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Abstract: For variational inequalities with multi-valued , maxi
mal lllOHotone operators in Hilbert spaces we study proximal-based 
methods with an improvement of the data approximation after each 
(approximately performed) proximal iteration. The standard coll
ditions Oll a distance fuHctional of Bregwau's type are wea.kened, 
dependiug ou a "reserve of monotouicity" of the operator in the 
variatioual inequali ty, and the en largement concept is used for ap
proximatiug the operator. Weak convergence of the proximal iterates 
to a solu tiou of the origiual problelll is proved . T he coustruction of 
the E-enlargement of monotoue operators is aualyz:ed for son1e par
ti cular cases . 
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1. Introduction 

Let (X, II· II ) be a Hilbert space with the topological dual X' and the dual ity 
pairing(-,·) between X and X'. The variational inequality 

(P) find x* E J( such that 

3q E Q(x*): (q ,x -x*)2':0 'Vx EI<, 

is considered, where }( C X is a convex closed set and Q : X ----> 2x' is a 
maximal monotone operator. We generally suppose that (P) is solvable aud 
denote by x· its solution set. 

The proximal point method (PPM), originally introduced by Martinet (1970) 
to solve convex variational problems and later on investigated in a more general 
setting by Rockafellar (1976) , has initiated a lot of new algorithms for solviug 
various classes of varia tional inequalities and related problems. 

The exact proximal point method, applied to the variational iuequality (P), 
. . - - -
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G-iven x1 E K and a seq'Uence {xk}, 0 < Xk :::; x < oo; with xk E K fmm the 
pr·ev·io'US step, define xk+1 E K s·uch that 

3 q(xk+1 ) E Q(xk+1) : 

(q(xk+ 1) + XkY'tD(xk+ 1,xk),x- xk+l) 2 0 Vx E K, 

wheTe D(:c, y) = ~llx- Yll 2 and Y't ·is the partial gradient w.r.t. x. 
For different modifications of the PPM, also with other quadratic fuuctionals 

D, we point out Kaplan and Tichatschke (1994, 2000b) and Kiwiel (1999), where 
numerous references can be found. 

In the last decade, a new direction in the PPM's has been intensively de
veloped, which is based on the use of non-quadratic "distance functionals" D. 
The main motivation for such proximal methods is the following: 

• A non-quadratic proximal term permits us, for certain classes of problems, 
to preserve the main merits of the classical PPM (good stability of the 
auxiliary problems and convergence of the whole sequence of iterates to a 
solution of the original problem) and, at the same time, to guarantee that 
the iterates stay in the interior of the set K; 

• the application of non-quadratic proximal techniques (as in A uslender, 
Teboulle and Ben-Tiba, 1999, Teboulle, 1992, Tseng and Bertsekas, 1993) 
to the dual of a smooth convex program leads to multiplier methods with 
twice or higher differentiable augmented Lagrangian functionals. More
over, in Auslender, Teboulle and Ben-Tiba (1999) the Hessians of these 
functionals are bounded. 

More motivation for the study of non-quadratic proximal methods can be found 
in Auslender and Haddou (1995), Bmachik, Iusem aml Svaiter (1997), Eckstein 
(1993), Polyak and Teboulle (1997). For infinite-dimensional convex optimiza
tion problems, non-quadratic proximal methods have been studied in Alber, 
Burachik and Iusem (1997), Butnariu and Iusem (1997), (2000), and for varia
tional inequalities in Hilbert spaces - see Burachik and Iusern (1998). 

Iu the present paper, we develop a uniform approach to the constructiou aml 
convergence analysis of proximal like met hods for solving variational inequalities 
in Hilbert spaces. The following genemlized p'I'O:cirnal point Tnethod (GPPM) is 
considered. Taking a linear monotone operator B : X --+ X' such t hat the 
operator ( Q - B) is still monotone, we choose a convex coutinuous functioual 
h : S --+ lR with S C X so that 

1 
x--+ 2(Bx,x) + h(x) 

possesses properties like usually required for a Bregman function (with a zone 
S). For an approximation of the operator Q, a family of operators {Qk} with 
Q C Qk C Q,k is used, where Q, deuotes the E-enlargemeut of Q (Burachik. 
Iusern and Svaiter, 1997) and Ek --+ +0. Precise conditions on the choice of the 
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At the k-th step of the GPPM, with :ck E J(k- 1 n S outa iued at the previous 
step, the itera te x k+ 1 E J(k n S is defined such that 

:Jl(xk+ l) E Qk(xk+ 1) : 

(l'(:ck+ 1
) + Xk(\1h(xk+ 1)- \1h(:ck)) ,x - :ck+ 1

) 

~ -okJr1(x,xk+1) V:c E I<k n 5. 

Here, {I(k} is a sequence of convex, closed sets approximating ](, t he regular
ization parameter Xk is as above, { 8k} is a given non-negative sequence and 

r1 (x, y) = rnin{o:li :c- Yl l2, r(:c, y ) + 1}, o: > 0-const. , 

with 

r(x ,y) = ~(B(x - y),:c - y) + h(:c) - h(y)- (\1h(y) ,:c - y) 

considered in dumT = S x D(\1h) and used as a Lyapunov function . Conditions 
given below provide tha t :ck+1 E J(k n S n D(Q'') (see Theorem 1). 

In this paper, in comparison with the preceding publications dealing with 
non-quadra tic regularization methods, 
• the standard requirement of the strict rnonotonicity of the operator \7 1 D( ·, y) 

(usually formul ated as the strict convexity of Bregtuan 's or an otlt er func
tion generating D) is weakened. This leads to a n analogy of methods with 
weak regularization and regularization on a subspace (developed on the 
oasis of the classical PPM in Kaplan and Ticha Lschke (1997, 2000b); 

• a successive approximation of the set J( is included . 
With regard to the lllentioned investigations for infini te-dimensional problems, 
here the class of opera tors Q is also ex tended (see the case Dl in Lemllla 3 and 
Theorem 2, and Remark 7), au approxillla tion of the operator Q is included and 
the auxiliary proulems are supposed to be solved approximately. 

The nmt-quadra tic proxitual method developed in Kaplan and T icha tschke 
(2002) is a parti a l variant of the GPPM wiLh Qk = Q. In the present paper the 
opera tors Qk are constructed as follows: 

(1) 

where Q is a continuous opera tor such that both Q - Q a nd Q - 13 are nwno
Lone. For a series of varia tional inequalities in ma thematical physics, under a n 
appropria te choice of Q the handling of Qk is llluch sirnpler1 Lhan t lt a t of Q," . 

1The correspond ing theoretical resul ts fo r a n operator Q deco mposed in to the sum of 
a cont inuous monotone operato r a nd t he subd iiTercnti a l of a convex posit ive homogeneous 
fun ct iona l, as well as some examples on the calcul at ion of the E-enl a rgc rn ent of onerators in 
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Moreover, the operator Qk in (1) inherits all good continui ty propert ies of the 
E-enlargement and possesses also t he property 

(qk(x) - q(y),x- y) 2: (B(x- y),x - y)- Ek 

Vx E D(Qk), y E D (Q), qk(x) E Qk(x) , q(y) E Q(y) . (2) 

Just this fact permits to weaken the requirement of s trict convexity of the 
regula ri zing functional h using "the reserve of rnouotonici ty" B of the operator 
Q. The ana lysis of quadratic proximal methods in Kaplan and Tichatschke 
(1994) and numerical experiments for control problems govem ed by PDE's 
(Rotin , 1999) and for Bingham problems (Schmitt , 1996) show that a signif
icant acceleration of the numerical process can be expected on this way. 

It should l>e noted that , for the opera tor Q, , in place of Qk , rela tion (2) is 
not valid, in general, if B f. 0. 

Simultaneously, in this framework the class of operato rs Q is ex temled: Now , 
instead of the pseudo-rno atonicity of Q, the fulfillmeut of a weaker condition 
which we called W-property (see aft er Lemma 2 in Section 4) is assumed. 

The main contents of t he paper a re arranged as fo llows: lu Sect ion 2 comli
t ions w.r.t. t he successive approximation of Prol>lern (P) and t he regularizing 
functional are formulated , and the GPPM is specified. In Section 3 the solv
abi lity of the auxilia ry problems is studied, and in Section 4 convergence of 
the GPPM is proved. As already mentioned, the Appeucl ix contains results, 
simplifyi ng the approximations of opera tors Q possessing a special structure. 

2. Generalized proximal point method 

In the sequel, we make use of the following notations: S C X is au open convex 
se t , its closure is denoted by S; {!<'} c X , J( k :J ]( , is a family of convex 
closed sets approximating K ; 

N { 
{z E X ' : (z ·y - x) > 0 Vx E K} 

f(:y~ 0 , - if y E J{ 

otherwise 

is the normality opera tor for K; symbol ~ indicates weak convergence in X. 
With B and h as introduced in Section 1 (their properties will be specified 
below), we define the functional 

·ry(x) = { ~(Bx,x) + h(x) 
+oo 

if X ES 
otherwise. 

Now, the basic assumptions will be described. 

AssuMPTION 1 (on the successive approximation of Problem (P) and t he choice 
of the controlling parameters) : 
(A1) For ea.ch k, the opemto1· Q+Nl\, is rna.:rima.l monotone; 
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(A3) (i) the opemtoT (Q- B) is monotone, 
oT, in case Q is the suudi.ffeTential [) f of a pmper· convex and loweT senti
continuous (lsc) functional f, 

(ii) the functional x ___., f(x)- (Bx,x) is conveJ:, 

whe·/'e B : X ___., X' ·is a given l-inear·, cont·in·uo·us and monotone operator 
wdh the symmetry pmperty (Bx,y) = (By,x); 

( A4) any weak limit point of an ar·bitraTy seq·uence {vk}, vk E S n D( Qk) n J(k, 
belongs to K n D(Q); 

(AS) lei :1;* be surne point belon.giny to X* nS and q*(:c*) E Q(x*), bo!.h obeyin.y 
(q*(:c*),y- :c*) 2 0 \/y E K, 

and { IPd be u given 'twnneyu.t·i·ue se1ruence. Fo·t· an arbitnrf'y sequence 
{vk}, vk E S n D(Qk) n J(', the·re e:cists a sequ ence {wk(vk)} c J( n S 
s·uch that 

(q*(x*),wk(vk)- •t/):::; c(r'(:r*,vk) + l) IPk (c 2 0 - cort.sl.): 
(A 6) the non-neyat·ive se!ruence::; { IPk} ( accv:mcy of apr;mx·im.ation of J( acconl

·in.y to A 6), {Ed (accuracy of appm:cimation of Q), {xk} (re.rrularizu.tiun 
pa·ruTn eteT) and {81.:} (e:ractness .for solving the rwxdia·t·y p'I'ObleTns) satisfy 

~ ip,, ~ Dk ~ Ek 
0 < Xk :::; 1, ~ ~ < oo, ~ -:- < oo, ~ ~ < oo ; 

k=l Xk k=l Xk k=l Xk 

REMARK 1 O.f CO'UTse, condit·ion A3(ii) impl-ies A3(i) con::;idered .fu·r .fu·r Q = 

a f. We sepamte A3(i·i) bear"iny in mind diffeTent extensions of lhe s·ubrhjfer·en
tial - and non-s·ubdifferenf'ial - opem.toTs ·used below. 

Condition A 5 seents to be mtlter ·u.n·wmu.l, especially d·ue to the ·u:n/,:nmun el
ement q* ( x*). However, faT a seTies of ·ua·riatimw.l inerrualihes ·iTt mechu:nics 
and physics we have a helpful a pr"tOT'i in..forTnu.t:ion. about q*(:r*) (see , for· in.
::;tance, the cham.cieTization of a solution fu ·r the p'I'Oblent on a ::;i eady ·moveTn eni 
of a fluid ·in a domain bo·unded by a ::;em·i-pe't"tneable Tlte'tnUnJ.ne in Lions, 1969, 
Sect. 2. 8.1, and joT the contact p'I'ObleTn between elu.slic !Judie::; in Hlu:ur/, (; e/;; et 
al., 1988, Theor·em 2.1.1). 

In the yeneml situation, since the co·nsiani c ;::: 0 in A 5 i.s w·bitm·ry, the 
estinwte 

is ::;·ufficient fo1· the .f'ulfllhnenl of A 5. 

The assumptio11 J(k ::J J( excludes, for instance, that J(k is ol>tained l>y 
applying usual discretization techniques to elliptic variational inequalities. But, 
the GPPM can be used in this case, too , by inserting a discretization procedure 
immediately into the algorithm for solving the auxiliary problems. 

AssUMPTION 2 (defining the regularizing functional h): 
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(B2} h is Gatea·ttx-different·iable on S; 
(B3) the functional x----> ~(Bx,x) + h(x ) is str·ictly convex on S; 
(B4) X* n S =/: 0; u 

(BS} the set L1 (:c, 8) = {y E S : f(x, y) ~ 8} is bo·unded for· each x E S and 
each 8; 

(B6} if the sequences {vk} C S, {yk} c S converge 'Weakly to v and 
limk-+oo r(vk , yk) = 0, then lirnk-+oo [r( v, vk) - r( v, yk) l = 0; 

(B7) 'if {vk} C S is bounded, {yk} C S, yk ~ y and limk-+oo I'(vk , yk) = 0, 
then limk-+oo ll vk - yk II = 0; 

(BB) if {vk} C S, {yk} C S, vk ~ v, yk ~ y and v =j: y, then 
limk_,oo i(V'h(vk) + Bvk- \i'h(l) - Byk , v- y) l > 0; 

(B9} Vz EX', :lx E S: V'h(x) + 8:1.: = z. 

For the case B = 0, the totality of conditions Bl- B9 is similar to tl1e system 
of hypothesizes for Bregman functions in Burachik and Iusem (1998), only B7 
is stronger than the corresponding assumption in the paper mentioned, where 
vk ~ y stands in place of linlk-+oc llvk - yk II = 0. In the cases D2 and D3 
(see Lemma 2 and Theorem 2 below) , this s trengthening is not needed if B is 
a colllpact operator. At tl1e same time, the use of B7 permits us to extend the 
class of operators Q by including the case Dl. 

If B = 0, X = IRn, cond iLions B1-B9 cau l>e derived from the standard 
hypotheses for Bregman funct ions (see the analysis ill Burachik and Iusem, 
1998, Sect. 7). 

The conditions B2 and B3 ensure that I'(x,y) > O,f 1 (:c,y) > 0 hold for 
X =j: y, and OUViOus]y f(x , :c) = 0,f1(x,x) = 0. 

REMARK 2 It is wade clea·r that the condit·ions fl1-B9 do ·not e:ccl-tule the use of 
q·uadr·atic funct-ionals h. In ]JaTtiC'ula.r·, the pai·r h = ! 11 · 112 , B = 0, co't"f'esponding 
to the classical pmrinwl po·int ·tnethod, satisfies BI-B9. Th·us, the ·notion "non
quadmt·ic " (methods) means here, as 'Well as ·in a se·ries of vreceding ]Htpers, "not 
only quadmt·ic" and indicates t.he dinx tion of the invesl.igatiun .. 

The consideration of an app roximation of]( by {J(k} addresses, in particu
lar, the situation when ]( is given i 1t the form ]( = ]( 1 n ]( 2 a nd we choose h 
uy takiug into account the set ](1 ouly. h1 this case J(k = ](1 n K~ is natural. 

Let us give a simple example illustrating the choice of the functional h. Let 
X= IR", J( = {:c E IR": :t:.i 2:0, j = 1, ... ,n1; L]~n 1 + 1 jl:cjl:::; 1} with 
0 < n1 < n2 < n , 

where A : IR"' 1 ----> IR" 1 is an arbitrary continuous and JIIOnotoue operator such 
that the corresponding Problem (P) is solvaule. Then, consideriug the approx
imation 
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n2 n 2 

L jJx]+TkSl+/Tk L j}, 
j=n t + 1 j=nt + 1 

where TA: ___, +0, take B : x ___, (0, ... , O,xn
1
+1, ... ,x,). Iu this case it is easy to 

verify that the choice of {J(k} , 

nl 

h(:c) = L :c i In :c i - :c j (with 0 x lu 0 = 0 by couventiou) 
j=1 

auJ S = {:c E !Rn : :c.i > O, j = 1, . .. ,nl} saLisfies the conJitionsAl -A4, B1-B9, 
while A6 can be fulfilled using an appropriate sequence 

00 

{ } 
~ 1/2 -1 Tk : 6 T k X k < 00 . 

k=1 

In the method under consideration we use a successive approximation of the 
operator Q based on concepts of the c-subdifferential and the <:-enlargement of 
a maximal monotone operator. For a proper convex functional f : X ___, lR = 
IR u { + oo}' the E- SU bdifferential ad ( E ::::: 0) is defined as 

8, f (x) = {u EX': f(:y )- f( :c)- (u, :y - x) 2: -E V:y EX} . 

In the sequel we suppose that .f is lsc, and heuce the subdifferential operator 
8 .f is maximal monotone. 

Accordiug to Burac!tik, Iusem and SvaiLer (1997) the E-eulargemeut 4 (c:;::: 
0) of au arbitrary maximal monotone operator T : X ___, 2x' is defin ed as 

4 (:c) = {u EX': (v- u, :y- :c) 2: - E \/:y E D(T ),v E T (:y)}. 

If we identify operators with their graphs, for E1 :;::: E2 :;::: 0, E :;::: 0 the relatious 

are obvious, ami simple examples show that the inclusion (8 f) , :J 8, j may be 
a strict one. 

The BnJndsted-Rocl•afellar property of c-subdiffereutials (see Brondsted and 
Rockafellar, 1965) was extended to the case of operators 4 in Burachik, Sagas
tizabal and Svaiter (1999b) as follows: 

for any x E D(4) , v E 4(x) and each rJ > 0 

there exist y E D(T) and u E T(y) such that 
E 

llx- :YII S - and llu- vllx' S rJ. 
TJ 

This permits one to estimate the closeness between 4 and T. 
Let us mention also the inclusion 

lll rr' \ - 11 / rr' \ - ~ 
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and refer to Br0ndsted and Rockafellar (1965), Burachik, Iusern and Svaiter 
(1997) for other properties of operators o,f and T. and also for the motivation 
of their use in numerical methods. 

In case condition A3(i) is valid, we choose a continuous operator Q : X __, X' 
such that both ( Q - Q) and ( Q - B) are monotone and define 

But, if A3(ii) holds, then Qk is constructed as 

with fa functional continuous differentiable on X such that (! - [) and fare 
convex functionals . 

Then, Q C Qk C Q,k follows immediately from the definitions of Q,k and 
Qk, and for Qk = ( Q- Q),k + Q the relation (2) is obvious. But, in case Q = Of 
and Qk = a,k (! - [) + \71, the inequality 

J(y)- f(:c)- (qk(x),y- x) 2: - Ek 

Vx E D(Qk), y E D(Q), l(:c) E Qk(x) (3) 

can be immediately concluded from the definition of the E-subdifferential and 
the gradient inequality for convex functionals. Besides, according to Ekeland 
and Temam (1976), Sect. 1.6.3, D(o,(J- [)) = dmn(f- [) is valid if f. > 0. 
Therefore D(Qk) = domf has to be. Using A3(ii), we obtain 

f(x)- J(y)- (q(y),x- y) 2: (B(x- y),x- y) 

Vx E dornf, y E D(Q), q(y) E Q(y), 

and together with (3) this yields (2), too. 
Now, let us recall the method under consideration. 

Generalized proximal point method (GP PM): Let x1 E S be arbi
trarily chosen, and at the (k- 1)-th step let :ck E Kk-l n S be defined. In the 
k-th step solve 

fi d k+l Kk 5- ::J k( k+l) Qk( k+l) . 1 n X E n : ::J q X E X Wit l 

(qk(xk+l) + n(V'h(xk+l)- V'h(xk)),x- xk+l) 

2: -okJrl(x,xk+1) Vx E Kk nS. (4) 

By (Pt) we denote Problem (4) with Dk = 0, while (Pt) means Problem (4) 
with Qk = Q and Dk = 0. 

The criterion for the approximate calculation of the solution of Problem (Pt) 
1...-.. 1,., \ • • •• .• 1 •• •• 
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extend the convergence results obtained here to related a.lgorithms with more 
reasonable criteria. We have analyzed Lhis questiou in I\: aplan and Tichatschke 
(2002) , where, as mentioned , a :;pecia l case of GPPM with Qk = Q was consid
ered. 

REMARK 3 In fu el , ·relal·ions Q C Qk C Q,k , (2), (3) , and the BnJndsted
Rockafellar TJTOJJeTty of Q,k delerrnin.e the qualities of the upp'I'Oximation of Q 
needed fo ·r the conveTgence of GPPM. 

Altho·ugh the choice Q = B and f =: 0 vrovides these q·aalities fo ·r Q"' , the ·use 
of Q dijJe1·ent from B, 01' T =/=. 0 may be vre.femble if the tTeatment of Qk becom es 
simJJlet·. In JJaTliculaT, this conce'I"'IU:i so·rne VU'f"iai'ional vroblents ·in nw.theuwticrLl 
physics, ·in which the non-rlijJeTenliable puTt of the gonl fun ctional has a specific 
sl1"Ucl'uTe. We refe1· to the pTOblern of li·nea·r elasticity wdh given friction (see 
Kaplan and Tichatschke, 1997, Sect . 4. 3, 5.2), ·in which the ·rw·n-d·iffet·e·rdiable 
leT"!n of the eneTgy fJ:n clional is convex and ]Josdive hmnogeneo ·u.::~, and taking 
the smooth te·rrn as f one can ·use Lemnw A. 2 (see Appendix) to con.st1"Uct Qk . 

Fo1· strongly ·monotone (wdh ·rnodul·us cr} opemto·rs Q, the notion of the (a-E) 
-enlmgement 

Q~(:c) = { 'lL EX': (v- ·u, y - x) 2: ct iiY- xll2 - E Vy E D(Q),v E Q(y)} 

was int·rod·ucerl in Salmon, Nguyen and St·rodiot (2000) . One can eas-ily see that 

holds true, with I : X___, X' the cmwn·ical ismnetTy opemtoT, i.e. Q~ , ·is a veTy 
pa:rticular case of the opemtm·s (Q- Q). + Q. 

R EMARK 4 !f h and h a1·e two conve:c funct ·i.onals and 

h(:c)- E :S h (x) :S h(x) V:c EX 

holds t·rue, then obviously, joT each x , any subgmrlient of .fz ·is u:n E-s·ubgm.d·i.ent 
of ,h. 

M OTeove1·, let the opemtor Q in the variat·ional ·inerruality ( P) be split up 
into the su·m of a continuous oper·ator Q (with a rese1"Ve of mono tonicity B) 
and a s·ubd·i.fferent·ial of a convex contirvuous funct ional r.p. !f we take a convex 
fun ct·i.onal r.pk satisfying 

and define xk+l E J{k n S, rk(xk+1 ) E ar.pk(xk+ 1 ) such that 

(Q(xk+l) + rk(xk+l) + Xk(Y'h(xk+l)- \i'h(x k)) , x - xk+l) 

(5) 
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then Q(xk+ 1 )+Tk(xk+l) E Qk (:r; k+ 1) , andthepair·xk+l, qk(xk+ 1 ) withqk(xk+ 1 ) 

= Q(xk+ 1) +Tk(xk+ 1 ) solves PToblem (P6kJ. 
For· ·instance, in the pToblern of linear elasticity mentioned ·in Remark 3, such 

splitt·ing is poss·ible with Q an affine opemtor· and the functional 

(Jo ·,· this ]Jroblern, X ·is the Sobolev space [H1(D)j2 , f c is a known pm·t of the 
bo·undar·y f of the domain f2 C JR2 , X t. is a tangent·ial cornponen.l of a vector· 
x E X and J.1. is a g·iven positive constant). 

In that case, by taking 

with 0 < Tk ~ ( • · ) 
2 

the ·relations (5) a·re satisfied, the f·anctional ,,.,k 
11 n1esr c ' r 

is d~ffe ·rentiable (i nfinitely many tirn.es), and ther-e an::: no se·rio·as trmtbles to 
calculate .,.k. 

A similar- sit·uat·ion m·ises for- the ])'l'oblem of a lam.inu:r stai'ionu:ry .flow of a 
Bingham .fl·uid (see Glowinsk·i, L-ions and Trernol-ie·res, 1981) and fo ·r a series of 
othe·r va·riat·ional ·inequalities in mathnn.aiical phys·ics. 

3. Solvability of P roblem (PfJ 
ln this section we show existence and uniqueuess of the solution of Problem 
(P~ ), and the validity of t.he iuclusiou :rk+ 1 E S for a solutioH of (P,~,J 

Accordiug to B 1 aJLd t he definit ion of B, t he subdi fFerenti al operator ch1 is 
maximal HJouotoue. The couditions B 1-B3 a ud B9 provide t ha t D( or1) = S. 
Indeed , the inclusion D (orJ):) s follows frolll B2 , and , aSSUllling that ch,(:r) =1- 0 
holds for some x E S \ S, in view of B3 we obtaiu 

(\lrJ(Y)- ~ (:r), y- x) > 0 Vy E S, ~(:r) E Jr1 (:r) . 

But, for a fixed ~( :c) E or!(J;), due to 139 , there exis ts yES such that \1'1/(Y) = 
~(x), iu coutradiction with the last inequality. 

The conclusion D(JrJ) = S means that D(\lh) = S , ami both operators \lr1 
and \1 h a rc maximal monotmte. 

Thus, if Problem (P0k) is solvable, thcH it has a unique solu t iou , here de
noted by ;~;k+l (the st rict nJonotouicity of Q + Xk \1 h on S n J( k n D( Q) follows 
immediately from A3 and B3) , and ;ek+ I E S. Then , of course, the solutioH 
:ck+ 1 of Problem (P6~) exis ts, a mi D (\1 h) = S provides :ck+ 1 E S. 

Because the operator \1 h is maximal IIJOuotoue a ud S is au open set , the 
maximal monotonicity of the operators Q + Xk \1 h + NK~ and :r ----+ Q(:c) + 
Xk \lh(:r) + NK' (x) - Xk \lh(:rk) follows fro111 Al , A2 and Xk > 0 (sec A6) 
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Since Kk n S =J 0, the Moreau-Rockafellar theorem yields 

N 1,·•ns = NK' + N 5. 
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Taking into account that D('V h) = S, this permits us to transform Problem 
( Pt) into the inclusion 

0 E Q(x) + Xk 'Vh(x) + NK' (x)- Xk 'Vh(:rk) 

= Q(:r)- XkBX + NJ(k(x) + XkBXk + xk('VTJ(x)- 'VTJ(:ck)), 

and with regard to A1, A3 and 0 < Xk :::; 1, the operator 

:r-+ Q(x)- XkBx +NK•(x) + XkB:ck 

is rnaxirnal rnonotoue (see Propositio11 2.6 in Renaud and Coheu, 1997). Now, 
applying Lennna 5 by Burachik and Iusem (1998), one can conclude the solv
ability of Problem (Pt). 

So , the following statement is proved: 

THEOREM 1 Let the conditions A1 - A3, B1 - B3, B8, B9 be ·valid and {xd sui
i.>:fy 0 < Xk :::; 1. Then Problem, (PB') 1:s ·nnicruely solvaule (for each k) , the 
sequence {:rk} is well defined and ·it is contained in S. 

REMARK 5 Us·ing instead of B9 the condition (s ee TuseTn, 1995) 

{v"} C S, vk ~ v E S \ S ===> lim ('V h('l/'), y- vk) = - oo Vy E S, 
k----+ OCJ 

the C:OT!.clus·ion D( O'IJ) = S can be obtu:ined fmm. Len1.ma 1 of Bm·achik and hLse·m 
( 1998), and a ·resull on, soZ.unbility, lil.:e Themnn 2 in the pape·r mentioned, holds 
also trw~ . 

4 . Convergence analysis 

First we need the following assertion proved in Kaplau aud Tichatschke (2000a). 

LEMMA 1 Let C C X be a con·uex closed sel, the operato·rs A: X-+ 2x', A+Nc 
be maximal nwnotone and D(A) n C be a con·uex set. Moreover, ass'U.Tne that 
the opem.tm· 

if v E C 
otheTurise 

lS locally hem:i-bo·anded at each poi·nl v E D(A) n C and that., fm souLe u E 

D(A) n C aT!.d each v E D(A) n C , the·re exists ((v) E A(v) satisfy·ing 

(((v),v- u) ~ 0. 

Then, wdh some ( E A(u), the inequality 

((,v- ·u) ~ 0 
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REMARK 6 Here, a weakened notion of the local hemi-bo·undedness is supposed. 
We call an opemtor M : X --+ 2x' locally hern·i-bounded at a point v0 , if fm· 
each v, v f. v0 , ther-e exists a number t0 (v 0 , v) > 0 such that the set 

U M (v 0 + t(v - v0
)) is bo·unded in X'. 

O<t:Sto(vO,v) 

The standaTd not·ion supposes the bo·undedness of 

U M(·u0 + t(·u- v0
)). 

0:<;t:<;to(v0 ,v) 

This r-elaxation may be aignificant, see - for in&lance - the follow·ing exa·mple: 
M = Nc, wdh C ={vEX= lRn : 2.'::~~ 1 vf:::; 1}, n > 1. 

LEMMA 2 Let the seq·uence {xk}, generated by the GPPM, belong to S and 
ass'U'fne that, joT &orne x* E X* n S, condition AS is valid. Mor-eover-, let the 
cond-itions A3, A6 and Bl, B2, B5 be fulfilled. Then, the sequence {r(x•,xk)} 
is convergent, { xk} ·is bo·unded, and 

lim f(xk+ 1, xk) = 0. 
k-><XJ 

The proof of this statement repeats the proof of Lemma 2 m Kaplan and 
Tit:hatschke (2002) with o e single alteration: The inequality 

(qk(xk+ 1 
), x*- xk+ 1

) :::; (q*(x*),x*- xk+1) + Ek, 

which follows immediately from A3 and (2), is used in place of 

(q(xk+l),:r:*- xk+l):::; (q*(x*),:r:*- :r:k+l) 

(see (13) in the paper citeJ). 
In the sequel, in particular, we deal with the case that, besides the usual 

property of maximal monotouicity, the operator Q is pararnonotone and pos
sesses the following 

1¥-property: If {·uk} c D(Q) converges weakly to v E D(Q) n S n K and 

-1. ( k k ) < 0 lHlk -> oo W , 'U - 'U _ 

holds w-ith wk E Q(vk), then for each y E D( Q) there exists w E Q(v) such that 

(w,·u- y):::; lirnk_, 00 (wk,vk- y). 

An operator Q possesses this property, for instance, if 
(i) Q is pseudornonotone in the sense of Bn~zis-Lions (see Lions, 1969, Sect. 

2.2.4), 
or (assuming the monotonicity of Q) if 

(ii) {vk} C D(Q), vk ~ v E D(Q)nSnK andwk E Q(vk), limk_, 00 (wk,vk-
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The first claim follows immediately from the definition of the pseudornonotonic
ity, and the second one from the relation 

(w\ vk - y) = (w , v- y) + (w\ vk - v) - (w - w\ v- y) 

2 (w,v- y) + (w,vk- v)- (w- wk ,v- y), 

which holds true with w E Q( v) in view of the monotonicity of Q. 
In particular, in case of X = IRn , a maximal monotone operator Q possesses 

the W-property if 'intD(Q) :J S n K n D(Q) . 

DEFINITION 1 The operator A : X --+ 2x' ·is called pamrnonotone in a set 
C C X if d is monotone and 

(z - z' ,v - v') = 0 wdh v,v' E C, z E A(v ), z' E A(v') 

implies z E A(v'), z' E A(v). 

We will use the following property of a paramonotone operator A in C (see 
lusern , 1998): 

Property ( *) If x • solves the variational ·ineq'Uality 

(.A( x ),y- x )20 VyEC (6) 

and for x E C theTe exis ts z E A(x ) with (z,x* - i ) > 0, then i ·is also a 
sol'Ution of (6). 

REMARK 7 B-urachik and Iusem. {1998) consideTed a non-q'Uadratic proximal 
method for var·iational ineq'Ualities, wheTe the operato1· ·is s·upposed to be ·maximal 
monotone, pse'Udornonotone and pamrnonotone. 

LEMMA 3 Let the ass'Urnpt'ions of Lemma 2, as well as the cond·itions A 1, A4 
and B6, B7 be valid. Moreover, s'Uppose that one of the follow·ing ass·umptions2 

·is fulfilled:-=-:-:::-:-~:----:-:-:-:-
(Dl) S :J D(Q) n (uk ~ koKk) for an aTbdmry large ko , \Jh ·is Lipschitz cordin

·ao'Us on closed and bounded subsets of S and the conditions of Lemma 1 
hold with A:= Q, C := K n S; 

(D2) Q is the subdijfeTential of a pmpeT convex, lsc functional f , and f ·is 
continuous at some x E K ; 

(D3) the opemtor Q : D( Q) --+ 2x' possesses the W -propeTty, and Q is para
monotone inS . MoTeove~, V r > 0, 3 IG(r), 1:(-r) > 0 : Q is a bo·unded 
opemtor on 

Slr = {x: llxll:::; r, dist (x, S n (uk ~ k(,-) Kk )) < c(r)} , 
where dist(x, V) = infvEV llx- vii . 

2 For a motivation of the inclusion in Dl , which prevents from the choice of a funct ion h 
leading to interior point methods, see Eckste in (1993). In t he case D2 , condition A4 can be 
we~~!1ed assurn_i~g that each weak limi t point of { vk} belongs to K (in place of K n D (Q)). 
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Then the seq·uence { xk}, genemterl by the G PPM, is bounded and each weak 
lirn·it po·inl is a solution of Pmblern ( P) . 

PToof. According to Lemma 2, the sequence { xk} is bounded, lienee, tbere 
exists a weakly convergent subsequence { :cik }, xjk _, x as k __, oo. l n view of 
{ xk} C S, A4 and the convexity of S, the inclusion x E 5nK nD( Q) (i E 5nK 
in case D2) is valid. 

Due to lirnk_,oor(xk+l,xk) = 0, one can use condition B7 with vk := xj•+ 1, 

yk := :cj'. This leads to 

lim llxjdl - xjk II = 0. 
k-+oo 

(7) 

If Dl holds, then with regard to the boundedness of {xk} , {xk}k2:ko c 
D(Q) n (uk>koKk), A6 and (7), the relation 

k
lim xjJ'Vh(xjk+l)- \lh(xjk),x- xi•+1) = 0 \fx EX 
-+ 00 

(8) 

follows immediately. Now, take in ( 4) an arbitrary :c E K n 5 and replace 
(qk(xk+1),x- xk+l) by (q(x),x- xk+1) + Ek (this is possible in view of (2)). 
Then, passing to the limit in this altered inequality with k := ]k, k __, oo, due 
to the boundedness of {:rk} , the definition of r 1, A6 and (8), we obtain 

(q( :c),x- x) 2:0 \fx E K n 5. 

The conditions Al and S :J D(Q) n (uk >koKk) :J D(Q) n K guarantee the 
maximal monotonic:ity of the operator Q +-NKnS (in fact , Q + NKn5 coincides 
with Q +N1..: ). Thus, we are able to apply Lemma 1 with C := K n 5, A := Q, 
which ensures that 

:J q(x) E Q(x): (q(x ),y- x) 2: o Vy E K n 5. 

This relation means that -q(i) E NKns(x) , hence 

is valid, showing that x EX*. 

Now , take x* as in A5. With regard to the symmetry of B, a straightforward 
calculation gives 

-(\lh(xk) - \lh(xk+1),x*- xk+ 1) = r(x *,xk)- r(x*,xk+1 ) 

-r(xk+1,xk)- (B(xk+1 -xk),x* -xk+1). (9) 

Using Lemma 2, (7) and 0 < Xk ::; 1, we infer from (9) that 

(1(\\ 
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Suppose that D2 is valid. Then, relation (4) given with :r = x• and k := Jk 
implies, due to inequality4 (3) that 

8:ik Jr1 (x•,xjd 1 ) + XjJ'ilh( xik+ 1)- \lh(:ci•),x*- :c:id1) 

~ .f ( Xj d l) - .f (X*) - E j k . ( 11) 

Taking the limit in (11) ask-+ oo, in view of Lemma 2, (10), A6 and the lower 
semi-continuity of .f , one gets .f(:"i;) :::; .f(:c*). Thus , 0 E a(.f(:c) + 8(x iK )), 
8( V<)-the indicator function of K, and from the Moreau-Rockafellar theorem 
we have 0 E a.f(x) +Nrdx), proving that i EX*. 

Finally, let us consider the case D3. Using equality (9) with /;; := Jk and :1; 

in place of x*, from (7) , Lemma 2 aud condition B6 for vk := :c·ik+ l , yk := :c·ik, 
we conclude that 

lim (\lh(xi•+ 1)- \lh(xi1' ),i- :z)d1) = 0. 
k -+oo 

(12) 

Due to the Br0ndsted- Rockafellar property and the inclusion Q1 C Q<1 V l , 
for each k there exist :fidl and q(:fidl) E Q(xjdl) satisfying 

ll xjdl- xi•+lll:::; ;s;, llqjk(xjk+l) - q(xjk+ l )llx':::; ;s;. (13) 

Hence, :fidl ~ i holds ask -+ oo. Taking TSuch that llxid 1 ll < r, llx:idll l < T 

for all k: , choose k(T) and e(T) > 0 according to D3. Because xidl E S n J(.h , 
using (13) and A6 , one can conclude that the inclusion xi<+l E n,. is valid for 
sufficiently large /;; (k ~ 1;;0 ). With regard to D3, this implies the boundedness 
of the sequence {q(xid1)}. Now, we use the identity 

(qik (:cik+l ), :.t)d l - x) = (q(xjdl ), xjd l - x) 

+ (q(xidl),xik +l- xjdl) + (qJk(xjdl)- q(xjdl),xjdl- :c). (14) 

The boundedness of {xid1 } and {q(xid 1 )} together with (13), A6 yield (for 
each x) 

lim [ (q(xjd l ), xjdl - xjdl ) 
k-+oo 

+ (qik (xjdl) _ q(xjdl ), xidl _ x)] = o. (15) 

But , from (4), (12), A6, the definition of f1 as well as ll :rid 1 ll <TV/;;, we get 

(16) 

Combining (14), (15) (with x = x) and (16), we derive 

4 Here lies t he reason for the use of Qk = E!,k (f - J) + '17 J and A3(ii). In the case 
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Since the operator Q possesses the \]1-property, the last relation provides exis
tence of q(x) E Q(x) such that 

(q(:T:),:r:-; x*):::; lirn~,; _, 00 ( q(xjdl),Xjdl - x*). (17) 

Applying again (14) and (15) (now with x = x*), one gets 

lirnk-. oo (q(xjdl),xidl -- :c*) = lirnk-.oo (q1'(xid l ),xjdl - x*). (18) 

But , similarly to (16) (with (10) instead of (12)), we conclude that 

lirnk-.oo(qj'(xidl), xjd l- x*) :S 0. (19) 

In view of (17)-(19), the property ( *) of paramonotone operators permits us to 
claim that :r E X*. 

If Ek = 0, i.e. Qk = Q, formally (13) gives :J:.idl = :rjdl, q(:J:.idl) = 

qj' (x·idl ), and a straightforward analysis of the given proof shows that bound
edness of Q on nr is uot needed. • 

THEOREM 2 Let the wnditions A 1-A4 , A 6 and B1-B9 be valid, and cond·ition 
A 5 hold for each x* E X * nS (constant c in A 5 may depend on :c*) . M o·twve·t·, let 
one of the asswnptions D 1, D2 or· D3 in Lenmw 3 be fulfilled. Then the sequence 
{:ck}, generated by the GPPM, cort:ue1ges weakly to a sol'lltion of Pmblern (P). 

Proof. The existence of the sequence {xk} and lhe inclusion {:ck } C S are 
guaranteed by Theorem 1. Denote 

dk(x) = f(x, xk)- ~(B:r, x)- h(x). 
2 

According to Lemma 2, the sequence {f(x, xk)} converges for each x EX* n S, 
hence, the sequence { dk (:c)} possesses the same property. Boundedness of { xk} 
was proved iu Lemma 2, a ud Leunua 3 yields tli at each weak limit point of 
{ xk} belongs to X* n S. Assume that { :c·i• } am! {xi' } converge weakly to x, x, 
correspondingly. Then , it holds that :T:,x EX* n S. Let 

l1 = lim dk(:T;) , 12 = lilll d~.: (x). 
k-+ oo k-+oo 

Obviously, 

l1 - lz = lim (th(:r:)- dk(x)) = lim (\lh(xk) + Bxk,x- x). 
k~oo k---+ oo 

Considering the latter equality now for the subsequences { xj' } and {xi'}, one 
can conclude that 

Jim ('Vh(xj') + B:cik - \lh(xi') - Bxik,x - x) = 0. 
k -+CX) 

(20) 

A comparison of (20) and B8 (given with v k := x1•, y k := xi') indicates that 
x = :T: , proving uniqueness of the weak limit point of {xk}. • 

REMARK 8 Theor·em.s 1 and 2 ·rema·in true if cond·ition B9 ·is replaced by any 
otheT condition gM·rant ee·iny that { :t: k} ·is well defin ed and { :ck} C S (see , ·iT!. 
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Appendix 

The verification of the inclusion q E Qk(:r) for fixeJ q, :1: may be very difficult, 
just as the calculation of an element q E Qk(x) with certain properties. For 
implementable strategies, where the £-enlargements or c-subJifferentials are used 
in numerical methods, we refer to Burachik, Sagastizabal and Svaiter (1999a) 
and Kiwiel (1999). 

In a series of variational inequalities in mathematical physics Q possesses 
the structure 

Q= Q+F, (A.1) 

with Q : X ___, X' a continuous and Inouotone operator and F the subdifferential 
of a convex, positive homogeneous lsc. functional f : X ___, IR. In particular, 
for the contact problem with a given friction (see Hlavac:ek et al. , 1988) and for 
the problem of a laminar stationary flow of a Biugharn fluid (Glowiuski, Lions 

and Trcmolieres, 1981), Q is an affine, monotone operator and F possesses the 
properties mentioneJ. 

With the structure of the operator Q as in (A.1), we usually get a muc!J 

more convenient construction for Qk = Q + F<• than for ( Q +F)<", moreover, 
F, = 8, .f holJs for such F. This is based on the following statements. 

LEMMA A.1 Let j be a convex, pos·itive hornogeneo'Us, lsc funct ·ional and T = 
oj. Th en, fm· each c > 0, 

'I;(:z: ) = {'tL E T(O): ('u, :c) ~ - E + j(x)} . (A.2) 

P.mof. The maximal monotonicity ofT is well-known, aud 

T(>.:r) = T(:r) VA> 0, :r E D(T) (A.3) 

follows immediately from the defiuition of the subdifferential and the iJentity 

j(>.x) = >.j(:t ) V>. ~ 0, x E dorn.j. 

Due to the maximal rnonotonicity ofT and (A.3) , we have 

T(O) :::> T(:c) for a11y x EX. (A.4) 

If v ~ T(O) , then v ~ 'I;(x) holds for all :c EX and E > 0. Indeed, iu this case 
there exist y E D(T) , z E T(y) such that 

(z - v, y- 0) < 0. 

Then , with arbitrarily chosen x E X and f > 0, we obtain 
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and T(>-.y) = T(y) ensures that z E T(>-.y). Thus, v ~ T.(x), and this proves 

T.(x) C T(O) Vx EX, E > 0. 

Now, let u(x) E ~(x). By definition of the E-enlargernent, there must be 

(z- u(x), y- x) 2:: -E \:fy E D (T), z E T(y), 

hence, 

(u(x), x) 2:: (z, x) + (u(x)- z, y)- E Vy E D(T), z E T(y). 

Because 0 E D(T), the last inequality yields 

(u(x),x) 2:: (z,x)- E \:fz E T(O). 

Combining (A.5) and (A.6) one can conclude that 

I;(x) C {·u E T(O): (u, x) 2:: -t: + sup (w, x) }. 
wET(O) 

But, the inverse inclusion holds, too. Indeed, if u E T(O), then 

(z- u,y- 0) 2::0 Vy E D(T), z E T(y) 

follows from the monotonicity ofT. Assuming additionally that 

('u , x)2::-t:+ sup (w,x), 
wET(O ) 

we obtain by means of (A.4), (A.8) and (A.9) that 

(z- ·u,y- x) = (z- ·u,y) + (u,x)- (z,x) 

2:: (u,x)- sup (w,x) 2:: - E \:fy E D(T), z E T(y). 
wET(O) 

Thus, ·u E I;(x), and 

T.(:r) :J {u E T(O): (u,:c) 2 -E + sup (w,x)}. 
wET(O) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

But, the proof of Proposition 4.1.1 in Ioffe and Tikhornirov (1975) leads irrnne
diately to 

sup (w,x) = j(x), 
wET(O) 

and (A.7), (A .10), (A.ll) yield (A .2). 

(A.ll) 

• 
REMARK A .1 R . T. Rockafellar has drawn o·uT attention to the fact that any 
maximal monotone operator· T wdh pmpe'f"ty (A. 3) i.s the s·abdiffeTential of ::;orne 
convex functional. Indeed, d fo llows immed·iately fmrn the relations (A. 7) and 

.,, r. 
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LEMMA A.2 Let j be a convex, positive homogeneous, lsc functional. Then 

(A.l2) 

PToof The inclusion 

8, j(x) C {u E 8j(O): (u, x) ~ -E + j(x)} \:/<: > 0 (A.l3) 

is a straightforward consequence of 8,j C (8j), and Lemma A.l. But for an 
arbitrary ·u E aj(O) the inequality 

j(y)- (u,y) ~ 0 \:fy EX (A.14) 

holds true. Therefore, if 

('u,x) ~ -E + j(x), (A.15) 

then, summing up (A.14) and (A.15), we get 

j(y)- j(x)- (u,y- x) ~ -E \:fy EX. 

Hence, 'U E a,j (X) and 

a,j(x) :J { ·u E aj(O): (u,x) ~ -<: + j(x)} 

can be concluded, proving (A.12). • 
Now, some examples are considered where the E-subdifferential can be de

scribed in a constructive manner by means of Lemma A.2. 

EXAMPLE "\.1 Let X= {x E H 1 (0, 1): x(O) = 0}, X'= X, 

( r1 ( dx) 
2 ) ~ r1 I d·r; I ll:cll = Jo d~ d~ and j(x) = Jo d~ d( 

Here, the choice of X and j corresponds to the problem of a laminar stationary 
flow of a Bingham fluid between two parallel plates (see Glowinski, Lions and 
Trernolieres, 1981) if we take K = {x E X : x(1) = 0}. According to the 
definition of aj) one gets 

a j ( o) = {'u E X : 11 

I ~~ I d~ 2: 11 

~~ ~~ d~ \:fy E X } . 

If I ~E I S:: 1 a. e. on (0, 1), then the inequality 
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is evident , hence, "tL E oj(O). Otherwise, denote M = {~ E (0, 1) : I~~~ I> 1} and 
define 

{ 

d·u 
-d on M, 

'U = ~ 

0 on (0, 1) \ M , 

:Y(O =if, vd~ . 
This functional y is absolutely continuous, and using the formula of integration 
by parts, we obtain in a standard manner that v is a generalized derivative of y 
(v E L2(0, 1) is obvious) . Therefore, y EX , and 

. - y 'U y 'U 'U 1
1

1

d-
1 1

1 
d d- 1. [ld I (d )2

] 
J (y) - (u, Y) = o d~ d~ - o d~ d~ d~ = M d~ - d~ d~ < 0 

proves that ·u t/. oj(O). Thus, 

oj(O) = {'u E X : I~·~ I ~ 1 a.e. on (0, 1)} 

and Lemmas A.1 and A.2 yield 

o, j(x ) = {'u EX: I~~ I ~ 1 a.e . on (0, 1), 

11 ~~ ~~ d~ ~ -c + 11 I ~~ I d~} . (A.16) 

The first condition in (A.16) implies 

( du dx [
1 I dx I J 0 d~ d~ d~ ~ - J 0 d~ d~ ) 

and if x fulfills J~1 I~~ I d~ ~ ~ , then the second couclition is automatically valid . 

Hence , 

o,j(x) = {'u EX: I~~~~ 1 a. e. on (0 , 1)}. 

But in case ]0
1 I~~ ld~ > ~ ' taking u(O = - .f~ sign~~ d~ , one can see that the 

second condition in (A .16) is essential. 

EXAMPLE A .2 Let [2 C R" be an opeu domain, X= HJ(D) , X ' = H- 1(D) , 

1 

ll x II = ( ( f ( ~~ l 2 

ctt.l 
2 

, i(x) = lla:ll. 
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It is well-known that the subclifferentia l of the norm at 0 coincides with the unit 
ball of the dual space. So, we obtain immediately from Lemmas A.1 and A.2 
that 

In case ll ·uiiH-1 ::; 1, llxll ::; E/2, the inequality (·u, x) 2: llxll - E is obvious, 
consequently, 

8,j(x) = {'U E H- 1(0.): ll ·uiiH-1 :S 1} if llxll :S ~-

But if ll:cll > E/2, the condition ('u, x) 2: ll:c ll- f is essential (take ·u = -J(x )/llxll 
with J: X_, X' the duality mapping). 

The reader may convince himself on the following fact: Replacing the func
tional j in the examples above l>y a sum j + r.p, with r.p a convex, quadratic 
functional (for instance, r.p(:c) = ll :c 11

2 ), a similar simple representation for the 
E-subdifferent ial or of the operator ( fJ(j + r.p) ), is not available. In particular, 
in order to verify that a given 'U belongs to a,(j + r.p)(x), one has to ca.lculate 
beforehand 

min{j(y) + r.p(y)- ('U, y): y EX}. 

In case r.p(:c) = ll :cll 2 , this is an elliptic vari ational inequality of the secoud onler. 

REMARK A.2 f( X = lRn, j (:c) = (~;~ 1 :r7) 112 = ll:cll we ubta·in, qvite sinlit
larly to E:w·mple A. 2, llwl 

1l 

8,j(:c) = {'U E IR" : II'UII :S 1, l_~;u;:c; 2: ll:rll - E}. (A. l7) 
i=l 

In this case, ve·,.ificat·iun of the inclusion ·u E 8, j ( :r) ·is qude t·,.iv·ial, and, fur 
instance, calculation of an elentent u E 8,j (x), wh·ich nrin·im·izes the cl·istance 
to a given point, r-eq·u·i·,.ec; solving a ve·,.y s·irnple cun:uex pmgmrn:rning pmblem, 
namely to rnininl.'ize the distance from a point to the inter·sect·iun of a ball and 
a ha~fspace . We s·uyge::;t to compare the descTi]Jtion of o,j in (A .17) and fu,. 

j(x) = ll:c ll + llxll2 · 
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