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1. Introduction
We deal with Hamilton-Jacoli equations

{D.u{:r:.-'.] + H(Diu(x,t)) =0 in X x T, (1.1)
u(z,0) = g(z) in X i
in which the variable ¢ is not real but vectorial and the hamiltonian H is a vector-
valued mapping. For instance, multitime Hamilton-Jacobi equations introduced
by Lions and Rochet (1986) enter into this framework.

Let X, T be two real Banach spaces. Their respective topological duals are
denoted by X*, T*. Cousider a closed convex cone T’y € T' and define a vectorial
preorder on T in the following way: for any s, L € T,

st & t—s€T;. (1.2)

The bilinear couplings between X and X* and between T and T* are both
denoted by (-,-). The set of all continuous linear forms defined on X which are
nonnegative on Ty is denoted by T3 ¢
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The w* —closed convex cone T coincides with the set of continuous linear forms
defined on T that are nondecreasing with respect to (1.2). Moreover, T3 induces
a vectorial preorder on T™ : for any s*,1" € T,

St & PoteT (1.3)

Let us introduce a mapping H defined on a nonempty subset dom H of X* with
values in T :

H:domHc X* — 1" (1.4)
and a lower semicontinuous (Isc for short) proper function
g:X — RU{+co}.

We say that H is T} -conver if dom H is convex and if for any =*,3%* € dom H,
A € [0,1], one has

H{Az® + (1= A0") <. AH(z®) + (1 = A H{(y").
If we define the epigraph of H by
epiH = {(z*,£") e X* x T :¢* =, H(z")},

then the T} -convexity of H is equivalent to the convexity of its epigraph.

Before making it more precise in what sense (1.1) is solved, we need to recall
what a subgradient is. For a given function u: X x T4 — RU {+oc}, a couple
of vectors (x*,4") € X* = T" is a so-called Fréchet subgradient of u at a point
{x,8) € X x Ty if for any (y,5) € X x T}y,

{v—z,2") + (s = £,8°} < uly, 8) — ulz,t) + ol|(y, 5} = (z,2)]) (1.5)

where o-) is a function such that o(z)/]z| — 0 as £ — 0. The couple (z*,1*) €
X* w T" is said to be a subgrodient in the sense of conver analysis if (1.5) is
true with o(-) = 0. The set of all Fréchet subgradients (resp. subgradients in
the sense of convex analysis) is referred to as the Fréchet subdifferential (resp.
subdifferential in the sense of conver analysis) of u at (z,t) and is denoted by
dpul(zx,t) (resp. dulz,t)).

The generalized solutions of (1.1) are defined by adapting the Crandall-Lions’
notion of viscosity solution, Crandall and Lions (1983), or some extensions of
it, Barron and R. Jensen (1990), Frankowska (1993). A lsc proper function
u: X xTy — RU {+oc} is a subsolution of (1.1) if for any (z,1) € X x T},
any (x*,1*) € dpu(x,t), one has {* + H(z*) =, 0 and if w(x,0) < g{z) for any
x € X. The function v is a supersolution of (1.1) if for any (z,t) € X »x it T,
any (x°,£') € dpu(x, 1), one has {* + H(z") =. 0 and if u(x,0) > g(z) for any
z € X. The function u is a sofufion of (1.1) if it is both a subsolution and
a supersolution. Note that the concept of supersolution is inoperative if the
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2. The generalized Hopf function

In this section, we assume that g is lsc and proper and we consider a mapping
H as in (1.4). For any t € T, let us define the composite function

(to H)(z") = { E:-Eif{:rr'n if * € dom H,

if not.

Observe that te H is convex if H is T -convex. The generalized Hopf function is
defined as a certain Legendre-Feuchel conjugate with respect to the x variable:
for any (x,t) € X x T4,

sapt(d) = g° +to H)"(x) (21)
that is to say

Ugopris, f) = sup {x,z*) - g* (=) = (1, H({z*)). {2.2)
x= Edom g* Nilom H

In order to ensure that wyepe does not equal —oc, we assume that

dom g* Ndom H # 0. (2.3)

Throughout, some functions u are only defined on X x T (as upepe). It is
convenient to set w(x, 1) = 400 for (x,t) € X x T} so that u is defined on the
whole space X x T

ProrosiTioN 1 The Hopf funclion belongs fo I'p(X » T') and one has
UHopi(-»0) < 4. (2.4)
Eyuality holds true in (2.4) if g 5 convex and if dom g* C dom H,

Proof. From (2.2), we get that wyg,r is the supremum of a family of continuous
linear functions on X x T. Moreover, one has

”Hl}]:-l'{l'~ 0) = (9" + tdomu )" (2) < glx).

This implies that upepr is proper and that wpep(..0) = g** = g whenever
dom g® C dom H and g is convex. ]

We now explain how to rewrite wup,,r as a Legendre-Fenchel conjugate with
respect to the (x,t) variable (see Imbert, 2001, for the scalar case). Let us define
a function & € Tp(X* x T*) by

Bz, 1%) = g°(z*), (2.5)

and let us introduce the symmetrical of the epigraph of H with respect to the
X *-axis:

epiH = {(z", ") e X* xT": H{z") <. —t"}.
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Proof. Let (2°,t") € @pupope(z,t) = upopr(z.t). As epi H is w*-closed and
convex, (2.8) reads H(z") g, —4* and, since uhopr(.,0) < g, ugopt is a subsolu-
tion. Moreover, by (2.10), one has (t, H{z*)+t*) > 0. Now since H(z*)+¢* <. 0,
the linear form s — {s, H(2*) +t*} is nonpositive on T. Therefore, if ¢ belongs
to int T4, then £ is a local maximum of the linear form, so that H{z*)+¢* =0
Consequently, when dom g* C dom H, upepr is a solution of (1.1). [ |

The study of the Hopf function when g = i) will be useful in the following.
In this case, ¢* =0, © = 0 and we have (see Proposition 2}

whopi(®,t) = {Ln-{ﬂ;M{ﬂiHLﬂEXxﬁ

if not.

It therefore follows from Theorem 1 that

COROLLARY 2 Assume thal epi H is w* -closed and conver and consider a point
(z,t) e X x T4. Then for any (z*,1*) & ﬁt;n{x.il, one lus
i

'+ H(z") <. 0.
If, moreover, t belongs to int Ty, then * + H{x*) =10,

3. The generalized Lax function

Let g : X — RU {+cc} be a lsc proper [unction and assume that epi H is
nonempty, w*-closed and convex. The generalized Lax function is defined as a
certain infimal convolution (denoted by O) with respect to the = variable:

o [[gO(teHY)(z) () €X xT
ul““‘{":‘”_{+-::-u if not. ‘

For any (z.¢) € X x Ts one has, by definition,
ULaxlx, 1) = ||||' oz — y) + (t o HY (). (3.1)

The infimal convolution defining wp,, is said to be eract if the infimum in (3.1)
is attained,

Il no further assumptions are made, upay is neither convex nor lsc. Observe
that

HLER{H{J} =a a {’I:.‘L'II!I.H E il

which implies that up.. is not identically equal to +oc. But wpax may take the
value —oc. As in the scalar case Tbert (2001), the generalized Lax function
can be expressed as an infimal convolution of two functions defined on X = T
by using the following function

Glaty < [9(2) =0,
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PROPOSITION 4 #p,, =G0 .
el A

COROLLARY 3 [f g 5 conver, 50 15 UpLyy.

We know from Theorem 1 that upe,r is a subsolution of (1.1). In order to
prove that so0 i8 up.., 8 regularity condition is required. As in Imbert (2001),
the generalized Lax function is said to be regular if it is Isc, proper and if the
infimal convolution in (3.1) is exact when finite. Such a condition holds true
under assumptions of Proposition 5 and in Examples 5.1 and 5.2 below. In the
scalar case, several sufficient conditions can be found in Penot and Volle (2000),
Prop. 3.1.

THEOREM 2 Let g be lse and proper and assume that epi H is nonemply, w*-
closed und conver. Moreover, assume thal wy.. 5 regular. Then it is a subsolu-
tion af (1.1). If, moreover, dom H = X* or if domg® € dom H and g € Tp(X),
then up .y 15 a solution of (1.1).

Proof. Let (2°,1%) € Orupax(z,t). AS upay is regular, the infimal convolution
in (3.1} is exact. 1t therefore follows from Proposition 4 and the well-known
subdifferential calculus rule (see e.g. Lemma 5 in Imbert, 2001) that there exists
y € X such that

(°,2") € 9pGla - y,0) N Ipi  (u:t).

Since epi H is convex, (z*,1*) € ﬂaimH{y,i} and by Corollary 2, one has H{z")

=, —1*, that is to say up., 18 a subsolution. If, moreover, { belongs to int T,
then Corollary 2 implies that H{z*) = —={*; it [ollows that up., is a solution of
(1.1) provided that ¢ O ¢}, 5 = ¢ holds true. Such an inequality is verified if
dom H = X" or if dom ¢* C dowm I and g € p(X). u

The next result sheds light on an interesting link between the functions unagpr
and 1w,y
THEOREM 3 Let g be lsc and proper and suppose thal epi H 15 w*-closed and
conver. Assume morepver thal
dom g* Mdom H # .
Then upa, is proper and Ul = u‘;‘]upf so that wpepe 35 the lse conver hull of

U ax-

If, moreover, g 15 conver, then uyggpr s the lsc hull of up .

Proof. Observe that G* = ¢ (see (2.5)). Using Propositions 4 and 2, we get

.. =P+ =Sy = YHopr We then obtain u, = upepr and since upepr is
proper, up.. does not take the value —ecc. If g is convex, up .. is also convex and
the lsc hull of up. coincides with w7, = tpopr. (]

We just have seen that when g is convex tpay and wgepr are very close. Let
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PROPOSITION § Assume that X, T are reflevive spaces, that g € I'p(X) and
that cone{dom g* = dowm H) is @ closed linear space. Then wp., 15 regular and o
coincides with wyepr.

Proof. By Attouch-Brezis Theorem, Attouch and Brezis (1986), one has

uttopt = (P + 15 ,)" = GO by = Uhax

whenever cone{dom & — EE! H) is a closed linear space. Moreover, the infimal
convolution &' O !..'-'-1._H is exact. Looking at the definition of ®, (2.5), one can
el

see that dom & = dom ¢® x T* so that dom & - 61?1 H = ({domg* —dom H) » T"
amd the required condition holds. i}

4. Bounds for subsolutions and supersolutions

In this section, we prove that any lse subsolution of (1.1) is lower than or equal to
tpax and that any weakly lsc supersolution is greater than or equal to vgape. As
in the scalar case, proofs are based on Clarke-Ledyaev's mean value inequalities.
To avoid theoretical complications, we assume in this section that X and T are
Hilbert spaces (see Borwein and Zhu 1996, Penot and Volle, 2000, for possible
extensions to more general spaces). Under appropriate assumptions we oblain
that uyepr is the unique solution of (1.1). Unless specified otherwise g is just an
lse proper function defined on X and H : dom H € X = T is just a mapping.
In the following, B denotes the unit ball of any space (X, T, X x T eic).

ProrostTion 6 Lel u be o lsc subsolution of (1.1); then u < upay.

Proof.  According to (3.1) we have to prove that for any r,y € X and any
t e T, one has

u(r,t) < glx=y)+(te H) (y).
As u(.,0) £ g it suffices to prove that
(e, t) < ule - y,0)+ (to H)'(y). (4.1)

If u(zx — 4,0) = 4o, it is clear. If not, choose r < ul(z,t) — ulz — y,0).
By the multidirectional Mean Value Inequality due to Clarke and Ledyaev
(Clarke, Ledyaev, Stern and Wolenski, 1997, p. 117), there exists a point (z,5) €
[(z.t), (z—y.0)]+B and asubgradient (x*,1*) € dpu(z, s) such that r < (y,z°)+
{t,£*). Using the fact that « is a subsolution, we know that H(z") 5, —f*, and
since £ € T, we finally obtain

r<(wz")— (8, H(z")) < (to H) (y).

Ae o o el 3 — aul v — 5 N de avhideare wao sl §4 1) 4|
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THEOREM 4 Let g be lsc and proper, lef epi H be closed and conver and lel wy,
be requlur. Then upa. 13 the greates! lse subsolution of (1.1).

Proof. Apply Theorem 2 and Proposition 6. | |

When g and epi H are convex, we obtain (see Imbert, 2001, for the scalar
case):

THEOREM 5 Assume that g € Ug(X'), thal epi H is closed and conver and that
(2.3) holds. Then upopr i the greatest lse subsolution of (1.1).

Proof. By Theorem 1, wyopr i5 a subsolution. Theorem 3 ensures that wyapr is
the lse Tl of wpax. It then follows o Proposition 6 thatl wyapr is the greatest
lse subsolution of (1.1). =

From Proposition 1, we know ihal tpepr is convex and lsc. 1t follows that
Uopr IS also weakly lse. In the nextl resull, we show that upe,r bounds from
brelow any weakly lsc supersolution of (1.1). As in the scalar case, limbert (2001},
the proof relics on the Mean Value Inequality.

Prorosition T Asswme that H s Lipschilz continuwous on ils domain and el
i 15 Ise and proper. Then for any weakly lse supersolution w of (1.1) one has

Uiopr = w i X X inl T,
Proof. Let ¢* € dom g™ N dom H and define
wlx. d} = ulx. ) = {x, 4"} + 4" (4") + {t, H(y")}).
Observe that w is weakly lsc and w(.,0) = 0. We have to prove that w > 0 in
XoxintT,.
Assume the contbrary: there exists (£,0) € X xinl Ty such that w{i, ) = —n
with ¢ > 0. For any r > 0 we claim that there exists §in the line )0, f] such that

”‘Il:I1L:I 2 -% fﬂr Elu -;5 E H{i, 1"}. {‘I_:?:I

If such a t does not exist, then for any integer n > 1 there exists a point
xu € B(Z,7) such that w(z,, 1) < —%. Considering a weakly convergent sub-
sequence 1, = x, we therefore obtain the following contradiction:

G 1. [
0 < wir0) < !:Iurnﬂw(,r,.;f) S =

Let us set Y o= Bz, r) x {i}. From (4.2) we got

Wi VeV e 1Y e andld 7Y 2
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By the Mean Value Inequality (Clarke, Ledyaev, Stern and Wolenski, 1997,
p. 117), for any € > 0, there exists a point (z,t) € [(Z,1), Y] + B and a subgra-
dient (z°,1") € dpw(x, t) such that

{z—Fz")+{{ -t} > % for all # € Bz, r).

Looking at the definition of w, we observe that (z* +4°, " — H{y")) € dpu(z,t).
Next, € > 0 is chosen small enough in order to ensure that ¢ € int T} and,
consequently, H(z* + y*) = H(y*) — t*. We then have

z-2,2")+ (L~ HE +¢°) - Hy*)) > 535 for all = € B(%,7).
If K denotes a Lipschitz constant of H, the previous inequality yields
~rle’| 4+ Klilla*| 2 3.

A contradiction is obtained by choosing r = K|t|. Hence w(z, ) > 0 and upopr <
uin X xintT,. ]

From Theorems 1 and 5 and Proposition 7, we obtain the following unique-
ness result.

THEOREM 6 Assume that H is Lipschitz continuous on s domain, that epi H
15 closed and conver and that g € To(X) with dom g* C dom H. Then UHopf
is a weakly Isc solution of (1.1) and any weakly lse solulion of the vectorial
Hamilton-Jacobi equation (1.1) coincides with upopr on (X xint T JU X x {0}

5. Examples
5.1. Multitime Hamilton—-Jacobi equations

In order to apply the results of the previous sections to multitime Hamilton-
Jacobi equations introduced by Lions and Rochet (1986), we consider the space
A =R" thetwoconvexconesT = R* =T*, T, = R} =T} and the n functions
Hi,....,Hy : B" = RU{+oc} and g : R* — RU {+cc}. The corresponding
multitime Hamilton-Jacobi equation is

du . i .

E+H.—{D,u) =0inR' xR, 12i<m,

i
u(z,0) = g(z) in R".

Such a system may be written as in (1.1) by defining the mapping H as follows:

TES m% FET OF W TE S EAh P L I - q FE
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We then have for any = € R"™ and any t = (t;,....t,) € R} :

Upapf (T, 1) = (y' + it.—H.—).{x}

i=1
n L]
uax(s, ) = 9 0 (Y tH:) (2)
i=1
Observe that if H; € Tp(R™) fori = 1,...,n, then epi H is closed and convex.

5.2. Linear vectorial Hamilton—Jacobi equations

Assume that X, T are Hilbert spaces, that A : X — T is continuous and linear
and denote by A* : T'— X the associated transposed linear mapping. Let also g
be a lsc proper funciion defined on X and consider the following linear vectorial
Hamilton=Jacobi equation

Doulx, t) + A(Deu(z, 8)) =0 inX xT,
ulz, 0) = glx) in X.

Here H = A is continuous and linear so that its graph is a closed linear space.
Choosing Ty = T one has T} = {0} so that the epigraph of H with respect to
T coincides with the graph of A and one has

corrm={3, fao =

(5.1)

It follows that up..(z.t) = g(zx—A"(t)) for all (x,t) € X xT aud it is regular. By
Theorem 2 it is an Isc solution of the linear vectorial Hamilton-Jacobi equation
{5.1). By Theorem 5 it is the greatest lsc subsolution of (5.1). The Hopf
function is given by wgope(z, 1) = g™ (2—A*(t)). If g € Io(X) then upepe(z, 1) =
glx — A*(1)) is the unique weakly lsc solution of (5.1) (see Theorem 6).

5.3. Schur vectorial order

Let us consider the Schur vectorial order on B" which is associated with the
IIDI'I:]IEHEtilI'E COonvex cone

k
sz{yen":Zy.-aﬂ.l Ekmhiya=ﬂ}~
=1

=l
Given a,b € R", a <5 b means b — a € 5. The nonnegative polar cone of S is
RL={teR" 2.2 h).

Given r € R", we denote by [z] the element of R" whose components are those
of x arranged in nondecreasing order. It turns out that the mapping
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is S-convex (in fact sublinear; see, for instance, Borwein and Lewis, 2000, p. 26).
The corresponding vectorial Hamilton-Jacobi equation is

Deu(z,t) + [Dru(z,t)] =0 in R" x RS (5.2)
w(x,0) = glz) in R", '
where g is a Isc proper function defined on B*. Denoting by [z]; the i*® greatest
component of z, one has for any (z,t) ER" xRS :

ﬂHopl'{I1 t)= (ﬂ'. + i E;[]i).{I],

i=1

In order to explicit the Lax function we need a lemma. We denote by @ the
compact convex set of n x n bistochastic matrices. Let us first recall the Hardy-
Littlewood-Polya Theorem (see Berge, 1959, p. 191);

Va.beRS : a<sb3QeQ:a=Qb (5.3)

LEMMA 1 For any (y,t) € R" x R one has:
{t. [v)) = sup{{z,y) : (=, Q) € R" x Q,x = Qt}.

FProof. Let (x, @) € B* x @ with « = @1, There exists a permutation matrix P
such that [z] = Pr and we have [r] = (PQ)t¢ with PQ bistochastic. By (5.3)
it follows that [z] <s t. Since [y] € RY one has: {[z],[y]) < (t.[y]). Now it is
known (see Borwein and Lewis, 2000, p. 10) that (z,y) < ([z],[¢]). Therefore
the inequality > holds in Lemma 1.

Conversely, there is a permutation matrix M such that [y] = My; taking
x = M~'t one has (x,y) = (M~'t,y) = (t, My) so that the inequality < holds
in Lemma 1. |

As the set Ugeo@Q! is compact and convex, it follows from Lemma 1 that
the Legendre-Fenchel conjugate of the support function f o [] coincides with
the indicator function of this set. The Lax function can be written under the
following form:

PROPOSITION 8 For any (z,t) € R" x RS :

tpax(z, 1) = 32:’.‘! alz = Qt).

The Lax function is regular; it is therefore the greatest lsc subsolution of
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5.4. Vectorial Hamilton-Jacobi equations in matrix spaces

In this subsection, X is the Euclidian space 8§, of n % n real symmetric matrices
equipped with the scalar product (M, N)) = trace{ MN) and the two cones
T and T* coincide with the finite dimensional space R" equipped with the
canonical scalar product {.,.). Let us consider the spectral mapping H = A that
associates with any N € 8, its eigenvalues AN} = (A (N)..... Al N}) in such
a way that A (N) = ... > A.(N). Observe that A(S,) = RL. An important
property of the mapping A = H : §,, — R" is that it is continuous and sublinear
with respect to § (Borwein and Lewis, 2000, pp. 10, 108). In particular

epid={(N,y) €8, xR" : y - A\[N) € 5}

is a closed convex cone. Let us consider the underlying Hamilton-Jacobi equa-
tion

Dou(M,t) + MDyu(M, 1)) =0 in8, xR},

u(M,0) = g(M) in 8, (5.4)

where g is a lse proper function defined ou 8,,.
The Hopf function associated with (5.4) turns out to be

I.I:Hup[l:ﬂrf, t) = (ﬂ‘ + i-}'iiu).{M}
i=1

for any M €8, and any ¢ = (t,....1,) € RS.

In order to make explicit the Lax function, we need a lemma.
LEMMA 2 For any (M, 1) €5, x R% one las
(to A)(M) = sup{{(M. N} : (N,Q) € S x 2, NN) = Q1}.

Proaf. Let (N, Q) € 8, x Q with AMN) = Q1. Fram (5.3) one has J'-I:.N} <35 L
Since A(M) € RZ it follows that {A(N), A(M)) < {t,A(M)}. Since {{M,N}} <
(AM), A(N)) (see Borwein and Lewis, 2000, pp. 10, for instance) we get the
inequality = in Lemma 2,

Conversely, there exists an orthonormal matrix P such that P-IMP =
diag A{M), where, for a given vector y € R", diag(y) denotes the diagonal
malriz whose entries are y,..., ¥n. One has

(M. diagt)) = {(Pdiag \M)P~!, Pdiagt P71
= (A(M),t) = (to XA)(M).
The proof of the lemma is therefore achieved. |

As the set {N € 8§, :3Q € @, MN) = Qt} is closed and convex, it follows
from Lemma 2 that the Legendre-Fenchel conjugate of the support function te )
coincides with the indicator lunction of this set, so that the Lax function can
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ProposiTiON 9 Y(M,t) € 8, x RS,
uLax(M, t) = inf{g(M — N) : (N,Q) € 8, x ,A(N) = Qt}.

References

Awvarez, O., Barron, E.N. and Isuu, H. (1999) Hopl-Lax formulas for
semicontinuous data, Indiana Universilty Mathematics Jowrnal, 48 (3),
993-1035.

AtrroucH, H. and Brezis, H. (1986) Duality for the sum of convex functions
in general Banach spaces. Aspects of Mathematics and ils Applications,
1986,

Barron, E.N. and JEnseN, R. (1990) Semicontinuous viscosity solutions of
Hamilton-Jacobi equations with convex hamiltonians. Communications in
Parlial Differentinl Equations, 15, 1713-1742,

BERGE, C. (1959) Espaces topologiques: Fonctions multivoques. Dunod, Paris.

Borweln, J.M. and Znu, Q. (1996) Viscosity solutions and viscosity sub-
derivatives in smooth Banach spaces with applications to metric regularity.
SIAM Journal on Control and Optimization, 34, 1568-1591.

Borweln, J.M. and LEWIS, A.5. (2000} Conver analysis and nonlinear opli-
mization. Theory and examples. Springer-Verlag, New York.

CrLarke, F.H., Lepvagv, Y.5., Stean, R.J. and Worenskr, P.R. (1997)
Nonsmooth Analysis and Control Theory, volume 178 of Graduate Texls
in Mathematics. Springer.

CranpaLL, M.G. and Lions, P.-L. (1983) Viscosity solutions of Hamilton-
Jacobi equations. Transactions of the American Mathematical Society, 277
(1), 1-42.

Frankowska, H. (1993) Lower semicontinuous solutions of Hamilton-Jacalbi-
Bellman equations. STAM Journal on Conirol and Oplimisation, 31 (1),
257-272.

IMBERT, C. (2001) Convex analysis techniques for Hopl-Lax formulae in Hamil-
ton-Jacobi equations. Journal of Nonlinear and Conver Analysis, 2 (3).

Lions, P.-L. and RoCHET, J.-C. (1986) Hopf formmula and multitime Hamilton-
Jacobi equations. Froceedings of the American Mathematical Sociely, 96
(1], 79-84.

PewoT, J.-P. and VoLLg, M. (2000} Explicit solutions to Hamilton-Jacobi
equations under mild continuity and convexily assumptions. Jowrnal of
Nonlinear and Conver Anolysis, 1 (2), 177199,



