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1. Introduction 

It is well known that the fuzzy- logic control does not require a conventional 
model of the process, contrary to the classical control techniques, which are 
based on analytical or experimental models. Moreover, traditional controllers 
cannot incorporate the linguistic fuzzy information - coming from human ex­
perts- into their design. On the other hand, fuzzy controllers suffer from the lack 
of learning properties. Therefore, several neuro - fuzzy controllers have been 
developed (see, e.g., Cpalka, 2001, Cpalka and Rutkowski, 2000, Jang, Sun and 
Mizutani, 1997, Rutkowska, 2001, Rutkowska and Nowicki, 2000, Rutkowska, 
Pilinski and Rutkowski, 1997, Rutkowski nad Cpalka, 2000, 2001, Wang, 1994, 
Yager and Filev, 1994). They exhibit advantages of neural networks and fuzzy 
systems. In particular, fuzzy - neural controllers combine learning abilities of 
neural networks and natural language description of fuzzy systems. 

The structure of such controllers depends on implications used in fuzzy sys­
tems: Mamdani- type implication 

h(a,b) = min{a,b} (1) 

or logical- type implication, e.g. binary implication 

I2(a,b) = max{1- a,b} . (2) 

Strictly speaking, formula (1) does not satisfy the definition offuzzy implication 
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Historically, an application of formula ( 1) to fuzzy control systems was first 
reported in Mamdani and Assilian (1975). Consequently, the existing neuro·­
fuzzy controllers employ two different approaches and the literature offers no 
suggestions as to which of them is superior. Therefore, in this paper we combine 
both approaches and present a compromise approach to neuro- fuzzy control 
systems design. We propose a soft fuzzy implication given by 

I( a, b)= (1- v)h(a, b) + vl2(a, b) (3) 

where v E [0, 1], and based on implication (3) we derive a compromise neuro­
fuzzy controller. It includes Mamdani- type, logical- type, more Mamdani-·type 
than logical- type and more logical-type than Mamdani-type fuzzy inference 
systems. It should be emphasized that our neuro- fuzzy controller can be opti­
mised with respect to the parameters of fuzzy membership functions in the pro­
cess of learning. Moreover, also the parameter v E [0, 1], determining the type of 
the system, can be found in the process of learning. To our best knowledge such 
result has not been presented in the literature yet. The compromise neuro- fuzzy 
controllers developed in the paper are simulated on the truck backer-upper con­
trol problem. In the sequel S, T and N denote S-norm, T-norm and negation, 
respectively. By making use of this notation formula (3) can be generalized to 
the form 

I( a, b)= N(v)T{a, b} + vS{N(a), b} (4) 

where N(v) = 1- v. 

2. Mamdani and logical fuzzy inference controllers 

In this paper, we consider multi- input, single- output fuzzy controllers mapping 
X --+ Y, where XC Rn andY C R, see Fig. 1. 

Figure 1. Fuzzy- logic controller 

The fuzzifier performs a mapping from the observed crisp input space X C Rn 
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fuzzifier which maps x = [x1, ... , Xn] E X into a fuzzy set A' C X characterized 
by the membership function 

{ 
1 if X= x 

J.LA'(x)= 0 ifxf:.x· (5) 

The fuzzy rule base consists of a collection of N fuzzy IF- THEN rules in the 
form 

R(k) : IF x1 is A~ AND x2 is A~ AND ... AND X 11 is A~ THEN y isBk(6) 

or 

R(k) :IF xis Ak THEN y is Bk (7) 

where x = [x 1, ... , Xn ] E X, y E Y, A~, A~, ... , A~ are fuzzy sets characterized 
by membership functions fLAk(xi), while Bk are fuzzy sets characterized by 

membership functions fLBk (y): respectively, k = 1, ... , N. 
The fuzzy inference determines a mapping from the fuzzy sets in the input 

space X to the fuzzy sets in the output spaceY. Each of N rules (7) determines 

a fuzzy set Bk C Y given by the compositional rule of inference 

(8) 

where Ak = A~ x A~ x ... x A~. Fuzzy sets ll, according to the formula (8), are 
characterized by membership functions expressed by the sup-star composition 

(9) 

where * can be any operator in the class ofT-norms. It can be easily seen that 
for a crisp input x E X, i.e. a singleton fuzzifier (5), formula (9) becomes 

where I(·) is a fuzzy implication. The aggregation operator, applied in order 

to obtain the fuzzy set B' based on fuzzy sets Bk, is the T-norm or S-norm 
operator, depending on the type of fuzzy implication . 

The defuzzifier performs a mapping from a fuzzy set B' to a crisp point fj in 
Y CR. The COA (centre of area) method is defined by following formula 

(11) 

or by 

(12) 
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in the discrete form, where ff denotes centres of the membership functions 
J..LBr(y), i.e. for r = 1, ... , N 

J..Lw(?T) = max{J..LBr(y)}. 
yEY 

(13) 

a) Mamdani's approach 
In this approach, fuzzy implication (10} is aT-norm (e.g. minimum or product) 

(14} 

and the aggregated output fuzzy set B' C Y is given by 

(15} 

Consequently, formula (12} takes the form 

(16} 

b) Logical approach 
In this approach the fuzzy implication (10} is an S-implication in the form 

(17} 

e.g. binary implication (known as the Kleene -Dienes implication) 

(18} 

The aggregated output fuzzy set B' C Y is given by 

(19} 

and formula (12} becomes 

(20} 

In the next section we generalize both approaches described in the previous 
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3. The compromise neuro- fuzzy controller 

It can be easily seen that the controllers (16) and (20) can be presented in the 
form 

where 

and 

I II 

for Mamdani's approach 

for logical approach 

for Mamdani's approach 
for logical approach, 

III IV 

(21) 

(22) 

(23) 
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Moreover, the firing strength of rules is given by 

(24) 

The general architecture of the controller is depicted in Fig. 2. Observe that 
this architecture has a multilayer structure and can be trained by the back­
propagation method. 

The compromise neuro- fuzzy controller is based on formulas (22)- (24). We 
define this controller as follows: 

rk(x) = T{J.LAk (xl), .. . , J.LAk (xn)} 
1 n 

I (- -r) _ ( N(v)T{rk(x),J.L8 k("jl)}+ ) 
k,,. x,y - +vS{N(Tk(x)),J.L8 k(V)} 

(- -r) _ ( N(v)S{h,r(x, ~r) , ... JN,r(x, ?Y)}+ ) 
agrr x, y - T{I (- -r·) I (- ~)} +v l,r x, y , . . . , N,r x, y 

where v E [0, 1]. 

4 . Optimisation of fuzzy controller (21) 

(25) 

(26) 

(27) 

Observe that controller (21) is Mamdani- type for v = 0, more Mamdani- type 
than logical type for v E (0, 0.5), undetermined for v = 0.5, more logical- type 
than Mamdani- type for v E (0.5, 1), and logical type for v = 1. The 3D plots 
of this controller are shown in Fig. 3. 

It is worth noticing that the parameter v and, membership function param­
eters of Af and Bk, i = 1, ... , n, k = 1, ... , N, can be learned. Consequently, 
type of the controller can be determined in the process of learning (see Sec­
tion 5). Based on the learning sequence 

(x(1), d(1)), (x(2), d(2)) , . .. 

we optimise the index 

1 - 2 Q = -(y- d) 
2 

(28) 

(29) 

with respect to parameter v subject to the constraint v E [0, 1]. A standard 
steepest descent recursive procedure, 

8Q(t) 
v(t + 1) = v(t)- 'rJ ov(t) (30) 

where rJ E [0, 1] is the learning rate, is applied. For derivations and details the 
reader is referred to Cpalka (2001). The learning procedures are applied in the 
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Figure 3. 3D plots of a compromise neuro- fuzzy controller given by (25)- (27) for 
n = 2, N = 2, a) v = 0.00, b) v = 0.25, c) v = 0.50, d) v = 0.75 , e) v = 1.00 

5. Applicat ion to truck backer- upper control 

The compromise neuro- fuzzy controllers described by formulas (25)- (27) are 
simulated on the truck backer- upper cont rol problem (Rut kowska, P ili1'iski and 

l • 1 , .,.,, ,.., \ 
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a) Problem formulation 
Fig. 4 shows the truck and its loading zone. The truck position is exactly deter­
mined by three state variables x E [-150, 150], y E [0, 300], ¢ E [-180°, 180°], 
where ¢ is the angle between the truck and the vertical. Control of the truck 
is the steering angle ¢ E [ -45°, 45°]. The truck moves backward by a fixed 
unit distance at every stage. For simplicity, we assume that there exists enough 
clearance between the truck and the loading dock so we can ignore the y ~ po­
sition coordinate. The goal is to design a fuzzy inference controller making the 
truck arrive at the loading dock at the angle ¢( t f) = 0 and the final position 
x(tJ) = 0. 

y=O 
x=O, 1/J= 0 
L _1)qck _] 

1/J Ax,y) 

~o/ 
I • • 
I . 
I.· ,. 

y=300L-----------~------------~ 
X =-150 x=O x=150 

Figure 4. Diagram of simulated and loading zone 

b) Generation of the learning sequences 

fl 

~ 
~.lli 

I 
I 

We describe the movement of the truck by making use of the following approx­
imate kinematics derived by Wang (1994) : 

x( t + 1) = x(t) + sin(B(t) + ¢(t))- sin(B(t)) cos(¢(t)) 

¢(t + 1) = ¢(t)- arcsin(~ sin(B(t))) 

where b is t he length of the truck. In the simulation b = 20. 
Based on the above equations we generate 14 learning sequences 

(31) 

(32) 
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starting from different initial states (x(to), ¢(t0 )). The steering angle() at every 
stage is chosen by a trial-and- error method such that the kinematics equations 
finally give x( t f) ::::::! 0, ¢(t f) ::::::! 0. The fourteen learning sequences of different 
lengths form one epoch of length 282. 

c) Simulation result 
We used the compromise neuro-fuzzy controller with probabilistic triangular 
norms, Gaussian membership functions and nine rules. The initial value of 
parameter 1.1 was set to 0.5 . 

Figure 5. Truck trajectories 

In the learning process the parameter reached the value equal 1 and the con­
troller became of a logical type. The truck trajectories are shown in Fig. 5. We 
observe that the compromise neuro- fuzzy controller (21) successfully controls 
the truck to the desired position. 

6. Application to modeling a two- input sine function 

In this example, we use compromise neuro- fuzzy controllers , described by for­
mulas (25)- (27), to model a two-dimensional function (Jang, Sun and Mizutani, 
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a) Problem formulation and generation of the learning sequences 
In this subsection, double- input and single output static function is chosen 
to be a target system for the new fuzzy modeling strategy. This function is 
represented as 

(33) 

From the evenly distributed grid of points of the input range [ -10, 10] x [ -10, 10] 
of equation (33), 121 training data pairs were obtained. The training data are 
shown in Fig. 6. 

Figure 6. Training data 

b) Simulation results 
We used the compromise neuro- fuzzy controller with probabilistic triangular 
norms, Gaussian membership functions and nine rules. The initial value of 
parameter v was set to 0.5. 

In the learning process the parameter v reached the value equal 0 and the 
controller become of a Mamdani type. A reconstructed surface is shown in 
Fig. 7. We observe that the compromise neuro- fuzzy controller (21) successfully 
approximates the nonlinear function. Our result is comparable with that of 
Jang, Sun and Mizutani (1997). 



A neuro - fuzzy controller with a compromise fuzzy reasoning 307 

In Fig. 8 we depicted the surface obtained when a logical inference is applied. 
It can be easily seen that the reconstruction is not as good as shown in Fig. 7 
for a Mamdani type inference. 

Figure 8. The reconstructed surface - the logical approach 

7. Final remarks 

In this paper we derived flexible structures of neuro- fuzzy controllers charac­
terized by fuzzy implication (3) or ( 4). The parameter v describing a type of 
the system is determined in the process of learning. It should be noted that 
the behaviour of the system does not depend on the initial value of the pa­
rameter v. In Sections 5 and 6 we obtained the same final values of v starting 
from v(O) = 0.25; 0.50; 0.75. Our approach introduces more flexibility into the 
structure of neuro- fuzzy controllers and significantly reduces the design effort . 

References 

CPALKA, K. (2001) Flexible Neuro ·-Fuzzy Systems. Ph. D. dissertation, Czesto­
chowa. 

CPALKA, K. and RUTKOWSKI, L. (2000) Soft neuro- fuzzy systems. Proceedings 
of the Fifth Conference Neural Networks and Soft Computing, Zakopane, 
296- 301. 

FODOR, J. C. (1991) On fuzzy implication operators. Fuzzy Sets and Systems, 
42 , 293- 300. 

JANG, J . S. R., SUN, C. T. and MIZUTANI, E. (1997) Neuro- Fuzzy and Soft 
Computing. Prentice Hall , Englewood Cliffs. 

MAMDANI, E. H. and ASSILIAN, S. (1975) An experiment in linguistic synthesis 
with a fuzzy logic controller. International Jmtrnal of Man - Machine 
Studies, 7, (1), 1- 13. 

MENDEL, J. M. (1995) Fuzzy logic systems for engineering: a tutorial. IEEE 



308 L. RUTKOWSKI, K. CPALKA 

RuTKOWSKA, D. (2001) Neuro- Fuzzy Architectures and Hybrid Learning. 
Springer-Verlag. 

RUTKOWSKA, D. and NowiCKI, R. (2000) Implication-based neuro- fuzzy ar­
chitectures. Int. J. Appl. Math. Comput. Sci., 10, 4, 675- 701. 

RuTKOWSKA, D., PILINSKI, M. and RUTKOWSKI, L. (1997) Neural Networks, 
Genetic Algorithms and Fuzzy Systems. PWN, Warszawa, in Polish. 

RUTKOWSKI, L. and CPALKA, K. (2001) A general approach to neuro- fuzzy 
systems. Proceedings of the 1Oth IEEE International Conference on Fuzzy 
Systems, Melbourne. 

RUTKOWSKI, L. and CPALKA, K. (2000) Flexible structures of neuro- fuzzy sys­
tems. Volume 54 of Quo Vadis Computational Intelligence. "Studies in 
Fuzziness and Soft Computing", Springer- Verlag, 479- 484. 

WANG, L. X. (1994) Adaptive Fuzzy Systems and Control. Prentice Hall, Engle­
wood Cliffs. 

YAGER, R. R. and FILEV, D. P. (1994) Essentials of Fuzzy Modelling and Con­
trol. John Wiley & Sons, New York. 


