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1. Introduction 

We deal with Hamilton-Jacobi equations 

{ 
Dt'u(x , t ) + H(Dxlt(x , t) ) = 0 in X x T+ 
u(x ,O) = g(x) in X 

(1.1) 

in which the variable tis not real hut vectorial and the hamiltonian His a vector­
valued mapping. For instance, rnultitirne Hamilton- Jacobi equations introduced 
by Lions and Rochet (1986) enter into this framework. 

Let X, T be two real Banach spaces. Their respective topological duals are 
denoted by X * , T * . Consider a closed convex cone T + C T and define a vectorial 
preorder on T in the following way: for any s, t E T , 

(1.2) 

The bilinear couplings between X and X * and between T and T * are l>oth 
denoted by (- , ·). The set of all continuous linear forms defined on X which are 
nonnegative on T+ is denoted by T.f. : 
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The w* - closed convex cone T+ coincides with the set of continuous linear forms 
defined on T that are nondecreasing with respect to (1.2). Moreover, T+ induces 
a vectorial preorder on T* : for any s*, t* E T*, 

s* ~. t* {::} t* - s* E T+. (1.3) 

Let us introduce a mapping H defined on a nonempty subset dorn H of X* with 
values in T* : 

H:domHcX*__,T* (1.4) 

and a lower sernicontinuous (lsc for short) proper function 

g: X__., !RU {+oo}. 

We say that H is T+ -convex if dorn H is convex and if for any x*, y* E dorn H, 
,\ E [0, 1], one has 

H(.\:c* + (1- .\)y*) ~ • .\H(x*) + (1- .\)H(y*). 

If we define the epigraph of H by 

epiH = {(x*,t*) E X * x T*: t* >r=. H(x*)}, 

then the T+ -convexity of H is equivalent to the convexity of its epigraph. 
Before making it more precise in what sense ( 1.1) is solved, we need to recall 

what a subgradient is. For a given function ·u: X x T+ ___, lR U { +oo }, a couple 
of vectors (x*, t*) EX* x T* is a so-called Frechet s·ubgmd·ient of ·u at a point 
(x, t) EX x T+ if for any (y, s) EX X T+, 

(y- x, x*) + (s- t, t*) ~ 1L(y, s)- u(x, t) + o(l(y, s)- (x, t)l) (1.5) 

where o(-) is a function such that o(x)/lxl ___, 0 as x ___, 0. The couple (x*, t*) E 
X* X T* is said to be a subgmdient ·in the sense of convex analysis if (1.5) is 
true with o(-) = 0. The set of all Frechet subgradients (resp. subgradients in 
the sense of convex analysis) is referred to as the Frechet s·ubdifferential ( resp. 
subdifferential in the sense of convex analysis) of u at (x, t) and is denoted by 
[)p·u(x, t) (resp. (Ju(x, t)). 

The generalized solutions of (1.1) are defined by adapting the Crandall-Lions' 
notion of viscosity solution, Crandall and Lions (1983), or some extensions of 
it, Barron and R. Jensen (1990), Frankowska (1993). A lsc proper function 
u : X x T+ ___, lR U { +oo} is a subsol·ution of (1.1) if for any (x, t) E X x T+, 
any (x*, t*) E 8pu(x, t), one hast* + H(x*) ~. 0 and if ·u(x, 0) ~ g(x) for any 
x EX. The function u is a s·upersolution of (1.1) if for any (x, t) EX x int 1'+., 
any (x*, t*) E 8pu(x, t), one hast*+ H(x*) >r=. 0 and if ·u(x, 0) 2: g(x) for any 
x E X. The function ·u is a solution of (1.1) if it is both a subsolution and 
a supersolution. Note that the concept of supersolution is inoperative if the 
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The reader may observe that if int T+ is ncinempty, then the dual cone T~ is 
pointed so that T* is partially ordered instead of parti ally preordered. There­
fore any solution ·u of (1.1) satisfies for any (:c*, t*) E 8F·u(x, t) with t E int T+ : 
L* = -H(x*). A referee kindly pointed out to us that the previous observa­
tion remains valid if one extends the concept of supersolution by replacing the 
topological interior ofT+ with 

T~ = { t E T: \It* E T~ \ {0} , (t, t*) > 0} . 

Nevertheless, although many results of the paper can be stated with this concept 
of supersolution, our proof of Proposition 7 requires the topological interior of 
T+ to be nonempty. 

The paper is organized as follows. In Section 2, we introduce the genera­
lized Hopf function and describe its subdifferential (Proposition 3). When g 
and epi H are couvex, we prove that 'UHopf is a solution of (1.1) (Theorem 1). 
The generalized Lax function is considered in Section 3. Under a regularity 
assumption we prove that 'ULax is a solution of (1.1 ) (Theorem 2). Next we 
prove that the lsc convex hull of 'ULax coincides with 'lLHopf (Theorem 3) . The 
uniqueness of the solution of (1.1) is studied in Section 4; we prove that 'ULax 

and 'lLHop f are respectively the greatest lsc subsolution and the lowest weakly lsc 
supersolution (Theorems 4, 5, 6). Several examples are presented in Section 5. 

The remaining part of the present sect ion is devoted to definitious and no­
tations that are used throughout. 

Let Z denote an arbitrary Banach space and consider a function f : Z ---+ 

IRU { + oo }. The Legendre-Fenchel conjugate off is denoted by j* and is defined 
on Z* by the following formula: 

j*(z*) =sup{ (z*, z) - f( z )}. 
zEZ 

The function J**=(J*)* defined on Z instead of Z** turns out to be the greatest 
lsc and convex function bounding f from below. It is known as the lsc convex 
hull off while the lsc hull off is denoted by f and is defined by: 

f( z) =lim inf f(y). 
y--->z 

As usual fo( Z) denotes the set of lsc proper convex functions defined on Z and 
f 0(Z*) denotes the set of weakly-* lsc proper convex functions defined on z•. 
Subgradients (in the sense of convex analysis) z* E 8 f ( z) are characterized by 
the so-called Fenchel 's eq·ualdy: 

(z* , z) = f( z) + f*(z*), 

while Fenchel 's inequality holds true for any z*, z : 

(z*, z) 2 f(z) + j*( z*). 

Consider two arbitrary sets A, B C Z. Then, [A, B] denotes the convex hull of 
AUB. To finish with, the indicator function of A is denoted by ~A and is defined 

I -- :. 1: A A 
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2. The generalized Hopf function 

In this section, we assume that y is lsc and proper and we consider a mapping 
Has in (1.4). For any t E T+, let us define the composite function 

(toH)(x*) = ' { 
(t H(x*) ) 
+oo 

if :r* E dom H, 
if uot. 

Observe that to H is convex if H is T~ -convex. The yenemhzed H opf function is 
defined as a certain Legendre-Fenchel conj ugate with respect to the x variable: 
for any (x, t) EX x T+ , 

'UHopr(x, t) = (g* +to H )*(:r) 

that is to say 

'liHopr(x, t) = sup (:~:, :r*) - g*(:r*)- (t , H(:c*)) . 
x· Eclo m g •nd o m H 

In order to ensure that 'liHopf docs not equal - oo, we assume that 

dom g* n dorn H =I 0. 

(2.1) 

(2.2) 

(2 .3) 

Throughout, some functions ·u are only defined on X x T+ (as 'liH opt} It is 
convenient to set u(x, t) = + oo for (x , t) ~ X x T+ so that ·u is defined on the 
whole space X x T. 

PROPOSITION 1 The Ho pf fu nction belongs to fo(X x T) and one has 

'liH opf(. , 0) ~g . 

Erru.alily holds true in (2.4) if y is convex and ·if dom y* C dorn H. 

(2Jl) 

Pmof. From (2.2) , we get that 'liHopr is the supremum of a family of continuous 
linear functions on X x T . Moreover , one has 

'liHopr(:c , O) = (y* + LdomH)*(:c) ~ g(x ). 

This implies that 'U Hopf is proper 'ltd that UHopf(., 0) = y** = g whenever 
dorn y* C dorn H and g is convex. • 

We now explain how to rewrite 'UHopf as a Legendre-Fenchel conjugate with 
respect to the (x, t) variable (see lrnbert , 2001 , for the scalar case). Let us define 
a function <I> E fo(X* x T*) by 

<I>(:c*, t*) = g*(x* ), (2 .5) 

and let us introduce the symmetrica l of the epigraph of H with respect to the 
X *-axis: 

epiH = {(x*,t*) EX* x T *: H(:c*) ~. - t*}, 
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PROPOSITION 2 'UHopf =(c)_)+'"------: H)*· 
e p 1 

The following corollary provides upper and lower estimates of the Legendre­
Fenchel conjugate of 'UHopf· For an arbitrary set A, coA denotes the w*-closed 
convex hull of A. 

COROLLARY 1 c)_)+~-------: H < uH* 01. 1.· < c)_)+ L----: H · coept - J - ep 1 

Let us study the Frechet subdifferential of the Hopf funct ion. Consider 
an arbitrary point (:c, L) EX x T+ and all arbitrary subgmdieut (x*,t*) E 
UF'iLHopt(x, t) = O'UHopr(:r, t). By Corollary 1 and (2.5), we know that :c* E 
domg* ami (:r*,/;* ) E coepiH. Using Fenchel's equality, we get 

( :r,:~:*) + (t,t*) 2: 'UHopt-(:c,t) + g*(:r*). (2.6) 

Besides, we notice that :r* E O'U.Hopr( ., t)(x). Heuce Fenchel's equality and (2 .1 ) 
yield 

( :~:,:c*) = 'U Hopt(x, L) + (g* + /; o H)**(:r*) 

::; 'ILHopr(:r , t) + y*(:r*) +(to H)(:c*). 

Combiuing (2.6) and (2. 7), we finally obtain that 

0::; (t, t*) + (to H)( :c*). 

Let us gather what we just proved in the fo llowing proposition. 

(2 . 7) 

PROPOSITION 3 Fu ·,. any(:~:,/.) EX x T+ and any (:r*, t*) E Or'UHopr(x , t), one 
has 

(:r*, t*) E co ep i H 

:~;* E clom g* 

(t , t*) +(to H)(:r*) 2: 0 

(2.8) 

(2.9) 

(2.10) 

REMARI< 1 In lhe scalar case (T = IR), when clomg* C dornH, (2 .9), (2.10) 
and Pmposiiion 3 entail that 'UHopf is u s·aJHoTsol-ution of ( 1.1) (see AlvaTez, 
Bunnn a·nd Ish·ii, 1999). 

In view of (2.8), it seems interesting to investigate wl1 at happens when the 
epigraph of H is w* -closed and convex. 

THEOREM 1 Assmne that g is lsc and pmpeT, that epi H is w* -dosed and con­
ve:c, and that (2.3) holds. Then, joT any (:c*, /.*) E Up'lLHopr(:c, t), t E I+ (1·es1J. 
t E int T+), we have t* + H(x*) ~. 0 (resp. i* + H(:£*) = 0). In yJadlcular, 
'UHopf is a s·ubsol-ution of ( 1.1). M ormver, if dom g* C dom H u:nd g is conve:c, 
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Pmof Let (x*,t*) E OpUHopr(x,t) = auHopr(x,t). As epiH is w*-closed and 
convex, (2.8) reads H(x*) ~. -t* and, since 'UHopf(.,O)::; g, 'UHopf is a subsolu­
tion. Moreover, by (2.10), one has (t, H(x*)+t*) 2: 0. Now since H(x*)+t* ~. 0, 
the linear form s f-+ ( s, H ( x*) + t*) is non positive on T +. Therefore, if t belongs 
to int T+, then tis a local maximum of t he linear form, so that H(x*) + t* = 0. 
Consequently, when dorng* C domH, 'UHopf is a solution of (1.1). • 

The study of the Hopf function when g = ~{o} will be useful in the following. 
In this case, g* = 0, ci> = 0 and we have (see Proposition 2) 

{(to H)*(x) 
'UHopf(X, t) = ~:..._,H(x, t) = + 

ept 00 

It therefore follows from Theorem 1 that 

if (x, t) EX x T+ 
if not. 

COROLLARY 2 Ass·ume that epi H is w* -closed und convex und cons·ide'f" a point 
(x, t) EX x T+. Then for any (x*, t*) E ()~:....., (x, t), one has 

eptH 

t* + H(x*) ~. 0. 

If, moreover, t belongs to int T+, then t* + H(:c*) = 0. 

3. The generalized Lax function 

Let g : X ___, ~ U { +oo} be a lsc proper function and assume that epi H is 
nonernpty, w* -closed and convex. The generalized Lax function is defined as a 
certain infima! convolution (denoted by D) with respect to the :c variable: 

'UL (x t) = { [g 0 (to H)*](x) 
ax , +oo 

if (x , t) EX x T+ 
if not. 

For any (x, t) EX x T+ one has, by definition, 

'ULax(x, t) = inf [g(x- y) +(to H)*(y)]. 
yEX 

(3.1) 

The infima! convolution defining 'ULax is said to be exact if the infimum in (3.1) 
is attained. 

If no further assumptions are made, 'ULax is neither convex nor lsc. Observe 
that 

'ULax(., 0) = 9 D ~;1om H :S !J, 

which implies that 'ULax is not identically equal to +oo. But 'ULax may take the 
value -oo. As in the scalar case Imhert (2001), the generalized Lax function 
can be expressed as an infima! convolution of two functions defined on X x T 
by using the following function 

f ( ) if t = 0, G(:J:. t) = g X 
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PROPOSITION 4 ULax = G 0 &~ • 
ep1H 

COROLLARY 3 If g is convex, so is 'ULax· 

We know from Theorem 1 that 'UHopf is a subsolution of (1.1). In order to 
prove that so is ULax, a regularity condition is required. As in lmbert (2001), 
the generalized Lax function is said to be r·ey·ula1· if it is lsc, proper and if the 
infima! convolution in (3.1) is exact when finite. Such a condition holds true 
under assumptions of Proposition 5 anu in Examples 5.1 and 5.2 below. In the 
scala r case, several sufficient conditions can be founu in Penot and Volle (2000), 
Prop. 3.1. 

THEOREM 2 Let g be lsc and proper and assume that epi H is nonernpty, w*­
closed and convex. Moreover, assume that 'ULax is reg·ular. Then it is a subsolu­
tion of (1 .1) . If, rnoreoveT, domH =X* o1· ·ifdomg* C domH and g E fo(X), 
then 'ULax is a solution of (1 .1) . 

Proof Let (x*, t*) E OFULax(x, t). As 'ULax is regular, the infima! convolution 
in (3 .1) is exact. It therefore follows from Proposition 4 and the well-known 
subdifferential calculus rule (see e.g. Lemma 5 in lmbert , 2001) that there exists 
y E X such that 

(x* , t*) E OFG(x- y, 0) n OF&;__, (y , t). 
ep1H 

Since epi His convex, (x*, t*) E a&;__, (y, t) and by Corollary 2, one has H( x* ) 
ep1H 

~ . -t*, that is to say ULax is a subsolution. If, moreover, t belongs to int T+, 
then Corollary 2 implies that H (x*) = - t*; it follows that ULax is a solution of 
(1.1) provided thai g 0 &j

0111 
H 2 g holds true. Such an inequality is verified if 

dornH =X* or if domg* C domH and g E fo(X) . • 

The next result sheds light on an interesting link between the functions 'UHopf 

and 'ULax · 

THEOREM 3 Let g be lsc and pmper- and s·uppose that epi H is w* -closed and 
convex. Ass·urne m01·eover that 

dorn g* n dorn H -:j; 0. 

Th en 'ULax is proper and 'ULax = ·u~opf so that 'UHopf is the lsc convex hull of 
ULax· 

If, rnoTeover·, g is convex, then 'UHopf is the lsc hull of 'ULax· 

Pmof Observe that G* = <I> (see (2.5) ). Using Propositions 4 and 2, we get 

u Lax = <I> + &;;;; H = ·u~op f· We then obtain ui,:x = 'UHopf and since 'UHopf is 

proper, 'ULax does not take the value - oo. If g is convex, 'ULax is also convex and 
the lsc hull of 'lLLax coinciues wi t h ·ui,:x = 'lLHopf· • 

We just have seen that when !J is convex 'ULax anu 'UH opf arc very close. Let 
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PROPOSITION 5 Ass·ume /.hat X , T are ·reflex-ive spaces, that g E I'o(X) und 
that cone( dorn g* - clom H ) 18 a clo::;ed linear· ::;pace. Then ULax 'is Teg·ulrrr and ·it 
coincide::; w-ith 'llHopf. 

Proof. By Attouch-Bre~is Theorem, Attouch and Brezis (1986), one has 

'UHopf = (q_) +~..--.,H) * = G D ~:..._, = 'ULax 
ep 1 ep1H 

when ever cone( dorn q> - epi H) is a closed linear space. Moreover , the infima! 
convolution G D L:....., is exact. Looking at the definition of q> , (2.5) , one can 

ep1H 

see tha t dorn q> = dom g* x 1'* so that dorn q> - epi H = ( dorn g* - dom H) x 1'* 

and the required condition holds. • 

4. Bounds for subsolutions and supersolut ions 

In this section, we prove that any lsc subsolution of (1.1) is lower than or equal to 
ULax and that any weakly lsc supersolution is greater than or equal to 'UHopf · As 
in the scala r case, proofs are based on Clarke-Ledyaev's mean value inequalities . 
To avoid theoretical complications, we assume in this section that X and T are 
Hilbert spaces (see Borwein and Zhu 1996, Penot and Volle, 2000, for possible 
ex tensions to more general spaces). Under appropriate assumptions we obtain 
tha t 'UHopf is the unique solution of (1.1) . Unless specified otherwise y is just an 
lsc proper function defined on X and H: dorn H C X* __., T* is just a 111apping. 
In the following, B denotes the unit ball of any space (X, T, X x T etc .). 

PROPOSITION 6 Let 'U be a lsc suusol-ut·ion of (1.1}; then 'U::; 'ULax· 

Pmof. According to (3.1) we have to prove tha t fo r any x , y E X ami any 
t E 1'+, one has 

·u(x, t)::; g(x- y) + (to H)*(y). 

As ·u(., 0)::; y it suffices to prove that 

·u(:1:, t)::; u(x- y,O) +(to H)*(y). ( 4.1) 

If ·u(x - y, 0) = +oo , it is clear. If not, choose T < u(x, t) - ·u( x - y, 0). 
By the multidirectional Mean Value Inequality due to Clarke and Ledyaev 
(Clarke, Ledyaev, Stern and Wolenski, 1997, p . 117), there exists a point (z, s) E 
[(x, t) , (x- y, O)]+B and asubgradient (x*, t*) E 8F·u(z , s) such that T < (y, x*)+ 
(t ,t*) . Using the fact that ·u is a subsoluLion, we know tha t H(x*) ~. -t*, and 
since t E T +, we finally obtain 

T < (y, x* )- (t,H(x*))::; (to H )*(y). 

• 
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THEOREM 4 Let g /; e lsc and pmpe·,., let epi H l!e closed anrl c:onve:c and lei 'LLLnx 

l!e Teg'Ular. Then 'ULax is the greatest l:J c sul!sol·al'ion of ( 1.1). 

Pmof. Apply Theorem 2 and Proposition 6. • 
When 9 and epi H are couvex, we obtain (see Irrrbert , 2001 , for the scalar 

case): 

THEOREM 5 Assmne that g E f 0 (X), that epi H -is clo:Jed and cmwe:t and that 
(2.3) holds. Then 'UHopf ·is the greatest lsc sv.I!:Jolv.tion of (1.1). 

P.mof. By Theorew 1, 'UHopf is a subsolution. Theorem 3 ensures that 'UHopf is 
the lsc hull of 'ULnx· It then follows from Proposition 6 that 'UHopf is the greatest 
lsc subsolution of (1.1). • 

Frolll Propositiou 1, we know that 'UHopf is convex and lsc. It follows that 
'U·Hopf is also weakly lsc:. In the next result, we show that 'UHopf bounds from 
below any weakly lsc supersolution of (1.1). As in the scalar case, Imbert (2001), 
the proof relies ou the Mean Value In equality. 

PROPOSITION 7 Assurne 1./wl H ·is Lipschitz contin'LW'US on its domain and thai 
9 is lsc and vmpe·1·. Then fo ·f' a·ny weu. /.:ly ls c s·npe·,.solulion ·u of (1.1) one has 

Pmo.f. Let y* E dom g* n darn H and define 

w(1:, t) = 'U(:r;, L)- (:t , y*) + r/(y*) + (t, H(y*)). 

Observe that w is weakly lsc and w(., 0) 2: 0. We have to prove that w 2: 0 in 
X x int T+ . 

Assurne the contrary: there exists (:r, [)EX x iut T+ such that w(:C, [) = -ct 
with o: > 0. For any.,. > 0 we claim that there exists 1 in the line ]0 , l [ such that 

0: 
w(:c,1) 2: - 2 for all :r E B(x,r). (4.2) 

If such a 1 does not exist, then for auy integer n 2: 1 there exist::; a point 
:t11 E B(x,r) such that w(xn, ~f)<-%· Consideriug a weakly convergent sub­
sequence :rp ~ :c, we therefore obtain the followiug contradiction: 

( 1-) Ct 0 < w(x 0) <lim inf w :t . -l < - -. 
- 1 - Jl-'+= ,,, p - 2 

Let us set Y := B(:c, r) x {i}. From (4.2) we get 
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By the Mean Value Inequality (Clarke, Ledyaev, Stern and Wolenski, 1997, 
p. 117), for any E > 0, there exists a point (x , t) E [(x, l), Y] + cB and a subgra­
dient (x*, t*) E 8Fw(x, t) such that 

(x- x,x*) + (f -1,t*) ?':~for all x E B(x,r) . 

Looking at the definition of w, we observe that (x* +y*, t*- H(y*)) E 8F·u(x, t). 
Next, E > 0 is chosen small enough in order to ensure that t E int T+ and, 
consequently, H(x* + y*) = H(y*)- t*. We then have 

- a 
(x- x, x*) + (1- t, H(x* + y*)- H(y*)) ?': '3 for all x E B(x, r). 

If K denotes a Lipschitz constant of H, the previous inequality yields 

-rlx*l + Klfllx*l ?': ~· 

A contradiction is obtained by choosing r =Kif!. Hence w(x, l) ?': 0 and 'UHopf :::; 
·u in X x intT+. • 

From Theorems 1 and 5 and Proposition 7, we obtain the following unique­
ness result. 

THEOREM 6 Assume that H is Lipschitz continuous on its dorna·in, that epi H 
is closed and convex and that g E fo(X) with dorng* C domH. Then 'UHopf 
is a weakly lsc solution of (1.1) and any weakly lsc solution of the vector"ial 
Hamilton-Jacobi equation (1.1) coinC'ides with 'UHopf on (X x int T+) U X X {0}. 

5. Examples 

5.1. Multitime Hamilton-Jacobi equations 

In order to apply the results of the previous sections to multitime Hamilton­
Jacobi equations introduced by Lions and Rochet (1986), we consider the space 
X = lRn, the two convex cones T = lRn = T*, T + = lR'+. = T.+ and the n functions 
H1, ... , Hn : lRn """' lR U { +oo} and g : lRn """' lR U { +oo }. The corresponding 
multitime Hamilton-Jacobi equation is 

~·u + H;(Dx ·u) = 0 in lRn X~, 1 :::; ·i :::; n, 
ut; 

u(x, 0) = g(x) in lRn. 

Such a system may be written as in (1.1) by defining the mapping Has follows: 
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We then have for any x E lR11 and any t = (t1 , ... , tn) E lRf. : 

'UHopr(x,t) = (g* .f- "t,tiHi)*(x) 
i=l 

'U Lax (X' t) = g 0 ( t ti Hi r (X) 
i=l 

Observe that if Hi E fo(lRn) for 'i = 1, ... , n, then epi His closed and convex. 

5.2. Linear vectorial Hamilton- Jacobi equations 

Assume that X, T are Hilbert spaces, that A : X --+ T is continuous and linear 
and denote by A* : T --+ X the associated transposed linear mapping. Let also g 
be a lsc proper function defined on X and consider the following linear vectorial 
Harnilton- J acobi equation 

Dt'u(:r:, t) + A(Dxu(x, t)) = 0 
'tt(x , 0) = g(x) 

in X x T, 
in X. 

(5.1) 

Here H = A is continuous and linear so that its graph is a closed linear space. 
Choosing T+ =Tone hasT~ = {0} so that the epigraph of H with respect to 
T~ coincides with the graph of A and one has 

(t 0 H)*(y) = { 0 ~f A*(t) = y 
+ oo 1f not. 

It follows that 'ttLax(:t:, t) = g(x - A*(t)) for all (x, t) EX xT and it is regular. By 
Theorem 2 it is an lsc solu tion of the linear vectorial Hamilton-Jacobi equation 
(5. 1). By Theorem 5 it is the greatest lsc subsolution of (5.1). The Hop£ 
function is given by 'UHopr( :c , t) = g** (:r:- A. ( t) ). If g E r o(X) then UHopt(X , t) = 
g(x- A*(t)) is the unique weakly lsc solution of (5 .1) (see Theorem 6). 

5.3. Schur vectorial order 

Let us consider the Schur vectorial order on JRn which is associated with the 
nonnegative convex cone 

k n 

S = { y E lRn : LYi 2': 0, 1::; /;; < n, LYi = 0 }. 
i = l i=l 

Given a, b E JRn , a ::;s b means b - a E S. The nonnegative polar cone of S is 

JR~ = { t E JRn : t1 2': · · · 2': tn} · 

Given x E JRn, we denote by [x] the element of JRn whose components are those 
of :r: arranged in nondecreasing order. It turns out that the mapping 
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is S-convex (in fact sublinear; see, for instance, Borwein and Lewis, 2000, p . 26). 
The corresponding vectorial Hamilton- J acobi equation is 

Dtu(x, t) + [Dxu(x, t)] = 0 in lRn X JR.~ 
u(x, 0) = g(x) in lRn, 

(5.2) 

where g is a lsc proper function defined on JRn. Denoting by [x]i the ith greatest 
component of x, one has for any (x, t) E JRn x JR.~ : 

n * 
'UHopr(x, t) = (g* + 'l::>dJi) (x). 

i=l 

In order to explicit the Lax function we need a lemma. We denote by Q the 
compact convex set of n x n bistochastic matrices. Let us first recall the Hardy­
Littlewood-Polya Theorem (see Berge, 1959, p . 191): 

\:Ia, bE JR.~ : a 5:s b <=:} 3Q E Q: a= Qb. (5 .3) 

LEMMA 1 For· any (y, t) E lRn X JR.~ one has: 

(t, [y]) = sup{(x,y): (x , Q) E lR71 
X Q,x = Qt}. 

Pmof. Let (x, Q) E JRn x Q with :r = Qt. There exists a permutation matrix P 
such that [x] = Px and we have [x] = (PQ)t with PQ bistochastic. By (5.3) 
it follows that [x] :::;s t . Since [y] E JR.), one has: ([x], [y]) :::; (t , [y]). Now it is 
known (see Borwein and Lewis, 2000 , -p . 10) that (:c, y) :::; ([x], [y]). Therefore 
the inequality 2: holds in Lernrna 1. 

Conversely, there is a permutation matrix M such that [y] = My; taking 
x = M- 1t one has (x , y) = (M- 1t, y) = (t , My) so tha t the inequality 5: holds 
in Lemma 1. • 

As the set UQEQQt is compact a nd convex, it follows from Lemma 1 that 
the Legendre-Fenchel conjugate of the support function t o [] coincides with 
the indicator function of this set. Tlte Lax functio n can be written under the 
following form: 

PROPOSITIO N 8 For any (x , t) E JR." X JR.~ 

'ULax (:r, t) = min g(x- Qt). 
QEQ 

The Lax function is regular; it is therefore the greatest lsc subsolution of 
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5.4. Vectorial Hamilton-Jacobi equations in matrix spaces 

In this subsection, X is the Euclidian space §n of n X n real symmetric matrices 
equipped with the scalar product ((M, N)) = trace(M N) and the two cones 
T and T* coincide with the finite dimensional space !Rn equipped with the 
canonical scalar product (.,.).Let us consider the spectral mapping H =A that 
associates with any N E §nits eigenvalues A(N) = (A 1 (N), ... , An(N)) in such 
a way that A1(N) 2': . .. 2': An(N) . Observe that A(§n) = IR>. An important 
property of the mapping A = H : §., -7 IR71 is that it is continuous and sublinear 
with respect to S (Borwein and Lewis, 2000, pp. 10, 108). In particular 

epiA = {(N,y) E §n x IR": y- A(N) E S} 

is a closed convex cone. Let us consider the underlyiug Hamilton-Jacol>i equa­
tion 

Dt'tL(M, t) + A(DM·u(M, t)) = 0 in §n X IR~, 

'U(M, 0) = g(M) in § 71 , 

(5.4) 

where g is a lsc proper function defined on § 11 • 

The Hopf function associated with (5.4) turus out to l>e 

'UHopf(M , t) = (g* + t A;t; ) • (M) 
i=1 

for any M E §nand any t = (t1, ... , tn) E IR>. 
In order to make explicit the Lax functio!t , we need a lemma. 

L EMMA 2 Fu·1· uny (lvi, t) E §n X IR~ one hus 

(i o .\)(M) =sup{ ((M, N)) : (N, Q) E §" x Q, /\(N) = Qt}. 

P.ruuf. Let (N, Q) E §n x Q with ;\(N) = Qt. From (5.3) one has .\(N) '5:s t. 
Since A(M) E IR> it follows that (A(N), A(M)) ::; (t, A(M)). Since ((M, N)) ::; 
(.\(M), A(N)) (see Borwein and Lewis, 2000, pp. 10, for instance) we get the 
inequality 2': in Lennna 2. 

Conversely, there exists an orthonormal matrix P such that p-1 M P = 
diag .\(J\.1) , where, for a given vector y E IR11

, diag(y) denotes the diagonal 
matrix whose entries are y1, ... ,y11 • One has 

((M, diag t)) = ((P diag .\(M)P- 1, P diag t p-1 )) 

= (/\(M), t) =(to A)(M). 

T he proof of the lemma is therefore achieved. • 
As the set { N E §n : :JQ E Q, A( N) = Qt} is closed and couvex, it follows 

frotu Lemma 2 that the Legendre-Fenchel conjugate of the support function to A 
coiucides with the indicator function of this set, so that the Lax function can 
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PROPOSITION 9 V(M, t) E §n X IR~, 

'ULax(M, t) = inf{g(M- N) : (N, Q) E §n x Q, >..(N) = Qt}. 
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