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Abstract: The results of experimental comparison between sev­
eralueural architectures for short-term chaotic time series prediction 
problem are presented . Selected feed-forward archi tectures (Mult i­
layer Perceptrons) are compared with the most popular recurrent 
ones (Elman, extended Elman, and Jordan) on the basis of predic­
tion accuracy, training time requirements and stability. The appli­
cation domain is logistic map series ·- the well known chaotic time 
series predition benchmark problem. 

Simulation results suggest that in terms of prediction accuracy 
feed-forward networks with two hidden layers are superior to other 
tested architectures. On the ot her hand feed-forward architectures 
are, in general, more demanding in terms of training time require­
ments. Results also indicate that with a careful choice of learning 
parameters all tested archi tectures tend to generate stable (repeat­
able) results . 

Keywords: logistic map, chaotic time series, predict ion , neural 
networks. 

1. Introduction 

The task of t ime series prediction can informally be stated as follows: given 
several past values of the series, predict its future value(s) within predefined 
prediction horizon. Depending on the horizon length the prediction tasks are 
generally divided into short-term and long-term predictions. 

Solving the discrete time series prediction problem with the help of neural 
networks requires that the function defining the series be approximated with ap­
propriate accuracy. Hence, prediction problem can be regarded as an instance 
of a function approximation problem. In other words , prediction problems be-
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as a square of prediction error in a certain future point of time or as a sum of 
squared prediction errors over predefined future time interval (see Section 2 for 
formal description). 

Neural networks, due to t heir universal approximation properties, are widely 
used in financial, economical and business analyses. One of the most popular ap­
plication domains in this area is financial time series prediction (Refenes, 1995; 
Refenes, Burgessand and Bentz, 1997). Several examples presented in the liter­
ature include prediction of the following data: stock returns (Schone burg, 1990; 
Saad, Prokhorov and Wunsch II, 1998), stock market indices or volatility (S&P: 
Chenoweth and Obradovic, 1996; Wong, 1991; Malliaris and Salchenberger, 
1996; F.T.S.E.: Brownstone, 1996; TOPIX: Kohara, Fukuhara and Nakamura, 
1996), or currency exchange rates (Franses and van Griensvcn, 1998; Kuan and 
Lin, 1995). 

Besides the most popular applications to stock market related problems neu­
ral networks have been also successfully applied to several prediction problems, 
e.g. inflation rate (Zwol and Bots, 1994; Moshiri and Cameron, 2000; Moshiri , 
Cameron and Sense, 1999) , level of income taxes (Hansen and Nelson, 1997), 
unemployment rate (Moshiri, 2000), or bankruptcy risk (Leshno and Spector, 
1996; Burrell and Folarin, 1997; Perez, 1999; Yang, 1999) . 

Another important and closely related application area is chaotic time se­
ries prediction often treated as an indicator of the method 's quality before its 
application to the real (usually financial or business) data. There are two main 
advantages of such approach: first, chaotic series are usually less demanding in 
terms of complexity and time requirements, and therefore well suited for prelimi­
nary tests; second, several benchmark chaotic series (e.g. logistic map, sunspot 
series , Mackey-Glass equation, or Lorentz attractor) provide an adequate base 
for comparison between different methods. 

The subject of this paper is the experimental comparison between selected 
feed-forward and recurrent neural architectures for short-term chaotic time se­
ries prediction based on logistic map series. The main issues discussed here 
are prediction accuracy of particular neural architectures, their training time 
requirements and ability to produce repeatable results of a certain quality. 

Except for the above main research issues some test results arc also pre­
sented for long-term predict ions and for short-term ones, but with "unlimited" 
training time. These simulations attempted to trace the intrinsic limits of tested 
networks. 

The work presented in this paper was partly inspired by the Hallas and 
Dorffner (1998) paper. In Hallas and Dorffner (1998) the authors focused on the 
comparative study of several feed-forward (linear and non-linear) architectures 
and selected recurrent ones. Similarly to om paper one of the main goals of 
Hallas and Dorffner (1998) was discovering pr·actical hints in the area of design 
and application of neural networks to prediction tasks. 

The paper is organized as follows: Section 2 includes introduction to chaotic 
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Section 3 describes preliminary experiments: neural architectures considered in 
t he simulations (Section 3.1), training methods (Section 3.2), data sets (Sec­
tion 3.4) and results (Sections 3.5 and 3.6). The main (final) experiment is 
presented in Section 4 along with comparison of architectures (Section 4.4) and 
description of additional, extended tests (Section 4.5). Final conclusions and 
directions for future development of this work are placed in Section 5. 

2. Prediction task 

The goal of time series prediction is forecasting future values given historical 
data of the series. Time series can formally be defined as a sequence of vectors 

i(t), t =0,1, ... (1) 

depending on t. 
Theoretically, i can be defined as a continuous function of time t, but for 

practical reasons it is often viewed as a sequence of values at the end points of 
discrete, usually fixed-size , time intervals (Dorffner, 1996) . 

Components of i can be any observable variables (e.g. daily level of water 
in the river measured at a certain hour, average monthly price of petrol, daily 
opening stock returns, etc.). 

The above are examples of empirical time series in which values of i arc 
taken from observat ions or measures. Another type are artificial time series in 
which i represents values of some mathematical function. 

A prediction system is supposed to output value :r(t +d) given last n values: 
i(t), .... , i(t - n + 1), for some n, as the iuput . The problem can be presented 
in terms of approximation task (Dorffncr, 1996): find function f : Rn ----+ R 

being an est imate i(t +d) of i at time (t +d) : 

i(t +d)= f(i(t) , ... , i(t- n + 1)), 

where d is called time lag of prediction1
. 

2.1. Chaotic time series 

(2) 

In our experiment deterministic time series associated with complex chaotic 
dynamics is considered. Logistic map time series belongs to the class of artificial 
series and is defined based on chaotic, recnrsive equat ions2 . There are several 
mathematical models of chaotic behaviour serving as benchmarks for prediction 
methods. One of t he simplest examples is the simple pendulum defined by the 
following equation: 

JO + BB IBI + K sin()= r , (3) 

1 Formally, f : Rkxn+l ___, nk , where k denotes dimension of x and l is the number of 
time-independent var iables considered in prediction process. In our experiment k and l were 
fixed and equal to 1 and 0, respectively, hence t hey are omitted in (2). 

2 An """mniP of Pm1liriro.l r.h;wt.i" sP.riPs is t.hc .<unsnot sP.ries . i. e. the number of sunsoots 
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r 

Figure 1. The plot of Lyapunov Exponent versus r for logistic map series with 

x(O) = 0.2027. 

where J, B, !{ are appropriate coefficients (one of the choices is J = 1, B = 
0.1, [{ = 1, McDonnell and Waagen, 1994). 

Two more examples of benchmark artificial chaotic series include the logistic 
map (described in more detail below) and the Mackey-Glass equation (Mackey ­
and Glass, 1977) representing the model for white blood cell production in 
leukemia patients: 

. ( ) ax ( t - r) b ( ) 
X t = - X t 

1 + xc(t- r) 
(4) 

where a, b, care coefficents and Tis a time delay (e.g. a= 0.2, b = 0.1, c = 10 
and T = 30, McDonnell and Waagen, 1994). 

In the above series the intrinsic determinism in the series offers the possibili­
ties for accurate predictions of the next few future values, but chaotic component 
of the system usually prevents long-term predictions (Verdes, Granitto, Navone 
and Ceccatto, 1998). 

In this paper empirical investigation of neural networks' performance as 
short-term predicting models is based on logistic equation, which is defined in 
the following way: 

x(t + 1) = rx(t)(1- x(t)), x(O) E (0, 1), (5) 

where r E (1, 4) is a predefined parameter. The choice of r determines the 
"degree od chaos" in (5). For any given time series the degree of chaos in the 
data can be measured by the Lyapunov Exponent (Schuster, 1988; Peters, 1996) . 
The Lyapunov Exponent (denoted by .X) is a scalar value with the following 
orooertv: .X > 0 means that th~ s~ri~s is r.haot.ir. _ whPrP::~.o;; >. < 0 rh::~ .r::~ .rt.Pri?.P« 



Chaotic tirne series prediction 387 

=! _j_ ___________ _ 

Figure 2. The first one hundred values of logistic map series generated for 7· 4 
and :z:(O) = 0.2027. 

The plot of A versus r for logistic series generated with :r (O) = 0.2027 is 
presented in Fig. 1. It can be seen in the fi gure that deterministic behavior 
is observed for r < rc and chaotic one for 1·c < 1 ::; 4, except for some small 
areas called 1·-windows (Sclmster, 1988), where A < 0 and the series is periodic 
(deterministic). The highest valne of A - which corresponds to the highest 
amount of chaos in logistic equation - is obtained for 1 = 4. It is interesting to 
note that the logistic map with r = 4 was previonsly used as a random number 
generator in early computers (Kugiumtzis, Lillekj enJiie aud Christophersen, 
1995) . 

In order to allow for a reliable comparison with the results presented in 
Hallas a nd Dorffner (1998) the following choice of parameters was used in all 
experiments reported in this paper: 

1 = 4 and :1: (0) = 0.2027. (6) 

The first one hundred values of the series (5) generated wit h parameters (G) are 
presented in Fig. 2. 

3. Experiment description 

The experiment was organized according to the three following steps. 

1. P relim ina ry test s - experimental search for optimal network design. 
The goal in this step was to select a set of networks for further detailed, 
repetitive tests. Also several combinations of training parameters (learn­
ing rate, momentum, the number of training cycles) were tested to make 
close to optimal choice for the main task . 

2. Detailed, r ep et it ive t est s - the main part of the experiment. Pres­
elected networks were trained with appropria te training parameters and 
tested, each in 20 trials. 

3. Additiona l t ests - limited numbm of extra tests aimed at tracing the 
intrinsic limits of the models . Two types of tests were performed: tests 
with "unlimited" number of learning cycles (only stopping condition based 
on increasing of validation error was applied) and tests for long-term pre-
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Figure 3. An example of feed-forward network with one hidden layer. 

3.1. Neural network architectures 

Several architectures of feed-forward and recurrent networks were compared in 
the experiment. 

An example of feed-forward (f-f) network with one hidden layer is presented 
in Fig. 3. Networks used in the experiment were composed of sigmoidal neurons 
in hidden and output layers and the identity neurons in the input layer. Since 
f-f networks arc widely used in various application domains and are well known 
to neural networks community, their fur ther descrip tion here is omitted. 

Recurrent networks differ from f-f ones in having feedback connections from 
hidden or output layers to the input one or to (additional) context layers3 . In 
particular, recurrent Jordan networks (Jordan, 1986) (Fig. 4), considered in this 
paper, arc one hidden layer networks with one-to-one feedback connections from 
the output layer to an ext ra context layer (therefore context and output layers 
have equal number of neurons). Context layer neurons are fully connected with 
hidden layer ones. Moreover, each context neuron has a self-recurrent (feedback) 
connection. Both feedback and self-recurrent connections have a priori defined, 
fixed weights which do not change during the training process. In our experiment 
Jordan networks were composed of sigmoidal neurons in hidden and output 
layers and identity ones in the input and context layers. 

Another type of recurrent network was proposed by Elman (1990). Simple 
Elman network is composed of one hidden layer with extra one-to-one feedback 
connections to additional context layer (hence context layer has the same num­
ber of neurons as the hidden one). Moreover , according to suggestions stated 

3 Context layers are also know n as state laye1's. Likewise, context neurons are also called 
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Figure 4. A Jordan neural network with a state layer. 
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Figure 5. Extended Elman network with two hidden layers and three context 
layers (one contex layer per each hidden layer and additional one corresponding 

to the output layer). 
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in Pham and Xing (1995) context units aTe also eq1tipped with selj-Tecurrent 
connections - analogously to the Jordan network4 . 

Extended TeCU1Tent Elman netwoTks (Fig. 5) are composed of two or more 
hidden layers, each with respective context layer. Depending on the implemen­
tation there can also exist additional context layer corresponding to the output 
layer. Outputs of context layers are fully connected to inputs of respective 
hidden/ output layers. 

In the experiment reported in this paper both types of Elman networks 
(simple and extended) had feedback and self-recurrent connections with a pTio1·i 
defined, fixed weights which did not change during the training process. Both 
types of networks were composed of sigmoidal neurons in hidden and output 
layers and identity ones in the input and context layers. 

3.2. Training methods 

Standard backpropagation algorithm with momentum, used here for training 
feed-forward networks is a well known and very well documented method , see, 
e.g., Werbos (1974), Rumelhart , Hinton and Williams (1986a), Rumclhart , Hin­
ton and Williams (1986b) , so its description is omitted here. For recurrent net­
works a slightly modified version of backpropagation was used (SNNS) in whose 
context units were treated as if they had been additional input units (in case of 
.Jordan and simple Elman network) or special hidden units (in case of extended 
Elman network). All feedback links to context units and all t heir self-recurrent 
connections had fixed, predefined weights, which remained unchanged during 
the learning process. In each learning epoch activation for all context units was 
computed and the links from context neurons to hidden or output ones were 
updated as if they had been links from the previous layer. 

The above learning method is suitable for .Jordan as well as Elman-type nets. 
Furthermore it can be used for any recurrent network satisfying the following 
restrictions (SNNS): 

• input neurons arc not getting input from any other neurons, 
• froin output neurons only links to context units are allowed, 
• every unit , except for input ones, ha..c; at least one incoming link, which 

can be self-recurrent in case of context uni ts, 
• if all context units with their incoming and outgoing connect ions arc re­

moved, the remaining network becomes a multilayer perceptron5 . 

Certainly, for the networks fulfilling the above criteria several other more 
efficient versions of backpropagation algorithm, e.g. qnickProp (Fahlman, 1988) 
or RProp (Riedmiller and Braun, 1992) can also be applied . 

4 Although in the original Elma n's formulat ion (Elman, 1990) no self-recurrent connections 
existed, for the sake of facility of description here we sha ll identify Elman network as the one 
with self-recurrent co nnect ions in the context layer. 

5 Rccurrent networks Sat.i sfv in P" t. hP. Rh nvl' rnn .~tn, int. o;;: ff' (T l r\l·rl ':ln rw H'.l rn •)n h ., .... ,... \"'''" .. l r . ...... 
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3.3. Overlearning and overfitting 

The main performance measures for neural predicting models are (Refenes, 
1995): 

• convergence - accuracy of fitting the data within the training set, 
• generalisation - accuracy of fitting the test (out-of-sample) data, 
• stability - low variance in prediction accuracy. 

In the simulation process the data was divided into three subsets - learning, 
validation and test. Networks were trained on the learning set and periodically 
tested on validation set in order to check their generalisation abilities. 

In order to achieve the best out-of-sample performance, training was stopped 
when validation error had increased a predefined number of times. Otherwise, 
if we proceeded with learning, the convergence might be still getting better but 
generalisation would be get ting worse. Such a behaviour is a well known over­
learning problem - the network starts to learn detailed features of the learning 
subset. 

Similar effect of excellent convergence and poor generalisation occurs when 
the network 's architecture is too large (compared to the size of the training 
set), and has therefore too many free, configurable parameters (weights). Such 
a situation is called over-fitting. In our experiment the proper size of tested 
networks was estimated based on some theoretical hints as well as preliminary 
simulations. 

3.4. Data sets 

All simulations were performed in the Stuttgart Nenral Network Simulator en­
vironment (SNNS). 

Each data sample was composed of one or more input values and one output 
value. Da.sed on ( 5) and ( 6) several pattern-sets were generated , each composed 
of 1 000 samples. Each pattern-set was divided into three subsets: 

• training set - the first 700 samples; 
• validation set - the next 100 samples; 
• test set - the last 200 samples. 

Samples, originally from the range (0, 1) were scaled to the range (0.2, 0.8) 
due to suggestion stated in (Tang and Fishwick, 1991). This suggestion was 
fully confirmed by preliminary tests (see Section 3.6 for details). 

It is worth noting that a similar idea of "shrinking" the range of target values 
in supervised learning was also discussed in Gorse, Shepherd and Taylor (1997) , 
where it is proposed to start training with the range of target values rest ricted 
to only some value - equal the average of all targets in the training set . By the 
usc of appropriate homotopy relat ion the targets are then gradually "extended" 
to their original values. According to Gorse, Shepherd and Taylor (1997) this 
mechanism significantly improves network 's ability to avoid local minima in the 
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3.5. P reliminary tests 

The goal of preliminary tests was to define the suboptimal set of networks and ef­
ficient training procedures for further investigation. Since general and purely ex­
perimental approach to optimal network design can be extremly time-consuming 
our search was constrained to some a priori selected architectures. Likewise, 
possible sizes of hidden layers were limited to some predefined set of values. 

The following features were tested in preliminary simulations: 

• stability of results , 
• training time requirements , 
• data range: (0.2, 0.8) versus (0, 1) , 
• the maximum number of training iterations: 10 000 versus 100 000, 
• different combinations of learning and momentum rates, 
• adaptive algorithms for setting the learning and momentum rates, 
• input size: 1-element versus 5- and 10-element inputs, 
• versions of backpropagation algorithm: batch backpropagation and chunk 

backpropagation. 

In the context of the above condi tions the main conclusions drawn from 
preliminary tests were the following: 

• 10 000 iterations was found to be enough for the purpose of qualitative 
comparison between neural architectures, 

• networks with 1-element input provided better prediction accuracy com­
pared to those with 5- and 10-element inputs, 

• standard (batch) backpropagation with momentum outperformed other 
tested versions of backpropagation, 

• significant improvement of results was achieved after scaling t he data from 
(0, 1) to (0.2, 0.8) (see the following section for details). 

3 .6. Relevance of the input data scaling 

One of the most important practical hints implied by this experiment is the 
impact of the range of data on the quality of results . Previously, Tang and 
Fishwick (1 991) have proposed- in case of feed-forward neural nets- using the 
input data scaled to interval (0 .2, 0.8) instead of- most commonly used- (0,1) 
data. This suggestion was taken into account and initially verified in our pre­
liminary experiments for all tested architectures. Results of these preliminary 
tests are summarized in Table 1. 

It can be seen from Table 1 that for all the tested architectures except only 
one (i .e. FF 1-30-1) the results obtained for the (0 .2, 0.8) interval outperformed 
the respective ones obtained for t he (0, 1) data range. In several cases the 
advantage was approximately equal to one order of magnitude. 

Based on preliminary results a decision was made to use the data scaled to 
(0 .2, 0.8) in the main experiment. Henceforth , all references to preliminary tests 
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Table 1. Comparison of preliminary results for the (0 , 1) data and the data scaled 
to (0 .2, 0.8). Each number represents the mean square error value averaged over a 
few trials. FF: feed-forward , EL: Elman, JO : Jordan networks. Subsequent numbers 
denote cardinalities of the respective layers. The values in (0.2 , 0.8) case presented 
in the table were obtained by dividing the respective original (experimental) values 

by 0.6. 

(0 , 1) (0.2, 0.8) (0 , 1) (0.2, 0. 8) 

FF 1-20-1 1.13E- 04 4.87E- 05 FF 1-15-15-1 7.68E- 06 7.78E- 07 
FF 1-30-1 4. 78E- 05 4.98E - 05 FF 1-22-22-1 8.38E- 06 6.25E- 07 
FF 1-60-1 4.24E - 05 1.14E- 05 FF 1-30-30-1 6.00E - 06 6. 11E- 07 
FF 1-100-1 4.71E - 05 1.05E - 05 FF 1-60-60-1 5.62E - 06 8.15E- 07 

EL 1-10-1 1.91E- 04 7.10E- 05 EL 1-5-5-1 4.92E - 05 l.OOE- 05 
EL 1-20-1 1.84E - 04 6.80E - 05 EL 1-10-10-1 9.75E- 05 7.33E- 06 
EL 1-30-1 2.50E - 04 7.43E - 05 EL 1-15-15-1 3.84E - 05 8.67E - 06 

JO 1-10-1 8.61E - 04 6.67E - 05 JO 1-20-1 7.64E - 04 5. 70E - 05 
JO 1-30-1 3.33E - 04 5.90E - 05 JO 1-55-1 2.74E - 04 4.90E - 05 

4. The main experiment 

This section describes the main experiment. In all tests presented here, unless 
stated otherwise, the input layer was composed of one neuron . 

4. 1. Preselected a rchitectu res 

The following networks were tested within the main experiment: 

1. Multilayer perceptrons with one hidden layer of size 20, 30, 60 and 
100, denoted by FF 1-20-1 , FF 1-30-1, FF 1-60-1, FF 1-100-1, respectively. 
Preliminary tests have proved t he intui tive property that the more hidden 
units the better predict ion accuracy. On the other hand, one has to be 
careful with expansion of the hidden layer due to the possible overfitting. 

2. Multilayer perceptrons with two hidden layers: FF 1-15-15-1 , FF 1-
22-22-1 , FF 1-30-30-1 and FF 1-60-60-1. The networks had equal number 
of units in hidden layers, since in a set of init ial tests such a selection 
provided for a very good performance and none of the other tested combi­
nations performed better . In preliminary tests t he network FF 1-30-30-1 
slightly outperformed FF 1-60-60-1 one which suggests that for the prob­
lem considered the suboptimal cardinality of hidden layers is between 22 
and 60. 

3. Recurrent J ordan networks: JO 1-10-1 , JO 1-20-1, JO 1-30-1 , J O 1-55-
1, with 1-element context layer. The network JO 1-55-1 allows making 
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4. Recurrent Elman networks: EL 1-10-1, EL 1-20-1 and EL 1-30-1 with 
10, 20 and 30-element context layer, respectively. 

5. Recurrent extended Elman networks: EL 1-5-5-1, EL 1-10-10-1, EL 1-
15-15-1 with two context layers (of size 5, 10, 15 , respectively) - one per 
each hidden layer. An optional context layer corresponding to the output 
layer was not implemented. 

All weights of feedback connections in recurrent architectures (i.e. the ones 
from hidden/output layer neurons to context layer ones) were fixed and equal 
to 1. In preliminary tests weights of self-recurrent loops varied between 0.0 
and 0.8. Value 0.0 (connection disabled) was found to give the best prediction 
accuracy and therefore in the main experiment the self-recurrent connections 
were disabled. 

4.2. Training 

The networks were trained with the following learning rates and momentum 
coefficients (denoted by 1] and a, respectively): 

• Multilayer perceptrons - 1] = 0.8, a = 0.4. 
• Jordan networks- 17 = 0.15 , a= 0.05. 
• Elman networks - 17 = 0.2 , a = 0.05. 
• In case of extended Elman networks we were unable to select fixed 17 

and a which would provide stable and efficient results. Therefore, simple 
adaptive algorithm (Algorithm 1 presented below) was used for changing 
learning rate and momentum for this type of networks. 

Algorithm 1 [Adaptive selection of learning rate and momentum for e.rtended 
Elman networks] 

1. For the first 200 epochs set relatively small rates: 17 = 0.1 and a = 0.05 
to allow soft preorientation of units and weights. 

2. After the above initial period set high values for learning coefficients: 1J = 
0.8 and a = 0.4. 

3. During the training process, each time a certain (predefined) level of the 
mean square error is reached, divide 1] and a by 2. 

Each of 18 networks was trained in 20 different runs. Validation was per­
formed every 200 epochs. Training was stopped either after 10 000 epochs or 
after three subsequent increments of validation error. 

4.3. Results 

The training procedure defined in Section 4.2 allows the learning process to be 
stopped before reaching the limit for a maximum number of epochs. In some 
simulations t he learning process became stuck in a local minimum at a very early 
stage (e.g. after several hundred epochs). Consequently, prediction accuracy in 
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took less than 1 500 epochs (15% of a possible maximum) were not taken into 
account in the final comparison6 . The number of discarded (unsuccessful) tests 
varied from 0 for feed-forward networks up to 4 for the worst case of recurrent 
ones. 

For the sake of comparisons with literature all results obtained for the data 
range (0.2, 0.8) were scaled back to correspond to the range (0, 1). Rescaled re­
sults for all tested architectures are presented in Fig. 6 (multilayer perceptrons) , 
Fig. 7 (Jordan networks) and Fig. 8 (Elman networks). In the fi gmes MEAN 
denotes the average M S E (mean squaTe erTm·) on the test set calculated for all 
successful tests , ST D .D EV. denotes the standaTd deviation calculated as: 

STD.DEV. = _!_ t(MSEi- MEAN) 2 , 
n 

(7) 
i= l 

where n is the number of successful tests and M S Ei is the mean squar-e erT01' 
in test i. STD .ERR. denotes the standard estimation error (Luszniewic?. and 
Slaby, 1997) calculated as: 

STD.ERR. = ST~V .. 
n -1 

(8) 

The main reason for using several network architectures of the same type ( dif­
fering by hidden layers' size only) was the search for the best out-of-sample 
prediction accuracy, which means the best generalisation ability. Therefore, it 
is reasonable to expect that results should be poor for networks too small for 
our problem, but also for too large ones (due to the overfitt ing problem) - with 
suboptimal results achieved somewhere in between. 

For multilayer perceptrons (MLPs) presented in Fig. 6 ovcrfitting was ob­
served only in case of the nets with two hidden layers. I3ased on the results we 
conclude that FF 1-30-30-1 is close to the optimal architecture among MLPs 
with two hidden layers since results for FF 1-60-60-1 architecture are visibly 
worse. 

In case of MLPs wi th one hidden layer overfitting was not observed - the 
best performance on the test sets was achieved by the largest network FF 1-
100-1. Probably, in order to observe the overfitting phenomenon, the size of the 
hidden layer should be extended beyond one hundred. 

Overfitting was not observed for .Jordan nets , either. As can be seen in 
Fig. 7 the network .JO 1-20-1 performed better than JO 1-10-1 and JO 1-30-1, 
but worse than JO 1-55-1. Hence , the results for overfitting test arc inconclusive 
and this issue needs fnrther and more detailed investigation. It is worth noting 
that results for the JO 1-55-1 net were nevertheless almost three times smaller 
than those presented in Hallas and Dorffner (1998) for the same architecture, 

6Tn PffPd. for ~ornP " r rchit.Pdnr~s t.hP. n11mbcr of relevant final t ests wa~ act ua ll y less th an 
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Figure 6. Prediction accuracy of multilayer perceptrons on test data sets - see des­
cription in the text. 
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the same chaotic series and the same limits for the maximum number of epochs. 
This significant difference is probably caused by scaling the data to the range 
(0.2, 0.8) and by using backpropagation with momentum, contrary to Hallas 
and Dorffner (1998), where data from the range (0, 1) were considered and the 
learning algorithm was standard backpropagation. 

In both types of Elman nets (Fig. 8) overfitting was clearly observed. Results 
suggest that Elman architectures EL 1-20-1 and EL 1-10-10-1 are close to opti­
mal within the respective types of architectures. It is worth recalling here that 
the extended Elman networks were the only ones for which the learning rate 
and the momentum were selected in an adaptive manner (i.e. were not fixed). 

4.4. Comparison of network architectures 

Comparison of the winning architectures in each network type is shown in Fig . 9 
and in more detail in Table 2. The main conclusions drawn from these compar­
ative results are the following : 

• The best out-of-sample predictions were obtained for feed-forward net­
works with two hidden layers. The winning architecture was FF 1-30-30-1 
with MEAN~ 1.2 - 10- 6 . 

• Very good results, but one order of magnitude worse than for 2-hidden 
layer MLPs, were obtained for extended Elman architectures with adaptive 
selection of learning rate and momentum. These results were in turn one 
order of magnitude better than those for Jordan and Elman architectures 
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Table 2. Comparison of five winning architectures - one per each network type. 
M S E L and M SET denote errors on learning and test data, respectively. MEAN, 

STD.DEV., MIN denote the mean value, standard deviation and minimum of the 
respective MSE among all successful runs. 

MSEL 
MEAN STD.DEV. MIN 

FF 1-100-1 1.66E- 05 4.97E- 06 6.97E- 06 
FF 1-30-30-1 1.18E- 06 3.17E -07 5.93E- 07 

J O 1-55-1 8.85E- 05 1.20E- 05 7.30E- 05 
EL 1-20-1 1.02E- 04 5.75E- 06 8.96E- 05 

EL 1-10-10-1 9.41E- 06 6.88E- 06 3.32E- 06 
MSET 

MEAN STD.DEV. MIN 
FF 1-100-1 2.01E- 05 6.20E- 06 8.41E- 06 

FF 1-30-30-1 1.20E- 06 3.17E- 07 6.02E- 07 
JO 1-55-1 9.60E- 05 1.66E- 05 7.64E- 05 
EL 1-20-1 1.17E- 04 7.83E- 06 1.05E- 04 

EL 1-10-10-1 1.19E- 05 9.19E- 06 4.98E- 06 
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• The best result among perceptrons with !-hidden layer was 1.5 order 
of magnitude worse than the best result for 2-hidden layer perceptrons. 
Based on the results it is suggested that networks with 2-hidden layers 
(both feed-forward and recurrent) are more effective in short-term predic­
tion task of chaotic time series than their 1-hidden layer counterparts. 

• Recurrent networks converged faster than feed-forward ones, but on the 
other hand were generally more sensitive to changes of learning and mo­
mentum rates. 

• Significant improvement was achieved by scaling the data from interval 
(0, 1) to (0.2, 0.8) . 

• For all architectures the results were repeatable with relatively low vari­
ances. 

Our results, for all tested types of architectures were superior to these pre­
sented in Hallas and Dorffner (1998), where a similar experiment was reported. 
Seeking for possible explanations of these differences we exactly repeated Hallas 
and Dorffner's tests and obtained results very close to theirs. Further analysis of 
both experiments led to three reasons , which most probably caused superiori ty 
of our results: 

• first, in our experiment learning wit h momentum was applied , 
• second, the data was scaled to (0.2, 0.8f, 
• t hird , individual learning and momentum coefficients (or adaptive scheme 

in case of extended Elman networks) were applied in our tests, whereas in 
Hallas and Dorffner (1998) the same coefficients were used for all types of 
networks. 

4.5. Extended tests 

After the main experiment was concluded some additional tests were performed 
aiming at 

1. checking the limits of prediction accuracy of the best MLP architectures, 
2. evaluation of Algorithm 1 on other types of networks, 
3. checking the ability of tested networks to perform long-term predictions , 
4. more accurate performance comparison in case of (0.2 , 0.8) data versus 

(0, 1) data for the five winning architectures. 

Ad. 1. Training with unlimited number of epochs (only stopping condition 
based on validation error incrementation was applied) was performed for multi­
layer perceptrons only, since in recurrent networks training was usually stopped 
before reaching the maximum number of epochs. The two best MLP architec­
tures: FF 1-30-30-1 and FF 1-60-60-1 were considered. Training parameters 
were the same as in the main experiment and the test was performed twice for 
each net. Results are presented in Table 3. In each test the number of train­
ing epochs until the stopping condition was satisfied was aproximately equal to 
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Table 3. Results of the test with "unlimited" number of epochs. MSEL, MSEv and 
M S Er denote learning, validation and test errors, respectively. MEAN denotes the 

mean value of M SEr for two tests. 

I architecture 

error 
MSEL 
MSEv 
MSET 
MEAN 

5.5e-5 

4.5e-5 

3.5e-5 

2.5e-5 

1.5e-5 

5e-6 

-5e-6 

cr 

FF1-100-1 
[0;1] 

FF 1-30-30-1 

test 1 test 2 
3.33E- 8 3.08E- 8 
3.75£- 8 2.85£-8 
3.70E- 8 3.43E- 8 

3.56E- 8 

--

c u 
--

~ 

FF 1-60-60-1 

test 1 test 2 
4.54£-8 3.27£-8 
4.74£-8 3.46E- 8 
4.93E- 8 3.66E- 8 

4.29£-8 

--- :r: ~~~~: ;;gg:: 
0~~::;~::: 

FF 1-100-1 FF 1-30-30-1 FF 1-30-30-1 D MEAN 

(0.2;0.8] (0; 1] (0 .2;0 .8] 

Figure 10. Comparison of results achieved by the best feed-forward architectures for 
the (0, 1) and (0.2, 0.8) data ranges. 

200 000. The results confirm the claim that architecture FF 1-30-30-1 is close 
to optimal among 2-hidden layer perceptrons and that worse predictions output 
from the FF 1-60-60-1 net were caused by overfitting rather than by too short 
training time. 

Ad. 2. Application of the adaptive scheme for learning rate and momentum 
(Algorithm 1) in the Jordan and simple Elman networks resulted in perfor­
mance comparable to that achieved with fixed, predefined rates. 

Ad. 3. The test for long-term prediction was performed for two architectures: 
the winning MLP, i.e. FF 1-30-30-1 and its variant with extended input layer, 
i.e. FF 10-30-30-1. Both networks were tested with the time lag d = 2, 3, 4, 5. 

Hnt.h arr.hit.Pd.nrPS nprfnrmPn r at.hPr nnnrlv. an n FF 1 0-~0- :W-1 Wrl.<l P'PnPrallv 
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Figure 11. Comparison of results achieved by the best Elman architectures for the 
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increasing 1.5- 2 orders of magnitude each time the time lag was incremented 
by 1, until d = 4. Practically, predictions for d 2: 4 were useless. The actual 
values of MSEr were the following: 9E- 06 for d = 2, 5.8E- 04 for d = 3, 
4.6E - 02 for d = 4 and 4. 7 E - 02 for d = 5. 

Ad. 4. In preliminary tests it was observed that scaling the data to in­
terval (0.2, 0.8) resulted in evident improvement of performance for almost all 
tested architectures. Since this observation seems to be relevant (both theoret­
ically and practically) additional tests for (0, 1) data were performed in order 
to compare them with results from the main experiment. Comparative results 
presented in Figs. 10, 11 and 12 (for feed-forward, Elman and Jordan nets, re­
spectively) ultimately confirmed our preliminary hypothesis about "superiority" 
of the (0.2, 0.8) data range. 

5. Final conclusions and directions for future work 

Results presented in this paper indicate that neural nets with two hidden layers 
are superior to those with one hidden layer in short-term predictions of chaotic 
time series. It is also shown that contrary to the common beliefs feed-forward 
nets may be better suited for this task than recurrent ones. An interesting 
observation is high stability of results for all tested architectures. 

The above conclusions may, on the other hand, be appropriate only for a 
certain class of chaotic series and not necessarily in general case. The reason 
for such a remark is the fact that the logistic map recursive equation is defined 
based on the last time step (one step back) only, and therefore the inherent 
recursive mechanism in recurrent neural architectures may possibly not be fully 
explored in that case. In order to verify this conjecture similar experiments are 
planned for other chaotic series, which arc defined on the basis of several (more 
than one) past values. 

One of the practical hints implied by this work is visible improvement of 
results caused by scaling the data to the range (0.2, 0.8) instead of (0, 1). This 
issue, previously reported in Tang and Fishwick (1991), deserves further theoret­
ical and experimental investigation. Another interesting issue for future research 
is verification of qualitative conclusions presented in this paper on financial or 
business data. 
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