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Abstract: In the analysis of functions and multi-valued map
pings of Lipschitzian type, there are many different notions of Lip
schitz behavior , regularity and generalized derivatives. We collect 
relevant examples illustrating the interrelations between various con
cepts, the differences with the smooth case, and the importance of 
certain assumptions and special classes of Lipschitz mappings in ap
plications. 
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1. Introduction 

This paper is concerned with typical examples aud couuterexamples in the aual
ysis of Lipschitz functions and rnultifunctions. Our purpose is to coutrilmte to 
a better understanding of inten elations between difFerent concepts of Lipschitz 
behavior , regularity and derivatives , and of their role in selected applications. 

First we recall some notations and the classical definition of a locally Lip
schitz (single-valued ) function. To do this , let (X, dx) ami (Y, dy) be metric 
spaces. Given X° C X , the usual point-to-set distance of x E X to X 0 is 
defined by dist (x, X 0 ) = infx'EXU dx (:I: , :1:

1
) , where dist (x, 0) = +oo . We write 

X 0 + cBx :={x I dist (:r, X_0 ):::; c}, i. e., the specializatiou to X 0 = {:r0 } meaus 
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for y0 E Y, Y 0 c Y are deflll ed. G ive n :tl E Y, a functio n <; : Y--+ X is said to 
be 

(LO) Lipsch·iiz nea·r y0 if there are positive L and E such that 

dx(s(y), s(y')) ::; Ldy(y, y') 'iy, y' E y0 + EBy. (1.1) 

The function s is called locally Lipschilz on Y if s is Lipschitz near y for each 
y E Y. We will abo use t he (standard) notation .-; E C 0•1 , in this situation. 

2. Lipschitzian concepts for multifunctions 

Given again metric spaces (X, dx) a mi (Y, ely), let now S : Y ::::::t X be a multi
valued mapping (briefly called ·rnv.ll'ifu.nct·ion). Let gp hS := {(y ,:c) E Y x X I 

x E S(y)} denote the ymph of S, let dom S = {y E Y I S(y)-:/:- 0} denote the 
dmrwin of S, ami let S(A) = UaEAS(a) be the 'imaye of A C Y. If gph S is 
closed iu the product space Y x X, theu S is said to be clo<;ed. Further, denote 
by s- 1 the inverse of s' the multifunction defined by s- 1 (:c) : = {y E y I 
(y,:E) E gphS} . 

Let (y 0
, :c 0 ) be a n elerneut of gph S , and let 0 -:/:- X° C S(y0 ). The InuHi

fuuction S is said to be 

(Ll) locally ·uppe·r Lipschd z at (y 0 , X 0 ) if there are positive LandE such that 

(L2) p<;e·ado-Dipschilz al (y 0 ,:c0 ) if there are positive L ami E such that 

S (y) n (:c 0 + EBx) c S (y') + Ld1/ (y , y')Bx Vy,y' E y0 + t::By; (2 .2 ) 

(L3) cai-rn at (y0 , x 0 ) if there are positive L a mi c such that 

(L4) Lipschdz l.s.c. at (y 0 ,:c0 ) if there are positive Lami E such that 

(2.4) 

Here "l.s.c." means "lower semicontinuous", while "u.s. c. " will refer to "upper 
semicontinuous". Sometimes we usc "L ." and "u.L." to abbreviate "Lipschitz" 
and "upper Lipschitz", respectively. T he mul t ifunct ion S is said to be 

(L5) Lipschdz l.s.c. al y0 if there arc posit ive Land E such that 

(2 .5 ) 

(L6) Dipschdz ·u.s. c. al y0 if there a re positive L ami c such that 
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If (L4) is weakeuecl by oHiy requiring that dist (:c 0
, S(y)) ___, 0 hold for each 

sequence y----> y0 , then S is call ed l.s.c . at (y 0 ,:c0 ) . If (15) ic; replaced by 
the weaker condition dist (:c 0 , S(y)) ----> 0 for eac!J sequence y ___, y0 and each 
:z:0 E S(y0 ), one says that Sis (Hausdorff-) l.s.c. at y0 , while dis t (:z:, S(y0 )) ----> 0 
for each sequence y ___, y0 and each :~; E S(y) leads to the notio11 of S being 
(HausdorfF-) u.s. c. at y0 . lf 5' is a function , the pseudo-Lipschitz property (L2) 
is nothing else than (LO), and pro perty (16) is also called poinlw'ise Lipschitz 
conl'in'U,ity at :rl . T n a ll cases considered above, one says t hat L is a nwclulus of 
the related Lipschitz property. 

The iHtrod uced names of Lipschitz properties are used in conform ity with the 
book ofJ\latte am!Eurnmer (2002). T he notion of (16) was defin ed by Robinsoll 
(1981) ill the context of polyhedral 1nultifunctions. (11) was in trod uc:ed for 
X 0 = { :c0 } and called locally 'uppe,,. DlyJsch'itz al (y 0 , :c0 ) in Dontchev ( 1995) , 
our form of (Ll) is an extension of thi s notion. T!Je inclusion (2.1) particul arly 
yields tha t S(y 0 ) n (X 0 +c:Bs) = X 0 , i. e., the set X 0 is necessarily an isolat ed 
componeut of the se t S(y 0 ). The property (12)- which is also called Aubi'n 
pmperly in the literature (see Rockafe llar aud Wets, 1998)- is a basic: stability 
comlition in Aubin am! Ekelaud (1984), and calrnuess (L3) has beeu applied and 
investigated e.g. in Cla rke (1983), fm deriviug optimality conditious. With this 
respect, calrnuess cau be u::;ed iu a s i11ril ar way as the upper Lipschit z property 
(Ll), see ](latte aml I\ummer (2002). Au iutcrestiug suffi cient condition for 
calmness of mult if unctions can be found iu Hemion aml 0 u trata ( 200 1) . lt uses 
so-call ed se1nisnwot!Juess, Miffliu (1977), and may be applied to the models i11 
Outrata (2000) and many lllodels in Luo, Pang aml R alph (1996) . T he concepts 
(L5) and (L6) a re maiuly studied iu the context of polyhedral multifunctions 
and co11vex-::;et-valued waps. 

In t lte follow iHg proposit ion, we CO IIlpile several elernenta ry interrelations 
betweeu these Lipschitzian concepts. 

PROPOS ITIO N 2. 1 Let X und Y be ·rnel'l·ic space8, S : Y =t X unci z0 

(y 0 , :~: 0 ) E gph S. Then lhe following p1ope'f"ti e::; hold: 
u.. S is locally 'UfJpe! Lipl)chilz ul z0 =?S is c:u.lw u.l z0 . 

b. S is pse'Cl.clo- Lipschitz ai z 0 =? S is Lipschitz l. s. c. and calTn ut z 0 

c. h1. the cuse S(y0) = {:r:0 } , S is locally 'UPJJer Lipschitz ul z0 ¢:?5' 'is cul-nt 
a.l z0 . 

d. S is Lipschitz 'u.s. c. ut y0 =?S 'is cairn ai (y 0 , x 0 ) Vx 0 E S(y 0
). 

e. 8 1s Liym:h'ilz l.s. c. ut y0 =?S i::; Lipschitz l. s.c. ut (y 0 ,x0 ) V:c 0 E S'(y0 ). 

Pmof. llllmcdia te by t he definitions. • 
T he definitions (L2) , (L4) and (L5) imply tlu.tt for y near y 0 , the sets S'(:y) 

or S'(y) n (:c0 + c: Bx) arc uouempty, while (L1). (13) ami (16) do not imply 
this. For this reason, HOlle of the properties (L1) , (L3) aud (L6) implies aay 
of the remaining oues, consider the trivia.l exalllple S'(~;) = {:r: E lR I l:1:l = y}. 
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missing directions of the implications a, h, d all(! e fail to hold. The following 
counterexamples refer to this situation. 

ExAMPLE 2.2 (pseudo-L. , calm, L.l.s.c . and L.u. s .c., but not locally u.L.). 
Consider S(y) = JR, y E JR, and let B = [-1, 1] . Trivially, Sis constaat, hence 
it is Lipschitz l.s.c. and Lipschitz u.s.c. at each y0 , and for any (y0 , x 0 ) E JR2 , 

Sis pseudo-Lipschitz and calm at (y0 ,x0 ). However, for each c > 0 and each 
L > 0, the pointy= y(c, L) := y0 + c/(2L) satisfies 

S(y) n (x0 + cB) = [x0
- c, x0 + c] cf_ [x0

- c/2, x0 + c/2] 

= xo + Lly- YO IB, 

i. e ., for each (y0 , x 0 ) E JR2
, S is uot locally upper Lipschitz a t (y 0 , x 0 ). 

EXAMPLE 2.3 (pseudo-L. , calm and L.l.s.c ., Lut aot locally u.L. and uot 
L.u .s.c.) . Let s(y) = 1 + JiYj a nd S(y ) be the interval [- s(y),s(y) ] for real y. 

Then, if :c0 E S(O), the mapping Sis not locally upper Lipschitz a t (0, :c0 ) , 

since for each c > 0 and each L > 0, oae finds poiats x(y) E S(y) n (x 0 + cB) 

such that lx(y)- x 01 > Llyl and IYI < 1/ L . Further, dist (s(y), S(O)) = JiYj 
for y -=J. 0, i.e. , S is not Lipschitz u.s.c . at y0 = 0. 

On the other hand, S is pseudo-Lipschitz (!teuce also calm) at each point 
(0, :c0

), :c0 E int S(O) . Note that Sis not calm at (0, 1). Further, S(O) C S(y) 
for y -=J. 0 implies that S is Lipschitz l.s. c. at y0 = 0. 

ExAMPLE 2.4 (L. u.s.c. at y0 a nd L .l.s.c . at (y 0 , :c0 ), but not l.s.c. at y0 and not 
pseudo-L. at (y0 ,x0 )). Assigu to each x E JR" the line segment F(:c) = [O, :c] 
(i.e. , the convex hull of 0 and :c), thea the iuversc S(y) := p- 1(y) becomes 

p- 1(0) = 1R11 and p- 1(y) = {A y I.\ 2: 1} for y -=J. 0. 

Obviously, p - 1 is Lipschitz u.s. c. with each L at :tl = 0 as well as Lipschitz 
l. s.c. with L = 1 at the origin (y 0 , :c0 ) = (0, 0). 

However , p- 1 is not pseudo-Lipschitz a t (y 0 , :c0 ) = (0 , 0) and aot l.s. c. at 
y0 = 0. This can be seen as follows. Given c > 0, let ll :cll = c. Then :c E 
S(O) n (0 + cBx ), aad for a ll y of the form y = -.\:c, .\ 2: 0, it follows that 
dist (:c, S(y)) = c+Ac 2: c. Hence. neither (L2) nor the l.s.c. conclitiou a t y0 = 0 
can be satisfied. 

Note that a slight modifi c:at ioa of the lllapping F leads to a regular situation. 
Now assign to each x E lR" , the liue scgmeat F(x) = [~:c , :c] C lR". The inverse 
rnultifunctiou is now 

S(y) := p- 1(y) = [y , 2y], 

and S : JR"' ::::t JR" is pseudo-Lipschitz a t (0, 0) as well as Lipschitz l.s .c. and 
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The same situation as in Example 2.4 cau be found iu the coutex t of the 
coustra int se t mapping of a st.audard noulinear optimiz;ation problem. see the 
next example, where the so-called Munyasa'l"ian- Fmtnov'itz cond-ition (MFCQ) , 
Mangasarian and Fromovitz; (1967), is viola ted. R ecall that a finit e-dimeusional 
constraint map 

S(y, z) ={xI y(:c) 2 y, h(x) = z }, 

for (y,h) E C1(1R",JRm+k), is pseudo-Lipschitz; at (y 0 , .; 0 ,x0 ) if a nd only if 

(MFC Q ) 
Dh(:t0

) has full rank , and there is some ·u such that 
Dh(:c0 )u = 0 and y(x0 ) + Dy(x0 )·u > y0 

is satisfied, which was shown for the first time in Rohiuson (1976). 

(2. 7) 

EXAMPLE 2.5 cL.u.s.c. at y0 and L .l. s .c. a t (y0 ,:~; 0 ), hut MFCQ viola ted). Con
sider the map 

S(y) := {:r E IR2 I :r2(x2- xi) 2 0, x2 = y}, y E JR. 

Obviously, 

S(y) = {(x1 , y) I -/Y S XJ S /Y} \:fy > 0 

a nd 

S(y) = {(:!:1,:r2) I :c2 = y} \:fy S 0, 

in pa rti cula r , dist (:r, S'(O)) = IY I for a ll y =/: 0 a nd all x E S(y). So, S is 
Lipschi tz; u.s .c. at y0 = 0 a ud hence calm at each (0, :~; 0 ), x 0 E S'(O). Further , 
Jist (0, S(y)) = IYI for a lly=/: 0, hence , Sis also Lipschit z; l.s.c. at (0, 0). 

On Lite other hand, for any y > 0, one has ( JY, y) E S(y) and 

dist (( .JY, y) , S(y/4)) =II( /Y, y)- ( /Y/2, y/4)11 = Jy/4 + 9y 2 / 16, 

heuce, (L2 ) is violated in (0, 0). It is easy to sec that MFCQ does not hold at 
this point. 

It is known that for a calru equa lity constra int h(:t) = 0 of a Honliuear pro
gram (this means that S = h- 1 is cairn a t (:r0 ,0)) , a local rninin1i zer :~;0 of 
f with respect to this constraiut is necessarily a loca l minimiz;er of an uncoH
straiued penalty-type function F(x) = f( x ) + aiih(:r)ll for suitable ct, see, e.g., 
Clarke (1983) . Similar results a re true if the coustraiuts sat isfy a local upper 
Lipschit z; or a pseudo-Lipschitz; condition , see J\latte and J(urnmer (2002). The 
nexl example indicates tha t this (staHdard) peualiz;ation w ay y ield a terrible 
uuconstrained auxili ary function F, though the giveu cqua tiou satisfies "nice" 
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EXAMPLE 2.6 (the inverse of Dirichlet 's function) . . F'or t he real fuuctiou 

h(:r;) = 0 if :c is ra tional; h(:r) = 1 otherwise , 

the inverse h- 1 is cairn a t (!l, :c0 ) = (0, 0) am! locally upper Lipschitz at 
(0, h- 1(0)) siuce h- 1(y) = 0 for '!J f. 0, y nca.r 0. These usefu l properties do 
uot prcvcut tha t the terri ble behavior of tliC constraiut fuuctiou h being carried 
over to the a uxiliary fuuction F(-) = .f(-) + ctjh(·) l. 

Note that the Inappiug S(v) = { :1: I h(:r) 2: y} is even pseudo-Lipschi tz at 
(0 , 0) since h(:r) 2: y holds for all irrational :c and all y uear 0. 

3. Characterizations of regularity 

Throughout this section, let X a nd Y be uonued spaces (if not specified ot her
wise), though the regularity concepts make sense also fo r more general spaces. 
Let S = p-l be the iuverse of a given multifuuction F : X =l Y. I11 the follow
ing , we recall several regularity notions for F , where in general we will speak 
of n~g'Ularitv (of F) whenever F- 1(y) satisfies a certain Lipschitz property. The 
tvpe of regula rity ( slruny, pse'udu, 'ttlJlJe1) differs by the related Lipscbi tz prop
Cities of F- 1, where iu t he case of upper regula rity we addi t ionally suppose tbat 
F- 1(y) is non-empty for !J ncar y0 E F(:c0 ) . 

Regularity Notions 

(R1) If S is pseudo-Lipscbi tz at (y 0 , :c0 ) , then F is called yJse v.rlu-n~yula'r aL 
(:ro, yo). 

(R2) If, adclitioually, ueighborhoods U aud V of :c0 a11d y0 , respectively, exist 
iu such a way that U n p - 1(y) is siugle-valucd for y E V , the11 we call F 
slmnyly 'reyula'f' at (:r0 , y0 ). 

(R3 ) If Sis locally upper Lipscbi tz at (y0 , x 0 ) und S(y') n U is non-empty for 
all y' E V (for certa in neighborhoods U am! V of :r0 aud y0

, respecti vely) , 
then F is said to be 'IL]JJWI' 'regnlm· a t (:r0 , y0

). 

First we uteutiou some ty pica.l cxalllples for the defiued regularity notious. 

EXAMPLE 3 .1 (regularity for C1 functious). IfF : X = ~n --+ Y = ~n is a 

coutiuuously differenti able ftmct iou, Lh en all these regularity definitious coincide 
-due to usual implicit fu nction t!teorern- with the requirellleut det DF (:1: 0

) f. 0. 

ExAMPLE 3 .2 Kummer (1997) (pseudo-regular , but uoL s trongly regular). T !te 
complex function F( z ) = z 2 / lz i for z f. 0, F(O) = 0, is a Lipsc!ti tz function 
which is pseudo-regular a nd upper regular without beiug stroHgly regular a.t the 
origin. 

EXAMPLE 3.3 (strong regula rity for coutiuuous functions). For a c:unt'in'tW'Wj 
funct ion F : ~" --+ Rm, st rong regula rity a t (:~: 0 , ¥0 ) iuduces ~h at F is a homeo-
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neces:,;arily true due to Brouwer 's fan10us invariancc of dolllain theoreiii. This 
is an essential fact being valid for functions, but not for (Lipschi tz) continuous 
multifunctions (t ake F: IR" :::::t JR"+ 1 as F(:r) = {(:r , y) I y E IR} ). 

EXAMPLE 3.4 (pseudo-regularity for linear operators). Let F : X _, Y be a 
lin eu:r OJH:.rato1· onto Y , where X and Y a rc nonned spaces . Pseudo-regularity 
now requires that , given y' , :randy = F( x ), there is Sollle :r' such thaL F(x') = y' 
am! llx'- :rll :::; Lllv'- Yll- Iu other words, F - 1 is bounded as a mawin g in the 
factor space X/ p-l (0). Conversely, one may say that pseudo-regu larity is just 
a nonlinear , local version of this property. 

EXAMPLE 3 .5 (subdifTcrential of the Euclidean nonn ). Au iuteresting ami rele
vant exan1ple of a ·tnultifu:nclion F : IR" :::::t IR" lJeing s trongly regular a t (0, 0) is 
the followin g one. Consider the subdiffcreutial (in the sense of convex analysis) 
F(:r) = iJf(:r) of the Euclideau nonn f( :~:) = ll:cl l: Then, 

p - J (y) = {:r I x llliniinizes .{(0- (y, 0} = {0} Vy. llvll < 1. 

Some generalized derivatives of multifunctions 

F'or non ned spaces X and Y ami (:r, y) E gph F, tl1 e a bove regula ri ty concep ts 
are related to certain concepts of ge·ne·t·nlized (cli1·ect·ionu.l) derivat-ives. We asso
cia te with F the following lllultifunct.ions: 
(D l ) CF(:c, y) : X :::::t Y , defin ed by v E CF(:r,y)(u) if t here a. rc ce rt ain 

(discrete) t = [k 1 0 ami assigned clements (u 1, vt) _, ('U., v) such tha t 
y + tut E F(:r + tv,t) . 

(D2) TF(:r, y) :X :::::t Y , defined by ·u E TF(x , y)(v,) if tiiere a re certa in (dis
crete) t =I,., l 0. assigned points (:r1, y1) E gph F with (x1 , yt) _, (:~: , y) 

a nd clements ('ll1 , v1) _, ('u. v) such that y1 + tv1 E F(:ct + t'll 1 ). 

(D3) D*F(:t ,y): Y * :::::t X *, defined by 'll * E D*F(:c,y)(v*) if there a re cert ain 
(discrete) I.= t~,: J. 0, ·r1• > 0, ass igned points (:c 1, , yt) _, ( :~:, y) in gph F and 
dual clernents ('U7. , v;) _, * ('ll* , v* ) in X* x Y* suc!I t!Iat ('ti~. 0 + (v~ , TJ ) S 
/, ll~ l l x + tll·t!I IY if l l~ llx + llr!IIY < .,., ami (:ct + ~, Yt + TJ) E gph F, . 

where _, • is t!Ie weak* convergence. Not ice tlmt 0 ~ D*P(:r,y) (v*) is au ex is
tence condition: For a.ll sequences t = /; ~,; J 0, r 1. J 0, (:rt, yt) _, (:t, y) in gplt P 
a ud ('u~,v;) _,• (O,v*) there are~~ , 'lit with ll~tll+llritl l <.,., and (:c,+~t,Yt+'~itl 
in gph F such that , for suffi ciently large k, ('ti; , ~~) + (v~, 'fit ) > t l l ~tl l + Lllr1tll· 

The ma pping C F(x , y) is the contingent de·rivul.ive, Aubiu and Ekeland 
(1984), also called gmplricu.l de·rivut.·ive or Boul-igu.ncl J.e·r-ivutive, wl1 il e D* F(:t, y) 
is (up to a sign) the code1"ivative in the sense ofMordukl10vich (1993). TF(:c, y) 
was defined in Rockafella r ami Wets (1998) and was called :;tricl gmph·icu.l 
de1"ivu.t·ive there . To be consistent with the terminology of the book by Klatte 
a nd Kumrner (2002) , we use the name Tlt.ibu.·u.lt 's limd set (or Th'ibu.·ull de·r-ivu.
tive) for T F(:r, y). Note tha t t l1is deriva tive has been first considered (however, 
" , . . . 
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For each of these generalized derivat ives, the symmetric definitions induce 
that the inverse of the derivative is just t he derivative of the inverse at cor
responding points. As usually, we will say that a derivative is ·inject·ive if the 
origin belongs only to the image of ·u = 0 or v* = 0, respectively. 

For functions F, we have y = F(:c) and may write CF(x), TF(x) and 
D* F(x ). Nevertheless, the images of the derivatives as well as the pre-images 
p- 1(y) may be multi-valued or empty. If the (one-sided) limit lirnqo C 1(F(:c + 
t-u) - F( x)) exists uniquely for a function F and all sequences t 1 0, then 
it is called the diTect·ional derivative of F at :c in direction 'lL, and denoted 
by F'(x;-u). Further, for F: X-+ JR, Clarke's (1-i-rect-ional deTivative ofF 
at :~: 0 in direction ·u E X is defined by the usual limes superior Fc(x0 ; -u) = 
lirnsuptlO,x->xO C 1(F(:r + t·u)- F(x)) which is obviously fiuite for locally Lip
schitz functions. 

If f is a locally Lipschitz function from JR" to JRm, then, by Rademacher's 
theorem, the set 

8 = {:c E JR" I the Frechet derivative off exists at X} 

has full Lebesgue measure, i.e., J.L(lR" \ 8) = 0. Moreover, for x' E 8 and x' near 
x, the norm of D f(x') is bounded by a local Lipschitz modulus L of f. These 
facts ensure that the mapping 8of : JR" =4 JR"w defined by 

8of(x) ={A I A= limDf(x') for certain x' -+ x, x' E 8}, 

has non-empty images. In addition, one easily sees that 00 j is closed and locally 
bounded. The same properties are induced for the map a f, defined by 
(D4) Clarke's (1983) generalized Jacobian 8f(x) = conv8of(x) off at x, where 

conv Z means the convex hull of a set Z. 
Note that 

Tf(:c)('u) C 8f(:z:)·u (3.1) 

and 

8J(x)-u = conv (T J(:c)(n)) (3.2) 

hold, see Kummer (1991). The inclusion (3.1) may be strict even for piecewise 
linear functions f : JR2 -+ JR2 , see Example 3.9 below. 

Regularity characterizations 

For the purposes of the present paper, we essentially restrict the following sum
mary of interrelations between regularity notions and suitable properties of gen
eralized derivatives to the case X = JRn and Y = JRm. 
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PROP OSITION 3.6 (regula rity of rnultifunctions, summary) . Let F : ~~~ ::::t lR"' 
be closed and z0 = ( x0 , ·Jl) E gph F. Th en: 

F is ·uppe·r ·regular at z0 

<:? CF(z 0
) is injective and p - 1 ·is Lipsch·itz l.s .c. at (y 0 ,x0 ). 

F is stmngly r·eg·ular at z0 

<:? T F(z 0 ) is injective and p- 1 is Lipschitz l.s. c. at (y 0 , :r0 ). 

F ·is pswdo-·regula·r at z0 

<:? 3c: > 0: c: B c CF(z)(B) fo1· all z E gph F n (z 0 + c: B) 
<:? D* F(z 0 ) is injective. 

If p - 1 is Lipschitz l.s. c. at (y 0 , x0 ) 

then there exists T > 0 s·uch that B C CF( z0 )(TB). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

rr X is a TWT"rned space, the conddions (3.3) and (3.4) are still necessa·ry for the 
n::: lated reg·ulaTity . 

The preceding proposition can be found as Theorem 5.1 in Klatte and Kurn
Tner (2002) and summarizes several resul ts proved in Chapter 3 of that book. 
The characterization (3.3) was given iu King and Rockafell a.r (1992). 0llf~ of the 
referees pointed out tha t a prototype of condition (3.3) appeared first (withou t 
Harning the property in question) in Rockafellar (1989). Condition (3.4) ap
pears iu Rockafellar and Wets (1998), Chapter 9 (iu a different tenninology). 
The "if'-direct ion of the first characterization iu (.3.5) goes back to Aubin am! 
Ekelaml (1984 ), for the "only iP' -direction and for the implication (3 .6) see, 
e.g., Kummer (2000), while the second characterization of (3 .5) was shown in 
Monlukhovich (1993). 

In the following , we give some examples which illustrate that crucial assurnp
Lious of the previous propositiou may not be omitted. 

The first exa1uple is taken from K umrner (2000) and shows tha t the con
ditious (given in (3.5) ) for pseudo-regula rity of F iu terms of the contingent 
deriva tive CF and coderivative D* F, respec ti vely, a re not necessary if X is a 
Hilbert space, see Example 3.7. 

The second example shows that the l. s.c. condition under (3 .3) and (3.4) 
is , in general, not ensured by the already imposed inj ec tivity of CF and TF , 
respectively, see Example 3.8. 

Further , Example 3.9 (given in Kummer, 1991) concerns stroug regularity 
of a locally Lipschitzian function F from lR11 to lE.n: For such fu HctioHs, without 
supposing l.s.c . in (3.4), the injectivity of TF is a suffi cient aml necessary 
condition for strong regularity while the inj ectivity of the map 'LL --+ DF(:c0 )(u) 
(i. e., a ll ma trices in DF(:c0 ) are regula r) is on ly a suffi cieHt oue , see Clarke 
(1976), I<umlller (1991). 

Fi nally, Example 3.10 will de111onstrate tltat the (poiHtwise) condi tion (3.6) 
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EXAMPLE 3. 7 (pseudo-regular , but the conditions (3 .5) fai l to hold). We give 
a function f which is one of the simplest Housuwoth, nonconvex funct ions on a 
Hilbert space such that the following is true : 

Let 

Pseudo-regularity of t he map F(:r) = {y E IE. I .f (:r) ::; y} holds. However, 
the conditions (3.5) iu tenns of coutingent derivatives aud coderivatives 
will not be satisfied. 

Now F- 1 (y) = {x E X I f(x) ::; y} is the level set map of a globally Lip
schit~ functional. Since f is concave the directional derivatives .f' (:c; u) exist 
everywhere and are the only elements of C.f(x, u). Further, f is mouotone with 
respect to the natural vector orderiug, and .f is nowhere positive. 

The mapping F is (globall y) pseudo-regular , e.g., with modulus L = 2. 
Indeed , if f (x)::; y ancl y' < y, there is some k such that :ck < y + ~ ly'- Yl· 

Next, put x' = x - 2ly' - ylek where ek is the k:-th unit vector in 12. Then. 
pseudo-regularity follows from ll:c' -:el l ::; 2ly' - Yl and :c' E F- 1(y') siuce 
.f(:c') ::; x~ ::; y- ~ l y'- Yl ::; y' . 

In order to see that 0 E D*F(0, 0)(- 1), we refer to Kummer (2000) or 
Klatte and Kummer (20 2), Example BE.2, for details. Here, we ouly note 
t hat the consideration of t he points ('U*, v*) = (em, -1) ~ * (0, -1 ) and the 
assigned elements (x"", ym) = ( - e'n, - 1) f'm. E gph F leads to the desired result 
as Tn-.. oo. 

T he sufficient comlitiou in ter111s of C F does not hold because of t he property 
f'( :c. ·u) 2::0 'itt E 12

, which is valid a t all :c satisfying 

f (x) < x~.; Vk. (3.7) 

Tn fact , having such x, it follows .f(x) = 0 immediately. Now assume that some 
of these directional derivatives are negative, i.e., let the inequality .f (:c + tu) < 
f( x) - t8 = -t8 hold for some fixed 8 > 0 and sufficiently small t > 0. Then, 
t he infimum f( :c + t'U) must be at tained a t some component k = k(t): 

f(x + t'U) = xk(r) + t'Uk(t) < -t8. (3.8) 

lf k(t) < I<o remains bounded (as t __, 0), t hen we have :ck( t ) 2:: J.L with some 
positive p., , and (3.8) implies the contrad iction ·uqr) -> - oo. Otherwise, the 
inequali ty 'Uk(t) < - 8 follows fo r au iufiuite number of components of ·u where
after ·u cannot belong to 12 . Since points :c lt aving property (3. 7) exist witlt 
arbitrarily small norm, the condition 

r::B c CF(z)(B) for all z E gphF n (z0 + r::B) 
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EXAMPLE 3.8 (TF or CF injective, but F - 1 not l.s .c.). First consider the real 
function f(x) = l:rl . One has Cf(O)(·u) = l·ul 'V'U, i.e., Cf(O) is injective. On the 
other hand, f - 1(y) := {:r llxl = y} = 0 ify < 0, i.e., f- 1 is not l.s .c. at (0,0). 

Next consider F: lR-+ IR2 defined by F(:c) := (:c,x) for all x E R Thus 

TF(O)(u) = CF(O)('U) = {DF(O)'U} = { (:~)}. 

Hence, TF(O) and CF(O) are injective, but 

F-1(y1, yz) := {x E 1RI(Y1, Yz) = (x, :c)}= 0 if Y1 "I yz, 

i. e., p-l is not l.s.c. at ((0, 0) , 0). 

EXAMPLE 3. 9 (piecewise linear bijection of IR2 with 0 E 8 f ( 0)). On the sphere 
of IR2 , let vectors ak and uk (k = 1, 2, ... , 6) be arranged as follows (we put 
a 7 = u 1 ' b 7 = u1 in order to simplify the notation): 

(i) al = ul ,a2 = u2;a4 = -u4,a5 = -u5. 
(ii) The vectors ak and uk turn around the sphere in the same order. 

(iii) The cones K; generated by ai and ai+ 1, and P; generated by bi and ui+l , 
are pointed (the angle between the vectors is srnaller than 1r). 

Let L; : IR2 -+ IR2 be the unique linear function satisfying L;(ai) = ui and 
L;(ai+l) = ui+1. By setting f( :c ) = L;(:z:) if x E K; we define a piecewise linear 
function which maps K; onto P;. By the constructiou, f is surjective and has a 
well-defined inverse; hence it is a (piecewise linear) Lipschitziau homeomorphism 
of IR2

. Moreover , f = ·id (:= identity) on iut K 1 aHd .f = -·id on int K 4 . 

Thus, o.f(O) contains the uuit-matrix E as well as -E and , by convexity, 
the zero-matrix, too. 

EXAMPLE 3.10 (counterexample (n = Tn = 2) showing that the pointwise con
dition (3.6) is not sufficieut for the Lipschitz l.s.c. of p- l ). We construct 
.f : JR2 -+ IR2 continuous with 

t(O; ·u)= ·u 'V'UEIR2 and O~intj(JR2 ). 

Let 

M = {(x,y) E IR2 IIYI :2': :r 2 if:r :2': 0, x 2 +y2 ~ 1, :r ~ 1} 
and G = conv M. For (x , y) EM , let f( :z:, y) = (:r , y). For (:r, y) E G\M and 
y :2': 0 put f(x, y) = (x, x 2

). 

In order to define fat (x,y) E G\M with 0 > y > - :r 2 , let D be the 
triangle given by the points 

nl -y 
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Then t E (0, 1). We shift the point (x , t( - x2
) + (1- t)x2

) to the left boundary 
of D and define f to be the related point: 

,. , _ { (2t- 1)(:r , - :c2
) 

f(x, y)- (1 - 2t)(x, x2 ) 
for t~ I' 
fo r t ~ 2. 

So f becomes a continuous function of the type JR2 _...., M. By setting g(z) = 
j(1r(z)) where 1r(z) is the projection of z onto G, we obtain that f can be contin
uously extended to the whole space. We identify f and g. Clearly, f' (0; u) = 'U 

holds for a ll u , and 0 r:j int f(JR2 ). 

Pseudo- and strong regularity of stationary points 

Given a stationary point x0 of a function f E C2 (!R11
, JR), the above characteriza

tions for different types of regularity inunediately imply t ha t pseudo-regularity 
and strong regularity of the function D fat (x0 , 0) coincide, i. e. , if the stationary 
point ma p S = [D f]- 1 is pseudo-Lipschitz at (0, x0 ), then it is locally single
valued. The following example shows that this property does not carry over to 
C1 functions , which are piecewise C2 . 

It is worth noting tha t the equivalence of strong regularity and pseudo
regularity still holds in the context of the constrained C2 optimization problems; 
for results of this type see, e.g., Dontchev and Rockafellar (1996), Kla tte and 
Kurnmer (2002) , Kummer (1997). 

EXAMPLE 3.11 (a piecewise quadratic function f : JR2 _...., IR having pseudo
Lipschitzian stationary points being not unique). We put z = (x, y) E JR2 in 
polar-coordinates, 

z = T(cos ¢ + 'isin ¢ ), 

and describe f as well as the partial derivatives Dxf, Dy/ over eight cones 

by 

cone f Dxf Dy/ 
C(1) y(y- x) -y 2y- X 

C(2) x (y- x) -2x + y X 

C(3) x (y + x) +2x +y X 

C(4) - y(y + x) -y -2y - x 

and on the remaining cones C(k + 4) , (1 ~ k ~ 4) , f being defined as in C(k). 
Upon studying the D f-irnage of the sphere, it is not difficult to see (but 

needs some effort) that D f is continuous and [ D Jl - 1 is pseudo-Lipschitz at the 
..--. ,., . .,.J) 1 r ..... .., • • • 
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REMARK 3.12 (pseudo-regularity and isolated ;ceros ofF E C 0,1 (IR.n, JR.'')). The 
function F = D f : IR.2 -> IR.2 of Example 3.11 had the same topological proper
t ies as Fin Example 3.2 (pseudo-regula r , upper regular, but not strongly regular 
at (0, 0) ). It is remarkable that, under pseudo-regularity at (0, 0), the related 
upper regularity of a directionally differentiable function F E C0,1 (IR.n, IR.n) is an 
immediate consequence, because the origin is necessarily isolated in p - l ( 0) , see 
Fusek (2001). However, for F E C0 ,1 (IR.n, IR.n) without directional derivatives at 
the origin, nothing can be said up to now concerning this implication. 

4. Generalized derivatives of Lipschitz functions 

In this section, we consider locally Lipschit;c functions from lR.11 to IR.m . If f is 
such a function with modulus L uear some :c, then the Thibault derivative T.f 
aud the contingent derivative C .f take on the particular forms 

T f(x)('U) = {vI 
Cf(x)('U) ={vI 

v = lim t; 1 [f(xk + tk'u)- f(xk)J 
for certain tk 1 0 aud xk -> :c 

v =lim tk" 1 [f(x + tk 'u) - .f(x)] 
for certain tk 1 0 

( 4.1) 

(4.2) 

These sets are non-empty, closed ami bounded (c LII'UI IB). Tf(x)('U) and 
Cf(:t)('U) are connected sets, and both mappings are Lipschitz in 'U. For .f E 

C 1 (IR.11 , lR.111
) , t here is C.f = Tf = {Df}. For Lite absolu te value .f(x) = l:cl 

we observe tha t C f(O)('U) = {.f'(O; 'U)} (the usual directional derivative), and 
Tf(O)('U) = [- lui, lui] (a closed interval). So C.f and T .fare different even for 
elementary functions. 

The following example gives a Lipschitz function .f having images in au 
infinite-dimensional space with empty contingent derivatives for nontrivial di
rections (and without directional derivatives). 

EXAMPLE 4.1 (a Lipschitz function f : [0 , ~) -> C[O, 1] such that directioual 
derivatives f' nowhere exist, neither as strong nor weak (pointwise) limits ; and 
coutingent derivatives are empty). For x E [0, ~) define a continuous fu nction 
h,: [0, 1]-> JR. by 

{ 

0 fo r 0 < t < x 
hx ( t) = t - :c for :c :S t < 2x 

:c for 2x :::; t :::; 1 

The rnapping .f(x) := hx is a Lipschitz function from the interval [0, ~) into 
C[O, 1]. For small IAI > 0, consider the function 

g(x, A)= (.f(:c +A)- f(x))/ A. 

If A > 0, then 
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Hence, the limit limg(x , .A) (as A 1 0) cannot exist in C[O , 1] (neither in a strong 
nor in a weak sense). If A < 0, then we obtain for x > 0 that 

g(x, .A)(2x) 2': 0 and g(:z:, .A)(2x + 2.A) = -1. 

Thus limg(x,.A) (as .A I 0) cannot exist, too. 

Chain rules and "simple" Lipschitz functions 

The following chain rules are the key for many applications of Lipschitz ana lysis , 
for example, in the study of regula rity of the Karush- Kuhn- Tucker system of a 
nonlinear program. We consider 

J( x, y) = h(x, g(y)); h : ]Rn+q ---> JRP' g: ]Rm---> ]Rq' j : ]Rn+m ---> ]RP. 

Here, h and g are supposed to be locally Lipschitz. We are interested in the 
formula 

T f (:r:, y)(u. v) = Txh(x, g(y))(u) + T9 h(x,g(y))(Tg(y)(v)), (4.3) 

where 1'.1: h and T9 h denote the par·t·ial T -deTivatives, defined - as usually - by 
fixing the remaining a rguments. In genera l, ( 4.3) is not true, we need a special 
property of y. According to K ummer (1991), we say that a locally Lipschitz 
function y: !Rm ---> IRq is s·imple a t y if, for a ll v E IR111

, wE Tg(y)(v) a nd each 
sequence tk ! 0, there is a sequence yk ---> y such that 

w =lim tk" 1 [y(yk + tkv)- g(yk)] holds 
at leas t for some subsequence of k ---> oo. 

A similar requirement for double limits (but in the context of contingent deriva
tives for rnultifunctions) is involved in the definition of proto-derivatives, see 
Levy a nd Rockafell ar (1996). 

Note that all g E C 0,1(1R"', IR) a re simple , further simple functions a re y......, 
y+ andy ......, (y+,y-) (which are of particular interest for the Kojima's form 
of the Karush-Kuhn- Tucker conditions, Klatte a nd I\ummer , 1999, Kojima , 
1980) , for the proofs see Klatte and K ummer (2002) , Kummer (1991). The 
following proposition shows the importance of simple functions in the chain rule 
under consideration. 

PROPOSITION 4. 2 (partial derivatives for Tf). Let y and h be locally L·ipsch'itz, 
f = h(:r , y(y)), and let D9 h(- , ·) exist and be locally Lipschitz, too. Then 

T f( :z:, y)(u, v) C T.1: h(x ,g(y))(u) + T9 h(x,g(y))(Tg(y)(v)). 

Let, addit·ionally, g be simple at y. Then the equation (4 .3) holds t·rue. 

NOTE. Clearly, Tgh = {Dr1h}. 

For the proof, we refer to Kummer (1991) or Klatte and Kummer (2002), 
Theorem 6.8. It is remarkab le that neither all functio ns in C 0 .1 (IR, IR2 ) nor a ll 
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EXAMPLE 4.3 (.f E C 0·1(IR.,IR.2 ) not simple) . Put a0 = 1 and consider fork EN 
the points 

k bk--~2-k, 1( ) 17 -k Uk = 2- . ' Ck = - Uk + Vk = - 2 , 
8 2 16 

d - 15 2-k 1 31 - k 
k-

8 
, ek = 2(dk + Uk-d = 

16 
2 . 

Let the function f : JR. --+ IR.2 be given by f = (h, h f, 

and 

{ 

:1:- ak 

h (:t) = ~k-X 
if :c E [ak , Ck j, 
if X E [ck , Vkj, 

else 

where k E N. T he fuHction f is locally LipschitL~ everywhere with the Itt udu lu:; 
L = 1. Considering the direction ·u = 1 a nd the sequences xk = c,, i,. = e,, - ch 
we obtain 

1 . h . k 16 k [( 0 ) ( ~ 2-k ) ] - [.f (:r · + tku) - j(:c )] = -; 2 J_ ?-k - Hi 
0 1~: 11 1G -

= ( -/1 ) E T .f (O)(u). 
14 

Now let the sequence Tk J 0 be given. O ur goal is to find points yk, yk --+ 0 such 
tha t vk = rJ: 1 [f(yk + Tk) - f( yk)] --+ ( - 1

1
4 , rtf at least for some subsequence. 

This ir11plies t hat fur k suffi ciently large t lte f1rst (secoml) component of vk li as to 
be negative (positive), respectively. Hcucc , tlt ere are indices ·n.(k), C(k), n(/;:) :::0: 

C(k) with yk E [an(k)• Un(k ) ] and y'' + T1, E [de(k)• af(k)-1J and we have T~,: :::0: 

de(k) - Vn(k) · 

For £(/c)::; n(k)- 1 we would get Tk :::0: dn (k)- 1 - bn(k) = 2
8
1 

2 - n(k) and 

lvkl < T -1 ~ Tn(k) < ~ < ~-
1 - k 16 - 42 14 

Thus, in order to obtain t he limit (- 1\_, ~ f, only the subsequences with£(!.;) = 

n.(l.:) a re suitable. As a consequence we have Tk :::0: dn (k)- bn (k) =% 2 -n(k) and 
,. < _ 2-n(k) 
T k _ Un(k) - 1 - Un (k ) - · 

In other words, for every sequence {Tk} with 2-("+1) < Tk < % 2-k, k E N 
it is impossible to f1nd a suitable sequence of iudices {n(k)} . Hence, f is not 
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For the function f of this example, there were pair-wise disjoint intervals 
h(f) and some v(f) E Tf (0)(1), such that the equation 

v(f) =lim rk" 1 [f(yk + Tk)- f (yk)] with Yk ---> 0 

can only hold if Tk E h(f) (for some infinite subsequence). Let the same 
situation occur with respect to a second function g : lR ---> IR2 and intervals h (g) 
such that h(g) n Iv(f) = 0 \:/k, v. Now, with the definition 

h(x,y) = (J(x),O) + (O,g(y)) E IR4
, x ,y E IR, 

the point (v(f), v(g)) cannot belong to Th(O, 0)(1, 1) , and the chain rule (4.3) 
fai ls to hold even for a sum of functions. 

EXAMPLE 4.4 (J E PC 1 not simple). Put for k E N 

We define a piecewise differentiable function f : IR2 ---> IR2 by f = (h , hf, 

where 

{

Yl(x,y) ifx 2 0, 91(x,y) 2 0, y E [a~c,h], 
h(:c,y) = g

0
2( x ,y ) ifx::::; 0, g2(x,y) 2 0, y E [ak,bk], 

otherwise, 

3 1 3 1 
YJ(x,y)=y cos - - :c, g2(x , y)=y cos -+ :~.: , 

and 

y y 

{ 

93(x , y) if :c 2 8y3 , g3(x , y) 2 0, y E [a~,; , b,], 
h(:c, y) = 94(:c, y) if X :S 8y3, g4(x, y) 2 0, y E [ak , uk] , 

0 otherwise 

By setting u = (1,0) and considering the sequence ~k = (xk , yk) = (0 , (2k7r) - 1) 
---> (0, 0) , with tk = 8(yk)3 we obtain 

~ [f (~k + tk ·u)- f ( ~k ) ] = ~ [ ( ~ ) - ( (yk)
3
)] 

tk tk (yk)3 0 

= ( -l) E T f(O, 0)(1, 0). 

Let the sequence Tk 1 0 be given. In order to show tbat f is simple a t (0, 0) 
we have to find a sequence ('' = (zk, w k)---> (0 , 0) with v k = Tk" 1[f((k + Tk 'u) 

f((k )]---> ( - ~ , ~f at least for sollle s ubsequence. Necessarily, both components 
of v k h~ve to be nonzero f r_ k suffi ciently l arg~. T!tis is 01dy possible if ] 1 ((") -:/: 
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Without loss of generali ty let wk 2: 0. Because of ·u = (1, 0) we obtain 
.ft((k) = fr(zk , wk) =j:. 0 and h((k + Tkn ) = h(z' + Tk,wk) =j:. 0. This yields 
tha t fork sufficiently large there exists an index n(k) with 

( 4.4) 

and lzkl :S (wk) 3 , lzk+rk - 8(wk)31:::; (wk)3 . It follows zk+Tk E [7(wk) 3 , 9(wk) 3] 

and Tk E [6('wk)3, 10(wk)3]. Together with (4.4) we obtain fork sufficiently large 

( 4.5) 

On the other hand one can easily see that Vk. 2: 2 there is lOb~ < GaL 1. 

This means tha t for every sequence {rk} with lOb~ < rk < GaL 1 Vk 2: 2 the 
condition (4 .5) cannot be satisfied. Thus, f is not simple a t (0 , 0) . 

5. Pathological Lipschitz functions 

In this final section we give examples of Lipschitz functions which are patholog
ical with respect to properties of (generalized) derivatives. 

In the basic Example 5.1 (see Kla tte and Kummer, 2002), we construct a 
special real Lipschitz function G such that the Clarke subdifferential satisfi es 
oG(x) = [-1 , 1]. 

Further , Example 5.2 is taken from Kummer (1988) and presents a real Lip
schitz function f such that , for almost all initial points , the st andard Newton 
method provides alternating Newton sequences, though f is differentiable at 
all iteration points. It illustrates why one has to utilize suitable local approxi
mations in the analysis of Newton-type methods for locally Lipschitz functions 
(see, e.g., Kummer 1988, 1992, 2000, P ang, 1990, Qi and Sun, 1993, Robinson, 
1994) . 

Finally, Example 5.3 (compare Klatte and Kununer , 2002) presents a convex 
real function which is non-differentiable on a dense set. 

ExAMPLE 5.1 (a pathological real Lipschi tz function: lightning function). We 
present a simple construction of a special real Lipschitz funct ion G such that 
F .H. Clarke's subdifferential fulfills oG(x) = [-1 , 1]. The existence of such 
functions has been clarified in Borwein, Moors and Xianfy (1994). 

It will be seen tha t the following sets are dense in JR.: 
the set D N = {x I G is not directionally differentiable at x }, 
the set of local minimizers, and the set of local maximizers. 

To begin with, let U : [a, b] __, lR be any affine-linear function with Lipschitz 
modulus L(U) < 1, and let c = ~ ( a+b). As the key of the following construction, 
we define a li near function V by 
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Here, 

k 
ak := k + 1' 

and k denotes the step of the (further) construction. Given any c E (0, ~(b- a)) 
we consider the following four points in IR2 : 

Pl = (a, U(a)), pz = (c- c, V(c- c) ), P3 = (c + c, V(c + c)), 

P4 = (b, U(b)). 

By connecting these points in natural order, a piecewise affine function 

w(c, U, V) : [a , b] ----> IR 

is defined. It consists of 3 affine pieces on the intervals 

[a,c - c], [c- c,c + c], [c+c,b]. 

By the construction of V and Pl, . . . , P4, we have 

Lip (w(c,U, V)) < 1 provided that cis small. 

After taking c in this way, we may repeat our construction (like defining Cantor 's 
set) with each of the related three pieces and larger k. 

Now, start this proced ure on the interval [0 , 1] with the initial function 

U ( x) = 0 and k = 1. 

In the next step k = 2 we apply the construction to the three pieces just 
obtained, then with k = 3 to the now existing nine pieces, and so ort. 

The concrete choice of the (feasible) c = c( k) > 0 is not important in this 
context. We obtain a sequence of piecewise affine functions Yk on [0, 1] with 
Lipschitz modulus< 1. This sequence has a cluster point g in the space C [O, 1] 
of continuous functions, and g has t he Lipschitz modulus L = 1. Let 

Nk = {y E (0,1) J Yk has a kink at y} and N be the union of all Nk. 

If y E Nk , then the values g;(y) will not change during all forthcoming steps 
i > k. Hence g(y) = Yk(y). The set N is dense in [0 , 1]. 

Connecting arbitrary three neighboring kink-points of Yk and taking into 
account that these points belong to the graph of g, one sees that g has a dense 
set of local minimizers (and maximizers). 

Further, let D be the dense set of all centre points c belonging to some 
subinterval used during the construction. Then, each y E D is again a centre 
point of some subinterval I(k) for each step with sufficiently large k. Thus, 
g(y) = Y~t(Y) is again true. Moreover , for arbitrary 8 E (0, 1) , one finds points 

y',y" E (y,y+8) such t hat y',y" EN 
and g(y')- g( y) > (1 - 8)(y'- y) as well as 
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namely the nearest kinks of 9k on the righthand side of y where k is (large and) 
odd or even, respectively. This shows that directional deriva tives g'(y ; 1) cannot 
exist for y ED. In addition , by the mean-value theorem for Lipschitz functions, 
Clarke (1983), one obtains 8g(x) = [-1 , 1]\fx E (0, 1). 

To finish the construction, define G on JR. by setting G(:c) = g(x- integer (x)), 
where integer ( x) denotes the integer part of x . It is worth noting that G is 
nowhere semisrnooth in the sense of Miffiin (1977). 

De:rived ./'U'I!.ct'ions: Let h(x) = ~( :c + G(x)). Then oh(x ) = [0 , 1] for all x, 
h is strictly increasing, has a continuous inverse h - 1 which is nowhere locally 
Lipschitz , and his not directionally differentiable on a dense subset of JR.. In the 
negative direction -1 , his strictly decreasing, but Clarke's directional derivative 
hc(x; -1) is identically zero . The integral 

F(t ) =fat h(x) dx 

is a convex C0 •1 function with strictly increasing deriva tive h, such that 

0 E Th(t)(1) = [0 , 1] \It and 0 E Ch(t)(1) for all t in a dense set 

holds true. 

EXAMPLE 5.2 (alternating Newton sequences for real, Lipschitzian f with al
most all initial points). 

To construct f : JR. ___. JR., consider intervals I ( k) = [k - 1 , ( k - 1) - 1] C JR. for 
integers k 2 2, and put 

1 
c(k) = 2[k- 1 + (k - 1)- 1

] (the center of I(k )) 

1 
c(2k) = 2[(2k)- 1 + (2k- 1r1

J (the center of I(2k)). 

In the (x, y )-plane, define 

Yk = Yk(x) to be the linear function through 
the points ((k- 1) - 1 , (k- 1)- 1) and ( - c(k), 0) , 

i.e., 

Yk(x) = ak(x + c(k)), where ak = (k- 1)-1 /[(k - 1)-1 + c(k)]. 

Similarly, let 

i.e., 

hk = hk ( x) be the linear function through 
the points (k- 1, k- 1 ) and (c(2k) , 0) , 
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Evidently, Yk = 0 at x = - c(k ), hk = 0 at x = c(2k). Now define f for :c > 0 as 

f( x) = rnin{gk(x), hk(x )} if x E I (k) and f(x) = g2(x) if x > 1. 

We finish the construction by setting f(O) = 0 and f(x) = -f(-x ) for x < 0. 
The related properties can be seen as follows: 
For k ___, oo, one obtains lim ak = ~ and lim h = 2. The assertion D f(O) = 1 

can be directly checked. Again directly, one determines the global Lipschitz 
modulus 

L = max h = b2 = ~ / [ ~ - ~ ( ~ + ~)] = 
1

5

2 
. 

On the lefthand-side of the interval I (k), f coincides with hk, on the right with 
9k· Since gk(c(k)) < hk(c(k)), f coi ncides with 9k on a small neighborhood of 
the center point c( k). 

Now, let us start Newton's method at some x 0 E 8 1, where 8 1 is the set 
of C 1 points of f. Then the next iterate x1 is some point ±c(k) E 8 1. There, 
Df = Dgk (or Df = -Dgk for negat ive arguments ) holds. Hence, the method 
generates the alternating sequence x 0 , x1, x 2 = - x1, :c3 = x1, ... 

EXAMPLE 5.3 (a convex function f : lR ___, JR, non-differentiable on a dense 

set) . Consider allrationa arguments y = !!._ E (0, 1] such that p, q are positive 
q 

integers, prime to each other, and put 

1 
h(y) = ,. 

q. 

For fixed q, the sum S(q) over all feasible h(y) is bounded by 

S(q) :::::; ~ and '2: S(q) = c < oo. 
q. 

Now define 91 by 

91(0) = 0 and g1 (x) = l:y :s;x h(y) for x E (0, 1] . 

Then 91 is increasing, bounded by c and has jumps of size (q!)- 1 at x = y . 
Next. extend 91 on ~ by setting g(O) = 0 and 

9(x) = kg1(1) + 91(x- k) if x E [k , k + 1) , k = 1, 2, ... , 

and put g(x) = -g( - x ) for x < 0. Since g is increasing, the function 

j(t) = 1t g(x) dx with Lebesgue integral 

is convex. For t ! y and t j y (t irrational, y rational) one obtains different 
limits of D j(t). Thus f is not differentiable at y. 
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