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Introduction

This paper is concerned with typical examples and counterexamples in the anal-
vsis of Lipschitz functions and multifunctions. Our purpose is to contribute io
a better understanding of interrelations between different concepis of Lipschitz
behavior, regularity and derivatives, and of their role in selected applications,

First we recall some notations and the classical definition of a locally Lip-

schitz (single-valued) function. To do this, let (X, dx ) and (Y, dy) be metric
spaces. Given X? C X, the usual point-to-set distance of x € X to X" is
defined by dist (x, X?) = inf e yo dx(z,27), where dist (x,8) = +oc. We write
X%+ eBy := {z | dist (x, X?) < £}, i.e., the specialization to X® = {+°} means
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for y° € Y, ¥ C Y are defined. Given ¢® € Y, a function s : ¥ — X is said to
be

(LO) Lipschitz near 4° if there are positive L and £ such that
dx(s(y), $(y")) € Ldy(y.5') Yy,v' €y +eBy. (L.1)

The function s is called locally Lipschilz on ¥ il s is Lipschite near y for eacl
y € Y. We will also use the (standard) nolation s € €%, in this siluation.

2. Lipschitzian concepts for multifunctions

Given again metric spaces (X, dy ) and (¥, dy ), let now 5: Y = X be a mulii-
valued mapping (brielly called multifunction). Let gph S = {{p.2) € ¥ x X |
x € S(y)} denole the graph of S, let dom § = {y € ¥ | S(y) # 0} denote the
domain of S, and let S{A) = U,eaS(a) be the image of A C Y. Il gph S is
closed in the product space ¥ = X, then 5 s said to be closed. Further, denote
by §7! the inverse of S, the multifunction defined by $7x) := {y € ¥ |
{y.x) € gph S}.

Let (32, 2%) be an element of gph S, and let § £ X° ¢ 8(4?). The multi-
function S is said to be

(L1) locally wpper Lipselulz al {yu. X“] if there are positive L and £ such that

S(y) N (X°+eBx) C X+ Ly (5, y")Bx Vy €y’ +eBy: (2.1)
(L2) pseudo-Lipschitz at (y",x) if there are positive L and £ such that

S(y) N (2" +eBx) € S(y') + Ly (3, v)Bx Y.y’ € y° +£By: (2.2
(L3) cabn at (4%, 2%) if there are positive L and ¢ such that

S(y)n (z® + eBx) € S(y°) + Ldy (9, y")Bx Yy € y® 4 eBy; (2.3)
(LA) Lipschitz Ls.e. at (3", %) if there are positive L and £ such that

dist (2°, S(v)) < Ly (3.4°) Vy € 4° + By (2.4)

Here “ls.c.” means “lower semicontinuwous”. while “u.s.c.” will refer Lo “upper
semicontinuous”. Sometimes we use “L.” and “u.L." to abbreviate “Lipschitz"
and “upper Lipschitz”, respectively. The multifunction § is said to be

(L5) Lipschiiz Ls.c. al 3° if there are positive L and ¢ such that
S(y") C S(y) + Ldy (y.3")Bx Yy € 4° + ¢By; (2.5)

(L6) Lipschatz w.s.c. al y° if there are positive L and € such that
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If (L4) is weakened by ouly requiring that dist (%, S(y)) — 0 hold for each
sequence y — 37, then S is called Ls.e. al I[I_:"]'.:I;D}. If {L5) is replaced by
the weaker condition dist (2. S(y)) — 0 for cach sequence y — y° and each
" € S(4y"), one says that § is (Hausdorfi-) Ls.c. at 9°, while dist (2, S(y")) —= 0
for each sequence y — 4” and each 2 € S(y) leads to the notion of S being
{Hausdorfl-) w.s.c. at y°. Il § is a unction, the psendo-Lipschitz property (L2)
is nothing else than (LO), and properly (LG) is also called pointwese Lipschilz
condinuily of 3. In all cases considered above, one says that L is a modulus of
the related Lipschitz property.

The introduced names of Lipschitz properties are used in conformity with the
book of Klatte and Kummer (2002). The notion of (LG} was defined by Robinson
(1981} in the context of polyhedral multifunctions. {L1) was introduced for
X® = {29 and called locally upper Lipschitz af (y°.2°) in Dontchev (1995),
ouwr form of (L1} is an extension of this notion. The inclusion (2.1) particularly
vields that S(y")N(X° +eBx) = XY, ie., the set XY is necessarily an isolated
comnponent of the set S(y“}, The property (L2)}—which is also called Aubin
property in the literature (see Rockafellar and Weis, 1998)—is a basic stability
condition in Aubin and Ekeland (1984), and calimness (L3) has been applied and
investigaled e.g. in Clarke (1983), for deriving optimality conditions. With this
respect, calmmness can be used in a similar way as the upper Lipschile property
(L1}, see Klatte and Kwomer (2002). An interesting sulficient condition for
calmness of pultifunctions can be found in Henrion and Outrata (2001, 1t uses
so-called semismoothuess, Mifflin (1977), and way be applied to the models in
Outrata (2000) and many models in Luo, Pang and Ralph (1996). The concepls
(L53) and (LG) are mainly studied in the context of polyhedral multifunctions
and convex-set-valued waps.

In the following proposition, we compile several elementary interrelations
between these Lipschitzian concepls.

Prorosition 2.1 Let X and Y be melric spaces, § : Y = X and 29 =
(.27 € gph §. Then the following properties hold:

. 5 s locelly wpper Lipschils al 2V =8 i cudm wf 20,

b. § is pseudo-Lipschitz al z° =8 is Lipschitz Ls.c. and calm af 25,

. In the case S(y%) = {2°}. § is locally upper Lipschilz at 2% 5 15 calm

af 20,
d. 8§ is Lipschilz w.s.c. at 3% =8 is caln af (3%, 2") ¥=0 € S(z").
e. § is Lipschilz Ls.c. al y° =8 is Lipschitz Ls.c. at (y°,2%) ¥ € S(°).

Proof, ITmmediate by the definitions. [ ]

The definitions (L2), (L4) and (L5) imply that for y near 3°, the sets S(y)
or S(y) N (2 + eBx) are nonemply, while (L1). (L3} and (L6) do not imply
this. For this reason, none of the properties (L1), (L3) and (L6) implies any
of the remaining ones, consider the trivial example S(y) = {z € R | || = y}.
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missing directions of the implications a, b, d and e fail to hold. The following
counterexamples refer to this situation.

ExaMmpPLE 2.2 (pseudo-L., calm, Llsc. and Louse, but not locally u.lL.).
Consider S(y) =R, y € R, and let B = [-1,1]. Trivially, § is constant, hence
it is Lipschitz l.s.c. and Lipschitz us.c. at each y°, and for any (3°,2%) € R®.
§ is pseudo-Lipschitz and calm at (y°,2°). However, for each £ > 0 and each
L > 0, the point y = yle, L) := y° + ¢/(2L) satisfies

S(N(z® +eB) =[x -, +¢] ¢ [2° - /2, ° +&/2]
="+ Lly - 4| B,

i.e., for each (3% 2%) € R%. § is not locally upper Lipschitz at (3%, £%).

ExAMPLE 2.3 (pseudo-L.. caln and L.ls.c., but not locally w.L. and noi
Laus.c.). Let s{y) =1+ m and S(y) be the interval [—s(y). s(y)] for real y.

Then, if 2% € §(0), the mapping S is not locally upper Lipschitz at (0, z9).
since for each £ > 0 and each L > 0, one finds points =(y) € S(y) N (z® + eB)
such that |z(y) — 2% > Lly| and |y| < 1/L . Further, dist (s(y). $(0)) = /Tul
for y # 0, i.e., § is not Lipschitz us.c. at y* = 0.

On the other haud, § is pseudo-Lipschitz (hence also calm) at each point
(0,2, 2° € int §(0). Note that § is not calm at (0,1). Further, S$(0) C S(y)
for y # 0 implies that § is Lipschitz Ls.c. at y? = 0.

ExaMPLE 2.4 (L.us.c. at y° aud Lls.c. at (% 2%), but not Ls.c. at y® and not
pseudo-L. at (3% 2%). Assign to each « € R the line segment F(x) = [0,x]
(i.e., the convex hull of 0 and &), then the inverse S(y) := F~'(y) becomes

F1(0) =R" and F~'(y) = {Ay | A = 1} for y #0.

Obviously, F~' is Lipschitz us.c. with each L at y° = 0 as well as Lipschitz
Ls.c. with L = 1 at the origin (y°,2%) = (0,0).

However, F7! is not psendo-Lipschitz at {y”, %) = (0.0) and not ls.c. al
y® = 0. This can be seen as follows. Given ¢ > 0, let [|z]| = &. Then = €
S0 N (0 +eBy). and for all ¥ of the form y = =Az, A > 0, it follows that
dist (x, §(y)) = £+ Ae > £. Hence, neither (L2) nor the Ls.c. condition at y° =0
can be satisfied.

Note that a slight modification of the mapping F leads Lo a regular situation.
Now assign to each x € B, the line segment F(z) = [%I,II C R". The inverse
umltifunction is now

S(y) == F~'(y) = [y 2]

and 5§ : R" = R" is pseudo-Lipschilz at (0.0) as well as Lipschitz 1s.c. and
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ExaMPLE 2.6 (the inverse of Divichlet's lunction), For the real function
hix) = 0l & is rational: I{x) = 1 otherwise,

the inverse &~ is calm at (1%, 2%) = (0.0) and locally upper Lipschitz at
(0,h=1(0)) since h=Yy) = 9 for y # 0, y near 0. These useful properties do
not prevent that the terrible behavior of the constraint function i being carried
over to the auxiliary lunction F{-) = f{-) + ali(-)|.

Note that the mapping S(y) = {z | h(z) = y} is even pseudo-Lipschitz at
{0,0) since h{x) > y holds for all irrational & and all ¥ near 0.

3. Characterizations of regularity

Thronghout this section, let X and ¥ be normed spaces (il not specified other-
wise), though the regularity concepls make sense also for more general spaces.
Let § = F~! be the inverse of a given multifunction F : X = Y. In the follow-
ing, we recall several regularity notions for F, where in general we will speak
of regularity (of F) whenever F=!(y) satisfies a certain Lipschitz property. The
type of regularity (strong, pseudo, upper) differs by the related Lipschitz prop-
erties of F~ 1, where in the case of upper regularity we additionally suppose that
F={y) is non-empty for y near y* € F(V).

Regularity Notions

(R1) If § is pseudo-Lipschitz at (3", 2%). then F is called pseudo-regular at
(2 4°).

(R2) If, additionally, neighborhoods U and V of & and 4°, respectively, exist
in such a way that U n F~1{y) is single-valued for y € V, then we call F
strongly reqular at (22, 4%).

(R3) If 5 is locally upper Lipschitz at (y®,2%) and S(y') N U is nou-empty for
all ' € V (for certain neighborhoods U and V of 2% and ¢°, respectively),
then F is said to be upper regular at (2°,9).

First we mention some typical examples for the defined regularity notions.

ExaMmprLE 3.1 (regularity for Cl functions). If F: X =R" =¥ =R" isa
continuously differentiable function, then all these regularity definitions coincide
- due to usual implicit function theorens - with the requirement det DF{(x%) 3 0.

ExampPLE 3.2 Kummer (1997) (pseudo-regular, but not strongly regular). The
complex function F(z) = 2%/|z| for z # 0, F(0) = 0. is a Lipschitz function
which is pseudo-regular and upper regular without being strongly regular at the
origin.

ExXamprLE 3.3 (strong regularity for continuous functions).  For a condinwoens
functlion & : R" — R™, strong regulavity at Ea y“} induces that F is a homeo-
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For each of these generalized derivatives, the symmetric definitions induce
that the inverse of the derivative is just the derivative of the inverse al cor-
responding poiuts. As usually, we will say that a derivative is injective if the
origin belongs ouly to the image of « = 0 or v* = 0, respectively.

For functions F, we have y = Flz) and may write CF{z), TF(x) and
D*Flx). Nevertheless, the images of the derivatives as well as the pre-images
F~y) may be multi-valued or empty. If the (one-sided) limit lmg ot~ (F(x+
tu) — F(z)) exists uniquely for a function F' and all sequences ¢ | 0, then
it is called the directional derivative of F at 2 in divecltion w, and denoted
by F'(z;u). Further, for F : X — R, Clarke's directional devivative of F
al 2% in direction u € X is defined by the usual limes superior F*(x%u) =
litn sup, g, z o t~Y(Fiz + tu) — F(z)) which is obviously finite for locally Lip-
schitz functions.

If [ is a locally Lipschitz function from B" to B™, then, by Rademacher's
theoreny, the set

9 = {x € R" | the Fréchet derivative of f exists at x}

has full Lebesgue measure, i.e., g(B" \ ©) = 0. Moreover, for &* € © and 2 near
x, the norm of Df{x') is bounded by a local Lipschity modulus L of [, These
facts ensure that the mapping d.f : R" == R™" defined by

dof(z)={A| A =lim Df(z') for certain 2’ — z, 2" € 8},

has non-empty images. In addition, oue easily sees that &, f is closed and locally

bounded. The same properties are induced for the map 3f, defined by

(D4) Clarke's (1983) generalized Jucobian 2f(x) = conv 8, f(z) of [ at z, where
conv Z means the convex lull of a set 2.

Note that

T (x)(u) C Of (z)u (3.1)
and

3 (w)u = conv (Tf(x)(u)) (3.2)

hold, see Kummer (1991). The inclusion (3.1) may be strict even for piecewise
linear functions [ : R — R2, see Example 3.9 below.

Regularity characterizations

For the purposes of the present paper, we essentially restrict the following sum-
mary of interrelations between regularity notions and suitable properties of gen-
eralized derivatives to the case X = K" and ¥ = R™.
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ExampLE 3.7 (pseudo-regular, but the conditions {3.5) fail to hold). We give
a function [ which is one of the simplest nonsmooth, nonconvex functions on a
Hilbert space such that the following is true:
Pseudo-regularity of the map F(z) = {y € R| f{z) < y} holds. However,
the conditions (3.5) in terms of contingent derivatives and coderivatives
will not be satisfied.
Let

X =8 = (x,52...) and f(z) = inf 2.

Now F~-Yy) = {z € X | f(z) < y} is the level set map of a globally Lip-
schitz functional. Since f is concave the directional derivatives ['(ir:u) exist
everywhere and are the ouly elements of C f{z, u). Further, f is monotone with
respect to the natural vector ordering, and [ is nowhere positive,

The mapping F is (globally) pseudo-regular, c.g., with modulus L = 2.

Indeed, if f(z) < y and y' < y, there is some k such that r < y+ 3|y —y|.
Next, put ' = z — 2|y’ — yle® where €* is the k-th unit vector in 1%, Then.
pseudo-regularity follows from ||z’ — z|| € 2y’ — y| and =' € F~'(y') since
J@) <o Sy=3 -yl v

In order to see that 0 € D*F(0,0)(=1), we refer to Kummer (2000) or
Klatte and Kummer {2002), Example BE.2, for details. Here, we only note
that the consideration of the points (u*,v*) = (e™,=1) =* (0,=1) and the
assigned elements (2™, ™) = (—e™, =1}/m € gph F leads to the desired result
a8 ™ — 20,

The sufficient condition in terms of CF does not hold because of the property
Sz u) > 0Wu e 12, which is valid al all x satisfying

flz) < 2 Yk (3.7)

In fact, having such z, it follows f(z) = 0 immediately. Now assume that some
of these directional derivatives are negative, ie., let the inequality fix + tu) <
Slz) = té = =id hold for some fixed & > 0 and sufliciently small € > 0. Then,
the infimum fx + fu) must be attained at some component & = k(t):

J(m +tu) = mp(e) + buggy < —t8. W)

IF k() < Ko remains bounded (as £ — 0), then we have x4y 2 p with some
positive u, and (3.8) implies the contradiction uyy — —oc. Otherwise, the
inequality wug < —8 follows for an infinite number of components of u where-
after u cannot belong to [2. Since points x having property (3.7) exist with
arbitrarily small norm, the condition

eB c CF(z)(B) for all z € gph F N (2% +¢B)
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Then t € (0,1). We shift the point (z, t(—z2) 4 (1 = {)z?) to the left boundary
of 17 and define f to be the related point:

(2t = 1)z, —2?) fort> &,
flx,y) = {{1 = 2)=z,2?) fort< %

So f becomes a continuous function of the type B — M. By setting g{z) =
fiw(z)) where w{z) is the projection of z onto &, we obtain that f can be contin-
uously extended to the whole space. We identify [ and g. Clearly, f(0:u) = u
holds for all u, and 0 ¢ int f(R*).

Pseudo- and strong regularity of stationary points

Given a stationary point 2% of a function f € C*(R", R), the above characteriza-
tions for different types of regularity immediately imply that pseudo-regularity
and strong regularity of the function D f at (29, 0) coincide, i.e., if the stationary
point map § = [Df]~! is pseudo-Lipschitz at (0,z%), then it is locally single-
valued. The following example shows ithat this property does not carry over to
C' functions, which are piecewise €2,

It iz worth noting that the equivalence of strong regularity and pseudo-
regularity still holds in the context of the constrained C? optimization problems:
for results of this type see, e.z., Dontchev and Rockafellar (1996), Klatte and
Kummer {2002), Kummer (1997).

EXAMPLE 3.11 (a piecewise quadratic function f : B? — R having pseudo-
Lipschitzian stationary points being not unique). We put z = (z,y) € B? in
polar-coordinates,

z = rlcos¢ +isin g,

and describe [ as well as the partial derivatives D, f, D, f over eight cones
C(k) = {z | ¢ € E{.’cu i}w,%.iﬁr]}, (1<k<8),

by

cone I n.f D, f
C(1) w(y-z) -y -z
C(2) zly—-z) -2z+y x
C(3) =z(y+zx) +2x+y T
€M) -yly+z) -y -y-z

and on the remaining cones C(k +4), (1 < k < 4), [ being defined as in C(k).
Upon studying the D f-image of the sphere, it is not difficult to see (but
needs some effort) that D is continuous and [Df]~! is pseudo-Lipschitz at the
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REMARK 3.12 (pseudo-regularity and isolated zeros of F € C™Y(R", B")). The
function F' = Df : R — R? of Example 3.11 had the same topological proper-
ties as F' in Example 3.2 (pseudo-regular, upper regular, but not strongly regular
at (0,00). It is remarkable that, under psendo-regularity at (0,0}, the related
upper regularity of a directionally differentiable function F € C%'(R" ,R") is an
immediate consequence, because the origin is necessarily isolated in F-1(0), see
Fusek (2001). However, for F € C%'(R" ,R" ) without directional derivatives at
the origin, nothing can be said up to now concerning this implication.

4. (Generalized derivatives of Lipschitz functions

In this section, we consider Jocally Lipschitz functions from E" to B™. If [ is
such a function with modulus L near some x, then the Thibault derivative Tf
and the contingeni derivative C'f take on the particular forms

= lim (2 [ flz® + pu) = f{a*
Tf{:l:]{u]={1r v=lim b (flz" + tew) = f( 1}]}|

for certain {; | 0 and 2* — 2 (4.1)

v=lim & flz + tew) = f(z)] } (4.2

for certain £, | 0 -2)

Cflx)(u) = {v

These sels are now-empty, closed and bounded (C Ljju||B). T/flx)(n) and
C flx)(u) are connected sets, and both mappings are Lipschitz in u. For [ €
CYR",R™), there is Cf = Tf = {Df}. For the absolute value f(x) = |z|
we observe that Cf(0)(x) = {f'(0;u)} (the usual directional derivative), and
Tf(0)(u) = [—|u|, Ju|]] (a closed interval). So Cf and T'f are different even for
elementary functions.

The following example gives a Lipschitz function f having images in an
infinite-dimensional space with empty contingent derivatives for nontrivial di-
reclions (and without directional derivatives).

ExAMPLE 4.1 (a Lipschitz function f : [I]%} — C[0,1] such that directional
derivatives " nowhere exist, neither as strong nor weak (pointwise) limits; and
contingent derivatives are empty). For x € [0, %] define a continuous [unction
By :[0,1] = R by

0 foro<i<x
’1:{1)={|‘.-x forxz<iti<2x
T for2r<it<1

The mapping f{x) := h; is a Lipschitz function from the interval [{},—é] into
C[0,1]. For small |A] = 0, consider the function

a(z, A) = (f{z+ A) = f(x))/ A
If A> 0, then
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Hence, the limit lim g, A) (as A | 0) cannot exist in C[0, 1] (neither in a strong
nor in a weak sense), If A < 0, then we obtain for 2 > 0 that

gz, A)(22) > 0 and g{z, \)(2z + 2)) = —1.
Thus lim g{x, X) (as A T 0) cannot exist, too.

Chain rules and “simple™ Lipschitz functions

The following chain rules are the key for many applications of Lipschitz analysis,
for example, in the study of regularity of the Karush-Kuhn-Tucker system of a
nonlinear program. We consider

flz,9) = h(z,9(y)); h:R"T" =R, g:R" =R, [:R""™ —R".

Here, i and g are supposed to be locally Lipschitz. We are interested in the
formula

TSz, y)uw, v) = Tehlz, g(y))(u) + Teh(z, g{y))(To(y)(v)), (4.3)

where Tph and T, h denote the pertial T-derivatives, defined - as usually - by
fixing the remaining arguments. In general, (4.3) is not true, we need a special
property of g. According to Kumimer (1991), we say that a locally Lipschitz
function g : B™ — R? is simple at y il, for all v € B™, w € Tyg(y)(v) and each
sequence £ | 0, there is a sequence y* — y such that

w = limtg g(y* + tev) = g{y*)] holds
at least for some subsequence of & — oo,

A similar requirement for double limits (but in the context of contingent deriva-
tives for multifunctions) is involved in the definition of proto-derivatives, see
Levy and Rockafellar (1996).

Note that all g € C™'(R™,R) are simple, further simple functions are y =
yt and y — (y*,y7) (which are of particular interest for the Kojima’s form
of the Karush-Kuhn-Tucker conditions, Klatte and Kummer, 1999, Kojima,
1980}, for the proofs see Klatte and Kummer (2002), Kummer (1991}, The
following proposition shows the importance of simple functions in the chain rule
under consideration.

ProrosiTION 4.2 (partial derivatives for Tf). Let g and k be locally Lipschitz,
I =h{z,g(y)), and let D h(-,-) exist and be locally Lipschitz, too. Then

Tflz, y)(u,v) C Tz, gly))(u) + Tohiz, g(y) N Taly)(v)).
Lel, additionally, g be simple af y. Then the equution ({.3) holds true.
Note. Clearly, T,h = {D,h}.

For the proof, we refer to Kummer (1991) or Klatte and Kummer (2002),
Theorem 6.8. It is remarkable that neither all functions in C™YR, R*) nor all
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ExaMmpLE 4.3 ([ € C%Y(R.R?) not simple). Put ap = 1 and consider for k € N
the points

(ax + bi) = —2' .

NI-—*

ap=2" b= %9_"- CE =
15 1 31
dy = F"' . B = El:tfj.- +ap-1) = Eg
Let the function f: B — R® be given by [ = (), )T
x—ag il x € [ag, ).
Silx) = {Iu.-—l' if € [ex, b,
] else
and
T =}, if € [, e,
Blz)=< a1 —x il x € [er. k-],
[ else,

where I € M. The function [ is locally Lipschitz everywhere with the modulus
L = 1. Considering the direction u = 1 and the sequences z*
we oblain

I , 16 0 L o=k
‘l;:[ﬂ.!.'j' +F.1.u}—f{;r;k}] = EE* [(]—lh? kj = ( HJ[} )}

== ( ]) € TJ{0)(u).

=g, by = e — 0.

L

14
Now !LL Ll ﬂ"liﬂl*llu’ ri |0 be g,iwrl Our 1,:11] is to find points y*. y* — 0 such
that v* = 1_1 [fix ; + 1) = f{y )] = {-,—l H} at least for some slllmuwuw
This ||1|p|n*- that for k sufficiently large the first (second) component of v* has to
be negative |[|ma.-1twe} I'PHIIEEL]\"LI\" Hence, there are indices n(k), ¢k}, n(k) =
(k) with ¥* € [angysbugey) and ¥* + re € [degys agy—1] and we have . >
ey = by

For £{k) < n(k) = 1 we would get ry = djy—1 = bupey = % 2=mE) and

1 | 1
g pml Lg-nlk) ¢ 2 o
il <7 55 "2 1
Thus, in order to obtain the liwit (- 5 I,]T only the subsequences with {(k) =
n{k) are suitable. As a consequence we have v 2 4 — by = —‘?' k) ane

T & Apik)=1 — Tn(k) = g-nik),

In other words, for every sequence {ri} with 27+ < o < 3}2"". keN
il is impossible to find a suitable sequence of indices {n(k)}. Hence, f is not
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For the function f of this example, there were pair-wise disjoint intervals
Iie(f) and some v(f) € TS(0)(1), such that the equation

v(f) = limry ' [f(y* + i) — f(i*)] with g — 0

can only hold if rp € f(f) (for some infinite subsequence). Let the same
situation occur with respect to a second function g : R — R? and intervals I (y)
such that I(g) N [.(f) = 0 Wk, . Now, with the definition

h(z,y) = (f(2),0)+(0,9(y)) ER, z,y€R

the point (v(f),v(y)) cannot belong to Th(0,0)(1, 1), and the chain rule (4.3)
fails to hold even for a sum of functions.

EXAMPLE 4.4 (f € PC! not simple). Put for k € N
= [0k it . o 1 P -
rtg-—(?'ﬂ-l-z) ; b;.—(-'.rr 2) .
We define a piecewise differentiable function f: R* — R? by f = (f1, fa)7,

g2z, y) iz <0, golz,y) 20, y € [a, b,

gz, y) x>0, g1(z,y) 20, y € [ar, by,
ERTE
1] otherwise,

where

1 1
mlz.y) = yamﬁ; =z,  galz,y) =y3v0f-; +

ga(z,y) il z < 8% galz.y) 2 0. y € [a. b,

gi(z.y) ilz> 8y, galx,¥) 2 0.y € [ar.bu].
falx,y) =
1] otherwise

and

gslz,y) = mlzv) + 8%, gale,y) = gz, y) - 847,

By setting w = (1,0) and considering the sequence £ = (%, 4*) = (0, (2%=)"1)
— (0,0), with t; = 8(y*)* we obtain

e w612 ()

1
= ( f) € T(0,0)(1,0).
i

Let the sequence vy, | 0 be given. In order to show that f is simple at (0,0)
we have to find a sequence ¥ = (2%, w*) — (0,0) with v* = +7"[f(¢* + reu) -
Fic8y)] — {—ﬁ_. %}T at least for some subsequence. Necessarily, both components
of v* have to be nonzero for k sufficiently large. This is only possible if f;(¢*) #
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Without loss of generality let w* > 0. Because of v = (1,0) we obtain
ACE) = fi(z%w*) # 0and fo(C* + reu) = folz* + re,w®) # 0. This yields

that for & sufficiently large there exists an index ni{k) with
w* € [@nqrys bagr] (4.4)

and |2%] < (w*)3, |25 +re—8(w*)?] < (w*)3. It follows 2547 € [T(w*)?, 9(w")?
and ry, € [6(w*)?, 10(w*)?]. Together with (4.4) we obtain for k sufficiently large

Ty & [ﬁtlﬁ{f'. ].ﬂ{lﬁ“‘]]. [4.5]

On the other hand one can easily see that ¥k > 2 there is 106 < Gaj_,.
This means that for every sequence {ri} with 106} < re < 6al_, Wk > 2 the
condition (4.5) caunot be satisfied. Thus, f is not simple at (0,0},

5. Pathological Lipschitz functions

In this final section we give examples of Lipschitz functions which are patholog-
ical with respect to properties of (generalized) derivatives.

In the basic Example 5.1 (see Klatte and Kummer, 2002), we consbruct a
special real Lipschitz function & such that the Clarke subdifferential satisfies
2G(z) =[-1,1).

Further, Example 5.2 is taken from Kummer [1988) and presents a real Lip-
schitz function [ such that, for almost all initial points, the standard Newton
method provides alternating Newton sequences, though f is differentiable at
all iteration points. It illustrates why one has to utilize suitable local approxi-
mations in the analysis of Newton-type methods for locally Lipschite functions
(see, e.g., Kummer 1988, 1992, 2000, Pang, 1990, Qi and Sun, 1993, Robinson,
1994).

Finally, Example 5.3 (compare Klatte and Kummer, 2002) presents a convex
real function which is non-differentiable on a dense set.

ExAMPLE 5.1 (a pathological real Lipschitz function: lightning function). We
present a simple construction of a special real Lipschite function G such that
F.H. Clarke’s subdifferential fulfills #G(z) = [-1,1]. The existence of such
functions has been clarified in Borwein, Moors and Xianfy (1994).

It will be seen that the following sets are dense in R:

the set Dy = {z| & is not directionally differentiable at x},

the set of local minimizers, and the set of local maximizers.
To begin with, let U : [a, 8] — R be any affine-linear function with Lipschitz
modulus L{U) < 1, and let ¢ = %{u+b]|. As the key of the following construction,
we define a linear flunction V by

vie < J Ule) —au(z =) il U is increasing,
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Here,

aE := k

k= k+ 1
and k denotes the step of the {further) construction. Given any & € (0, 3(b—a))
we consider the following four points in R?:

pr=1(a,U(a)), pr=(c—eVic—¢)), pr=(c+eV(ic+e)), .
pa = (b, U(b)}.

By connecting these points in natural order, a piecewise affine function
w(e, ,V): [a,b] = R

is defined. It consists of 3 affine pieces on the intervals
la,e—g), [e—e,e+e], [e+e=.0).

By the coustruction of V and py, ..., p4, we have
Lip (w(e, U, V1) < 1 provided that £ is small.

After taking e in this way, we may repeat our construction (like defining Cantor's
set) with each of the related three pieces and larger k.
Now, start this procedure on the interval [0, 1] with the initial function

Ulx)=0 and k=1.

In the next step k = 2 we apply the construction to the three pieces just
obtained, then with &£ = 3 to the now existing nine pieces, and so on,

The concrete choice of the (feasible) ¢ = e(k) > 0 is not important in this
context. We obtain a sequence of piecewise affine functions g on [0,1] with
Lipschitz modulus < 1. This sequence has a cluster point g in the space C[0, 1]
of continuous functions, and g has the Lipschitz modulus L = 1. Let

Ni. = {y € (0,1) | g« has a kink at y} and N be the union of all Ny.

If y € Ny, then the values g;(y) will not change during all forthcommg steps
i > k. Hence g(y) = gily). The set N is dense in [0, 1].

Connecting arbitrary three neighboring kink-points of gy and taking into
account that these points belong to the graph of g, one sees that g has a dense
set of local minimizers (and maximizers).

Further, let D be the dense set of all centre points ¢ belonging to some
subinterval used during the construction. Then, each y € I is again a centre
point of some subinterval I(k) for each step with sufficiently large k. Thus,
gly) = gely) is again true. Moreover, for arbitrary & € (0,1), one finds points

y’1 y" € (¥, ¥+ &) such that I.f'l1l’:l'” eN
at_ul__yl[y’} o gly) = (1 = ﬁ}{_y' _,_y} as well as
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Evidently, yp. = 0 at z = —e(k), he = 0 at 2 = ¢(2k). Now define f for x > 0 as
flz) = min{ge(z), he(z)} ifz € I{k) and f(z) = go(x) if x> 1.

We finish the construction by setting f(0) =0 and f{z) = —f(-z) for z < 0.
The related properties can be seen as [ollows:
For k — oo, one oblains lima, = % and lim by = 2. The assertion D f{0) =1
can be divectly checked, Again directly, one determines the global Lipschitz
modulus

1 S 5 | 12
L-llmﬁk—bg-ﬁ/[i—i(ﬁi-ﬁ)]—-5—.

On the lefthand-side of the interval J{k), f coincides with fig, on the right with
. Since g (clk)) < hple(k)), f coincides with gp on a small neighborhood of
the center point k).

Now, let us start Newton’s method at some 2% € ', where 8" is the set
of C' points of f. Then the next iterate z' is some point %c(k) € ©', There,
Df = Dy (or Df = =Dy for negative arguments) holds. Hence, the method

generales the alternating sequence x°, 2!, 2% = =z!, 2® = 3!, ...

ExXaMPLE 5.3 (a convex function [ : & — R, non-differentiable on a dense

set). Consider all rational arguments y = L e {0,1] such that p, g are positive
q

integers, prime to each other, and put

1
hiy) = pr
For fixed g, the sum S(g) over all feasible k(y) is bounded by
S(q) = il and ZS{Q‘] = ¢ < 00,
q
q

Now define gy by
g1(0) =0 and gy (z) = Eygrh{y} for z € (0, 1].

Then g is increasing, bounded by ¢ and has jumps of size (g!)~! at z = y.
Next extend g; on Ry by setting ¢(0) = 0 and

glz)=kp()+q{z -k ifzekk+1),k=1,2,...,
and put g(z) = —g(—z) for < 0. Since g is increasing, the function

'
Jit) = f glz)dr with Lebesgue integral
L]

is convex. For & | y and ¢ | y (¢ irrational, y rational) one obtains different
limits of Df(t). Thus f is not differentiable at 3.
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