problem is a typical combinatorial optimization 
problem of finding a set of locations of N queens on an N x N chessboard 
subject to the constraint that no pair of queens may be in each other 's line of 
movement . Since Gauss failed to find all of the 92 different solutions for the 8 
queens problem, Falkowski and Schmitz (1986) , theN-queens problem has been 
widely used as a benchmark problem to evaluate a variety of search algorithms, 
such as the backtracking method, Bitner, Reingold (1975); Stone and Stone 
(1987), t he branch-and-bound method , Abramson and Yung (1989), and the 
variable ordering heuristic method, Kale (1990). An algorithm for finding at 
least one solu tion for every N has also been proposed, using the symmetry of 
the solution , Reichling (1987); Falkowski and Schmitz (1986) . 

3.1. Binary neural network and three updating modes 

In this subsection, we show the binary neural network formulation for the N­
queens problem from Yoshio, Baba, Funabiki and Nishikawa (1997), so as to 
introduce a binary neural network approach for a combinatorial optimization 
problem. Then, we compare the performance of three modes to update the state 
of the neural network, namely, the sequential mode , the N -parallel mode, and 
N 2-paralle mode. T he binary neural network is composed of N x N neurons to 
solve theN-queens problem. In the sequential mode, the state of each neuron is 
updated sequentially, where a state represents the input and the output of the 
neuron. In other words, states of no two neurons are updated simul taneously. In 
theN-parallel mode, the N 2 neurons are first divided into disjoint N groups such 
that each group is composed of N neurons. The st ates of N neurons in the same 
group are updated simultaneously, while each group is updated sequentially. 
Actually, in this binary neural network , the N neurons representing N diagonal 
locations of ( ('i + k mod N) + 1, (j + k mod N) + 1) for k = 1, ... , N, are grouped 
together into the same group. Note that "mod" represents the modulo function. 
Then , each of N neurons for the same row or column is assigned to different 
groups. In the N 2-parallel mode, all the states of N 2 neurons arc updated 
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3.1.1. Energy function and motion equation 

In a binary neural network approach, the binary output of a neuron should 
be defined to solve the N-queens problem. The binary output V;j represents 
whether a queen be assigned at the i- th row and the j-th column, or not . The 
output V;j = 1 represents a queen assigned there , and the output V;j = 0 
represents no assignment. Then, the computational energy function E must be 
defined as described in Section 2. The energy function becomes zero, if and 
only if every constraint of the N-queens problem is satisfied. Actually, two 
constraints must be satisfied for this problem: 1) one queen must be located in 
each row and each column, and 2) no more than one queen must be located in 
any diagonal line. The corresponding energy function is given by: 

ANN 2 N N 2 

E=-{2:(2:Vik-1) +2:(2:vk1-1)} 2 . . 
•=1 k=l J=l k=l 

B N N 

+ 2 2: 2: V;j ( 2: Vi+k,j+k 
i=l j=l l~i+k,j+k~N,k#O 

+ 2: Vi+k,j-k) (7) 
l~i+k,j-k~N,k#O 

where A and B are coefficients. The A-term in Eq. (7) represents the first 
constraint, and the B-term represents the second one. 

Then, the motion equation is derived to seek the state of the neural network 
satisfying E = 0 by the gradient descent method: 

N N 

t.uij =-A{ ( L Vik- 1) + ( L vkj- 1)} 
k=l k=l 

- s( 2: Vi+k,j+k + 2: Vi+k,j-k) 
l~i+k,j+k~N,k#O l~i+k,j-k ~ N,k#O 

N N 

+ c { h (I: Vik) + h ( 2: vkj)} (8) 
k=l k=l 

where A = B = 1, and C = 4 if (t mod 20 < 5), C = 1 otherwise; t is the 
number of iteration steps for solving the motion equation by the first-order 
Euler method. The C-term is the hill-climbing term for escaping from local 
minimum. The hill-climbing function h(x) = 1 if x = 0, 0 otherwise. The 
C-term is activated when no neuron for each row or column has output = 1. 

3.1.2. Performance comparison bet ween three modes 

The neural network for N-queens problem is simulated on three computation 
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Table 1. Simulation results of the binary neural network for N-queens problem. 

N sequential N -parallel N~-para1lel 

rate step rate step rate step 
8 94% 24 89% 97 54% 66 
10 88% 122 80% 114 26% 88 
20 100% 66 99% 79 47% 131 
50 100% 50 100% 60 90% 169 
100 100% 56 100% 63 90% 171 
200 100% 67 100% 77 0% -
300 100% 65 100% 91 0% -
400 100% 75 100% 93 0% -

500 100% 95 100% 107 0% -

a tota l of 100 simulation runs are performed from different randomized initial 
states of the neurons, and the convergence rate and the average number of iter­
ation steps required for convergence are evaluated . The iterative computation 
of the neural network is terminated by the time-out procedure when it cannot 
converge to a solution after 500 iteration steps have passed. T he convergence 
rate is the number of simulation runs among 100 runs in which the neural net­
work can find a solution of locating N queens without violating the constraints 
within 500 steps. Table 1 shows the simulation results for this neural network, 
where the average number of iteration steps is calculated from the results only 
where the neural network converges to a solut ion. "-" in the table means that 
no result is obtained t here because of no convergence. 

The results in Table 1 indicate that the sequential mode provides the best 
performance in terms of the convergence rate and the speed, while the N 2-

parallel mode does the worst one. In the sequential mode, any neuron updates 
its state to minimize the energy function aft er all the states of the other neurons 
are updated to the latest ones. On the other hand, in the N 2-parallel mode, any 
neuron updates its state based on the previous states of neurons. This delay of 
state updating causes t he oscillation of the state transitions. In the N-parallel 
mode, the N neurons for the same row or column, which are competing each 
other, are updated sequentially, while the N neurons for the same diagonal line 
are updated simultaneously. This combination of the sequential updating and 
the parallel updating realizes the highly parallel computation with the suppres­
sion of oscillations at the same time. 

3.2. Max imu m neural network with reinfor ced self-feedback 

The maximum neural network (MNN) has been proposed in Lee , Funabiki and 
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neural network. MNN can always satisfy one constraint in a combinatorial opti­
mization problem. MNN is also suitable for t he computation on the N-parallel 
mode. However, MNN often suffers from the problem of the local minimum con­
vergence. Thus, we combine t he idea of the chaotic neural network ( CNN) from 
Nozawa (1992) with MNN to alleviate this negative effect. A neuron in CNN 
has a negative self-feedback to cause the chaotic oscillation , Ohta, Ogihara, 
Takamatsu and Fukunaga (1995), so that the state in CNN can escape from a 
local minimum by using its chaotic behavior. Ohta, Anzai, Yoneda and Ogihara 
(1993); Ohta, Ogihara and Fukunaga (1994) have clarified that the self-feedback 
connection between neurons in the binary neural network is very effective for 
avoiding local minima. Ohta (1999; 2002) have shown that the control algo­
rithm for the self-feedback gain named the reinforced self-feedback improves the 
performance of CNN. This subsection presents the introduction of the reinforced 
self-feedback into MNN. The MNN with the reinforced self-feedback can be re­
alized with much smaller efforts than CNN, although our MNN and CNN are 
both based on the non-periodical behavior so as to overcome the problem of the 
local minimum convergence. 

3.2.1. Energy function and motion equation 

In MNN for theN-queens problem, the output of the maximum neuron always 
satisfies the constraint that one and only one queen is assigned to each row. 
Thus, the output V;j in MNN is given by 

V: _ { 1 if Uij = maxk {Uik } 
"
1 

- 0 otherwise. 
(9) 

Then, the energy function of MNN for the N-queens problem is defined by 

1 
N N N 

E = 2 L L L l/ij vkj 
j=l i= l k = l 

k#i 

1 
N N 

+ 2 :L :L :L v;j v;+kj+k 

i= l j=ll~i+k,j+k~N,k-#0 

1 
N N 

+2 :L :L :L v;j v;+kj-k 

i=l j=ll~i+k,j-k~N, k-#0 

(10) 

The first term represents the first constraint of the N-queens problem. While 
the second and third terms represent the second constraint . 

The motion equation to update the neuron input Uij is given by 

TT 
aE __ TT 
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N 

-(L:vk1 + 
l:::;i+k,j+k:::;N,kfO 

Vi+kj+k + I: Vi+kj-k ) 

l:::;i+k ,j-k:::;N,kfO 
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(11) 

where r is the dumping constant to satisfying lrl < 1, and T;j is the self-feedback 
gain for the ijth neuron. In this MNN , the state of neurons arc updated on the 
N -parallel mode. However , in this MNN, the states of N neurons for the same 
row are updated simultaneously, whereas the states of N neurons for t he same 
column are updated sequentially clue to t he nature of the maximum neuron 
model in Eq. (9). 

In this MNN with the reinforced self-feedback, the self-feedback gain T;j 

should be positive when the state of MNN needs to converge to a local minimum, 
and be negative when it needs to escape from the local minimum by causing the 
non-periodical behavior. Thus, we propose the control algorithm of the self-feed 
back gain as follows: 

T; . = { T;j - 8T if Vii = 1 
1 w otherwise 

(12) 

where 8T (2: 0) is a constant small value for the self-feedback gain control, and 
w is the default value for the gain. This algorithm indicates t hat when a neuron 
becomes active ( Vi1 = 1), the self-feed back gain starts decreasing gradually, and 
when t he neuron becomes non-active (V;1 = 0) , it is reset to t he default value. 
Eq.(ll) shows that when the neuron is active, the self-feedback term increases 
the input U;j when the gain is positive, and it decreases the input when the 
gain is negative. Thus, by reaching a negative gain by deCI·easing it , the input 
also decreases for the nenrons with active outputs, and it encourages other 
neurons to be eventually act ive. That is the mechan ism of escaping from a local 
minimum by changing the state in our MNN. Here, the time to cha nge from a 
positive gain to a negative gain is varied for each neuron . Thus, it avoids the 
oscillation of t he state by simultaneous state updates. Note that this method 
docs not guarantee the convergence to a local minimum, and the convergence 
to a solu tion must be checked at every iteration step. 

3.2.2. Performance evaluation 

We evaluate the performance of MNN with the reinforced self-feedback for the 
N -queens problem. The problem si11e N is fixed at N = 1, 000, the default 
value of t he self-feedback gain is w = 0.0, and the decrement is 8T = 0.01. Note 
that 8T = 0.0 is used to evaluate MNN without the reinforced self-feedback. 
Because the proposed MNN with the reinforced self-feedback usually converges 
to a solution very quickly unlike the conventional binary neural network of 
Section 3. 1, the maximum number of iteration steps is set at 20. Here, we note 
that MNN with 8T = r = 0 is equivalent to the min-conflict algorithm., which is 
one of the well-known methods in heuristic approach for constraint satisfaction 

l ' r - ~ _ 1 ! .. .L _ ll ; _______ 'T"L.: __ l ___ ; J.. L ___ .c: __ J.. 1--- L -- --- __ _ _ ...,_ ,.. J.. .......... L 
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row randomly. Then, it continues to locate a queen at the location that has 
minimum number of attacking queens in each row. It has been known that this 
min-conflict algorithm is surprisingly effective for many constraint satisfaction 
problems, and is able to solve the million-queens problem in an average of less 
than 50 iteration steps, Russell and Norvig (1995). 
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Figure 1. Performance sensitivity of the proposed MNN to dumping constant r 
(N = 1,000). 

Fig. 1 (a) and (b) shows the convergence rates and the average number 
of iteration steps among 200 simulation runs with different initial states. We 
note that convergence means that MNN found out the solution satisfying all 
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iteration steps. Fig. 1 (a) shows that the proposed scheme of the reinforced self­
feedback improves the convergence rate from 88.5 % with 8T = r = 0, to 98.5 % 
with 8T = 0.01, r = 0.1. Fig. 1 (b) shows that the average number of iteration 
steps decreases from 11.2 to 8.1. Fig. 2 shows the change of the convergence 
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Figure 2. Performance sensitivity of the proposed MNN with repsect to 8T (N=l,OOO) . 

property, when 8T is varied from 0 to 0.2 among 500 simulation runs, while 
r is fixed to 0.1. For example, when 8T is set at 0.01, the convergence rate 
becomes 96.2% and the average number of iteration steps is 9.1. Fig. 3 shows 
the change of performance between two algorithms when the number of queens 
N is varied from 100 to 10, 000 among 200 simulation runs. In the 10, 000-
queens problem, our proposed MNN improves the convergence rate from 75.5% 
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The performance of our MNN is not disproved as N increases. Therefore, we 
conclude that our MNN with the reinforced self-feedback is very effective in 
solving large size N-queens problem. 

95 MNN with Self-Feedbacks 

··· .. .... .. -· · · ····· +-
T ' •· . , ..,., 

Ql 
Min-Conflict 

g 85 
Ql 

··+- ········· · -+. 

~ 
Ql 
> 
§ 80 
u 

'+- · · ·· 
75 

70L-----~~--~~~~L---~--~~~~~~ 

1 00 1000 1 0000 

(a) Convergence rate 

14 Min-Conflict 
,... .. ··· +··· ···· · 

13 

.+· ····· · ··· 
... · 

10 

8 L-----~~--~~~~L-----~~--~~~~ 

100 1000 10000 

(b) Average number of iteration steps 

Figure 3. Performance sensitivity of the proposed MNN with repsect to problem size. 

Lastly, the proposed MNN is compared with the conventional CNN and CNN 
with the reinforced self-feedback from Ohta (in printing). The problem size N is 
set at 1, 000 and the maximum number of iteration steps is 1, 000 for CNN, and 
20 for the proposed MNN. The results of Table 3.2.2. show that the proposed 
MNN achieves a far better convergence property with much smaller number of 
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Table 2. Comparison of CNN and MNN (N= l,OOO) . 

method Convergence rate [%] Average steps 
Conventional CNN 
CNN with reinforced self-feedback 
MNN with reinforced self-feedback 

30 795.5 
90 

98.5 
666.5 
8.1 

4. Hardware implementation of b inary neural networks 

The hardware implementation of a neural network can improve its computa­
tional ability by fully taking advantage of parallel computation by a massive 
number of neurons. There have been many approaches to implement neural 
network hardware systems, Shriver (1988); Sundararajan and Saratchandran 
(1998). Particularly, binary neural networks arc very suitable for implemen­
tation on digital VLSI circuits. However, when we consider the digital VLSI 
implementation of a binary neural network for a combinatorial optimi~ation 
problem, we encounter a serious problem that the implementation of synaptic 
connections between neurons occupies enormous area on a VLSI chip. For this 
problem, we restrain the chip area by limiting the applicable combinatorial op­
timization problem by the neural network. In this section, we propose three 
architectures for hardware implementation of binary neural networks focusing 
on the effi cient synap tic connection network. 

4.1. Bus connected architecture 

In this subsection, we propose a bus connected archi tectme for the bina ry neu­
ral network, adopting the sequential mode to update the state of the binary 
neural network. The bus connected architecture is a simple static network that 
is typically used for mutual communication in a multiprocessor system. In this 
architecture, the communication t hrough the common bus becomes the bottle­
neck of the performance improvement when the number of processing elements 
increases. First , we have checked the necessary volume of data communicated 
through the bus when a binary neural network is solving a combinatorial op­
timization problem. In this architecture, the information on active neurons 
must be broadcasted to every processing clement to realize the nemon function 
through the bus. Thus, the number of active neurons becomes proportional 
to the total volume of communicated data. As an example, we have consid­
ered the binary neural network for the (16, 20, 5, 4, 1)-BIBD problem from 
Kurokawa and Takefuji (1992). Fig. 4 illustrates the change of the number of 
active neurons during the computation of the binary neural network. This data 
was derived aft er 1, 000 simulation runs have been performed. Here, the number 
of act ive neurons is about 20 among the total of 1, 820 neurons in the network . 
This fact supports the feasibility of using the bus connected architecture for the 
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Figure 4. The transition of the number of active neurons for the (16, 20, 5, 4, 1)-BIBD 
problem. 

4.1.1. Architecture 

Figure 5 depicts our proposed bus connected architecture for the binary neural 
network. Each binary neuron has a unique ID number and one local arbiter to 
decide a bus master in parallel. The decision process of the bus master is the 
same as that of Futurebus system from IEEE (1988). 

Arbtration Bus 

Figure 5. Bus connected neural network system. 
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1. Each active neuron has the right to participate in arbitration. 
2. Among all participating neurons, one neuron that has the largest ID num­

ber is selected as the bus master. 
3. The arbitration bus holds the inverse bit pattern of the bus master's ID 

number. 
4. All neurons receive the ID number of the bus master through the arbitra­

tion bus, buffer, and address bus, and calculate their inputs by the motion 
equation. 

5. All neurons update their outputs by the binary function. 
6. If the state of the binary neural network converges to a local minimum, 

terminate the iteration, else if more than one neurons have not become bus 
masters, go to Step 1 after denying the participation right of the present 
bus master, else permit the right of all active neurons and then go to 
Step 1. 

By limiting the rights of active neurons to participate in arbitration, we can 
reduce the number of bus accesses drastically. 

4.1.2. Implementation 

In our architecture, a single binary neuron is actually implemented as the combi­
nation of a synaptic connection memory, five term-generation units, an output­
generation unit, a local arbiter, and a controller as shown in Fig. 6. The synaptic 
connection memory stores the information of a neuron's synaptic connection to 
the other neurons. Each of the term-generation units calculates one term in the 

Neuron Address Bus 

Local Address Bus 
Data Bus 

10 

to each circuit 

Arbitration Bus 9 
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motion equation. After analyzing a variety of binary neural networks for com­
binatorial optimization problems, we have concluded that five term-generation 
units are sufficient in this architecture. The output-generation unit calculates 
the output of a binary neuron by adding the outputs of term-generation units 
to its input. 

Fig. 7 shows the printed circuit board of our implementation, named a 
"neuron-board". This board includes eight binary neurons. The binary neu­
rons are actually implemented on the combination of an FPGA, a PLA, a 
2kbyte S-RAM, and several SSis. Five term-generation units and one output­
generation unit are realized on an FPGA including 9, 000 system gates (Xilinx 
XC3090PC84). The local arbiter and the synaptic connection memory are re­
alized on a PLA (Palce16V8HD) and a 2kbyte S-RAM (MN4416S-l5), respec­
tively. As a prototype, we have actually developed five neuron-boards that are 
stored in a VME bus rack. Because this VME bus rack can store 512 boards, 
this developed system can equip up to 4, 096 binary neurons by adding the 
neuron-boards. 

Figure 7. Neuron board. 

Let us consider the maximum size of the N-queens problem to be solved 
by this architecture when we adopt Xilinx XC2V10000 in Virtex II family for 
FPGAs. This chip has 10M system gates that can contain about 1, 000 binary 
neurons. So , 512 neuron-boards with 8 XC2V10000 chips for each board can 
contain about 2, 000 x 2, 000 binary neurons. Thus, up to the 2, 000-queens 
problem can be solved on this architecture using the current FPGA technology. 
A personal computer controls the neuron boards as a host computer with two 
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4 .1.3. E valua t ion 

The proposed architecture requires lOOns to determine a bus master and to 
broadcast its ID number through the arbitration bus. The output computa­
tion using the motion equation by binary neurons requires 200ns . Thus, binary 
neurons can update their inputs by receiving an ID number of an active neu­
ron within 300ns. Thousands of simulation runs reveal that the binary neural 
network to solve 6-queens problem with 36 binary neurons requires 15.3 itera­
tion steps to converge to a solution on average. The total computational time 
was 27.6J.LS. This computational time was about 28.6 times less than that by a 
software simulation on a 400MHz II3M PC/ AT. The features of the developed 
binary neural network architecture are summarized in Table 3. 

Table 3. Features of binary neural network system. 

Number of boards 5 (Max=512) 

Number of neurons 8 
in a Neuron Board 

Number of neurons 40 (Max=4,096) 

in the whole system 

Clock frequency IOMHz 

Arbitration time lOOns 

Calculation time of neuron 200ns 

Performance 156.5MCPS 

Data transfer rate 6.0MB/s 

Power Whole system 116.28W 

consumption one Neuron 4.89W 
Board 

4.2 . Systolic array a rch it ectu r e 

In this subsection , we propose a systolic array architecture for the binary neural 
network adopting the N 2-parallel mode to update the state of the binary neural 
network . Conventional researches for systolic arrays have concentrated on the 
VLSI design as systolic cells, Fortes (1987) . The advancement of VLSI technol­
ogy enables us to realize a special purpose chip with reconfigurable devices such 
as CPLDs and FPGAs. A hardware system with reconfigurable devices intro­
duces a flexible scalability. Following these circumstances, we have developed 
a prototype of a systolic array architec ture composed of 9 x 9 systolic cells to 
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4.2.1. Architecture 

For the N-queens problem, we present the architecture of N x N systolic cells 
arranged in the 2-D matrix fashion similar to a chessboard. Each systolic cell 
accords with a hysteresis neuron, where an active neuron means that a queen is 
placed at the corresponding position of the chessboard as shown in 3.1.1. The 
octagonal cell shown in Fig. 8 represents a systolic cell that is placed at the ( i , j)­
th position in our architecture. When this architecture starts the neural network 
computation, all systolic cells are connected in a line. Then, N x N initial 
values for inputs Uij (i,j = 1, 2, ... , N) are randomly generated with negative 
integers at a host computer. These values are transmitted to N x N systolic 
cells synchronizing with the system clock from the host computer systolically, 
and are stored at "U-Reg." in each systolic cell. At the same time, "V-Reg." 
in each systolic cell is initialized to zero. 

Vi-lj 

Vi+ l j 

Figure 8. Block diagram of a systolic cell. 

During the neural computation process, the systolic cell at the (i , j )-th po­
sition receives the information on active neurons from the systolic cells placed 
in the same row, the same column, and the same diagonal directions. For this 
purpose, the systolic array transmits the neuron output v;j ( i, j = 1, 2, ... , N) 

• 11 . I. 11 I ll \ '1 
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movements. Then, the hysteresis function block ( "HYS") calculates the neuron 
input U;j. After that , the systolic cells update their values on "V-Reg." and 
"U-Reg.". This procedure is repeated in 500 iteration steps in our experiments. 
If the binary neural network finds a solution of anN-queens problem within 500 
iteration steps, the host computer receives the final neuron inputs U;1 from all 
the systolic cells through the same systolic path as the initial load. Otherwise, 
the host computer begins the next computation by changing initial values of 
neuron inputs U;j . 

The neuron outputs Vi1 are transmitted through the connected lines as shown 
in Fig. 9 systolically by synchronizing with the system clock. Each systolic cell 
is connected with its adjacent eight cells for these systolic data movements 
as shown in Fig. 9. The total of N clock cycles are required for these data 
movements in the row direction and the column direction. For the diagonal 
direction, the required number of clock cycles differs by the position of a cell. 
We prepared a "stop" signal to prevent the unnecessary data movements in 
these directions. 

Systolic Cell 

. . 

Figure 9. Structure of our systolic array. 

4.2 .2. Implementation 

As the prototype, we have developed a circuit board named "Systolic array 
board". This board includes 11 CPLDs (XC95108-PC84) with 2, 400 usable 
gates for each one. Fig. 10 shows our systolic array board containing: (a) 9 
CPLDs as a systolic array, (b) 9x9 LEDs arranged in 2-D array fashion, (c) 

~· • I "t\ "' ..-......-....,........... "' ' 1 
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between the host computer and our systolic array board, and (e) a clock oscil­
lator. In our systolic array board, we have designed 9 systolic cells within one 
CPLD. Thus, t he board contains 81 systolic cells totally. Table 4 summarizes 
the evaluation result of our systolic array architecture from the standpoints of 
features and required resources. 

Figure 10. The developed systolic array board. 

This proposed architecture is based on the systolic array with a flexible scal­
ability using reconfigurable devices. Therefore, our architecture can be easily 
expanded by adding extra systolic cells and/or by changing the size of recon­
figurable devices. Let us assume that we use XC2V10000 in Virtex II family 
instead of CPLDs. This chip can contain about 4,500 systolic cells. So, 3 x 3 
XC2V10000 chips for the systolic array can contain about 200x200 binary neu­
rons to solve up to the 200-queens problem. However, the N 2-parallel method 
could not find a solution over 100-queens problems. Currently, we are modifying 
this architecture toN-parallel method. 

Table 4. Features of the developed systolic board. 

Systolic cells 81 
Operation Frequency 17.6MHz 
Computation Time 14. 1usec 

Computation Speed 3.71GCPS 
CPLD Chip XC95 108-PC84 

Macrocells 100 (92%) 
Product terms 350 (64%) 
T/() nin" h d {(}')0/n \ 
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4.3. Logical synaptic connection architecture 

In t his subsection, we propose a logical synaptic connection architecture for t he 
maximum neural network with reinforced self-feedback. As described before, 
our architecture for MNN adopts the N-parallel mode. In our MNN for the 
N -queens problem, the neuron input can be updated, if the information on the 
existence of active queens on the same column and its diagonal lines is given 
there. When a neuron encounters no violation from conflicting neurons, a queen 
should be located on the corresponding place. Therefore, the proposed architec­
tme has only logical sum (OR-gate) to realize connections between neurons (see 
Fig. 11). This logical sum operation calculates whether the neuron encounters 
violations or not. 

~ynaptic weight 

loput =m- Output 

/ Neuron 

(a) Conventional model. 

Input Output 

(b) Proposed model. 

Figure 11. Logical synaptic connection. 

4 .3.1. Logical synaptic connection 

In our architecture, the motion equation for the N-queens problem, (11) , is 
slightly modified as 

U;j = rU;j + T;j Vi1 

N 

-( U vkj u U v;+kj+k u U Vi+kj-k ) · 

k =l l ~i+k,j+k~N,kfO l~i+k,j-k~N,kfO 
kfi 

(13) 

In this motion equation, t he sum of neuron inputs is replaced by the logical 
sum of them. It is proven mathematically that Eq. (13) has the same equilibrium 
points as Eq. (11). This modification can reduce the hardware size necessary to 
implement our MNN. 

Fig. 12 shows the performance of our MNN with this modified motion equa-
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r = 0.125 among 1, 000 runs. The maximum number of the iteration steps is set 
to 100. The convergence rate is 99.9% and the average number of iteration steps 
for convergence is 30.2 at 8T = 0.001. Although the number of iteration steps 
increases about 3 times from Eq. (11), it still keeps the high convergence rate. 
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(a) Convergence rate 

0.015 0.02 

(b) Average number of iteration steps 

Figure 12. Change of performance with various 8T. 

4.3.2. Architecture 

Now, we present our implementation of the maximum neural network with the 
reinforced self-feedback by the logical synaptic connection architecture. Fig. 13 
shows the architecture for the N-queens problem. This architecture consists of 
the neuron array, the processing units, and RAM. The neuron array consists of 
N x N processing elements that realize the neurons arranged on a chessboard. 
The detailed structure of each processing element is illustrated in Fig. 14. The D 
flip-flop (DFF) stores 0-1 neuron output v; j, and three lookup tables (LUT1,2,3) 
implementing OR-gates calculate the logical sum of outputs from the other neu-
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state of MNN is updated in theN-parallel mode. So, there are N units for this 
state update in the system. At each iteration step, each processing unit loads 
the neuron input U;j and the self-feedback gain T;j from RAM. Then, it updates 
U;j, V;j and T;j, using V;j and the logical sum generated from the neuron array. 
Lastly, it stores V;j in the neuron array, and inputs U;j and T;j into RAM. 

Neuron Array 

0 

Processing unit for updating 
Vij, Uij, and Tij 

RAM for Uij and Tij 

Figure 13. Architecture of MNN with reinforced self-feedback. 

Vij 

CE 

CLK 

LTI LTO RTO RTI Qij-1 Vii 
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4.3.3. Implementation 

We have designed the single element of this neuron array on an FPGA (Xilinx 
XCV200 with 230k system gates). This device contains 2, 352 slices, and one 
slice consists of two configurable logic blocks (CLBs). Each CLB contains two 
function generators based on lookup tables, which can implement any function 
of four input variables. The single element of the neuron array in Fig. 13 occu­
pies three slices in our design, thus the device can contain 784 elements. The 
processing unit in Fig. 13 occupies 69 slices in our design, and the device can 
contain 34 units. Hirai (1998) proposed a 1, 000-neuron VLSI system with one 
million 7-bit physical interconnections based on the pulse-density-modulating 
(PDM). It consists of 1,120 chips, where each one is fabricated using CMOS 
gate array with 250k gates. This system can be applied to solve the 31-queens 
problem. Although our architecture is only applicable to limited problems, the 
architecture for the 31-queens problem can be built with only three chips. 

The neuron array in our architecture has a simple structure, and several 
chips for the array can be connected in cascade to build a system for a large 
scale problem. Besides , if the neuron array consists of reconfigurable FPGAs, 
we can rewrite all connections between neurons in the neuron array to solve 
other combinatorial optimization problems. 

5. Conclusions 

The paper presented the maximum neural network with the reinforced self­
feedback as a new binary neural network approach to the N-queens problem, 
and three VLSI implementations for this typical combinatorial optimization 
problem, after a brief review of the background and the conventional approach. 
Our VLSI implementations focus on the efficient realization of the synaptic con­
nection networks between neurons, because they usually occupy a large area on a 
VLSI chip. Besides, we adopt reconfigurable devices such as CPLDs and FPGAs 
to realize the scalable hardware with very high speed of computation. Although 
the actually implemented hardware systems contain less than a hundred binary 
neurons, we estimate that more than several thousands of binary neurons can 
be implemented with the current FPGA technology. In our experiments we 
have introduced several new ideas and methods to make use of this attractive 
approach. The binary neural networks have open-ended possibilities of solving 
hard problems in real worlds. Through active research in this field, we would 
like to contribute to the advancement of this innovative technology in the future. 
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