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Abstract: This paper contains a mountain pass theorem for
continnous mappings, defined on a complete metric space and taking
values in a real Banach space, ordered by a closed convex cone. We
use the concept of critical point introduced by Degiovanni, Luechetti
and Ribarska, and we furnish a variant of their result, allowing for
a localization both of the critical point and of the critical value.
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1. Introduction

For a long time the search for minima/maxima, and more generally for crit-
ical points, has been a central issue i mathematics and applications, like in
phivsics, for istance, Much wore recently, motivated mainly by applications to
economics, the case of functionals taking values in a Banach space ordered by a
cone, and the associated vector minima/maxima problems have been considered.
Instead, in this setting, critical point theory has been paid less attention, with
the exceptions of some papers by Smale (1973-1976h), proposing an extension
of the Morse theory, a paper by Malivert (1982), providing an extension of the
Ljusternik-Schnirelman category, and the recent one by Degiovanni, Lucchetti
and Ribarska (2002), where a deformation lemima, a mountain pass theorem
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Here we work in the same setting as in Degiovanni, Lucchetti and Ribarska,
that we describe now. We are given a continuous function f: X — Y, where X
is a complete metric space and ¥ a Banach space, ordered by a closed convex
cone P. It is also given a subset Iy of P, not containing zero. The notion of
critical point for [ depends on the set Fy, which has essentially the meaning of
providing the elfective descent directions for the function f. In the scalar case,
usually one takes P as the positive reals, and Fy the half line [1,0c).

Lu this paper we prove another wountain pass theorem, under the assumption
that Fy is of the form Py = ¢+ P, for some 03 ¢ € P. This allows us to locate
the value of the critical point. Furthermore, we provide also a localization of
the critical point in the dowain space X, in the spirit of the analogous result
for the scalar case, given by Gloussoulb aud Preiss (1989). Our prool relies on
applying a scalar mountain pass theorem to a suitable real-valued [uuction g
associated with the given function f. We finally present some consideration on
the connections between the critical points of [ and 4.

2. Some preliminary definitions and notions

Tlhroughout this paper (X, d) will stand for a metric space and (Y, || - ||} will
denete a real Banach space. We denote by P a proper nonempty closed convex
cone in ¥, and by Fy a nonempty closed convex subset of I not containing the
origin. As a typical examuple, one way think of ¥ as the Euclidean space B,
with P and Fy the positive cone in B" and the set {y = (y1,....0) s wi = 1}
Similarly, in the more general case when ¥ is a function space over sowe set 1",
the above choices are Pi:= {fe Y : (1) 2 0 forevery t € T} and Fy:= {f €
Y : f € h4 P}, for some given nonzero function b € P.

lu this setting, Degiovanni, Lucchetti and Ribarska (2002) propose the fol-
lowing definition of weak slope for a vector-valued [unction. Let f: X = ¥
Le a continuous function, and denote by Bz, 6), as usual, the open ball in X
centered al x € X wilh radius § > 0.

DEFMITION 2.1 The weak slope of [ al @ € X wilh respect lo Py 15 the
supremum of o € [0, 00) so that there exist § > 0 and @ continwous mapping
u: Bz, 8) % [0,8] — X such that for every pair (o',0) € Bz, 8) x [0.8] the
Jollowing are true:

(a) din{x' 1),2") <1,

(b) fln(z',1)) € fla") - otFy - P.
We denote this supremum by Jdp, [|(x).

It is easily seen that the weak slope |dp f](-) 5 a lower semicontinuous
function in X.

[ the sequel the set Fy is assumed to be of the form Py = ¢ + P, for some
nonzero eleent e € P, In this case, as one could see, an equivalent formulation






548 R.E. LUCCHETTI, 1.P. REVALSKI, M. THERA

THEOREM 2.1 Let (£,d) be a complele metric spuce and 1 § = £ be contin-
uwous. Suppose that g : Z = R is a conlinuous funclion and sel
¢:= inf max ).
peEl(Z,¥) teT 9tr(t))

Let L be a non-emply closed subset of the set {z € Z : g(z) 2 ¢}. such that. for
all p € T(Z,4) we have:

piTiNnL#£® A Ww(SNL=0

Then, for any e > O there exisls 2, € £ with the following properiies:
1. d{ze, L) < 26;
2. c—(1/2)e® < g(z.) S e+ 26%;
3. |dgl(ze) < 3e.

We mention that the classical mountain pass theorem takes as the set T the
interval [0,1] and as § its endpoints 0 and 1. In this case I'{Z, ) is the set
of all continuous paths in 2 counecting zp := {0} with 2y := ¥{1). On the
other hand, considering the above more general setting allows getting theorems
as the saddle point theorem, see Rabinowitz (1986). This is the reason why we
shall make use here of a more general formulation, though we do not insist in
furnishing a vector version of the saddle point theorem.

3. A mountain pass theorem

In this section we will establish a mountain pass theorem for vector-valued une-
tions. Here we make a less general assumption on the set Py than in Degiovanni,
Lucchetti and Ribarska (2002), but on the other hand we get a more precise
localization both of the critical poiot = and of its value. Moreover, we do not
use a deformation lemma as it was done in Degiovanni, Lucchetti and Ribarska
(2002), but we appeal to a scalar wountain pass theorem, based on the use of
the Ekeland variational principle.

Before establishing our theorem, we need to introduce some more notions,
Let us, as above, be given a complete metric space (X, d}, a real Banach space
Y, a closed convex cone P in ¥, and the set Fy = ¢ 4 P, for some nonzero
element ¢ € P. Furthermore, let us be given a continuous function f: X = Y,
We provide now a Palais-Smale condition suitable for our vector-valued setting.
To introduce such a condition, let C be an invariant closed subset of Y. L be a
non-empty closed subset of X and ¢ be a real number.

DEeFINITION 3.1 A sequence {zn} C X is said to be u Palais-Smale sequence
Jor [ (with respect to L, C and ¢), denoted by (PS)ic c-sequence, if

L |dp, fl(zn) — 0;
2. d(xy, L) — 0;
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We shall consider the restriction of the function g to the set f~'(F). Since
the set Fn f(X) is reachable from Int €, for every = € f~'(F), there exists
at least one o satisfving the property in the brackets. Now, we claim that, for
no y € Y, C can coutain the line y + Ae, A € R Suppose the contrary, ie.
the existence of y € ¥ such that y + Ae € O, for all A € B Take an element
x € [~YF) such that f{z) & Int C + ae, for some a € R: the existence of such
an element is guaranteed by assuption 2. As Fn f{X) is reachable from Ll O,
there is £ > 0 such that f(x) — te € Int C. By couvexity of Int C and the fact
that y + Ae € C for all A € R, it follows that fx) = fe + Ae € Int C. for all
A € R But this implies f(z) € Int C' + ae: a contradiction. Thus, glz) > —oc
and finally g is real valued on f~'{F). Observe also that, for x € f~Y(F),
clearly the infimum in the definition of g is attained.

We shall get the existence of a critical poiut for [ by finding a critical point
of g, restricted to the set f~'(F), with the help of the scalar mountain pass
. theorem (Theorem 2.1).

Step 2. The function ¢ : f~Y(F) — R is continuous in the induced topology
on f=1(F).

Let zg € f~1(F) and € > 0 be arbitrary. As [(xp) € (C + g(awo)e) N F, then
flzo) € (Int C + (g{zo) + €)e) N F.
By the continuity of f there is some open subset Uy of X containing :xq so that
f(x) C (It C + (glzo) + €)e) N F ¥ € Upn f~Y(F).
Then
g(x) < glze) +& Vu e Uy n f7Y(F). (1)

Further, by the definition of y and the monotonicity properties of the sets C+oe
we have that fxg) € (C + (g{za) = €)e) N F. Since the latter set is closed in
Y and f is continuous we have the existence of an open set Us of X containing
g and so that f(z) & (C + (g(zo) — €)e) N F for any x € Uz f~1{F). Again
by the monotonic properties of the sets C 4 ae and the definition of g we have
that

glz) = glzo) — £ (2)

for each = € Uz N f~'(F). Hence, upon putting U := U; N U3, by (1) and (2)
we see that

lg(x) = g(xo)] € & Yz e Un f(F).

Therefore, g is continuous on f~'(F). The proof of step 2 is completed.
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From step 3. we can conclude that x, fulfills also Jdp, f|(x,) < 3. Moreover,
condition 2 amounts to sayving that

f(xe) € (C+ (e +2e%)e) \ (Int (C + (e = (1/2)e*)e)).

Now we use this to construct a (PS)pe ~sequence which by the Palais-Smale
condition has a cluster point x € L, which is critical for f. Moreover » satisfies
the property f(z) € (C\ ol C) +ce. Finally, since x, € [~V F). then f{x) € F.
and the proof of the theorem is completed. [ |

REMaRK. When e is an interior point of the cone P, it is easy to see that
c¢—ae € Int C for every ¢ € C and a > 0. This implies, in particular, that C is
reachable from Int ', thus a natural choice for the set F could be F = C + ke
(k large). However, here it is not assumed that € is reachable from Iut C.
Observe also that, when the cone P has interior points and condition 2 of the
theorem is fullilled, the function g is everywhere linite and continuous. For, if
e € [ut P, for every & € X and ¢ € € there 15 a € R such that ¢ = & e P,
so that f{x) € ¢ = P 4 ae C C 4 ae, showing that g is finite at x. Conlinuity
follows from the argument used in step 2 of Theorem 3.1,

4. Pareto optima and critical points

We end the paper with some considerations and resulls related to the mountain
pass Lheorem proved in the previous section, First, let ns recall the notion of
Pareto optimum, see Luc (1989): let ¥ be a real Banach space with a positive
closed convex cone P which is pointed (the latber means that p,—p € P is
possible only when p = 0). Let f: X — Y be a mapping from X into Y. The
point xg € X issaid to be a focel Parete mndmune (vesp, maximum ) with respect
to P if there is a neigbourhood U of wy so that {f{xe) = P) 0 f(U) = {[{a)}
(resp. (f{xo) + P} f{U) = {[(x0)}).

In the scalar case, il is well-known that il a poiut is a local mininum for a
coutinuous function f, then the weak slope of [ al this point is zero. lu other
words, local minima are eritical points with respect to the weak slope. It is
the same when the range space is a veelor space as it can be easily seen by
the second condition {b) in the definition of the weak slope. The situation with
the local waximum, however, is diffevent; in a general metric one may have
a function with a local maximun, without having the weak slope zero at this
point. A simple example 1s: X := [0,1], f(x) := 2: when |[df|(1) = 1. But when
X is a finite dimensional Banach space. the answer is positive, as mentioned in
Conti and Lucchietts (1995) (in infinite dimensional X the question is still open).
Here we see that the same result holds when the range space s o Banach space.

Prorosimion 4.1 Let ¥V be o Danach sperce ordered by o closed conver poiled
cone P, let Py be a closed subsel of P, not conlaining zero, and let f:R* — ¥
be o continuons funclion. Suppose xg is o local Parele meximum for [ with
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Proaf. The proof goes as the analogous result in the scalar case. We include
it here for couvenience of the reader. Suppose. by contradiction, that there are
a >0, 8 >0 and # as in the definition of the weak slope. We may think that &
is so small that (f(re) + P) N f(B(xe.8)) = {f{xo)}. Let 8 : B(xo.8) — [0,5]
be a continuous function such that:

1. 8(xg) > O;

2, 8(x) =0if ||z — xoll = &/2.
Let & : B{xg.8) — Blxg, 8) be defined as hic) = nlx. #(x)). As Wz) = z if
|| —2ql| = 6, it follows, by Brower theorem, that there is £ such that I(Z) = xq.
This leads to the desired contradiction. For, n(z,8(%)) = wp forces () = 0.
This is readily seen by the fact that

flxo) = f(n(z.0(%)) € f(%) - ab(2)Po - P

and that xg is a local Pareto maximun., But this implies & = ap (as glu.0) = u
for any ), which contradicts the relation #(zg) > 0. The proof is completed. B

We showed our main theorem by using an appropriate real valued funetion
(the function 4) aimed atl finding critical points of the given vector valued func-
tion f. A natural question is then what kind of relations exist between the
critical points of g and f. Step 3 in the proof shows that actually every critical
point of g is automatically critical for f. Can this statement be made more
precise?  For instance, is a local maximumn for g automatically a local Pareto
maximum for f7 This is the case for local stricl maxima for g, as it can be
easily shown. But in general the answer is negative, as the following example
shows,

ExAMPLE 4.1 Let X =R, P=R:, R=(L,L1) + P, C =(-1,-1) - P and
let

Jlixy,xa) = (min{0, xy }, min{0, x4 }).

Then all the points (x;,z2) such that max{z,, 2} = 0 are maxima for g, while
only the points (xy,2a) with min{zq, 22} > 0 are Pareto maxima lor f. The
points of tlie formi{0, 22) and (2, 0), &y, 22 < 0. ave critical points for [ which
are not local minima/ maxima.

On the other hand, suppose there is a closed convex pointed cone P such that
PA{0} C Iut P. Then. if we take as set C, C:= z — P, for some z € X, in this
case local maxima/minima for g do correspond Lo local vector maxima /minima
for f, as the following proposition shows. We do not know if a critical point for g
of saddle point type could again correspond to some vector minimum/maximum
for f, or it wust be something different,

PROPOSITION 4.2 With the above P, P and C, let & be a local i -

- -
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Proof. We prove the statement for a maximum, and for easy notation we suppose
it is a global maximum. So, suppose I is not a maximum for f. Then there is
z such that f(z) € f(Z) + P, and f(z) # f(Z). Thus

f(z) € f(z) - Int P.

As
flz)ez—-P+ glx)e,
then
fl#)€z—P+g(z)e-Int Pc IntC + glz)e.
It follows that g(z) < g(x): a contradiction. ]

Finally, in the following example we see that a Pareto maximum for f does
not need to be a local maximumn for g. Even more, we exhibit a point with weak
slope zero for [ which is not critical for the associated real-valued funciion g.

EXAMPLE 4.2 Let X =R*, P=R%. Py = (1,1)+ P, let C = (-1,-1}= P and
fley, x2) = (2, min{0, 22} + min{0, -z, }).

It is not difficult to show that f{X) = {(zi.22) : 22 € min{0,—z}} and
thus that (0.0) is a Pareto waximum for f. A direct calculation, or reference
to Proposition 4.1, show that actually |dp, f[{0.0) = 0. However, g does not
have a critical point at (0,0). For, it can be shown without much eifort that

oy aa) = 1 + wax{ry, @2} and that |dg](0,0) = 1.
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