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Abstract: For variational inequalities with multi-valued, maxi-
mal monotone operators in Hilbert spaces we study proximal-based
et hods with an improvement of the data approximation after each
(approximately performed) proximal iteration. The standard con-
ditions on a distance functional of Bregman's type are weakened,
depending on a “reserve of monotonicity” of the operator in the
variational inequality. and the enlargement concept is used for ap-
proximating the operator. Weak convergence of the proximal iterates
to a solution of the original problem is proved. The construction of
the e-enlargement of monotone operators is analyzed for some par-
ticular cases,

Keywords: variational inequalities, monotone operators, prox-
imal point methods, regularization, Breginan function

1. Introduction

Let (X - |) be a Hilbert space with the topological dual X' and the duality
pairing {-,+) between X and X', The variational inequality

(P} find £* € K such that
g€ Q) : {ge—x") 20 ¥Yre K,

is considered, where K € X 15 a convex closed set and @ : X — 2Y' s a
waximal monotone operator. We generally suppose that (P) is solvable and
denote by X its solution set.

The proximal point method (PPM), originally introduced by Martinet (1970)
to solve convex variational problems and later on investigated in a more general
setting by Rockafellar (1976), has initiated a lot of new algorithms for solving
various classes of variational inequalities and related problems.

The exact proximal point method, applied to the variational inequality (),
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Given ' € K and a sequence {xi}, 0 < xi € ¥ < oo; with 2% € K from the
previous step, define 2841 ¢ K such that

3 g{z*t) € Qz**1)
{g{z**") + Vi D(z* 2*), e = 251 > 0 Ve e K,

where DNx,y) = %H.’r: —y|? and ¥, is the partial gradient w.r.A. .

For different modifications of the PPM, also with other quadratic functionals
D, we point out Kaplan and Tichatschke (1994, 2000b) and Kiwiel (1999), where
numerous references can be found.

In the last decade, a new direction in the PPM's has been intensively de-
veloped, which is based on the use of non-quadratic “distance functionals” D,
The main motivation for such proximal methods iz the following:

e A non-quadratic proximal term permits us, for certain classes of problems,
to preserve the main merits of the classical PPM (good stability of the
auxiliary problems and convergence of the whole sequence of iterates to a
solution of the original problem) and, at the same time, to guarantee that
the iterates stay in the interior of the set K

s the application of non-quadratic proximal teclinigues (as in Auslender,
Teboulle and Ben-Tiba, 1999, Teboulle, 1992, Tseng and Bertsckas, 1993)
to the dual of a smooth convex program leads to multiplier methods with
twice or higher differentiable augmented Lagrangian functionals. More-
over, in Auslender, Teboulle and Ben-Tiba (1999) the Hessians of these
functionals are bounded.

More motivation for the study of non-quadratic proximal methods can be found
in Auslender and Haddou (1995), Burachik, Iusem and Svaiter (1997), Eckstein
(1993}, Polyak and Teboulle (1997). For infinite-dimensional convex optimiza-
tion problems, non-gquadratic proximal methods have been studied in Alber,
Burachik and Tusem (1997), Butnariu and lusem (1997}, (2000}, and for varia-
tional inequalities in Hilbert spaces - see Burachik and Iusem (1998).

In the present paper, we develop a uniform approach to the construction and
convergence analysis of proximal like met hods for solving variational inequalities
in Hilbert spaces. The following generalized proximal point method (GPPM) is
considered. Taking a linear monotone operator B : X — X' such that the
operator (2 = B) is still monotone, we choose a convex continuous functional

fh: 5 =R with 5 C X so that
T — %{E:r,;r}+hl[;c]

possesses properties like usually required for a Bregman funetion (with a zone
5. For an approximation of the operator @, a family of operators {Q"} with
Q c 9% c Q,, is used, where Q, denotes the e-enlargement of Q (Burachik.
lusemn and Svaiter, 1997} and ¢, — +0. Precise conditions on the choice of Lhe
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At the k-th step of the GPPM, with =* € K*~'N 5 obtained at the previous
step, the iterate z**! € K* N § is defined such that

3 qkl:rk-l-'l} E Qk{xlﬁrl} :
(" (") + xe(Vh(z**) - Vh(zt)), 2 — 2*+1)

2 —beyfT1{z,2**) Vz € K*nS.

Here, {K*} is a sequence of convex, closed sets approximating K, the regular-
ization parameter yi is as above, {8} is a given non-negative sequence and

iz, y) = min{allz - y||*, Mz, ) +1}, a > O-const.,

with
Iz.y)= %{5{1 =yhz =)+ hiz) = hiy) = (Vh(y),z - y)

considered in doml” = § x D{Vh) and used as a Lyapunov function. Conditions

given below provide that £**! € K* 1 §n D(Q%) (see Theorem 1).

I this paper, in comparison with the preceding publications dealing with
non-gquadratic regularization methods,

e Lhe standard requirement of the strict monotonicity of the operator ¥V D{ -, y)
{usually formulated as the strict convexity of Bregiman's or an other Tunc-
tion generating [3) is weakened. This leads to an analogy of methods with
weak regularization and regularization on a subspace (developed on the
basis of the classical PPM in Kaplan and Tichatschike (1997, 20000L);

e a successive approximation of the set K is included.

With regard to the mentioned investigations for infinite-dimmensional problems,

Liere the class of operators @ is also extended (see the case DI in Lenna 3 and

Theorem 2, and Remark 7)., an approximation of the operator @ is included and

the auxiliary problems are supposed to be solved approximately.

The non-quadvatic proximal method developed in Kaplan and Tichatschke

(2002) is a partial variant of the GPPM with @* = Q. In the present paper the

operators % are constructed as follows:

@ =(Q-9Q)., +8& (1)
wlhere @ is a continuous operator such that both @ - ﬁ and é = B are mono-

tone. For a series of variational inequalities in mathematical physics, under an
appropriate choice of @ the handling of @ is mueh simpler! than that of Q,,.

'The corresponding theoretical resulls for an operator & decomposed into the sun of
a continuous monotone operator and the subdifferential of & convex positive homogensous
functional, as well as some examples on the ealeulation of the c-enlareement of anorators in
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Moreover, the operator @* in (1) inherits all good continuity properties of the
e-enlargement and possesses also the property

(" (z) = gly)z—y) 2 Bla - y)z - y) — &
vz € D(Q%), y € D(Q), ¢*(x) € @(=), q(v) € Qlv). (2)

Just this fact permits to weaken the requirement of strict convexity of the
regularizing functional & using “the reserve of monotonicity™ B of the operator
Q. The analysis of quadratic proximal methods in Kaplan and Tichatschke
(1994) and numerical experiments for control problems zoverned by PDE's
(Rotin, 1999) and for Bingham problems (Sclunitt, 1996) show that a siguil-
icant acceleration of the numerical process can be expected on this way.

It shoulkl Le noted that, for the operator @,, in place of @, relation (2) is
not valid, in general, if 5 # 0.

Simultaneously, in this framework the class of operators @ is extended: Now,
instead of the pseudo-monotonicity of @, the fulfilliment of a weaker condition
which we called P-property (see after Lemima 2 in Section 4) is assumed.

The main contents of the paper are arranged as follows: In Section 2 condi-
tions w.r.t. the successive approximation of Problem () and the regularizing
functional are formulated, and the GPPM is specified. In Section 3 the solv-
ability of the auxiliary problems is studied, and in Section 4 convergence of
the GPPM is proved. As already mentioned, the Appendix contains rvesults,
simplifying the approximations of operators @ possessing a special structure.

2. Generalized proximal point method

In the sequel, we make use of the following notations: § C X is an open convex
set, its closure is denoted by §; {K*} € X, K* 2 K, is a family of convex
closed sels approximating K,

M s {ze X' :{z,y—z)20¥2ee K} ifye kK
=1 ] otherwise
is the normality operator for K; symbol — indicates weak convergence in X,
With B and & as introduced in Section 1 (their properties will be specified
below), we define the functional

i {%{Bm,:::} +hx) ifzed
+o0 otherwise.
MNow, the basic assumptions will be described.
AssuMPTION 1 (on the successive approximation of Problem (P) and the choice

of the controlling parameters):
(A1) For each k, the operator @ + N is mazimal monolone;
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{B2) h 15 Gatenuz-differentialle on §;

(B3) the functional x — %{S,L,ﬂ:l + h{z) is strictly convex on §;

(B{) X*n&#£08;

(B5) the set Ly(x,8) = {y € § : T'(z,y) < 8} is bounded for each x € § and
eaclh &;

(B6) if the sequences {v*} € 8, {y*} C § converge weakly to v and
ling oo Pv*, 4%) = 0, then limg—.oq [[(v,v*) = T(v,y* }] = 0;

(B7) if {v*} C § is bounded, {y*} C 8, ¥* — § and limy_ o T'(v*.4*) = 0,
then limg—q [Jv* = ¢*| = 0:

(B8) if (v*} S {y*}c S v —v, y* =y andv#y, then

lity oo {VA() + Be* — Vhi(yh) - By.v — )| > 0;
(B9)¥:e X', 3z € §: Vh{z)+ Bz = z.

For the case B = 0, the totality of conditions B1 - B9 is similar to the system
of hypothesizes for Bregman functions in Burachik and Tusem (1998), ouly BY
is stronger than the corresponding assumption in the paper mentioned, where
v* — y stands in place of limg_ee [[v* — ¥*]] = 0. In the cases D2 and D3
(see Lemma 2 and Theorem 2 below), this strengthening is not needed if B is
a compact operator. At the same time, the use of BT permits us to extend the
class of operators @ by including the case D1.

IfB =0 X =R&", conditions B1-B9 can be derived from the standard
liypotheses for Bregman functions (see the analysis in Burachik and Iusem,
1998, Sect. T).

The conditions B2 and B3 ensure that Iz, y) > 0,0z, 4) > 0 hold for
z # y, and obviously Iz, ) =0, {z,£) = 0.

REMARK 2 [t is guile clear that the condilions B1-B% do nol exclude the use of
guedratic functionals L. In particular, the pair b = %-|l[|2 B =0, corresponding
to the clussical procimal point method, sotisfies B1-89. Thus, the notion “non-
quadratic” (methods ) means here. s well as in a series of preceding papers, “not
only quadrotic” and indicates the divection of the invesiigation,

The consideration of an approximation of K by {K*} addresses, in particu-
lar, the situation when K is given in the form K = K N K2 and we choose |
by taking into account the set Ky only. In this case K* = Ky n K} is natural.

Let us give a gimple example illustrating the choice of the functional . Lel
X=R.K={zelR :x;20 j=1,..., ny; 3ia 1 dlxil € 1} with
0 < < ne <.

Q:x— (Alzy,. - %0, ) Tny+1 — Lyen it — 1),

where A : B™ — R™ is an arbitrary comtinuous and monotone operator such
that the corresponding Problem (P) is solvable. Then, considering the approx-
ilation

il | G g g
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and refer to Brondsted and Rockafellar (1965), Burachik, lusem and Svaiter
(1997) for other properties of operators @, f and 7, and also for the motivation
of their use in numerical methods. -

In case condition A3(i) is valid, we choose a continuous operator @ : X — X'
such that both (Q — @) and (@ — B) are monotone and define

Q* =(@-9Q), +0.
But, if A3(ii) holds, then Q% is constructed as
Q@ =8, (f-N+V],

with f a functional continuous differentiable on X such that (f — f ) and f are
convex functionals.

Then, @ ¢ Q% ¢ Q,, follows immediately from the definitions of Q,, and
@, and for Q% = (©-9),, + O the relation (2) is obwious. But, in case @ = 2f
and @* =3, (f - f) + V/. the inequality

flw) = f(z) = {g"(z), 5 = ) = ~ex
vz € D(QY), ye D(Q). ¢"(z) € Q%(a) (3)

can be immediately concluded from the definition of the e-subdifferential and
the gradient inequality for convex functionals. Besides. according to Ekeland
and Temam (1976), Sect. 1.6.3, D(d.(f — [)) = dom(f — f) is valid if ¢ > 0.
Therefore D{Q*) = dom f has to be. Using A3(ii), we obiain

fle) = f(y) = {g(y),z = 9} 2 (B(z - y),z - y)

Vo € domf, y € D(Q), ¢ly) € Lly),

and together with (3) this yields (2), too.
Now, let us recall the method under consideration.

Generalized proximal point method (GPPM): Let z' € 5 be arbi-
trarily chosen, and at the (k — 1)-th step let =¥ € K*~' N § be defined. In the
k-th step solve

(P:;} find "' e K*nS:3 q*l[.'r:“'l] € Q"{u:“'t] with

{g*(="*") + xa(Vh(z**1) - Vh(z*)),z — 2**T)
[z, z*4) Yz e K¥n S, (4)

= —f,

By (P§) we denote Problem (4) with & = 0, while (FP§) means Problem (4)
with @* = Q and &, = 0.

FE T
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then O(z*+1)4r*(z*+1) & Q%(z**"), and the pair £+, g*(z*+1) with ¢*(2*+1)
= O(a*+1) 4 rk(z* 1) solves Problem (PE).

For instance, in the problem of linear elasticity mentioned in Remark 3, such
splitting is possible with © an affine operator and the functional

o(@)= [ pladar

(for this problem, X is the Sobolev space [H'{R]F. I'c 15 & known pert of the
boundary T of the domain &t € B2, z, is a fangential component of a veclor
x € X and p 15 a given posilive constant).

In that case, by taking

() = f p/l + medl
r.

with 0 < 7, < [,._;;‘-_f?f‘:]z the relations (5) arve sabisfied, the functional @*
is differentiable (infinitely many times), and there are no serious troubles lo
caleulate v* .

A similar situation arises for the problem of a lomdner stationary flow of a
Bingham fluid {see Glowinska, Lions and Trémoliéres, 1981) and for a series of
other varialional inequalities in mabhematical plysics.

3. Solvability of Problem (P} )

In this section we show existence amd unigqueness of the solution of Problem
(P§). and the validity of the inclusion z°*' € § for a solution of (P ).

According to Bl and the definition of B, the subdifferential operator dy is
maximal monotone. The conditions B1-B3 and B9 provide that M{dy) = 5.
Indeed, the inclusion D{dy) 2 8 follows from B2, and, assuming that dny(x) # 0
holds for some = € S\ 8, in view of B3 we obtain

{Vuly) — &(z),y — 2) >0 Yy € 8, &(x) € dnlx).

Bul, for a fixed £(:x) € dy{z), due to B, there exists y € 5 such that Vy(y) =
£(x), in contradiction with the last inequality.

The conclusion D{dy) = § means that D{VA) = 5, and both operators Vi
and Vh are maximal monotone.

Thus, if Problem (PF) is solvable, then it has a unique solution, here de-
noted by 5! (the strict monotonicity of @ + v Vh on § 0 K* 0 D(Q) follows
immediately from A3 and B3). and #%t' € §. Then, of course, the solution
z**1 of Problem (Pf ) exists, and D(Vh) = § provides z**1 € .

Because the operator Vi is maxinal monotone and 8 is an open set, the
maximal monotonicity of the operators @ 4+ v Vh + N and 2 — Q(z) +
v VI{x) + Npelx) = xeVih(ax*) follows from Al, A2 and yp > 0 (see AG)
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Since K* N S # @, the Moreau-Rockafellar theorem yields
.l\ll'h-tng - Mﬂ-a + .I'Urs..

Taking into account that D{Vh) = 5§, this permils us to transformn Problem
(PF) into the inclusion

0 € Q) + xx Vh(z) + Ny () — e Vh(z¥)

= Q) - xkBz + Nie(z) + xaBs* + xi(V(z) — Viy(=*)),
ane with regard to Al A3 and 0 < ¥, < 1, the operator

x — Q(x) = vz + Ny () + xu Ba®

is maximal monotone (see Proposition 2.6 in Renaud and Colien, 1997). Now,
applying Lenina 5 by Burachik and Tusem (1998). one can conclude the solv-
ability of Problem (P5).

So, the following statement is proved:

TueoreMm 1 Let the conditions AI-A3, BI-03, B8, B9 be valid und {x¢} sul-
tsfy 0 < yi = 1. Then Problem {Pﬂ"'} is untquely solvable (for each k), the
SEUETICE {'.I.:k} is well defined and i s contuined in 5.
REMARK 5 Using instend of B9 the condition (see Tusem, 1995)

{v*}c S, v*—ves\§ = Jim (Vi(v*),y = v*) = =cc Wy € S,
the conclusion D(dy) = 8 can be obtwined from Lemma | of Burachik and Tusem

(1998), and o resull on solvabalily, like Theorem 2 in the paper mentioned, holds
wlse drue.

4. Convergence analysis
First we need the following assertion proved in Kaplan amd Tichatschike (2000a).

LEMMA 1 LetC C X be a convex closed sel, the operators A : X — 2%, A+Ne
be mazimal monotone and D{A)NC be o conver sel. Moreover, assume that
the operator

A Alv) fvel
0 otherunse

s locally hemi-bounded af each poind v € D(A) N C and thaet, for some u €
DAY NC and each v e D{A)NC, there erists ((v) € Alv) salisfying

{Clv).v—u) =0,
Then, weth some { € Alu), the inequality
{(.o—u} >0
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ReEmark 6 Here, a weakened no!ior: of the local hemi-boundedness is supposed.
We call an operator M : X — 2% locally hemi-bounded af a point v°, if for
each v, v # v?, there exists a number t5(v?,v) > 0 such that the set

IJ MO +t(v— ") is bounded in X',
“{lii‘aftru.u:l
The standord notion supposes the boundedness of
U M + tv = "))
0t< (v, o)
This relasation may be significant, see - for instance - the following example:

M=ANo,withC={ve X=R":Y_  vi<1l},n>1

LEMMA 2 Let the sequence {z*}, generated by the GPPM, belong to § and
assume that, for some 2* € X* N 8, condition A5 is valid. Moreover, let the
conditions A3, A6 and Bl, B2, BS be fulfilled. Then, the sequence {I'(z*,x%)}
is convergent, -[;r"‘} 15 hounded, and

klim [(z**,z%) =0,

The prool of this statement repeats the proof of Lemma 2 in Kaplan and
Tichatschke (2002) with one single alteration: The inequality

()" — ) < (g @)ha — ) e,
which follows immediately from A3 and (2), is used in place of
{q{:l;l'+l },:1:1: " wﬁ-il} £ {ff' EE‘-],JE. o :l:l-'-F l}

{see (13) in the paper cited).

In the sequel, in particular, we deal with the case that, besides the usual
property of maximal monotouicity, the operator @ is paramonotone and pos-
sesses Lhe following

Y-property: If {v*} C D(Q) converyes weakly to v € D(Q)N SN K and

H;-‘.m{w*.uk —v} <0
holds with w* € Q(v*), then for cach y € D(Q) there exists w € Q(v) such that
{w.v — y) € limpoo(w®, v* — ).

An operator Q possesses this property, for instance, if
(i) Q is psendomonotone in the sense of Brévis-Lions (see Lions, 1969, Sect,
2.2.4),
or {assuming the monotonicity of Q) if

(ii) {v*}c D(Q), v* —ve QINSNK and w* € Q(v*), Timgco{w*, v* =






334 A. KAPLAN, R. TICHATSCHKE

Then the sequence {z*}, generated by the GPPM, is bounded and euch weak
limit poinl is o selution of Problem (P).

Proof. According to Lemna 2, the sequence {.:r:"} is bounded, hence, there
exists a weakly convergent subsequence {z7*}, &™ — ¥ as k — co. In view of
{z*} € &, Ad and the convexity of 5, the inclusion £ € SNKND(Q) (2 € SnK
in case D2) is valid.

Due to limg_ee [z, 2%) = 0, one can use condition BT with v* := #i+7!,
y* := 27%. This leads to

1-““' |2+t — 2| = 0. (7)

If D1 holds, then with regard to the boundedness of {zF}, {z%}izs, C
D(Q) N (Ui, K*), A6 and (T7), the relation

Jim x5, (Vh{z™*+1) = Vh(z™),z =2} =0 Yz € X (8)

follows immediately. Now, take in (4) an arbitrary x € K N S and replace

(g5(z*t1 ),z — 2**Y) by (g(z),z — 2*+!) + ¢, (this is possible in view of (2)).

Then, passing to the limit in this altered ineguality with k := j, & — 20, due
to the boundedness of {z*}, the definition of T'y, A6 and (8), we obtain

(g(z).z-2)>0 Yre KNn§.

The conditions Al and § 2 D(Q) N (Ui, K*) 2 Q)N K guarantee the
maximal monotonicity of the operator @ + Nyqz (in fact, Q@ + Nz coincides
with @ + N ). Thus, we are able to apply Lemma 1 with € := Kn§, A:= Q,
which ensures that

Jg(z) € Q(F): (gl y—2) =0 Yye KN,
This relation means that —g(%) € Nqa(E). hence
0 € Q(z) + Nyns(Z) = Q(z) + N (%)
is valid, showing that 7 € X*.

Now, take £* as in A5, With regard to the symmetry of B, a straightforward
calculation gives

—{Vh(z*) = Vhiz*+),z* — z**!) = (2", z*) - I'(=*, %)
_ I‘[x"“,::"] i {B{IE+I _ Ik],:]:' _ Ik+1}_ (9)

Using Lemma 2, (7) and 0 < y, < 1, we infer from (9) that

Mame = PRI ¥+lr  TIRFTRY W T Ely i 1Ny
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Since the operator @ possesses the W-property, the last relation provides exis-
tence of g(z) € @(&) such that

(@), = 2°) € Wl (g@@H), T - 2°). (a7
Applying again (14) and (15) (now with = = "), one gets

m‘kqm{qlfjﬁ+1]~ifjn+l - z*} = Tk {qj‘{m;f*""- ]‘ijl - z"). (18)
But, similarly to (16) (with (10) instead of (12)), we conclude that

Timg e (g (™), 2 = £*) < 0. (19)

In view of (17)-(19), the property (+) of paramonotone operators permits us to
claim that € X*.

If e =0, ie. @ = Q, formally (13) gives T+l = givtl g(Fh+l) =
g (27 +1), and a straightforward analysis of the given proof shows that bound-
edness of Q@ on £, 15 not necded. ]

THEOREM 2 Let the conditions Al-A4, A6 and B1-B9 be velid, and condition
A5 hold for each 2* € X*N5 {constant ¢ in A5 may depend on x* ). Moreover, lel
one of the assumptions D1, D2 or D3 in Lemma 3 be fulfilled. Then the sequence
{2*}, generuted by the GPPM, converges weakly to a solution of Problem (P).
Proof. The existence of the sequence {z*} and the inclusion {=*} C S are
guaranteed by Theorem 1. Denote

dul®) = T(w,2*) - 3(Bs, ) - h(z).

According to Lemma 2, the sequence {I'(x,2*)} converges for each z € X* N 5,
hence, the sequence {dy(x)} possesses the same property. Boundedness of {z*}
was proved in Lemma 2, and Lemma 3 yields that each weak limit point of
{z*} belongs to X*N 5. Assume that {s%*} and {z*} converge weakly to z, T.
correspondingly. Then, it holds that .7 € X* N S. Let

I = lim de(), lo= lim dy ().
] R

Olbwiously,

L =l = lim (di(2) — dp(%)) = lim (Vh(z*) + Bz* 5 - 7).

g ]

Considering the latter equality now for the subsequences {z} and {z*}, one
can conclude that

k]im (Vhiaz®) + Bx'* — Vh(z™) - Bs"™ 5 - 2) = 0. (20)

—a

A comparison of (20) and B8 (given with v* := 2% y* := ') indicates that
T = &, proving uniqueness of the weak limit point of {z*}. m

REMARK 8 Theorems | and 2 remamn rue if condidion B9 is veplaced by any
other condition guaraniecing {hal {;uj"]- 15 well defined and {.{,k} C 5 [see, in
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and T()y) = T(y) ensures that z € T(Ay). Thus, v ¢ T(z), and this proves
T(z) CT(0) Vz€ X, €>0. (A.5)

Now, let u(z) € T,(z). By definition of the e-enlargement, there must be
(z—u(z),y—2z) > —¢ Yy e D(T), z€ T(y),

hence,
(ule),2) > {22} + (ulz) - z,9) — ¢ Vg€ D(T), z € T(y).

Because 0 € D(T), the last inequality yields

{u(z),z) 2 (z,z) — e ¥z e T(0). (A.6)
Combining (A.5) and (A.6) one can conclude that
T(z) C{ueT(0): (u,z) > —e+ sup (w,z}}. (A.T)
weT (D)

But, the inverse inclusion holds, too. Indeed, if u € T(0), then
(z—u,y-0)20 Yye D(T), z€T(y) (A.8)
follows from the monotonicity of T. Assuming additionally that

{u,2) > —¢+ sup (w,z), (A.9)
wET(0)

we obtain by means of (A.4), (A.8) and (A.9) that

(z-uy—2z}= (2 —uy) + (uz) - (2,2}

2 (u,z)— sup {w,z) 2 —¢ Yye D(T), z € T(y).
weT(0)

Thus, u € T(x), and

T(z) D {ueT(0): {u,z} 2 —e+ sup {wx)} {A.10)
weT(0)

But, the proof of Proposition 4.1.1 in loffe and Tikhomirov (1973) leads imme-
diately Lo

sup {w,z) = j(x), (A.11)
wET(0)
and (A.T), (A.10), (A.11) yield (A.2). ]

ReMark A.1 R.T. Rockafellsr has drown our altention lo the fac! thal any
marimal monotone operator T with property (A.3) s the subdifferential of some
conver functional. Indeed, it follows immediately from the relalions (A.7) and

fa anm . .
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LeEMma A2 Let j be a convez, positive homogeneous, lsc functional. Then

. j(x) = (d7).(x) Ve >0, x € domj. (A.12)
Proof. The inclusion

B j(z) C {u€ 3j(0): (u,z) > —e+j(z)} Ve>0 (A.13)

is a straightforward consequence of 4.5 C (33), and Lemma A.l. But for an
arbitrary u € d7(0) the inequality

) = (uy} 20 Yye X (A.14)
holds true. Therefore, if

(u,x) = —e + j(x), (A.15)
then, summing up (A.14) and (A.15), we get

() = j(z) = (u,y = 2) 2 —¢ Yy € X.
Hence, u € d,j(z) and

2.j(z) D {u e dj(0): (u,z) 2 —e+ j(z)}
can be concluded, proving (A.12). L]

Now, some exanples are considered where the e-subdifferential can be de-
scribed in o constructive manner by means of Lemma A.2.

ExaMPLE A1 Let X = {z € H'(0,1): x(0) =0}, X' =X,
dx

||w||=( [ (E) fz.g) and j(z) = fﬂ‘ o

Here, the choice of X and j corresponds to the problem of a laminar stationary
flow of a Bingham fluid between two parallel plates (see Glowinski, Lions and
Trémoliéres, 1981) if we take K = {z € X : z(1) = 0}. According to the

definition of &4, one gets
1
dj(0) = EX:f—f:- ¥y X}
o= {uex: [|fie> [ it we

It H%l < 1 a.e. on (0,1), then the inequality

[*]dy

de.

ey ' du dy

|
HE > ilr djﬂ:—d'—' Yue X
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is evident, hence, u € 84(0). Otherwise, denote M = {£ € (0L 1) : |’I"| > 1} and
define

du
im {E{-— on M,

0 on(0,L)\M
£
36 = [ vag

This functional ¥ is absolutely continuous, and using the formula of integration
by parts, we obtain in a standard manner that v is a generalized derivative of §

(v € La(0,1) is obvious). Therefore, y € X, and
du du
IE"(&)]“‘”

" Y dy 1
jm—mm=ﬁfﬁﬁifﬁﬁﬁ—hl

proves that « & 85(0). Thus,

9j(0) = {uex; %‘ <1ae. on [l],l}}

and Lemmas A.1 and A.2 yield

du

a <1ae on (0,1),

Bej(z) = {-u €X: ‘

‘;:;‘i; %’ d{} (A.16)
The first condition in (A .lﬁ] implies

b du dx !
Mﬁﬁ'LL

and if = fulfills
Hence,

1
.

de
d&

‘;—:1 df < £, then the second condition is automatically valid.

d£,

8.4(x) = {u €X:

dﬁ! <1ae on (0, l]}

But in case j'n | |d'.{ > £, taking u(f) = - f‘f 5igll%§d€, one can see that the
second condition in {A.16) is essential,

EXAMPLE A.2 Let £ C B" be an open domain, X = H}(Q), X' = H~1(N),

||m||=(f‘>:“f£\ljdf\*. i(2) = llzl.
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It is well-known that the subdifferential of the norm at 0 coincides with the unit
ball of the dual space. So, we obtain immediately from Lemmas A.1 and A2
that

Oej(z) = {ue HH) : llullg-+ £ 1, (u,2) 2 [l]| = e}.

In case ||ullg-» € 1, ||2]| £ ¢/2, the inequality {u,z} > ||z|| — € is obvious,
consequently,

Dei(2) = (we H(Q): Julla—s < 1) if 2] < 5.

But if ||x]| > /2. the condition (w,z} > ||z — ¢ is essential (take u = —J{z)/]|z||
with J : X — X' the duality mapping).

The reader may convinee himself on the following fact: Replacing the fune-
tional j in the examples above by a sum 7 + ¢, with p a convex, quadratic
functional (for instance, p(z) = [|z|*), a similar simple representation for the
e-subdifferential or of the operator (27 + ), is not available. In particular.
in order to verify that a given u belongs to 8.(7 + ¢)(x), one has to calculate
beforehand

min{j(y) + @(y) = (w.y}: y € X}.

In case @(x) = [|«[|*, this is an elliptic variational inequality of the second order.

REMARK A2 [fX =R", j(a) = {E:Ll;z?]uz = ||lz|| we obluin, quite simni-
lurly to Feample A2, Uhal

dilz)={uecR" : |Ju] <1, ZH,-L'; = |zl = €} (AT

i=1

In this cose, verification of the melusion w € 8,3(x) is quile trivial, and, for
mstance, colewletion of un element v € 3, 3(x), which minomizes the distonce
to a given point, requires solving o very simple conver programminyg problem,
namely o mingmize the distance from a poinl to the wmlersection of a ball and
a halfspuce. We suggest lo compare the deseription of 8,5 in (A 17) and for
ilx) = flall + lllf*.
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