
Control and Cybernetics 

vol. 31 (2002) No. 2 

Probabilistic morphological modeling of 
hydrographic networks from 

satellite imagery using Self-Organizing Maps 

by 

Marek B. Zaremba and Roman M. Palenichka 

Department d'informatique et d'ingenierie, Universite du Quebec 
Hull, Quebec J8Y 3G5, Canada 

Abstract: Adequate and concise representation of the shape of 
irregular objects from satellite imagery is a challenging problem in 
remote sensing. The conventional methods for cartographic shape 
representation are usually inaccurate and will provide only a rough 
shape description if the description process is to be fully automated. 
The method for automatic cartographic description of water basins 
presented in this paper is based on Self-Organizing Maps (SOM) - a 
class of neural networks with unsupervised learning. So-called struc­
tured SOM with local shape attributes such as scale and local con­
nections of vertices arc proposed for the description of object shape. 
The location of each vertex of piecewise linear generating curves that 
represent skeletons of the objects corresponds to the position of a 
particular SOM unit. The proposed method makes it possible to 
extract the object skeletons and to reconstruct the planar shapes 
of sparse objects based on the topological constraints of generating 
lines and the estimation of local scale. A context-dependent vertex 
connectivity test is proposed to enhance the skeletonization process. 
The test is based on the Markov random chain model of vertices 
belonging to the same generating line and the Bayesian decision­
making principle. The experimental test results using Landsat-7 
images demonstrate the accuracy of the proposed approach and its 
potential for fully automated mapping of hydrological objects. 

Keywords: self-organizing maps, neural networks, morpholog­
ical modeling, satellite image processing, skeletonization, Markov 
chains. 

1. Introduction 

In several tasks related to the processing of satellite imagery, the main concern is 
adequate and concise representation of the shape of a particular class of objects. 
What is of interest in this paper is the task of automated hydrographic mapping 
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hydrological objects, such as rivers, canals, lakes, etc., from the image, and 
their aggregation in a graphical structure in order to obtain a complete shape 
description of the objects. In practice, this task is often complicated by the 
presence of sparseness, discontinuities, and occlusions. A typical example of 
a hydrographic network is a water basin consisting of many rivers of various 
widths and lengths. The shape sparseness and discontinuities result here mainly 
from occasionally narrow segments of rivers, segmentation procedures applied to 
noisy images, and insufficient resolution of t he imaging system. The occlusions 
are a result of the cloud, bridge or tree coverage. Similar problems are also 
encountered in tracing road networks from aerial or satellite imagery. What 
makes automated mapping of hydrological networks more challenging is the 
need to deal with irregular shapes of widely varying scale. 

Most existing algorithms for object detection and tracing are based on struc­
tural features capable of providing a description that can be used to extract the 
objects of interest from a given scene. For example, boundaries of objects, 
snakes and skeletons (medial axes) are often used as reliable shape descriptors 
(Haralick and Shapiro, 1992). The approach based on shape skeletons is, in 
the context of this application, efficient since it can represent in a very concise 
manner the topology of an object with several connected parts and shape details 
(Blum and Nagel, 1978). Such a description can be considered as a mixture of 
region-based and boundary-based shape descriptors. 

The classical skeletonization algorithms are based on an iterative thinning 
of objects in a binary image until predetermined conditions for the resulting 
skeletal shape are satisfied (Haralick and Shapiro, 1992). Here, they will be 
not considered for the solution of the above stated problem because they fail 
to extract skeletons correctly when the shape is sparse. Fortunately, there arc 
several methods for coping with sparse shapes. The most popular, offering a 
good compromise between efficiency and simplicity, are based on median filter­
ing and morphological set operations: dilation, opening, and closing (Haralick 
and Shapiro, 1992, Chen and Yu, 1996). Afterwards, a standard thinning algo­
rithm is applied to extract the shape skeleton. However, such methods usually 
introduce a large number of distortions when the shape sparseness is significant, 
especially, when discontinuities or occlusions are present. 

Recently, a statistical method of principal curves has been developed to 
extract directly the skeletal description of point sets without using classical 
thinning procedures (Hastie and Stuetzle, 1989, Kegl et al., 2000). The un­
derlying idea is the generalization of a linear principal component approach to 
a concise representation of sets of points in the form of principal curves and 
graphs. The algorithms for drawing principal curves using piecewise linear ap­
proximation are, in their initial form, limited to simple curves or manifolds, 
where, for example, no intersections arc allowed. Their application to more 
complex sets of points requires the use of segmentation and thinning procedures 
in order to extract a graph that provides a rough approximation of the resulting 
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Unsupervised neural network methods, such as those based on self-organizing 
maps (SOM), are quite robust against sparse shapes. This is a novel application 
of the self-organization principle in image analysis since the SOM approach is 
applied usually for the clustering image intensity and recognition of objects in 
images. On the contrary, in application to detection of objects with sparse shape 
object points on the image plane are self- organized by using a SOM structure. 
For example, a flow-through SOM is used to obtain the shape skeleton of a 
connected set of points (Datta, Parui, and Chaudhuri, 1996). The SOM is 
initialized with a linear topology and evolves to different local patterns based 
on the angle formed at each map unit by its neighbors and the distance between 
the two map units. The use of a flow-through SOM in this method is sensitive 
to the learning schedule and the order in which the data are presented. 

Another similar approach, which is based on the batch formulation of the 
SOM algorithm, has been proposed for the shape skeletonization (Singh, Cher­
kassky and Papanikopoulos, 2000). The shape skeleton is obtained from a data­
driven minimal spanning tree (MST) topology. This method has shown good 
results, but it requires an initial segmentation of the connected object compo­
nents . The method deteriorates if the segmented object contains components 
of various sizes; then the skeleton parts corresponding to larger- scale compo­
nents become ragged. The idea of adaptive SOM-based skeletonization in an 
application to shape extraction of simple objects has also been proposed by 
Der, Balzuweit and Herrmann (1996). An effective method for controlling the 
skeleton smoothness is the use of an adaptive scale parameter in the neighbor­
hood function of the SOM that performs the skeletonization. Hierarchical shape 
description using symmetric axes is another useful generalization of the conven­
tional, single-scale, skeletal representation of a planar shape (Pizer et al., 1987, 
Ogniewicz and Kubler, 1995). It permits extraction of the most relevant shape 
features at different resolutions by starting from larger scales, and provides a 
natural association of shape details defined at lower scales with the skeleton 
lines obtained at larger scales. 

A common deficiency of existing approaches to skeletonization is the absence 
of an underlying model for shape representation. A model-free method, which 
does not take contextual information into account, is not able of extracting 
skeletons reliably when the object shape is sparse and includes discontinuities 
or local occlusions. It makes the theoretical performance analysis of a particular 
algorithm hard, thus concealing the ways to a further improvement of t he algo­
rithm. In particular, the SOM-based algorithms do not take into consid eration 
the size variations of the object elements, and the const ra ints involved in the 
analysis of the possible connections between skeleton vertices, whicl1 corrcspoud 
to the SOM units (Singh, Cherkassky and Papanikopoulos, 2000). All this yields 
poor skeletonization results if the obj ect is composed of parts of various widths. 

The proposed SOM-based skeletonization algorithm is based on a morpho­
logical image model where the planar shape of the object is represented by 
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lines represent skeletons of the planar object. A piecewise linear representation 
of curvilinear generating lines has been adopted for the purpose of a uniform 
model description and the ease of implementation. The concept of so-called 
structured SOM with local shape attributes, such as local scale and connec­
tions of vertices, is used to define the object shape. The location of each vertex 
of the piecewise linear generating curves on the image plane corresponds to 
the position of a particular SOM unit. The topology of the structured SOM 
adapts, through the self-organization process, to the skeletal topology of the 
modeled object, and the estimated attributes of the SOM units describe the 
skeletal shape attributes. The proposed method permits extraction of skeletons 
and reconstruction of sparse shapes of planar objects based on the topological 
constraints of the generating lines and an estimation of the local scale. 

In contrast to other methods, the connection of each skeleton vertex with its 
closest adjacent vertices is tested based on statistical model constraints. In this 
way, the connectivity problems due to local occlusions, shape discontinuities 
and sparseness can be to a large extent avoided. Another useful novelty of 
the proposed algorithm is the incorporation of information on the object local 
scale into the smoothing kernel function, which controls the self-organization 
of SOM. It provides a size-invariant self-organization of units along the medial 
axes for objects consisting of several parts with substantially different sizes. In 
contrast, the known SOM-based algorithm using MST (Singh, Cherkassky and 
Papanikopoulos, 2000) gives in practice uneven and ragged skeleton lines for 
objects, which contain elongated parts of various widths. 

Following the introduction in Section 1, the underlying morphological model 
is presented in Section 2. The formal statement of the problem of shape extrac­
tion and tracing is defined in the context of learning the object model. Section 3 
presents the proposed method for the extraction of the skeletal shape of objects 
from multi-spectral images such as satellite images. The section describes the 
application of structured SOM for the extraction of skeletal shapes in the form 
of piecewise linear generating lines along with the estimation of scale attributes 
and connectivity attributes for each SOM unit. Experimental results of object 
extraction and shape reconstruction, as applied to synthetic and real images 
from remote sensing, are described in Section 4, and concluding remarks are 
given in Section 5. 

2. Morphological model 

2.1. Representation of multi-spect ral images by property maps 

In the case of multi-dimensional image data, such as multi-spectral satellite 
imagery, several images of the same scene can be provided simultaneously. In 
remote sensing, they represent, for example, a view of the earth surface obtained 
by using electromagnetic radiation of different wavelengths. A pixel with image 

0 0 
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T intensity values corresponding to T wavelength bands . Images obtained from 
the Landsat-7 satellite using the Enhanced Thematic Mapper Plus (ETM +) 
scanning radiometer instrument are produced with seven bands of reflected en­
ergy and one band of emitted energy. Since one of the eight ETM+ channels 
is a panchromatic channel, in Landsat-7 imagery T = 7. In many applica­
tion areas, multi-dimensional image data are also obtained from a single image 
by extracting local intensity properties with respect to each image point (i , j). 
This approach is frequently applied to images with textured objects and back­
grounds. In the case of Landsat-7, such extraction could be performed on the 
panchromatic channel data. 

There are usually correlations- especially in the thermal bands- between 
the intensity components of the same pixel. The correlation between adjacent 
pixel intensit ies for each image component g( i, j) of a multi-spectral image can 
be described using a dynamic polynomial regression model (Palenichka and 
Ivasenko, 1999). The model is valid in every image point but may have different 
parameters in different points in order to represent the non-homogeneity of 
image intensity. This image model states that the image intensity function g( i, j) 
can be represented by a polynomial function of order q within a neighborhood 
region (window) ar~mnd the current point and an independent white noise term. 

In order to consider both the intensity and the shape description of given ob­
jects in mul ti-dimensional images, an intermediate image representation , called 
property map, will be used in the modeling. The property map is obtained 
from the initial multi-dimensional image by extracting one relevant image prop­
erty per point . The map generates a piecewise constant model of objects to 
be segmented in the initial multi-dimensional image by defining a function 
h.i (b1 , b2 , .. . , br), which is an implicit function of components of the multi­
band intensity vector [b1 , b2 , ... ,br] in point (i,j). It is also assumed that a 
random zero-mean perturbation term y(i,j) with a unit variance is present in 
point (i,j). Thus, the property map can be defined as: 

where TL ( b1 , b2, . .. , br) is a vector of constant intensity values of image plane 
segments corresponding to objects belonging to class l (e.g., a water basin), the 
indicator function 'Pl ( i, j) is a binary map of objects of the lth class, and >. 
is the perturbation level, i.e., the standard deviation of the white noise term 
>. · y(i,j). The indicator function 'PL(i , j) is equal to zero in the whole image 
plane except for the points belonging to objects of interest in the lth class. In 
the modeling by Eq. (2.1), it is supposed that a majority of elements (points) 
of the perturbation term in (2.1) is composed of independent identical normally 
distributed random variables with variance >. 2 except for a relatively small num­
ber of outliers . An uncorrelated outlier occurs with a certain probability and 
has a different distribution of its intensity. The outlier points are responsible for 
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by comparing Ai (b1, b2, ... , bT) with two constant thresholds: lower threshold 
81 and upper threshold Ll1. If Ai ( b1, b2, ... , bT) is within the thresholds, then 
the point ( i, j) is considered as a point of a class l object; otherwise it belongs 
to objects of other classes. The outlier probability is equivalent, in this case, 
to the percentage of shape sparseness 1l'. Other types of shape distortions, such 
as discontinuities and occlusions, can also be modeled by outliers, but with a 
higher degree of correlation and under the assumption of a particular distribu­
tion law. 

Since the explicit form of function J;,j(bl, b2, ... , bT ), which extracts the 
intensity property, is not known, the self-organization principle used in SOM can 
be exploited to obtain this functional transformation implicitly. It applies the 
well-known capability of the SOM-type neural networks (Kohonen et al.,1996) 
to perform clustering of input vectors, in this case vectors with coordinates 
(b1, b2, ... , bT ). Such a clustering provides an effective segmentation of the input 
multi-band image in the form of a binary image ry(i,j). Each image point 
(i,j) whose property is located within a given cluster (clusters), i.e. belongs to 
an object of class l is labeled in ry( i, j) by "1", the other points of the image 
ry(i,j) are labeled by "0". The actual shape sparseness 1l' for objects of class l 
can be measured from the binary image ry(i,j) and binary map 'Pt(i,j) by the 
percentage of object points with the value "1" with respect to all the object 
points. The total number of object points of lth class is equal to all non-zero 
points in 'Pt(i,j). 

2.2. Morphological representation of planar shapes 

The objective of planar shape modeling is to obtain a concise representation of 
an object whose property map satisfies model (2.1). An efficient approach to 
defining the planar shape is to use the multi-scale morphological image model 
that describes the object by using structuring elements, axes of symmetry, and 
skeletons as well as a contour description (Haralick and Shapiro, 1992). Some 
interesting extensions of the skeletal shape description to the multi-scale repre­
sentation of planar shape were discussed, for instance, in Pizer et al. (1987), 
Ogniewicz and Kubler (1995). In our approach, a simple multi-scale morpho­
logical model is assumed when developing a skeletonization algorithm. In this 
model, one initial structuring element So of a minimal size is selected that de­
termines the size and resolution of the imaged objects. It has a symmetric disk 
shape to insure the rotation invariance as well as a reasonable approximation 
of different possible shapes. Two types of scales can be distinguished, uniform 
scales and logarithmic scales. The structuring element with diameter dm at scale 
min the uniform scales system is formed, as shown in Fig. 1, by a consecutive 
binary dilation (denoted by EB) by So, Sm = Sm-1 EB So, m = 1, 2, ... , M- 1, 
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0 

So 

Figure 1. An example of formation of 5 uniform scales by consecutive scale dilation 
of So. 

Generation of a planar object shape can be modeled, in the continuous and 
discrete cases, by a growth process (Maragos, 1989). Formation of an isolated 
object starts from a single point called seed. The seed begins to grow along a 
generating line, straight or curvilinear, forming a growth path. In the discrete 
case, the growth path is represented by a generating set. The generating set is a 
one-pixel wide connected set of points, each of them- except for the end points­
having two adjacent points. A piecewise linear approximation in the form of 
straight-line segments is used here to represent curvilinear generating lines as 
well as direct lines. A constraint of constant curvature, meant as the same angle 
between two adjacent straight-line segments, is imposed on the generating line. 
A scale value is assigned to each vertex point and a generating line is represented 
as a concatenation of straight-line segments. Given two vertices, a blob-like 
object is formed by two structuring elements, Sk and 51, with diameters dk and 
d1, associated with the end vertices Uk and u1 of a given straight-line segment 
G (see example in Fig. 2a). 

(a) (b) 

Figure 2. An example of a blob-like object with a segment trapezoid Zc( Uk, ui) shown 
in dashed lines in (a) and multi-scale formation of a simple object (b) by the concate­
nation of blob-like objects. The generating lines composed of straight-line segments 
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The domain region U of the blob-like object is formed by using the opera­
tion of dilation of a generating straight-line segment (set) G with a structuring 
element, S(G), of variable size (scale): 

U = G EB S(G) = U Sm(i,j), (2.2) 
(i,j)EG 

where Sm(i,j) is the structuring element wit h sized as the following function 
of point ( i, j) of the generating line G: 

(2.3) 

where ak(i,j) and az(i,j) are the ratios of distances between the current point 
( i, j) and the end points of the generating line divided the length of the gen­
erating line segment. The object points that are projected on the straight-line 
segment G (excluding the vertices) are within the segment trapezoid Za ( Uk, uz) 
(see Fig. 2a). A multi-scale object of interest is formed from the blob-like objects 
by concatenating their vertices, as shown in Fig. 2b. The result of concatenation 
at a single scale produces a primitive object. Thus, an object of interest com­
posed of parts with different scales is a concatenation, according to Eq. (2.3), 
of primitive objects of different scales. 

Finally, this morphological model of planar shape is combined with the image 
property model (2.1) in such a way that every binary map cpz(i,j) for objects 
belonging to class l is represented by the morphological model, using Eq. (2.2) 
and (2.3). 

2.3. Markov chain model for generating lines 

The correlation of a current vertex position with the positions of the previous 
two vert ices connected in a straight-line segment offers additional information 
for checking the vertex connectivity, provided they belong to the same gener­
ating line. A Markov random chain model is suitable to describe in a natural 
and very simple manner the position of the next vertex of a generating line as 
dependent on the direction of the previous straight-line segment (Kemeny and 
Snell, 1976). It can be considered as a consistent model for the growth process 
of a generating line. Namely, it describes a macro-growth process in the sense 
that the growth is observed along the ent ire generating line, with a subsequent 
scale interpolation by Eq. (2.2) to form the object planar shape. The model 
consistency is valid for hydrographic networks whose planar shape can be mod­
eled using the proposed morphological model with relatively long and smoothly 
varying generating lines. The constraint that the direction of such generating 
line cannot vary abruptly is quite natural in this case. 

The Markov chain model is used here to provide the probability of the posi­
tion of the next vertex of a generating line with respect to the positions of the 
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line macro-growth process can be defined by the conditional probabilities of the 
new vertex position with respect to the positions of the previous two adjacent 
vertices on the same generating line. Let u., Ut and Uk be three consecutive 
vertices of two straight-line segments [us, ut] and [ut , uk] of the same generat ing 
line. The Markov chain model of a generating line G can be defined in terms of 
conditional probability of the slope fh,k of line segment [ut, uk] with respect to 
the slope () s,l of its preceding straight-line segment [us, ut]: 

where P(Bt,k/[ut, uk] E G) is the unconditional probability of the slope of 
the straight-line segment between vertices k and l of the same line G, and 
P( Bt,k / () s,l, \1 {[us, ut], [ut, uk]} C G} is the conditional probability of the slope 
of the straight-line segment between vertices k and l of the same generating line 
G provided that the slope of straight-line segment [us, ut] C G equals Bs,l· 

In practice, two approaches can be used in order to define explicitly the 
probability (2.4): the empirical distribution function and the probability density 
function with estimated parameters. The distribution parameters arc estimated 
during the model learning stage (see Section 2.4). The parametric approach 
is quite suitable in this case since, for example, a uniform distribution of the 
slope difference () = Bk,l - Bs,l with zero mean describes quite well the real 
situations. A Gaussian density function x(B) is also a good approximation of 
the real situations since the angle difference () will osci llate around zero for a 
smoothly varying generating line: 

(2.5) 

where C is the variance of the random variable B. It is assumed that the 
variance e is constant for all generating lines, whereas the mean value of the 
slope difference is equal to zero. 

2.4. SOM learning of morphological models 

In application of our model, the problem of shape extraction for objects of class l 
consists in solving two separate problems: segmentation of objects and morpho­
logical shape extraction. The solution of the segmentation problem corresponds 
to finding a clustering mapping of the primary feature space (dimension T) to 
the property map (dimension 1) for class l of the objects having their cluster 
center at Tt (Eq. (2.1)). The solution of the shape extraction problem in the 
case of piecewise linear skeletons consists in determining a multi-scale structural 
graph of the entire planar shape. As discussed earlier, the generation of the mor­
phological model can be reduced to the definition of the vertices of line segments 
and their local connectivity as well as the vertex scales. The approach based 
on self-organizing maps has been applied to solve both problems. However, the 
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of the first problem involves multi-dimensional sets, i.e., vectors of primary fea­
tures with T band components, for training a conventional (unstructured) SOM 
(Zaremba et al., 2000). In contrast, the point sets defined in two respective 
coordinates of segmented images are the input data for the model-based shape 
extraction that uses a structured SOM. 

Shape extraction and 
object tracing 

r------ - ----
1 
I 
I 
I 

Model 
parameters for 
property map 

Property learning 
mechanism 

--- - -.--- - --, 

Parameters of 
morphological 
shape model 

Shape learning 
mechanism 

Figure 3. Shape learning and extraction for object tracing in multi-spectral images. 

An enhanced fuzzy SOM (FSOM) learning algorithm was used to train the 
unstructured SOM. In this algorithm, the learning rate is replaced by a mem­
bership value, which is related to the distance between the centres of clusters 
and samples. The winning cluster takes the largest membership value. The 
fuzzy SOM algorithm can be presented as the following sequence of steps: 

STEP 1. Randomly initialize the weights Wij, select the number of clus­
ters c, neighborhood size, neighborhood decrease rate, mo (1 < mo < oo ), 
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STEP 2. Update all the winning neurons, for which the Euclidean distance 
is smallest, and their neighborhood: 

·(k + 1) = ·(k) + l::~=l O:ij(k)m(kl(xi(k)- Vj(k)) 
V; V; "'n o:· ·(k)m(k) ut=l tJ 

where o:( k) is calculated by using equations: 

(2.6) 

(2.7) 

(2.8) 

The parameter m in (2.7) is equal to m(k) in (2.6) and changes with time 
according to: 

(k) _ (1 -E(k)) . m - mo - e + mmm (2.9) 

where m 0 and mmin are some positive constant greater than one. 

STEP 3. Calculate 

(2.10) 

If E(k) < c, stop. Else, if the neighborhood update time is reached and the 
neighborhood > 0, reduce the neighborhood by 1, and then go to Step 2. 

The degree of fuzziness is related to m. As m ---+ oo, O:ij ---+ 1/ c and when 
m ---. + 1, O:ij ---+ 1 or 0. At the beginning, m( k) is almost equal to mo + mmir" 

as E( k) is large. The winner and its neighborhood are updated at almost the 
same learning rate. During learning, E( k) decreases, and the learning rate of 
the winner will be larger than of its neighborhood. Finally, m( k) will be closer 
to mmin, and m ---+ + 1. 

In order to reduce the computational time in equation (2. 7), the neighbor­
hood size also shrinks with time. When the neighborhood size is becoming 
smaller, because only the membership values of winner and its neighborhood 
will be calculated, the computational time is reduced, especially for a large 
number of clusters. In the fuzzy SOM, updates are non- sequential, thus the 
updated weights are independent of the data labels. Rather than terminating 
at an assigned number of iterations, fuzzy SOM algorithm terminates when it 
converges. 

Labeling of object classes can be performed manually, for example, by the 
user pointing on pixels belonging to objects of a river basin. In contrast, the 
learning phase on the stage of shape extraction using a structured SOM consists 
simply of the determination of basic parameters in the underlying morphological 
model. It includes the computation of the range of object sizes (local scales) as 
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lines (Section 2.3). Additionally, some parameters of the property map model 
are also computed during the shape learning. For example, the shape sparseness 
1r (Section 2.1) is estimated during the model learning in order to be used later 
in the skeletonization algorithm while connecting skeleton vertices. 

3. Tracing of skeletal shapes 

3.1. Segmentation of objects of interest and extraction of skeletal 
shapes 

As discussed above, the proposed method for model-based tracing of object 
shapes consists of three main stages: segmentation of objects belonging to a 
given class, determination of object multi-scale skeletal shape by piecewise linear 
skeletonization, and morphological reconstruction of the planar shape. The 
principle of self-organization is used for both image segmentation and planar 
shape extraction. The SOM-based segmentation is applied prior to starting 
the skeletal shape extraction. A conventional self-organizing network performs 
clustering of multi-spectral images and formation of the property map followed 
by a binarization procedure (e.g., Ritter, Martinez and Schulten, 1992). As a 
result of the training process the SOM is tuned to classify objects of interest 
belonging to the same class. A one-dimensional linear or two- dimensional eight­
neighbor SOM topology can be successfully used for this purpose. If the linear 
topology is selected, then the cluster border for the lth object class is defined 
by two threshold values thresholds 8l and L11 in the SOM topological space. 
Such a linear topology establishes a correspondence between the position of 
the SOM unit in the linear self- organizing map and the continuous values of 
fi,j ( b1 , b2, ... , br) in the model (2.1) of the property map. If a pixel magnitude 
of the image property map falls within the two then it belongs to class l, and 
the corresponding pixel of the resulting binary image ry( i, j) will be labeled by 
"1". At a proper selection of the total number of used units, a single neural unit 
can be selected for labeling object points of lth class. This means that the two 
thresholds 81 and L11 will coincide. The obtained image 17( i, j) is an estimate 
of the model for the indicator function <p1(i,j) in Eq. (2.1) and represents 
the objects of that class in the form of a binary image. After this, the shape 
extraction algorithm (see Section 3.2) based on the notion of structured SOM 
takes the object points labeled by "1" of image ry( i, j) as input data for the 
skeletonization. The SOM units, which correspond to vertices of the shape 
skeleton, are connected in a multi-scale structural graph (MSG) based on a 
connectivity test. The connectivity attributes describe the skeleton topology on 
the image plane and the scale attribute associated with each SOM unit provides 
the local size of the objects of interest. 

The skeletonization approach based on the structured SOM with shape at­
tributes allows us to reconstruct the planar shape of objects of lth class, i.e. 
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tons of sparse objects in cp1(i,j) are extracted correctly, then the reconstructed 
shape will be not sparse and will not contain discontinuities or occlusions if such 
were initially present. 

(a) (b) (c) 

Figure 4. Different shape reconstruction results from the same piecewise-linear skele­
ton. 

Scale plays an important role in adequate reconstruction of the object shape 
from its skeletal representation, since skeletons alone give ambiguity in shape 
representation. This is illustrated in Fig. 4 for the case of a bar-like object. In 
Fig. 4a there arc 6 vertices connected by applying the minimal spanning tree 
(MST) algorithm without relying on the object scales. As a result, the object is 
reconstructed as a rectangle. In Fig. 4b we have the same 6 vertices connected 
by the MST algorithm with the scale information; the same scale is assigned 
to all the vertices. Similarly, the two central vertices in Fig. 4c have the same 
scale factor, whereas the four peripheral vertices have a smaller scale. Let us 
note that in this example, scale-based linear interpolation (2.2) has been used 
to reconstruct morphologically the objects of interest. 

3.2. Determination of skeleton vertices using structured SOM 

The procedure of finding the vertices of piecewise linear skeletons is based on 
a batch-mode SOM training algorithm, since in this case the final positions of 
map units are not sensitive to the order of presentation of image pixels (Singh , 
Cherkassky and Papanikopoulos, 2000). The algorithm using the MST topology 
has shown a good performance but is not well suited fo r a multi-scale shape. 
In the proposed approach a structured SOM is used , where the units contain­
besides the conventional coordinates in the data space - such attributes as local 
scale and local connectivity. Local connectivity attributes are in the form of a list 
of adjacent units connected to the current unit . The scale attribute is important 
for correct skeletonization of multi-scale objects, and it is also necessary to 
determine the connectivity between the vertices, as well as to reconstruct the 
object shape. Correct determination of the local connectivity between vertices is 
of particular importance, since there is no known general approach to evaluating 
the connectivity in the case of sparse shapes . 

The proposed procedure for shape learning and extraction is illustrated in 
Fig. 5. Vertices of the piecewise linear skeletons are determined by iterating four 
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are shown within oval blocks. The image data after segmentation of objects of 
a given class are represented as binary shape map, i.e. a binary image ry(m, n). 
Additionally, the learned or statistically estimated parameters of the underlying 
morphological model (see Section 2.2) are available at all steps of the algorithm 
for the purpose of utilization of object shape constraints when dealing with 
sparse shape data. 

The SOM-based method of skeletonization using MST (Singh, Cherkassky 
and Papanikopoulos, 2000) does not check for sparse connections between the 
tree vertices. Therefore, it is not suitable for describing circular and other 
connected contours without performing an additional connectivity check. These 
shortcomings of the MST approach were a motivation for using, instead, a 
multi-scale structural graph (MSG) for skeletonization. The proposed SOM­
based algorithm using MSG consists in iterative updating of unit weights while 
progressively decreasing the span of a SOM kernel function. The kernel function 
of the SOM, which takes into account the scale attributes of SOM units, controls 
the updating of unit coordinates in the data space. Eventually, the object 
skeleton in the form of a MSG is determined by iterating Steps 1- 4 in the 
following algorithm (see Fig. 5): 

connectivity 
of vertices 

Voronoi 
tessellation of 
object points 

r----------~ r----------.. r---- ------~ r- ------- -- ~ 

L __ ~:~_1 ___ j L __ ~:~! ___ j l __ ~:~! ___ j L __ ~:~_4 ___ j 
I 

'---------------------------------------' 
No Stop 

L---------<, iteration? 

Figure 5. General flowchart for the SOM-based extraction of skeletal shapes using the 
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Input and output data of the algorithm. The structured SOM is 
given by its neural units u1, ... , UK and unit weight vectors w 1, ... , w K. Two 
kinds of shape attributes are associated with each unit: one scale attribute Pr, 
where r = 1, ... , K, and K binary connectivity attributes. The range of a scale 
attribute is determined by the used scale system with M structuring elements 
{ Sm }, m = 1, 2, ... , M -1. For a current unit, the connectivity attributes given 
in an incidence matrix indicate to which units the current one is connected. The 
incidence matrix is a diagonal symmetric matrix of size K x K with elements 
{ ak,L} equal to one or zero depending on the connectivity of units Uk and u1 . 
Input data vectors v 1 , . .. , v N represent the image plane coordinates of object 
points given in binary image ry(i,j), which is obtained after the image intensity 
clustering (segmentation) using a conventional SOM learning procedure. N is 
the total number of non-zero points in the binary image ry( i, j). The output 
data of the algorithm is a MSG, a graph with vertex attributes that describes 
the skeletal shape of objects in the binary image ry(i,j). In fact, the MSG is 
the structured SOM obtained after the self-organization process based on the 
data of image 17( i, j). Each vertex of the MSG corresponds to a particular SOM 
unit Un r = 1, . . . , K, although some SOM units may be void (eliminated) after 
the self-organization process. Eventually, the MSG can be a weighted graph 
with probabilities of connectivity attached to the graph edges. This is the case 
when a measure of connectivity strength (e.g. , a probability of connectivity) is 
evaluated during the formation of the MSG. 

STEP 0. Initialization. SOM units u1, ... , UK are initialized in the data 
space. For example, a linear plane initialization can be made with respect to 
weight vectors w 1, ... , w K, which represent a two-dimensional grid topology. 
The initial total number of units K (a certain number of units may later be 
deleted) should be comparable with the maximal number of vertices in the object 
skeletons according to the model data. This parameter can be determined based 
on the maximal rank of vertices and the length of minimal straight-line segment. 
Here, the rank of a current vertex indicates how many vertices are connected to 
this vertex. The scale attributes of all units , p1, ... , PK, are set to a maximal 
scale value, which is comparable with the image size. This means that each 
unit is initially connected to its q nearest neighboring SOM units, where q is 
the maximal allowed rank of vertices. 

STEP 1. Determination of vertex neighborhood connectivity. At the begin­
ning, SOM units are locally connected into local structures by checking the 
connectivity between units in a given region (see Section 3.4 for details). Dur­
ing the first iteration, the full connectivity will be established since the unit 
scales are all equal and maximal in size. The connectivity test is based on the 
analysis of the input data vectors that are located between two units having the 
same range of scales. Connectivity attributes are assigned to all the units. 

STEP 2. Matching of point coordinates to vertices. This step corresponds to 
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a similarity measure. The number Zp of a SOM unit in the topological space, 
which is closest to pth data point, is determined as 

Zp = argmin JJvP- wriJ, p = 1, ... , N. 
r 

(3.1) 

As a result, the region of object points of the input binary image 7r( i, j) will be 
partitioned into N Voronoi regions, {Vp}· The new weights of rth unit, ur, will 
be determined based on pixels belonging to the rth Voronoi region and to the 
regions, which are adjacent to Vr. 

STEP 3. Evaluation of vertex scale. The scale attribute of rth SOM unit , 
Pr, is estimated by considering the Voronoi region of the SOM unit , and is 
proport ional to the number of points in rth Voronoi region, Vr. However, more 
accurate scale estimation is made by finding the maximal disk inscribed into 
the Voronoi region Vr as follows: 

Pr=argm;;x{ imat {I,;.J L 1J(m,n) 
( ,J)E k k ( )ES (' .) rn,n k t,J 

-~~kl L .. 1J(m, n)l} }, (3.2) 
(m ,n)ERk(t ,J) 

where k = 0, ... , M- 1, 17(m, n) is the pixel value of the binary image at point 
(m,n) obtained after the object segmentation, Sk(i,j) is the kth structuring 
element centered in point ( i, j), Rk(i, j) is a ring of points around it, JSk J denotes 
the total number of points inside the set Sk, and M is the total number of scales. 
The structuring element Rk ( i, j) is a disk with diameter dk centered at point 
(i,j) (see Fig. 1). The width of the ring Rk = Sk+1 \ Sk is selected as being 
equal to the minimum distance between two separated objects in order to extract 
isolated objects. Such a scale estimate is used due to the assumption of shape 
sparseness: the direct method of the maximal inscribed disk gave poor results. 
Point tr = (i,.,jr) E Vr, which corresponds to the maximum value of the scale 
calculated according to (3 .2) is called the attraction point of the region Vr. The 
use of the scale estimate and the attraction point is needed when calculating 
conditional expectation of unit coordinates in the next step of this algorithm. 

STEP 4. Updating of coordinates using conditional expectation. This is the 
stage of updating the weights of SOM units, i.e., the vertex coordinates. We 
use here a modified approach to conditional expectation, so that it takes into 
account the scale attribute associated with a current unit (Singh, Cherkassky 
and Papanikopoulos, 2000): 

2:,;'=1 VpcT>(wr, Wp, t,.) 
Wr = K , r = 1, ... , K 

L,p=l cJ>(wn Wp 1 tr) 
(3.3) 

where ci>(wr. wn. tr ) is a monotonically decreasing kernel function defined indi-
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rth and pth SOM units, and distance L1 2 (wn tr) between the position of unit 
r and the position of attraction point t ,. E Vr· A Gaussian kernel function has 
been used as t he smoothing kernel function <I>(Ll1 + Llz) of the distance in (3.3): 

(3.4) 

where parameter CJ determines the span of the kernel function . The distance 
function Ll1(w,., wp ) is defined within the SOM units connected to ·up, i. e., 
within a primitive object. The simultaneous use of two variables in the kernel 
function makes it possible to adapt to scale differences in object segments, and 
to extract correctly the skeleton points of object parts of different size. The use 
of the smoothing function in (3.4) is just ified by the fact that it represents the 
conditional probability that point vP belongs to unit Ur in the current iteration 
step (Mulier and Cherkassky, 1995; Villmann et al. , 1997). This probability is 
determined by two factors: the distance between points Vp and w,., provided 
vP is connected with w r, and the distance between point vi and t he attraction 
point tr, provided it belongs to V, .. 

STEP 5. Checking the iteration condition. The span of the kernel function in 
(3.3) is linearly decreased in this step by decreasing the values of CJ in (3.4). The 
termination condition for iterative computation of MSG vertices in Steps 1- 4 
of the algorith m is the condition of unchanged position of vert ices w 1 , .. . ,wg 
with respect to the previous iterat ion. 

STEP 6. Determination of multi-scale structural graph. During this step, 
the connectivity between local structures determined in Step 1 is checked. The 
verification consists in determining the connect ivity of all non-connected ver­
tices between the local structures. During this step, the connect ivity between 
vertices and elementary straight-line segments is also determined . If a vertex 
is connected to a line segment, then this vertex is added to the skeleton and a 
new SOM unit with its local connectivity attributes is inserted into the list of 
units. Such a vertex insertion provides more exact approximation of skeletons 
with crossing lines and other higher-order connections. 

Further details of this algorithm, concerning mainly determination of con­
nectivity between vertices, are given in the next sections. 

3.3. Optimal aggregation of vertices in a MSG 

Let us suppose that all vertices of MSG have been determined by the above­
described method using a structured SOM. Now the problem consists in con­
necting the graph vertices in an optimal way and according to the actual image 
data. Let us consider a MSG graph that is a weighted graph without vertex 
attributes. The edge weights of the graph can represent t he probabilities of the 

rr'IL - - .1.. -- : _ L J.. 1: -,.... ~ .... .-.................... ~ ..... 
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represent the skeleton segments of objects. It is natural to demand that the 
total probability of vertex connectivity be maximal. Let us assume that the 
MSG is composed of a spanning forest with respect to the vertices. The total 
probability of vertex connectivity, Pc(A), in a spanning forest A is: 

Pc(A) = II Pc(Uk A UL), 
u,,ukEA 

'<lk#l 

(3.5) 

where Pc(uk AUt) is the probability that the skeleton vertices u1 and uk are 
connected in the MSG. Since the probability measure is non-negative, the max­
imization of the total probability in (3.5) can be made according to a logarithm 
function. The solution to this problem is equivalent to the combinatorial so­
lution of the maximum weight forest problem in the graph theory (Korte and 
Vygen, 2000). On the other hand, it can be reduced to the solution of the 
minimum spanning tree (MST) problem by modifying the graph weights. Two 
basic combinatorial algorithms solving the MST problem are known: Kruskal's 
algorithm and Prim's algorithm (Korte and Vygen, 2000). Prim's algorithm 
in its most general form generates the MST by adding each time a new vertex 
with the maximal probability of connectivity over all the vertices already con­
tained in the MST graph. The initialization of the MST is made by finding a 
pair of vertices with the maximal probability of connection between them. It is 
proven that Prim's algorithm works correctly and its computational complexity 
is O(K2 ), where K is the total number of vertices. 

At this point, the problem consists in determining the connectivity probabil­
ity, based on the image data and the underlying model. The Bayesian paradigm 
is a suitable approach in this case. It involves two components: prior probabil­
ity of connection between vertices Uk and Ut, P(uk AUt), and the probability of 
image data in the neighborhood of vertices provided the vertices are connected. 
Instead of considering a joint conditional distribution for all data points, a ran­
dom variable, called the connectivity feature x, is defined. This feature relates 
to the connectivity between any two vertices Uk and Ut, and must have identical 
conditional distributions P(x /uk A u1) for any pair of vertices. The resulting 
logarithm of the posterior probability P( Uk A ut/ x) of vertex connectivity, i.e. 
after applying the Bayes rule, becomes: 

ln P(uk A ut/x) = ln(P(uk A u1) · P(x/uk A u1)) - ln(P(x)), (3.6) 

where P(x) is the marginal probability of x having a uniform distribution. This 
is quite natural assumption, which matches well the empirical marginal distri­
bution of x. Since a uniform distribution is assumed for P(x), the value of P(x) 
will be identical for all vertex pairs ( u1, uk) , and the term ln(P(x)) can be ig­
nored. The prior probability P( Uk A u1) can be determined based on the actual 
relative positions of vertices without taking into account the image data. For 
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in determining prior probabilities provided the two vertices, U! and Uk, are adja­
cent vertices. In this case, the exponential probability density function is a fairly 
good approximation for the distribution of d( u1, Uk) taken as the distribution 
law for the prior probability, P(uk 1\ul), in (3.6). With regard to the connectiv­
ity feature x, the averaged deviation of intensity within the segment trapezoid 
Z(uk,u1) from its mean value (Fig. 2a) will satisfy the relevance condition. In 
the context of the model for property map from Section 2.1, it follows a normal 
distribution N(O, >.. 2 / M) provided the vertices are connected, where M is the 
total number of points involved in the averaging within trapezoid Zc(uk,ul)· 

Parameter >.. is the same as in (2.1). The mean value intensity of the property 
map is evaluated as the average intensity value within structuring elements with 
vertex scales Pk and PI for Uk and u1. 

Taking the above into account, the basic step of Prim's algorithm will involve 
optimal joining of the current vertex Uk to that vertex, U! E V(A") from the 
intermediate spanning tree A" at step s, which minimizes the following value: 

(3.7) 

where a is the closest possible distance between the adjacent vertices, 82
( Uk , u 1) 

is the squared deviation of intensity within the segment trapezoid Z ( Uk, U!) (see 
Fig. 2a), and a is a constant coefficient calculated based on the parameters of 
two distribution laws: exponential for prior probability and normal for condi­
tional probability. Factor a determines the relative influence of the second term 
corresponding to the posterior probability with respect to the first term, which 
characterizes the prior probability. The value of Ll( uk, u1) is non-negative since 
d(u1, uk) is always greater than a. 

3.4. Determination of vertex connectivity 

Application of Prim's algorithm for the aggregation of vertices in a MSG pro­
vides only a method for combining extracted vertices in a graph structure with­
out final and explicit determination of their connectivity. If two vertices are 
connected, the graph of the MSG contains an edge between these vertices. One 
possible solution to the connectivity problem would be the statistical hypoth­
esis testing based on the value of connectivity feature x (see Section 3.3) with 
respect to current vertices Uk and u1. If x is less than a threshold, then the 
vertices are connected. However, such a simple test of connectivity between any 
two vertices may not work properly because of the shape sparseness and present 
local discontinuities in object shapes. 

In order to circumvent this limitation of the classical statistical hypothesis 
testing, a decision has to be made by using a context-dependent connectivity 
test. The context-dependent test is based on the Markov random chain model 
of vertices belonging to the same generating line and the Bayesian principle of a 
decision-making process. Such a test is effective only when the connectivity for 
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be done at the stage of vertex aggregation in a MSG by comparing the current 
value of x with a threshold. It is supposed that the prior probability P(ukl\u1) of 
connectivity between vertices Uk and u1 is given or can be easily determined by 
the model data and the actual positions of vertices. The posterior probabilities 
are determined based on the object points actually between the vertices uk 

and u1. 

Figure 6. Example of an object part, which contains 4 skeleton vertices, Uk, u1, Us, 

and 'ILt, with a discontinuity at the middle . The connectivity between vertex pairs 
( Uk, u,) and ( u1, Ut) is established through a context-free test of local connectivity, 
whereas the connectivity between vertices uk, and u 1 can be established based on the 

Bayesian decision-making process . 

The adopted method for the determination of prior probabilities using the 
Markov chain model (sec Section 2.4) is illustrated on the example of Fig. 6. 
This figure shows the case when a discontinuity occurs between two straight-line 
segments that connect vertices of the same skeleton line. The prior probability 
of connectivity P( Uk 1\ u1) can be evaluated based on relative angular positions 
of vertices Uk and u1 with respect to straight-line segments [uk, us] and [ul, Ut]· 
The connectivity between vertices uk and Us or vertices u, and Ut has been 
established during aggregation of vertices in a MSG. The Markov chain model 
provides the two probabilities for relative positions of vertices Uk and u, as 
functions of the slope of segment [uk, ui] relative to segments [uk, us] and [u, , Ut]· 
Since the relative positions of both vertices contribute to the connectivity of Uk 
and u1, the prior probability of their connectivity will be: 
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where P(Bk,t) and P(Bt,k) are the probabilities of slope values Bk,l and Bt,k of 
the segment [uk, ut] with respect to the preceding straight-line segments [uk. us] 
and [ut, Ut]. The probability P(Bk,t) and P(Bt,k) are given in the Markov chain 
model of generating lines. Here, it was assumed that the maximal rank of 
vertices q = 2, i.e. vertices Ut, Us, Ut and Uk belong to one generating line 
without bifurcations. 

The connectivity feature x defined as a function of data in trapezoid Z ( Uk, Ut) 
is used again (see Section 3.3) to determine the posterior probability of x, re­
gardless of whether the vertices are connected or not. The posterior probability 
of connected vertices Uk and Ut is: 

P( I ) _ P(uk 1\ Ut) · P(xluk 1\ Ut) 
uk/\Ut x- P(x) , (3.8) 

where P(uk 1\ Ut) is the prior probability of connectivity, P(xluk 1\ uz) is the 
conditional probability of the random connectivity feature x, provided the ver­
tices Uk and Ut are connected. After adopting a limit probability, Piirn, in the 
connectivity test by a probability thresholding, i.e., P(uk 1\ Utlx) 2 Piim, the 
connectivity test can be written in an explicit form (Palenichka et a!. , 1998): 

P(xluk 1\ Ut) > Piim . P( Uk II Ut) 
P(xlukllut)- (1-Plim) P(uk/\Ut)' 

(3.9) 

where P( Uk II Ut) = 1 - P( Uk 1\ ut) is the prior probability of no connection 
between vertices Uk and Ut, and P(xluk II Ut) is the conditional probability of 
the connectivity feature x provided vertices Uk and Ut are not connected. The 
connectivity test by (3.9) guarantees that the error due to a wrong connection 
of vertices will be less than (1 - Piim). 

It is supposed that the variable x follows a Gaussian distribution law 
N(0,>.2IA1) provided the vertices arc connected, where M is the total num­
ber of points within trapezoid Z( uk, 'Ut) , ,\ 2 I M is the variance of x. Similarly, a 
Gaussian probability distribution density N(h , ,\2 I M) will be valid if the vertices 
arc disconnected. Here, it is assumed that the background intensity (intensity of 
objects belonging to other classes) has the same variance ,\2 as in the model of 
property map in Section 2.1. Parameter h, the so-called object-to-background 
contrast, is estimated as the mean value of the intensity difference between ob­
ject points and background points. In the case of a binary image 77( i, j) obtained 
after the object segmentation it represents an estimate for the shape sparseness 
7r in image modeling by (2.1). Then, the decision about the vertex connectivity 
is accepted if the following inequality is valid: 

(3.10) 

where IJ!(uk, Ut) is the right-hand side of (3.9). The decision according to (3.10) 
takes into account the ratio of prior probabilities in such a way that the thresh-



364 M. B. ZAREMBA , R. M. PALENICHKA 

connection is greater than 0.5. The undefined parameter, the variance of object 
points .A2 in the property map, and the contrast h are supposed to be constant 
over the image plane and have to be estimated during the learning phase (see 
the right side of Fig. 3) by pointing on the object and background sub-regions 
and computing the local density variances and local contrasts. 

In the absence of prior probabilities, equal values of probabilities, P( uk II u1) 
= P(uk 1\ u1), have to be used in (3.9). This assumption does not require 
a correlation model for the vertices of generating lines, as is the case with a 
Markov random chain. Nevertheless, it tolerates a certain amount of shape 
sparseness between the vertices due to the low threshold value in the right-hand 
side of (3.10), since the contrast h is proportional to the shape sparseness. 

4. Experimental results 

The algorithm of SOM-based skeletonization was tested on both satellite images 
of water basins and synthetic images in order to investigate its ability to extract 
skeletons of different types of objects. The main goal of testing the algorithm 
on synthetic images was the numerical evaluation of its performance with re­
spect to known skeletal shapes. For this purpose, a multi-scale morphological 
shape model (see Section 2) was used to generate objects of interest based on 
object skeletons in the form of connected straight-line segments of generating 
lines. The approach of model skeletons offers reference sets of points, which are 
later compared with the skeletons obtained using the proposed skeletal shape 
extraction algorithms. Noise has been added to the objects obtained from the 
reference skeletons. 

A convenient measure of the skeletonization error is the symmetric Hausdorff 
distance between two skeleton sets G1 and G2 (Huttenlocher et al., 1993): 

where h(Gt, G2) is the directed Hausdorff distance from a set of points Gt to a 
set of points G2 defined as follows: 

where d( a, b) is the Euclidean distance between points a and b. This skeleton 
distance measure is stricter than the normalized Euclidean distortion used for 
skeleton comparison in the SOM-based algorithm using MST (Singh, Cherkassky 
and Papanikopoulos, 2000). 

The Hausdorff distance was calculated as a function of noise level for two 
methods: the proposed scale-based algorithm and the SOM-based algorithm 
using MST (Singh, Cherkassky and Papanikopoulos, 2000). One such synthetic 
image used in the experiments is shown in Fig. 7 and a plot of the evaluated 
skeletonization error computed as Hausdorff distance for this image is given in 
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The MST-based algorithm gave poor results for images with multi-scale objects, 
such as the one in Fig. 7a. The smooth evolution of skeletons based on the 
distance between SOM units fails to provide good results when the two specified 
thresholds (for merging or insertion of vertices) do not depend on the local scale 
of objects (Singh, Cherkassky and Papanikopoulos, 2000). Both algorithms 
showed weak dependence on shape sparseness when the distribution of noisy 
pixels was uniform. 

(a) (b) (c) (d) 

Figure 7. Example of results of two skeletonization algorithms: (a) - initial noisy 
image with 40% of noisy pixels; (b) - model skeletons of objects in the initial image; 
(c) - result of skeletonization with SOM-based algorithm using MST; (d) - result of 

skeletonization by the proposed algorithm. 
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Figure 8. Hausdorff distance for the image shown in Fig. 7. 

Another method for evaluating the numerical performance of a skelctoniza­
tion algorithm is to measure skeleton distortion with respect to the skeleton 
obtained from an initial image without added noise (Singh, Cherkassky and 
Papanikopoulos, 2000). However, this is a relative measure of performance, 
which characterizes only the robustness of a skeletonization algorithm against 
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An example of an image fragment with a sparse shape of a river basin ob­
tained from Landsat-7 imagery after segmentation is shown in Fig. 9a. The seg­
mentation of the river image was made in two stages: property map extraction 
using conventional SOM and binarization by comparing the property value in 
each point with two constant thresholds. The result of SOM-based skeletoniza­
tion of this image is given in Fig. 9b. Other tests of the developed algorithm 
were performed with a view to assessing the accuracy of shape reconstruction 
from MSG (see Fig. 10). 

(a) (b) 

Figure 9. Image segment with sparse shape after the property map extraction and 
binarization (a) and example of skeletal shape extraction using the structured SOM 
approach (b). The skeleton pixels are shown in white superimposed on object points 

in black. 

(a) (b) 

Figure 10. A river basin image (a) and sparse shape reconstruction using the scale­
based algorithm of skeletonization (b). 

Results of shape extraction from a river basin image by the structured SOM, 
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and structured SOM for shape description, are depicted in Fig. 11. It can 
be seen that the proposed SOM-based algorithm copes well with significant 
shape discontinuities (see upper left fragment in Fig. lla) by applying Bayesian 
decision-making process. Fig. 12 illustrates a water basin segment of a river with 
discontinuities and occlusions, and shows the results of skeletal shape extraction. 

(a) (b) (c) 

Figure 11. Skeletal shape extraction for a water basin image: (a) - property map 
extracted by using SOM-based clustering; (b) binary shape map as the resul t of bin­

arization of the property map; (c) - extracted skeletal shape of the river. 

(a) (b) (c) 

(d) (e) (t) 

Figure 12. Property maps (a, d) , binary maps (b, e), and model-based skeletonization 
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5. Conclusions 

A method for multi-scale structural description and model-based extraction of 
the skeletal shape of objects by using structured self-organizing maps was de­
veloped and tested on synthetic images and Landsat-7 satellite images. Com­
parative testing results has confirmed the advantages of the structured SOM 
approach to modeling and skeletonization of objects with sparse shape over the 
classical thinning algorithms. A distinctive feature of the proposed structured 
SOM approach is the introduction of such attributes as local scale and connectiv­
ity of SOM units, which are used besides the unit weights. Their determination 
is based on the underlying image model of shape representation of objects in the 
form of piecewise-linear generating (skeleton) lines and a system of vertex scales. 
Such a hierarchical multi-scale representation makes the extraction of skeletons 
more robust for objects with sparse shapes, discontinuities or occlusions, as well 
as provides the possibility of shape reconstruction from MSG. 

The two main differences of the presented algorithm with respect to the 
SOM-based skeletonization using MST (Singh, Cherkassky and Papanikopou­
los, 2000) consist in the utilization of the scale-based updating phase of SOM 
units and the realization of a probabilistic model-based connectivity test while 
connecting adjacent SOM units, i.e., skeleton vertices. In contrast, the known 
algorithm gave ragged skeleton lines for elongated thick objects and false con­
nections between skeleton vertices of disconnected object parts. These two 
advantages are implemented according to the proposed morphological model, 
which provided shape constraints helping to cope with the shape sparseness. 

Acknowledgements 

The authors wish to acknowledge the support of the Canadian Network of Cen­
tres of Excellence GEOIDE. 

References 

BLUM, N. and NAGEL, R.N. (1978) Shape description using weighted symmetric 
axis features. Pattern Recognition, 10, 167- 180. 

CHEN, Y.S. and Yu, Y.T. (1996) Thinning approaches for noisy digital pat­
terns. Pattern Recognition, 29 (11), 1847-1862. 

DATTA, A., PARUI, S.K. and CHAUDHURI, B.B. (1996) Skeletal shape extraction 
from dot patterns by shape-organization. Proc. 13th Int. Conf. Pattern 
Recognition, 4, 80-84. 

DER, R., BALZUWEIT, G. and HERRMANN, M. (1996) Building nonlinear data 
models with self-organizing maps. Lecture Notes in Computer Science, 
1112, Springer, 821- 826. 

HARALICK, R.M. and SHAPIRO, L.G. (1992) Computer and Robot Vision. Read-



Modeling of hydrographic networks from satellite imagery using SOMs 369 

HASTIE, T. and STUETZLE W. (1989) Principal curves. Journal of the American 
Statistical Association, 84 ( 406), 502-516. 

HUTTENLOCHER, D.P., KLANDERMAN, G.A. and RUCKLIDGE, W.J. (1993) 
Comparing images using the Hausdorff distance. IEEE Trans. Pattern 
Analysis and Machine Intelligence, 15 (9), 850- 863. 

KEGL, B. et al. (2000) Learning and design of principal curves. IEEE Trans. 
Pattern Analysis and Machine Intelligence, 22 (3), 281- 297. 

KEMENY, J.G. and SNELL, J.L. (1976) Finite Markov Chains, Springer-Verlag, 
N.J .-Heidelberg-Berlin. 

KoHONEN, T. et al. (1996) Engineering applications of self-organizing maps. 
Proc. IEEE, 84, 1358- 1384. 

KORTE, B. and VYGEN, J . (2000) Combinatorial Optimization: Theory and Al­
gorithms. Springer, Berlin. 

MARAGOS, P. (1989) Pattern spectrum and multi-scale shape representation. 
IEEE Trans. Pattern Anal. Mach. Intelligence, 11 (7), 701- 717. 

MULIER, F. and CHERKAS SKY, V. ( 1995) Statistical analysis of self-organization. 
Neural Networks, 8, 717- 727. 

MULIER, F. and CHERKASSKY, V. (1995) Self-organization as an iterative kernel 
smoothing process. Neural Computation, 7 (6), 1165- 1177. 

OGNIEWICZ, R.L. and KUBLER, 0. (1995) Hierarchical Voronoi skeletons. Pat­
tern Recognition, 28 (3), 343- 359. 

PALENICHKA, R.M. et al. (1998) Model-based generation of structural statistical 
hypotheses for flaw detection in radiographic images. Proc. Int. IEEE 
Workshop IMDSP'98, Alpbach, Austria, 51-55. 

PALENICHKA, R.M. and IvASENKO, LB. (1999) Fast and robust parameter es­
timation in the polynomial regression model of images. Proc. SPIE Non­
linear Image Processing X, 3646, 28·-37. 

PIZER, S.M., OLIVER, W.R. and BLOOMBERG, S.H. (1987) Hierarchical shape 
description via the multi-resolution symmetric axis transform. IEEE Trans. 
Pattern Analysis and Machine Intelligence, 9 ( 4), 505- 511. 

RITTER, H., MARTINEZ, T.M. and SCHULTEN, K. (1992) Neural Computation 
and Self Organizing Maps. Reading, MA, Addison-Wesley. 

SINGH, R, CHERKASSKY, V. and PAPANIKOPOULOS, N. (2000) Self-organizing 
maps for the skeletonization of sparse shapes. IEEE Trans. on Neural 
Networks, 11 (1), 241- 248. 

VILLMANN, T., DER, R., HERRMANN, M. and MARTINEZ, T.M. (1997) Topology 
preservation in self-organizing feature maps: Exact definition and measure­
ment. IEEE Trans. on Neural Networks, 8 (2), 256- 266. 

ZAREMBA, M.B. et al. (2000) Integration of self-organizing maps with spatial 
indexing for efficient processing of multi-dimensional data. Proc. 8th ACM 
Int. Symposium GIS2000, Washington, DC, 77- 82. 




