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1. Introduct ion. 

We iuvestigate Holder-like propert ies of minimal points of a set depending upon 
a pa rameter. The goal is to provide a general framework fo r s tability anal
ysis of parametric vector optimization problems. From the results obtained 
oue can easily derive the conditions for stability of rniuirnal points in paramet
ric vector optimization problems. These couditions, in turn, can be viewed as 
vector counterparts of conditions for s tability of the optirual value fu nction itt 
scala r pa rametric optimiza tion problems. Our res ults depeml essentially Oll tl1 e 
behaviour of the containment and the weak containment ra te fuud ious, iHtro
duced in the present paper. These functious a re specific for s tability analysis iu 
vector case. Their appearance is caused by t he fad that in vector optimization 
we work with partial orders only. 

Lipschitz-like properties of rnultifunctions were iHvestigated by maHy a u
thors, e.g. by Robinson (1981, 1976), Aubin (1984, 1985) , Clarke (1983). They 
play an important role in s tability of nonliuear programming problems, see e.g. 
Hemion and Outrata (2001), Klatte and Kummer (2001) . We defi 11 e Holder 
couHterparts of these nol.io11s with orders other !.han 1 (and 110t necessarily 
smaller than 1). This allows us to investigate the i11flueuce of the order of 
change of a giveu multifuHcl.iou , a11d of l.!I e speed of growth of the conta iument 
ami the weak co ntailllnCHt rate fuHctions, upon the order of change of minimal 
poiHt multifuJtction . 
In Theorem 3.1 we give couditions for Holder calnmess of llliuiu ml points. It is 
worth 11ot icing that , as a consequeHce of assumptions , we obtain that iut K -:/; 0. 
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separately and requires other techuiques. We propose dual approach. We ex ploit 
the quasi-interior of a cone a ud the descriptiou of a coue l>y its dual. The main 
result rela t ed to the case int JC = 0 is given in Theorem 5.1. 

Let Y and U be normed spaces and let By deuote til e opeu unit ball in Y. 
We say that a multivalued mappiug f : U :::t Y, is 

(H l) 'U7Jper· pse'Udo-Holde·r o·r· Holder cuirn at (uo , yo) , Yo E r(·uo) , iL for a 
neighbourhood V of yo a nd a neighbo urhood Uo of ·u0 , t here a re positi ve 
L a nd q such that 

f('LL) n V C f( uo) + Ll l·u- ·uoii''By, 'U E Uo . 
(H2) lower pc;cudo-Holde:r a t (uo , yo), yo E r(·uo), if, for a ueighhourhood V of 

Yo a nd a neighhourhood U0 of ·uo , t here a re positive L a nd q such t hat 
r(uo) n V C r(u) + L ll·u- ·uol l" By , u E Uo. 

}or q = 1, (H1) reduces to calumess (see Hemiou, Outrata, 2001, Klatte, 1\uttl
mer, 2002). Criteria for calnmess of dilTerent rnultifunctions can be fouud cg., 
in Henriou a nd Outrata (2001). For instance, if S(:y) = [- c;(y), s(y)], where 
s(y) = 1 + /fYI, y E R, then S is no t calm at (0, 1) (see K latte am] K uu 11ner , 
2001 ), Gu t it is Holder calm at (0, 1) with order 1/2. 

Let A C Y he a subse t of Y a nd let JC C Y be a closed couvex pointed cone 
in Y, JC n ( - JC) = {0} . We say that :y0 E A is 
(Ml) ·rnininwl point, Yo EMinA, if An (yo - JC) ={yo}, 
(M2) locul Tninimal point, if Yo E J\!hn.Anv , where V is a ueighhourhood of y0 . 

When A C Y is a convex suhset of Y , 

(1) 

To see t his, suppose that Yo rt M ·inA, i. e. , there exists y1 E A such tl1 a t :y 1 -

Yo E - JC. By convexity, >..yo+ (1 - /\ )y1 C A n (yo - JC), 0 :::; >.. :::; l , and 
>..yo+ (1 - >..):yl E V , for 0 :::; >.. :::; "X :::; 1. Hence, Yo rt M·in.;.~nv. 

2. Containment property and it s characterizing functions 

Let JC C Y be a closed convex point ed cone in Y. For a ny subset C C Y the 
point to set distance d(:r , C) is givell as rl(:c, C) = iuf{ll :c- e ll I c E C} , a nd 
the c neighbourhood of the se t Cis giveu as B(C,c) = {y E Y I d(y,C) < c}. 
Denote C(c) = { c E C I rl( c, Mine) 2: c }. 

We say that the co·ntu:in:rnent vrope'f"ly (CP) (Bcd uarcz uk , 2002 ) holds for a 
subset C C Y if for a ny c > 0 t here exists 8 > 0 such that 

C'(c) + oBy c M ·inc + JC. 

We define the con e containment funct1: on, cont : JC ---> R+, as follows 

cant(/;;) = sup {r 2: 0 I k + rBy C JC}. 

If iut JC = 0, then cant = 0. Since JC is closed, the suprClllllll l is always 
at ta ined , i. e., k + cont(k )By C JC. The couc coutaimnent fu11 ctiou is posi-
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A· cont(k). If there were wnt(A · k) = (3 > A· cont(l.:) for some A > 0, it 
would be k +~By C K, contradictory to the ddiuition of cont(k). Moreover, 
cont(k1 +k2) ~ cont(kl)+cont(k2). lu cousequeuce, cont(-) is a concave function 
and 

domcont = {k E K I cont(k) > - oo} = K. 

For k E K, cont(k) = -Sx:(k), where Sx:(k) = inf11 EK Ilk- vii- inf11 EY\K Ilk
vii· The function Sx: was introduced by Hiriart-Urruty (1979a,b), see also 
Gorokhovik (1990). The fuuctiou J.Le : M·ine + K -+ R+ defined as 

{Le(v) = sup{cont(v- 1111 ) I T/y E M ·ine n (v- K)}, 

is the mle of containrnenl of an ele-ment v E Y (Bedmtrczuk, 2002) with respect 
to C and JC. The fuuction be : R+ _, R = R U { ±oc}, given as 

be(c) = iuf{pe(v) I v E C(c)} 

is the mte of containment of a !:iel C (Bednarczuk, 2002) with respect to K. 

REMARK 2.1 If intK = 0, then {Le = 0, and be = 0. On the oihe'l· hau.d, 
P·e (v) = 0, irnplies that v he::; on the uo·u·nrla·1·y of Mine + JC , v E CJ(I\ifine +!C) . 

REMARK 2.2 The containment ]JrO]Je'l"ty (CP) can be c:hmacle·rized !Jy the COTI

ta:innwnt 'l·u.te funct-ion b u.s follows. ( C P) holds for a s·u.!Joet C C Y if" and only 
if be(c) > 0 for any E > 0. We say that the dom.inution J!!Ope7"ly (DP) lwlrh 
for C -if C C Mine+ !C. (DP) holds fm· C 'i.f awl ou.ly 'if be(c) ~ 0 for any 
c > 0. 

Below, we give comlitions under which the supreum111 iu the dcfinitiou of the 
function p is attained. Recall that a convex subset E-) of a cmte K is a Lase of K 
if 0 !f. ciG, K = U{AG I A ~ 0}. Following Borwein and Zlmaug (1993) we say 
tlta.t R" (C) is the generalized weak reccssiou coue of a set C if 

Ra (C) = {·u E Y I there exist An > 0 A, _, 0 Cn E C such that 

A.11c 71 temls weakly to v}. 

A set C C Y is !C-lower bounded if there is a constant J\1 > 0 suc:lt tltat 

C c MBy +!C. 

If C' is !C-lower bounded, then Ra(C) C K, see Bon,vein ami Zhuang (1993). 

PROPOSITION 2.1 Let y = (Y, II . Ill be a '/W'/"/1/,ed space. Let K c y be a closed 
conve:~: po·interl cone 'in Y and let C C Y be rL s·u.bset of Y. Let V C Y be a11 
open S'ILU:>ei of Y and let v E M·inenv + K. ff' eithe1· of the conrldim1.:> holds: 
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(ii) M incnv is JC- lower bo'Unded and weakly closed and JC has a weakly 
compact base, 

then y = T/y + ky, w'ith T/y E Mincnv, and ky + J.Lcnv(y)By C JC. 

Pmof. Let y E M·incnv + JC. For each n > 0, there exists a representation 
y = T}n + k,11 T}n E Mincnv n (y- JC), kn + cont(kn)By C JC, and 

1 
cont(kn):::; J.Lcnv(y) and cont(kn) > J.Lcnv(y)- -. 

n 

We claim that under either ('i) or (ii) the sequences { TJn} and { kn} converge to 
1Jo, and ko, respectively, and 

Y = 'rJo + ko. (2) 

If ('i) holds, the sequence {rJn} contains a weakly convergent subsequence. With
out loss of generality we can assume that {'rJn} weakly converges to an TJo E 

Mincnv n (y- JC). By this, the sequence {kn} weakly converges to ko E JC and 
we get (2). 

If ('i ·i) holds, and 8 C JC is a weakly compact base of JC, then kn = A,J1n, 
An 2 0, and { Bn} C 8 contains a weakly convergent subsequence. Again, we 
can assume that {Bn} weakly converges to Bo E 8. If there were An _, +oo, 
then 

1 w 
An (TJn- y) _, -Bo 

and -80 E Ra (C) n ( -JC), contradictory to !C-lower boundedness of C. Hence, 
An _, Ao < +oo. Consequently, { kn} weakly converges to ko E JC, and {Tin} 
weakly converges to TJo = y- ko. Since Mincnv is weakly closed, rJo E Mincnv, 
and (2) follows. 

To complete the proof we need to show that ko + J.Lcnv(y)By C JC. On 
the contrary, if we have ko + J.Lcnv (y )bo ¢ JC, bo E By, then, by separation 
arguments, there exists a linear continuous functional f such that 

f(ko + J.Lcnv(y)bo) < 0:::; f(k) fork E JC. 

Consequently, there would be 

f(ko + cont(ka )bo) 

= J(ko + /Lc nv(y)bo) + f(ka- ko) + J([cont(ka)- J.Lcnv(y)]bo) < 0, 

contradictory to the fact that /,;a+ cont(kn)By C JC. • 
Based on Propositiou 2.1 we prove contiuuity of the rate of containment J.LC· 

THEOREM 2.1 Let (Y, II· II) /;e a normed space. Let JC C Y be a closed convex 
pointed cone in Y and let C C Y be a s'lLUset of Y. Let Yo E int(Minc + JC). 
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(i) M ·inc ·i:; weakly compact, 
(ii) Mine is K-lower bounded and weakly closed and K has a ·weakly compact 

base, 
the fun ction J1C is contin·uo·us at Yo. 

Pmof. Let yo E int(M·inc + K). We start by proving the lower semicontinuity 
of 11c at YO· By Proposition 2.1, 

Yo = rJo + ko, rJo E M ·inc, leo + p,c(yo)By c K. (3) 

Take any c > 0 and v E 8By, where 8 = min{c,p,c(Yo)/2}. By (3), 

Yo+ v = rJo +leo+ v, TJo E M ·inc, ko + v E K. 

Moreover , since v + (p,c(Yo) -ll·uii )By C p,c(Yo)By, we get 

p,c(yo + v) 2 fl·c(yo) -ll vl l > !1c(yo)- E, 

which proves the lower sernicontinuity of P,c at YO· 
To show the upper semicontinuity of 11c at Yo suppose, on the contrary, that 

for a certain "E > 0 and each 8 > 0 there would be 'V6 E min{8,p,c(Yo)}Bl/ such 
that 11c (yo + v15) 2 t•c (yo) + f. This would mean that for each 'VIJ there would 
be a representation 

Yo+ V15 = k + 'ij , k E K, 'ij E M ·inc, 

where Yo = k + 'ij , k + p,c(yo)By C K, such that 

cont(k) > p,c(Yo) + "E, i.e. k + [p,c(yo) + "E]By C K. 

(4) 

By (4), Yo = 'ij + k1, where k1 = k- 'Vc5. Since 'V6 + [p,c(Yo) + 1/2E]By C 
[p,c(yo) + "E]By for 8 < 1/2E, we would get 

k1 + [p,c(Yo) + 1/2"E]By C k + [p,c(Yo) + "E]By C K, 

contradictory to the definition of J1c(Yo). • 
PROPOSITION 2.2 Let Y = (Y, II· II) be a nom~ed space. Let K C Y be a closed 
convex pointed cone in Y and let C C Y be a subset of Y. Let V C Y be an open 
subset of Y . 5-uppose that ( C P) holds joT C n V. If, for· uny y E M i·ncnv + K, 
e-ither of the conditions holds: 

(i) M ·incnv is weakly compac t, 
(ii) lvhncnv is K-lower bo·unded and weakly closed and K has a weakly corn

pact base, 
then, for- any c > 0 

(C n V)(c) + 8cnv(c)By c M ·inc nv + K. 

P-roof. Let c > 0. By (CP) , (CnV)(c) C M ·incnv +K. By Proposition 2.1 , for 
a ny y E (CnV)(c) we have y = ''lv+ky, where TJy E M ·incnv , ky+t•c nv(y)By C 
K. Conseouentlv, ·u + 8rn v(c)By C Minrn v + K. • 
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3. Holderian calmness of m inimal points for cones with 
nonempty interior 

Let f : U ==: Y be a set-valued mapping. The set-valued rnappiug M : U ==: Y , 
defined as 

M('U) = M ·inqu) 

is called the minimal po·int nmltifunction. Here we formulate conditions for 
Holder calmness of M. 

THEOREM 3.1 Let Y = (Y, II· II) und U = (U, II· II) be norrned spaces. Let 
K c Y be a closed convex pointed cone ·in Y. Let f : U ==: Y be a set-val'lled 
mapping wdh f(·uo) convex. Let, for a rwighbom-lwod V of yo E M('uo) , r 
be ·uppe·r pse·udo-HOldeT at ('Uo,yo) with oTdeT (/1 and constant L 1 , and lowe·r 
psewlo-H oldeT at (·uo, Yo) with oTder· (/2 and constant Lz. S·u.ppose /Jw l one of 
the following conditions holds: 

(i) Minquo)nv is weakly wrnpact, 
(ii) J\.1-inr(uo)nv is K-lower bo·unded and weakly closed and K has a weakly 

compact base. 
If 
(Al) Dr(t1u)nv(c) ~ c · cP , c > 0, for c < co , co> 0, 
then M ·is 'll]Jper pse'Udo- H oldeT at 'Uo ' i.e. J 

I 

( (
Ll+Lz)") · { ,;,l" l ·''·' l l M ('U) n v c M ('Uo )+ Lt + c ll ·u- ·uoll 111111 

'J l, I' ·Bj•' 

fo ·r all ·u ·in some neighbo'll:rhood of ·uo. 

Pwof By assumptious, there is a positive "· such tha t 
f(uo) n V C r(n) + L2ll·u- ·uoll'~2 By , ami 
f(u) n V c f(·uo) + L1ll 'tt - ·uo lll)l · By 

C [M·inf'( uu )nV + Lt · llu - ·uoll '11 
· Dv 

I 

(
L 1 +£.)); , ;,l"' ·"·· l ] + - · II'U-'Uoll ,, ·By 

c 

U [ ( f(·uo) \ ( Minqu
0 
)nV + ( 1 1 : 12 ) f, ll ·u - ·uo II,,;, l ~' .• ,., l · By)) 

+L1 · ll·u- ·uoll'~ 1 
• Bl/], [- 2pt] 

whenever ll ·u- ·uoll < 1; .. We claim tha t 

M('U) n V n [ (r('Uo) \ (Nhnq "u)nv 
I 

(L 1 +L~ \" ,;, l" ' ·"·· l \\ l 
I - II , , .. . . II " . R .. ..L T . II , ,_ ... ~ II'II. R" -ri1 ( ,. \ 
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for ll tL - 'Uo II < rL, or equi valenUy 

Let, us ta ke a ny y E r(·u) n V , such that y = 1 + h, where 

all(\ UJ E L1ll 'tL- ·tto 11" 1 
• B\' . By Proposition 2.2, 

1 = TJ, + 1.:1 , 'IJ, E M'inr(uo)n\1, 

l3y the lower pseudo-Holder properLy of r , '~h = 11 + 1!2 , / ' ! E r (u), 1!2 E 
L2l ln - uo 11"2 

• B\' . ln view of tlte ass u111pt ious, by c!tusiag t; Sill a ll elluugh, we 
r 1 Ill i ll { IIJ .q '>} { } 

obtain Dr("on\1 ( ( L 1 ~ "') P" ll 'u- 'tto II '' ) 2: ( L1 + L2) ll'u - 'tto II "';" "' •'12 
, ami 

consequeutly 

By tltis, y ¢ M(u) n V, and (*) follows. Hence, by (1) 

M(n) n V C Mr(uu)n\1 + L1 · llu- 'nol l"'· By 

(
Ll+L-) )-); ,,i,( ql.q ·•l . 

+ - · llu-uo ll '' ·By 
c 

I 

( (LJ+£2 )") "{ min{ q , ,q.,)} 
cJ\!I(uo) + L1+ c l l 'u-uoll "u" '~'· " · By , 

for llu- 'no ll < n, , which coniplctes tlte proof. • 
By Relllark 2.1, tlte assulllpLion 8( c:) 2: o:l' implies Lhat int K f 0. The 

couvexity of r(uo) allows us Lo make use of (1) and can be replaced by any 
ot her conditiou ensuring (1); in tlte case V = Y the convexity of f(u 0 ) is not 
.... ...... r . ..... .-. .... ,.. ~ . .. ~ ... ~ . ... 1 .......... .. h .......... ~ •. : j j ,..., ] ( ,...,..,... o ..... l . ..... _ . ~ . ... l _ C)(\()C)\ 
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4. Weak containm ent property and its characterizing 
function 

As we have noted the assumption (A1) of Theorem 3.1 might hold true only when 
int !C f. 0. However, in some important spaces, standard cones of nonnegative 
elements have empty interiors. We propose to treat such cases via dual cones. 

Let Y be a Hausdorff topological vector space with topological dual Y* . Let 
!C C Y be a closed convex cone in Y. The cone !C* C Y * , 

IC* ={fEY* I f(k) 2 0 for all k E IC} 

is the dual to !C. The quasi-interior of !C* (see Jahn, 1986) is given as 

!C*i = {! E Y* I f(y) > 0 for ally E IC \ {0} }. 

Clearly, !Cis based if and only if JC•i f. 0. Necessary and sufficient conditions en
suring JC*i f. 0 are given in Gallagher (1995), Lemma 2.1 and Dauer, Gallagher 
(1990), Proposition 2.1. 

If int!C is nonernpty and e E int!C, then 8 = {! E !C* I f(e) = 1} is a base 
of !C*. On the other hand, JC*i is always based, and for any y0 E !C \ {0}, the 
set 8*i = {f E JC •i l.f (yo) = 1} is a base of JC*i. 

The bidual cone !C**, 

IC** = {y E Y I J(y) 2 0 for f E IC*}, 

is convex and weakly closed and in locally convex spaces !C = !C** if and only 
if !C is C011vex and weakly closed (see Theorem 12 .C of Holmes, 1975) . The 
quasi-interior of !C (see Peressini, 1967, Schaefer, 1971, Krasnoselskii, Lifsc!titz, 
Sobolev, 1985, Bakhtin, 1985) is given as 

!C i = {k E !C I f(k) > 0 for f E IC* \ {0}}. 

In locally convex space, if int !C f. 0, then int !C = JCi . JCi is nonernpty if and 
only if !C* is based (see Lemma 2.1 of Gallagher, 1995). We refer to any base 
8* of !C* of the form 

8* = {! E IC* I .f(yo) = 1} , Yo E !Ci (5) 

as a standard base. 

EXAMPLE tl.1 (see Gallagher, 1995, Krasnoselskii, Lifschitz, Sobolev, 1985 , 
Peressini, 1967, Schaefer, 1971) 

1. Let Y = R"', !C C Y be a closed cmwex po·inted cone. For any conve:c 
s'/Luset A, cor(A) co·incides with the topolog·ical ·inte·rior of A. Hence, eg ., 
.foT the cone IC = {(y1, Y2) I Yl 2 0 Yl = Y2} we get IC* = {(h , h) I h 2 
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2. FaT any p E [1 , +oo) cons-ider the seq·uence space fP, of seq·uences s = { si} 
wdh Teal tenns, 

00 

fP = {s = {si} I L ls.;IP < + oo }, 
·i=l 

wdh the nat·ural m-der"ing cone 
e~ = { s = { ::;;} E er I S; ~ 0}. 

The order-ing cone e~ has empty topolog·ical interior and empty algebm'ic 
·inteT·ior, CO'r (f~) = 0. B·ut 

( e~ r = { s = { s;} E fP I s.; > 0}' 
3. FoT any p E [1 , +oo) , cons·ider· the space of all p-tlt Lebesq'Ue 'integmble 

funct-ions f : n --> R with the nat·ural o·rdeT'ing cone 
L~ = {f E V' I f ( x) ~ 0 alnwst everywhere on n}. 

The topolog-ical interior' int(L~) and cor(Ll') ar-e both empty b·ut K.; -::/:- 0. 
To see th'is Tecall that 

(L~r = {! E V' I / fgdp, > 0 faT all gEL~\ {0} }, Jn 
l + l = 1 and 
p q ' 

(L~)i = {f E LP I f (x) > 0 almost everywher-e on n}. 

We have the following Proposition. 

PROPOSITION 4.1 Let Y be a locally convex topolog-ical vecto·r space and let 
K C Y be a closed conve:r cone with K*i -::/:- 0. Then 

(i)KicK\{0}, 
(ii) w - * - elK*; c K*. 

(iii ) K = {y E Y I f(y) ~ 0 for all f E K*;}, 
(iv) w- cl{y E Y I f(y) > 0 for· all J E K* \ {0}} C K. 

Pr·oof. (i) follows from the fact that in a locally convex space K = {y E Y I 
f(y) ~ 0 for all f E K* } . 

(ii) Siuce K*i c K* and K* is weakly - *- closed, we get w- *- clK*i c K*. 
(iii) If k E K \ {0}, then f(k) > 0 for any f E K*i, which proves that 

K C {y E Y I f(y) ~ Ofor all f E K*i}. The inclusion {y E Y I f(y) ~ 
0 for all f E K*.;} C K is proved in Dauer , Gallagher (1990), Lemma 5.5 . 

(iv) Since K is weakly closed, w - elK; c K. • 

Let C C Y be a subset of a nonned space (Y, 11· 11 ) and let K* has a base 8*. 

DEFINITION 4. 1 The weak containment property (W C P) holds for· C wdh r-e
S1Jecl lo e· if for eveTy c > 0 lher·e ex·ists 0 > 0 S'UCh that joT each y E C( c) one 
can find T/y E Mine sat'isfy·ing 

LJ * f .. .~. \ .... c r __ .. __ z. ll * ,.... A* 
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Note that if y - T/y satisfies (6), t hen y - T/y E JCi. It has been shown by 
Peressini (1967, sec. 4.4) that in the spaces eoo, f1', LP(rl), p 2: 1, the quasi
interior JC~ of the positive cone JC+ coincides with the se t of weak order units 
(see Peressini, 1967, p. 184), i.e. , for any Yo E JC~ and any y E JC+, y =/=- 0, there 
exists z E JC+, z =/=- 0, such that z :::; yo and z :::; y. For the general result in 
order complete vector latt ices see Schaefer (1971) , Th. 7.7. 

In general, (WCP) depends upon Lase. In the sequel we give a characteri
zation of bases for which (WCP) holds. 

Now we define functions characterizing weak containment property. The 
dual cone containment fun ction dcO'nte· : JC __, R+ is defined as 

dconte· (k) = inf{B*(k) I e· E 8*}. 

Let C C Y be a subset of Y. The funct ion ve : M ·i.n.e + JC __, R+ given as 

ue(y) = sup{dconte- (y - T/y ) I T/y E Mine n (y- !C)} 

is the mle of 'Weak containment of a:n elernenl y E Y 'W-ith Tespecl to C u:r/.(l !C. 
The functi on de : R+ __, R = R U { ± oc}, given as 

de(c) = inf{r/e(y) I y E C(c)} 

is t he mte of 'Weak conlai·nment of a set C with respect to JC and 8 *. 
Let Yo E JCi. Consider the standa rd base 

e· = {B* E JC* I B*(yo) = 1}. 

}o r any k E JC , 

dconte . (k) = inf{B*(k) I B*(yo) = 1, e· E JC*}, (7) 

is an infin.ile-d·imensional l-inea1· pmg·1·am·rn ·ing pm!Jlem. By duality t heory (sec 
e.g. Barbu , Precupanu 1986, Ch. 3, par. 3, p. 233) , it is the dual to the problem 

sup{r I k-.,. ·Yo E !C}, (8) 

where r is a real number , .,. E R (compare also Barbu , P recupanu , 1986, Ch. 3, 
Th. 3.4., p. 235). Since To = 0 is feasible for (8), by Proposition 2. 1, Ch. 3, 
p. 197 of Barbu, Precupanu (1986), we have 

0 :::; sup{T I k- '{'.Yo E !C} :::; inf{B*(k) I B* (yo) = 1, e· E !C* }. (9) 

Suppose now that for a given /.; E JC 

inf{B*(k) I B*(yo) = 1, e· E JC*} = 'l' 2: 0. 

Hence, for any B*(yo) = 1, (;l* E JC*, we have 8*(/.;) 2: 'l', which entails that 
k - ry0 E JC and 
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which proves tha t 

sup{r I /,;- T ·Yo E K} = inf{B*(k) I B*(yo) = 1, (.1 * E K*}. (10) 

The function 

q(k) = sup{T > 0 IT- 1k E Yo+ K} , 

has been also considered in other context (see Narnioka, 1957). It is superlinear , 
and the graph of q, 

Gmph(q) = {(k, T) I q(k) 2 T} 

is a cone in Y x R. 
Now the question arises when the optimal value r is nonzero. Clearly, if, for 

any Yo E Ki and any k E Ki, it would be .,. > 0 such that k - TYo E Ki, then 
Ki C cor/Ciu(-IC;)(Ki), i. e., each k E Ki belongs to the core of Ki ·relative to 
Ki U (-Ki). It is easy to point out examples when r = 0. 

EXAMPLE 4.2 Let ]J > 1, y = £P, K = e~. As we obse·rved bejoTe 

(e~) i = {(s;) E £1' I Si > 0 joT each ·i EN}. 

By tak-ing Yo = ( fr) , and ko = ( fs), we see that joT any T > 0 the·re exists an 
'index I such that 

1 1 
-:-

3 
- T-:-

2 
< 0 for ·i > I , 

'i 'i 

and hence r = 0. 

Now we can rewrite ( W C P ) property fo r a set C as follows: for each c: > 0 
there exists 8 > 0 such lha t for any y E C(c;) there exists T/y E lvl ·i.nc such that 

y - T/y E 8 · Yo + K. (11) 

PROPOSITIO N 4.2 Let (Y, 1/ · // ) be u. 'IW'I'Tned space and let A C Y be a s'Ubsel of 
Y . Let K C Y be a closed convex po·inted cone in Y and let K* be its d·aal w'ith 
a base 8 * . Th e following conditions a·re e!Jw>ualent: 

(i) (WCP) holds fm· A, 
(ii) d (c:) > 0 fo ·r each c: > 0. 

Pmof. ('i.) _, ('i'i) . Take a ny E > 0 and y E A(c;) . By (WCP), there exis t 8 > 0 
ami T/y E l'vf·i.nA such tltat 

dcontEP (y - '1/y) 2 8. 

Hence, 1/A(Y) 2 8, and d(c:) 2 8 > 0. 
('i.i) _, ('i.). Let d(c:) = cY > 0. For each y E A(c:) 
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and consequently, 

inf e* (y - T}y) > o:./2, 
8'E8 ' 

for some T/y E M·inA n (y- K), i.e., (WCP) holds. • 
PROPOSITION 4.3 Let (Y, 11·11) be a nor-rned space and let C C Y be a s·abset of 
Y. Let K C Y be a closed convex pointed cone in Y and let K* C Y* be its d'Ual 
cone with a base 8*. 

For any y E Mine + K, if M·ine n (y - K) ·is weakly compact, then there 
exists T/y E M·ine s·uch that 

ve (y) = dconte· (y - rry). 

Proof Let y E M·ine + K. By definit ion, dconte· (y- rt) :S ve(y), for each 
TJ E Mine n (y- K), and for any p > 0, there exists T/p E M·ine n (y- K) such 
that for any &* E 8* 

B*(y- rtp) 2: dconte•(Y- TJp) > ve (y)- p. 

Since Mine n (y- K) is weakly compact, the net {'rtp} contains a weakly con
vergent subnet and without loss of generality we can assume that the net {''7p} 
converges weakly to T/y E Mine n (y - K). Since K is weakly closed, the net 
{ kp = y - T/p} tends to some ky E K, and y = T/y + ky. Thus, 

inf B*(y- rry) 2: ve(y), 
B'E8' 

which completes the proof. • 
PROPOSITION 4.4 Let K C Y be a closed convex pointed cone in a topological 
vectoT space Y with Ki =f. 0. If 8i and 02 aTe any two standaTd bases, w-ith 
Yl, Y2 E Ki s'Uch that Y2 E (ry1 + K), T > 0, then there exists a positive Teal 
n'Umber (3 wdh 

dconte~(k) 2: (3 · dconte;(k). 

Proof Let 8i, 02 be any two standard bases, i.e., for Yl, Y2 E K_i we have 

0;: = {e;: E K* 1 e;:(yl) = 1} 

0; = {e; E K* 1 e;(yz) = 1}. 

For any k E K, and Bi E 8i, there exists e; E 02 such that 

where Bi(Y2) > 0. Hence, 

e~(k:) 2: e~(:112l inf B~(k:) 2: e;(:vz) inf e.;(k), 
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aud 

(12) 

Since Y2 E T · Y1 + K, by (1a), fJ = infe1Ee; Bi(Y2) >a, and by (12), 

dconte; ~ fJ · dconte;. • 

5. Holder calmness of minimal points for cones with pos
sibly empty interiors 

In the present section we use the weak containment rate function to derive 
couditions for Holder calmness of M. 

A subset F ofY* is eq·u·icontin·uo·us (Holmes, 1975, 12.D) iffor any E >a there 
exists a a-neighbourhood W such that lf(W)I < E for any f E F. Equivalently, 
there exists a balanced a-neighbourhood W such that J(W) :::; 1 for each f E F, 
i.e., F C (W) 0

• By Banach-Aiaoglu theorem, wa is weakly-*-cornpact. When 
Y is a normed linear space, F C Y* is equicontinuous if and only if it is bounded 
in the norm topology of Y*. 

PROPOSITION 5.1 Let JC C Y be a closed convex pointed cone in a norrned space 
Y , int JC f=- 0. Then, for any S'Ubset A C Y , ( C P) holds joT A if and only if 
(WCP) holds for A . 

Pmof. It follows from Lemma 2.2 of Gallagher (1995) that JC* has a ·w -
*-compact, and hence an equicontinuous base 8*. By Proposition 4.4, if 
(WCP) holds, then it holds for any equicontinuous base . Thus, (WCP) holds 
for 8*. Take any E > a. By (WCP), there exists 8 > a such that for any 
y E A (E) there exists rJy E Min A satisfying 

B*(y - TJy) ~ 8, fore· E 8*. 

Since 8* is equicontinuous, there exists a a-neighbourhood 0 such that IB*(q)l 
< 8/2 for q E 0, B* E 8 *. Hence, 

B*(y- TJy) ~ 8 > B*(q) , 

and finally 

B*(y- TJy) + B*(q) ~ 8/2. 

Suppose now that (CP) holds A. There exists 8 >a such that for y E A(t:) we 
have 

y - T/y + 8B C JC for some '1/y E M ·inA. 

By taking any Yo E Jei = int JC, we get 8yo E 8B, 8 > a, and 

y - '1/y - 8yo c K, 

which means that (WCP) holds. • 
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THEOREM 5.1 Let Y = (Y, 11 · 11) and U = (U. 11·11) be Tw·rrned ::;puce::;. Let K C Y 
be u clo::;ed eonve:c po·inted cone ·in Y, und let K* be 'it:> d·uul w·ith an eq'Uieont'in·u
o·u:> buse 8*. Let r : U :::::! Y , IJe a sel-val·ued mapping, wdh f('Uo) conve:r, wh·ich 
is 'UppeT fJse ·udo-HoldeT of oTde·r £1 with constant. L1 and loweT p:>e·udo-Holde·1· 
of oTdeT e2 with constant L2 at (yo, 'tto) E gTuph(f) joT a ne-ighbom1wod V of 
YO· If 

(i) dr(uo)nv(c) 2:: c · cP, with c > 0, jo1· c <co, co> 0, 
(ii) M·inr(uo)n\i is weakly compact, 

then M ·is 'Li]J]JeT pse·udo-H oldeT at ·uo' ·i.e.' 

joT all 'tL in some neigh1Jom1wod of ·uo. 

PToof. In this proof we follow the same reasoning as in the proof of Theorem 
3.1. Using the same notation we only need to show that under our assumptions , 

for llu- uol l <"" 

M('U) n V n [ (r('Uo ) n V \ (M·inrcuo)nv 

+ ( 2L1 : L2) 'i; ll·u- 'ttoll m;n{~, . i ?\ · By))+ L1ll·u- ·uol le1 ·By] = 0, (*) 

To this aim take any 

y E f('U) n V n [ (r('Uo) n V \ ( Minqu0 )nv 

( 
L1+L2)'i; m;n{i,,£.,) )) e ] + 2 c II'U- ·uo ll " ·By + L1ll·u- ·uoll 1 ·By , 

for ll·u- ·uol l < ""· We have y = 1 + b1, where 1 E f(·uo) n V \ (M·inf'(uo)nli + 
L L 1 min{fJ .i' ·d ~ 
(2~ )P' ll ·u- ·uo ll " ~ ·By), h E L1ll ·u - uoW 1 · By. 

Since 8* is equicontinuous we cau assume that e• (b) ::; 1, for each e• E 8*, 
and IJ E By. Hence, for each b E L1ll ·u- ·uo li e, ·By we have 

By Proposition 4.3, there exists T/-y E MiTI.r(uo)nv satisfying 

e*(!- T/-y) 2:: v(l) = inf e*(!- T/-y) 2:: df'(uo )nv(c) 2:: C: • cp for c <co, 
8'E8 ' 

for each e• E 8*. By the!ower pseudo-Holder couti11uity off, Ti-y = 11 + h, 
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B*(y- 1d = B*(y- !) + B*(T- ''h)+ B*(''h - 11) 

2: -L1 II ·u- ·uoll e1
- L2 ll·u - ·uol le2 

(( 
£1 +£.))* m;n{f ! ,l '>} ) 

+dr(u 0 )nv 2 c - llu- uo ll " 

2: -(£1 + Lz) ll ·n - ·uo ll min{E 1 ,e2
} + 2(£1 + L2l ll·u - uollm in {ft ,e2 } > 0. 
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Consequent ly, .f (y - 1d 2: 0 for any j E K*, and y - /J E K , which proves ( *) 
and corupletes the proof. • 

As in Theorem 3.1 , t he inequality clquu)n v 2: ct:1' is assu med to hold ouly for 
E close to zero , a ud the convexity of r(·uo) is needed only to eusure t he iuclusion 

M ·inr(uu )nll C M'inr(uu)· 

EXAMPLE 5.1 Let K C R 11 be a conve:c closed cone in R" wdh em]JI.y iT1te1·iot. 
Then K * C R" has no base s·ince the set J(T = {y E K * I y · :c = 0 joT each 
:t E J(} ·is a nontrivial linea'!' subs7Jace contained in K *. Th·is shov1s llwl the 
above Theorem cannot be appl·ied to fin:ite-dirnensional case. 

EXAMPLE 5 .2 Let Y =co be the space of all Teal ::; equences thu.L CO'II:IJ e'r!J e Lo ze'l'O 
with the nsnal posit·ive cone K =(col +· Then (co)+ lw.s 'IW inle'l"io·r po i·nt. a:nd 
K* ·is the nsual positive cone in the S]JUCe e1 ' K* = ( e1 l+ . The ::;et of ::;equences 
{ ~n} c e1 such !.hal L ~n = 1 is a base fo ·r K* that is bounded and closed ·in Lhe 
nonn /.apology. 

The a bove example shows tha t in so rue spaces , for s tauda rd coues K of 
nonnegative elements there is int K = 0, a nd K * has a bounded base. TJ ,is . 
however 1 is uot t he case for the space £7' (0.) where the uonnegat ive coue has 
ernpty interior a nd does not possess a bounded base . 
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