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Abstract: The paper presents the neuro-fuzzy network in ap
plication to the approximation of the static and dynamic functions. 
The network implements the Takagi- Sugeno inference rules. The 
learning algorithm is based on the hybrid approach, splitting the 
learning phase into two stages: the adaptation of the linear output 
weights using the SVD algorithm and the conventional steepest de
scent backpropagation rule in application to the adaptation of the 
nonlinear parameters of the membership functions. The new ap
proach to the generation of the inference rules, based on the fuzzy 
self-organization is proposed and the algorithm of automatic deter
mination of the number of these rules has been also implemented. 
The method has been applied for the off-line modelling of stat ic 
nonlinear relations and on-line simulation of the dynamic systems. 
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1. Introduction 

In recent years several authors have used fuzzy models instead of the multilayer 
perceptron for approximation purposes (Duch et al., 2000, lshibuchi, 1997, Jang 
et al., 1997, Lin et al., 1995, Takagi and Sugeno, 1985, Guillaume, 2001). Two 
groups of approaches can be recognized. One group consists of neural networks 
with fuzzy weights and fuzzy act ivation functions , each processing crisp signals 
(Ishibuchi,1997). In the second group, the input signals are fuzzified in the first 
or second layer, but the neural network weights are not fuzzy (Jang et al., 1997, 
Lin et al. , 1995, Wang, 1994, Guillaume, 2001). 

This paper belongs to the second group. We present the fuzzy neural network 
structure based on the Takagi- Sugeno linear inference rule, from to the ANFIS 
family ( Jang et al., 1997). It is a multilayer (typically five-layers) network, in 
w hi rh t.I1Pr P i,; R ,;t.rirt. rlivi ,;inn hPt.wPPn t.I1P nnn li nP:n n::>r:nnnt"''" nf tho f"""" 
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split the learning algorithm into two stages: the adaptation of the linear output 
weights in the first stage and then learning of the nonlinear parameters using 
backpropagation algorithm. The adaptation of the linear weights is done using 
the SVD approach. At this stage the nonlinear parameters are fixed. In the 
second phase the output weights are constant and the nonlinear parameters 
are adjusted using steepest descent optimization rule and the backpropagation 
strategy. 

The important problem in the learning of this network is the generation 
of rules. In this paper we propose application of self-organization for creation 
of rules. The fuzzy Gustafson-Kessel (GK) self-organizing algorithm splits the 
data into overlapping clusters. Each cluster is associated with the inference rule, 
whose center is placed in the middle of the cluster. The number of clusters is 
generated automatically using specially adopted measures of quality. 

The proposed solution has been tested on different examples of approxima
tion tasks. The investigations include the static and dynamic systems. The 
static system is understood as the algebraic nonlinear relationship between in
put and output signals. In such systems the output response to the input does 
not change with time. It means that the output always has the same instanta
neous relationship with the input. The description of such system does not need 
the use of differential or difference equations. On the other hand the dynamic 
systems have a response to an input that is not instantaneously proportional 
to the input or disturbance and that it may continue after the input is held 
constant. The description of dynamic system is always associated with the use 
of differential or difference equations. 

2. Fuzzy systems 

The classical set is a set with a crisp boundary. The variable either belongs or 
does not belong to the set. In contrast to a classical crisp set, a fuzzy set is 
defined without crisp boundary, where t he transition between "belonging to a 
set" and "not belong to a set" is gradual and this transition is characterized by 
the membership functions in the range [0 , 1] t hat give fuzzy sets flexibility in 
modelling (Zimmerman, 1985, Yager and Filev, 1995). 

The membership may be described either in a discrete form as a set of 
membership values or as a continuous function valid in some ranges of values 
of the variable x. The most popular types of membership functions are the 
triangle, the trapezoidal, the gaussian and the bell functions . We will use here 
the generalized description of the bell function, given in the form (see Jang et 
al., 1997, Osowski, 2000) 

1 
J..lF(x) = 2b. (1) 

1+(x~c) 

The shape of this function is controlled by three parameters: the center c, the 
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gaussian membership function , at b ~ 0.6 it is a triangle and at b > 3 the 
function is transformed to the trapezoidal shape. 

The most popular solution of the fuzzy networks is based on the so called 
fuzzy inference system, fuzzy if- then rules and fuzzy reasoning. Such fuzzy 
inference system implements a nonlinear mapping from the input space to the 
output space. This mapping is accomplished by a number of fuzzy if- then rules , 
each of which describes the local behavior of the mapping, like it is done in radial 
basis function networks (Jang et al., 1997, Osowski, 2000). The antecedent of 
the rule defines the fuzzy region in the input space, while the consequent specifies 
the output of the fuzzy region. 

There are different solutions of fuzzy inference systems. The most known 
include the Mamdani fuzzy model, the Tsukamoto and the Takagi- Sugeno-Kang 
(TSK) ones, defined by Takagi and Sugeno in the paper (Takagi and Sugeno, 
1985). In this paper we will consider only the TSK model. A typical fuzzy rule 
in this model has the form 

if x 1 is A1 and x2 is A2 · · · and XN is AN then y = f(x) (2) 

where x = [x 1,x2,···,xNjT , A1,A2, ... AN are fuzzy sets in the antecedent, 
while y is a crisp function in the consequent. The function y = f(x) is a 
polynomial in the input variables x 1,x2 , ... ,XN· We will apply here the linear 
form of this function. The aggregated values of the membership function for the 
vector x may be assumed either in the form of MIN operator or in a product 
form. For M fuzzy rules of the form (2) we have M such membership functions 
J.Ll, J.L 2, ... , J.LM. We assume that each antecedent is followed by the consequent 
of the following linear form 

N 

Yi =Pia+ LPijXj 
j=l 

(3) 

where Pii are the adjustable coefficients, fori = 1, 2, ... , M, and j = 1, 2, ... , N. 
When we apply the fuzzy singleton, the generalized bell membership function 

described by equation (1), and the algebraic product aggregation of the input 
variables, given the existence of M rules the neuro-fuzzy TSK system output 
signal y(x) excitation by the vector xis described by the equation (Jang et al., 
1997, Osowski, 2000) 

y(x)= M ~ . f=([I1f= 1J.Lk(Xj)][Pko+tPkjXj]). (4) 
I:r=l[IIj=lJ.Lr(xJ)] k=l j=l 

The adjusted parameters of the system are the nonlinear pa rameters (c)k), aY), 
b)k)) for j = 1, 2, ... , N, and k = 1, 2, ... , M, of the fuzzifier functions and the 
linear parameters (weights Pki) of TSK functions. Contrary to the Mamdani 
fuzzy inference system (Yager and Filev, 1995) the TSK model generates the 
crisp output value instead of a fuzzy one. Thanks to this the structure of the 
--L------1- :. .... .... ! -- l !C .... ..J .... : ............. .LL ... ..J ... .C •• -- !.C ... - : .... .......... .L .............. , .............. _9 _ 
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3. Neuro-fuzzy network structure 

The TSK fuzzy inference systems described by equation ( 4) can be easily im
plemented in the form of the so called neuro-fuzzy network structure. Fig. 1 
presents the five-layer structure of the neuro-fuzzy network, realizing the TSK 
model of the fuzzy system (Jang et al., 1997, Mitra and Hayashi, 2000). It 

y-f(X) 

Figure 1. The structure of neuro-fuzzy TSK model of fuzzy system 

is assumed that the functions Yi, Yi = fi(x) are linear of the form fi(x) = 
Pio + L:::f=l PijXj. The adaptable parameters of the network are the variables 

f h b l . f . (k) (k) b(k) r . - 1 2 N k - 1 2 M o t e mem ers up unctwns ci , ai , i 10r J - , , ... , , - , , . . . , 
and the coefficients (linear weights) Pii fori= 1, 2, ... , M and j = 0, 1, 2, ... , N 
of the linear Takagi- Sugeno functions. 

The network on Fig. 1 has a multilayer form. The first layer performs the 
fuzzification according to the membership function J.Lk(xj), described by the 
relation (1). The second layer aggregates the fuzzified results of the individual 
scalar functions of every variable and determines the membership function of 
the whole vector x. This is the product type aggregation. Each node of this 
layer represents the firing st rength of a rule. The third layer calculates the 
aggregated signal of the fuzzy inference for each inference rule. The output 
signal of each unit of this layer is the product of the firing strength of the rule 
and the consequent membership value. The fourth layer calculates only the sum 
of the signals of the second and the third layers of the network. The final fifth 

' 0 " 



Neuro-fuzzy TSI< network for function approx imat ion 313 

many output neurons as needed in a fashion similar to the case of one output. 
The output neuron computes the overall output signal according to relation 
(4) . Thus we have constructed the neuro-fuzzy network that is functionally 
equivalent to the Takagi- Sugeno fuzzy model. Only the first and third layers are 
parametric. The parameters of the first layer are associated with the nonlinear 
functions and the weights Pij of the t hird layer are linear. 

4. Hybrid learning algorithm 

The learning of the neuro-fuzzy network, that is, the adaptation of the pa
rameters of the first ( c)kl, a)k) , b)k)) and the third (Pij) layers of the network 
can be done either in supervised or self-organizing mode. For the purpose of 
approximation more efficient and straighforward is the supervised one. 

In practical implementation we have applied the so called hybrid approach 
(Jang et al. , 1997, Osowski , 2000). In this method we take into account that the 
network is linear in the parameters Pij, thus we can identify these linear param
eters by a linear least squares method based on singular value decomposition 
(SVD). At this stage we assume that all nonlinear parameters are fixed. This is 
the first run of the learning stage. In the second run we fix the linear parameters 
of the network and apply the steepest descent method for the estimation of the 
nonlinear parameters of the membership functions. 

Thus, in hybrid learning each iteration is composed of a forward pass and 
a backward one. In the forward pass, after the input vector is presented, we 
calculate the node outputs in the network layers and on the bas is of this the 
linear parameters Pij are adjusted using pseudoinverse on the basis of the SVD 
technique. After linear parameters are identified we can compute the error for 
training data pairs. In the backward pass the error signals propagate from the 
output end toward the input nodes; the gradient vector is calculated and the 
nonlinear parameters c)kl, a)k), b)k ) updated by steepest descent method. The 
learning step of the nonlinear parameters update is adjusted using adaptive 
approach (Osowski , 2000). This process is repeated many times until there 
is a sufficient change of t he values of the adapted parameters of t he network. 
The details of the algorithm may be found for example in Jang et al. (1997), 
Osowski (2000). 

In practical implementation of this type of learning the dominant stage of 
adaptation is the first one, adjusting the linear weights ]Jij in one step using 
SVD. The second step applying the steepest descent strategy of learning the 
nonlinear parameters is much less efficient. To get a balanced algorithm one 
use of SVD has been associated with 10 repetitions of the steepest descent 
algorithm. 

The important advantage of the hybrid algorithm is splitting of the learning 
process into two independent stages: t he adaptation of linear weights and the 
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to this the overall complexity of the algorithm has been decreased and at the 
same time the efficiency of learning increased. 

5. Rule generation using fuzzy self-organization 

One of the most important stages of the neuro-fuzzy TSK network generation is 
the establishment of the inference rules. The most often used is the so called grid 
method, in which the rules are defined as the combinations of the membership 
functions for each input variable. If we split the input variable range into limited 
number (say ni fori= 1, 2, ... , N) of membership functions, the combinations 
of them lead to many different inference rules. In general it is possible to create 
as many as M = 11~ 1 ni rules in this way. Even at a small number of input 
variables and a moderate number of membership functions in each variable 
we get large number of inference rules. For example for a 10-input system, 
3 membership functions each, the maximum possible number of rules is equal 
M = 310 = 59049. The problem is that these combinations correspond in many 
cases to the regions of no data, hence a lot of them may be deleted. 

We solve this problem by using fuzzy self-organization algorithm. This algo
rithm splits the data space into specified number of overlapping clusters. Each 
cluster may be associated with the specific rule of the center corresponding to 
the center of the appropriate cluster. In this way all rules correspond to the 
regions of the space containing the majority of data and thanks to this we avoid 
the problem of empty rules. 

5.1. The Gustafson-Kessel algorithm 

Assume that the vectors of data under clusterization are denoted by Xk, where 
Xk E RN for k = 1, 2, ... , p. Let these vectors be partitioned into c clusters, 
each represented by individual center vector Ci =[cit, Ci2, · · ·, CiN]r. Denote by 
U E Rcxp the partition matrix of the elements Uij representing the membership 
degrees of the data vector Xj (j = 1, 2, ... ,p) in the ith cluster (i = 1, 2, ... , c). 
The main task of fuzzy clustering is the partition of the data space in such a 
way that the following objective function E is minimized (Jang et al., 1997, 
Osowski, 2000) 

c p 

E = L L ui]d2(xj, ci) (5) 
i=l j=l 

subject to 

)u.;; = 1 (6) 
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for j = 1, 2, ... , p and 
p 

0::; :Luii::; p 
j=l 
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(7) 

for i = 1, 2, ... , c. The parameter m controls the fuzziness of the clusters ( usu
ally m = 2). The function d(xj ,ci ) represents the distance between the data 
vector Xj and the center c; of ith cluster. 

One of the most efficient fuzzy clustering algorithms, able to take into ac
count different shapes of clusters, is the GK algorithm, extending the c-means 
algorithm (Pal and Bezdek, 1995) by using the scaled metric norm for distance 
(Gustafson and Kessel, 1979). According to this algorithm for the given data 
vectors Xj choose the number of clusters c, the weighting coefficient m and the 
termination tolerance c. At the beginning the partition matrix U is initialized 
randomly in such a way that the appropriate conditions are satisfied. Then the 
following steps are iterated: 

1. Determine the cluster prototype centers c; for i = 1, 2, ... , c 

L~=l uiJxi 
Ci = '\"'P m (8) 

L-j=l uij 
2. Calculate the cluster covariance matrices F i ( i = 1, 2, ... , c) according to 

L~=l u;'j(xj - ci)(xj- c;f 
Fi = Lp 171 (9) 

j=l uij 
3. Compute the distances #j ( i = 1, 2, ... , c and j = 1, 2, ... , p) between the 

input vector Xj and cluster centers c; 

d7i =(xi- cif \ldet(F;)Fi 1(xJ- c;). (10) 
4. Update the partition matrix entries Uij ( i = 1, 2, . .. , c and j = 1, 2, ... , p) 

according to the rule 
1 

7L · ·- (11) 
''J - '\"'c (:!.!.1_)2/(m-1) · 

L-k=l dkj 

If d;j = 0 for some i = I, take UJj = 1 and Uij = 0 fori :f- I. Iterate until 
II u 1 - ut-l 11::; c for two succeding iterations. 

5.2. Automatic determination of the number of clusters 

The important problem in TSK network is the determination of the number of 
rules that should be used in the modelling of data. More rules means better 
representation of data, but at the same time also increase of complexity of the 
neural network and higher cost of data processing. Although more rules means 
better reproduction of learning data, too complex neural network may lead to 
the decrease of the generalization ability and the deterioration of the quality of 
network operation in the retrieval mode on the data not taking part in learning. 

Therefore, the procedures for the automatic determination of the number of 
rules, specific for the actual distribution of data are required. In our solution 
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The control of the number of clusters has been solved here by applying the 
so called validity measures (Gath and Geva, 1989, Babuska and Verbruggen, 
1998, Guillaume, 2001). These measures assess different parameters of clusters, 
on the basis of which the optimal number of clusters can be determined. We 
have applied four different validity measures in the solution of the problem. The 
first is the so called fu zzy hypervolume m easure vh 

c 

vh = L y'det(Fi )· (12) 
i =l 

A good partition is the one for which the hypervolume assumes a small value. 
The second measure is the average partition density D A that is defined as 

DA = ~ t si 
c i=l y'det(Fi ) 

(13) 

where Si are calculated only for vectors Xk that lie wit hin a hyperellipsoid , 
whose radii are the standard deviations of the cluster features, and are defined 
as 

si = .L:uik 
k 

(14) 

for such k, that (xk- cifFi 1 (xk- c; ) < 1. A good partition is achieved, when 
the average partition density D A assumes large value. 

The next measure applied here is the average within-cluster distance Dw 

(15) 

A good choice of cluster is once again indicated by high value of Dw. 
The last validity measure applied here is the average cluster flatn ess tA. It 

has been defined (Babuska and Verbruggen, 1998) on the basis of the eigenvalues 
,\ of the cluster covariance matrices F ;, arranged in a descending order , i.e., 
Ail ~ Ai2 ~ ... ~ AiN. In order to approximate the data by the hyperplane the 
clusters should be as fl at as possible. It means that the fl atness index of the 
cluster, defined as the ratio between the smallest and the largest eigenvalue of 
the matrix F i 

(16) 

should t ake the smallest possible value for each cluster. The average measure of 
the flatness of clusters, called the average cluster fl atness is defined as the mean 
of all the flatness indices 

1 c 

t.;=-'\"L. ( 171 



Neuro-fuzzy TSK network for function approximation 317 

1 

0.8 0.8 

0.6 0.6 
.<: 
> 

0.4 

0.2 

0 
2 

1 

0.8 

0.6 
;;; 
0 

0.4 

0.2 

0 
2 

i 
6 10 12 

Number of centers 

r r r , • 
6 8 10 12 

Number of centers 

..: 
0 

0. 

0 

!> 

1 

.8 

.6 

.4 

.2 

8 10 12 
Number of centers 

r r 
6 8 10 12 

Number of centers 

Figure 2. The shapes of four quality measures for the 2-D data distribution of the 
example 

A good partition is indicated by a small value of tA, prefernece being put on a 
small number of big flat clusters rather than a greater number of small ones. 

In our solution we aim at simultaneous satisfaction of all these four quality 
measures, i.e. , maximizing DA and Dw and minimizing V,, anf tA. To get one 
quality measure we define one global quality factor q in the following way 

(18) 

where ai for i = 1, 2, 3, 4 are positive scaling coefficients. The minimum of 
this measure indicates the optimal number of cluster centers. The procedure of 
adjusting the optimal number of clusters can be then stated as follows 

• Set the maximum possible number n of clusters that are taken into account 
in the clustering procedure. 

• Perform the partition of the data using GK algorithm for number of clus
ters equal i = 2, 3, ... , n. 

• Calculate the validity measures for all the acceptable possible numbers of 
clusters. 

• The optimal number of clusters is the number c ( c ::; n) that corresponds 
to the deepest minimum of the global quality factor q. Usually there 
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Figure 3. The global quality measure q obtained for the 2-D data of the example 

choose the one of the smallest value. The final criterion of selection is the 
quantization error Eq , that can be accepted in practical implementation 
of the algorithm. 

We will illustrate this procedure on the example of 2D data distribution pre
sented in Fig. 4 (the dots). The clusterization of the data has been performed 

o;':-, ---;C;;---;,';;- --;C;;-- ---;';----;:' 

Figure 4. The distribution of data of the example and locations of the cluster centers 
with the equal membership lines for 8 centers (left) and 11 centers (right ) 

for the number of clusters changing from 2 to 12. Fig. 2 illustrates the change 
of V/,, D A, Dw and tA versus t he number of clusters. The global quality factor 
q was calculated with the scaling coefficients chosen in a way to get uniform 
influence of all factors. Fig. 3 presents its change versus the number of centers. 
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ond to 11 centers. Both solutions are acceptable, leading however to different 
quantization errors E9 . Fig. 4 presents t he obtained locations of centers for 
both cases on t he background of the data, represented by the dots (the same in 
both cases). The small circles point to the positions of centers obtained by GK 
algorithms. The ellipsoidal lines indicate the posit ions of data of equal mem
bership degrees to the appropriate cluster (from 0.74 to 0.92). At 8 clusters the 
obtained quantization error E9 was equal E9 = 3. 76 x 10-4 . At 11 clusters this 
error has been reduced to Eq = 2.48 x 10- 4 . 

The clustering procedure described above has been applied for generating the 
inference rules for fuzzy TSK system. Each cluster center has been associated 
with the center of membership functions, forming the appropriate inference rule 
and the number of clusters indicates the number of applied rules. Note that 
cluster center is the N -dimensional vector, and each component of this vector 
points to the center in one dimension. 

6. Results of numerical experiments 

Different approximation tasks have been solved using the approach presented 
above and the results have confirmed good performance of it. The first task 
reported here is to approximate the static function of two variables given in the 
form 

(19) 
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in the input variable range [-10, 10] for both x1 and x2. The shape of this 
funct ion within the mentioned domain is shown in Fig. 5. 

The first task to do was the determination of the optimal number of inference 
rules. We have solved it using the self-organization and the procedure based 
on the quality measures, described in the previous section. Fig. 6 presents 
the curve of global quality measure versus the number of clusters. There are 
three minima, corresponding to three possible suboptimal solutions (indicated 
by dots). For further study we have chosen the smallest possible minimum 
of the quality measure, corresponding to 12 clusters. This number of clusters 
means M = 12 inference rules for TSK network. The membership functions 
appearing in each rule are independent to each other, so the number of adapted 
parameters for 2-input network is equal 72. The number of linear parameters of 
TSK functions is equal 36. That makes together 108 parameters of the system. 

Figure 6. The global quality measure versus the number of clusters for the first example 

The neuro-fuzzy network designed in this way has been tuned using the 
hybrid algorithm. Fig. 7 presents the changes of the parameters (centers, widths 
and exponent coefficients) of 6 randomly chosen membership functions in the 
adaptation process. As it can be seen the centers have moved only slightly from 
their initial positions obtained in the self-organization process. It means that 
the self-organization fulfills not only the role of determination of the number of 
rules but at the same time it is a quite precise pretuning. All other parameters 
not pretuned in the initial stage: the widths and the exponent coefficients have 
registered much higher changes specific to the problem. The hybrid learning 
process has reduced the error function 1 from the initial value of E = 2.7856 to 
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Figure 7. The adaptation of the parameters of six chosen membership functions by 
the hybrid algorithm: a) the centers, b) the widths, c) the exponent coefficients 
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the final value of E = 0.5748. At 200 learning samples it corresponds to the 
average of Es = 0.0029 per sample. 

After the learning stage, all parameters of the network have been frozen 
and the adapted network tested on the data, not having taken part in learning. 
Fig. 8 presents the results of testing. Fig. Sa depicts the actual approximated 
shape of the function and Fig. 8b - the error surface, that is the difference 
between the actual approximated values of y and the destination surface. The 
total error value for 200 testing data points attained the value of E = 0.7112, 
i.e., only slightly more than for the learning data. 

To check the quality of solution we have tried other numbers of rules: 8 
(another local minimum of the quality function) and 18 (the point corresponding 
to the maximum of the quality function). Table 1 presents the comparison of 
the results of learning and testing TSK network. 

Table 1 Comparison of results of learning and testing for the different numbers of rules 

I No of rules I Learning error I Testing error I 
8 1.1249 1.3107 
12 0.5748 0.7120 
18 0.3569 0.9203 

As it can be seen, increasing the number of rules decreases the learning error, 
but at the same time may increase the testing error (overlearning). Reducing 
the number of rules below the optimal one increases both: the learning and 
the testing errors. The table depicts the fact that 12 rules found in the self
organization procedure lead to the best results in the testing mode on the data 
not taking part in learning (t he best generalization). 

The network solution described here is also well suited for the on-line mod
elling of the dynamic, non parametric processes. Our next example is concerned 
with the on-line learning of the TSK network, modelling the dynamic process 
described by the following equation (Narendra and Parthasarathy, 1990): 

y(k + 1) = 0.3y(k) + 0.6y(k- 1) + 0.6sin(1ru) + 0.3sin(0.37ru) 

+ 0.1sin(57ru) (20) 

with u = sin(27rk/250). To find out the optimal number of inference rules we 
have generated the limited number (i.e., 1000) of data governed by this equation 
and performed the clusterization, according to the procedure described in the 
previous sections. The quality measure test has indicated that the best number 
of clusters was equal 4, so four rules have been used in further experiments. 

The next step was the on-line adaptation of the parameters of the TSK 
network, following the changes of the function. To make the problem more 
demanding, we changed twice the frequency of excitation. In this experiment 
the neuro-fuzzy network works in the adaptive mode, tuning all nonlinear pa-
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Figure 8. The results of approximation: a) the output 3D function, b) error of ap
proximation at 12 inference rules 
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the linear parameters by using SVD, with the starting values obtained from the 
initialization. This time the SVD procedure has been performed on the matrix 
formed by the last 150 samples, replacing each time the oldest sample by the 
one just acquired. 

D estina tio n and output signals 

Prediction orro r 

6 0 0 800 1 000 , 200 140 0 1 600 1 800 200 0 
Time 

Figure 9. The results of modelling of the dynamic function 

The results of experiment are depicted in Fig. 9. The upper figure presents 
the destination and the actual output signals, while the lower one - the adapta
tion error. The samples up to 1000 have been reproduced on the basis of off-line 
(batch) learning. The on-line learning has started from the sample number 1001. 
The change of frequency of excitation as well as the change of working mode 
has resulted in some distortions of adaptation and higher error of reproduction 
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imatelly 100 samples, the network has stabilized its operations and the error 
stayed on the lower level, slightly smaller than in the batch mode (the first 1000 
samples). 

This results have proved that the TSK network performs well in the on
line adaptation mode for the dynamic system modelling and may find practical 
application as the tracing system. 

7. Conclusions 

The paper has presented the neuro-fuzzy approach to the approximation of 
the static and dynamic processes. The multilayer network structure has been 
constructed and the parameter adaptation procedure, based on t he hybrid ap
proach, has been presented. The self-organization of the data has been proposed 
for establishing the optimal number of inference rules and pretuning the centers 
of the membership functions. 

The important feature of this approach is an easy and flexible way of gener
ating the inference rules. The self-organizing process combined wit h the quality 
measure is able to provide the optimal number of rules, leading to t he best 
performance of the network in the retrieval mode. In contrast to the classical 
neural network modelling the neuro-fuzzy approach offers very effi cient and fast 
adaptation. The examples presented in the paper have proved its efficiency 
in modelling both the static and the dynamic processes. The system based on 
neuro-fuzzy network is universal and relatively easy in practical implementation. 
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