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Abstract: This paper contains a mountain pass theorem for 
coutinuous mappings, defined on a complete metric space and taking 
values in a real Banach space, ordered by a closed convex cone. We 
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1. Introduction 

For a long time the search for minima/maxima, and more generally for crit­
ic <:tl points, has been a central issue in mathematics and applica tions, like in 
physics, for instance. Much more recently, motivated mainly by applications to 
ecouomics, the case of functionals tak ing values in a Banach space ordered by a 
cone, and the associated vector minima/maxima problems have been considered. 
Instead, in this setting, critical poiut theory has beeu paid less attention, with 
the exceptions of some papers by Smale (1973-1976b ), proposing an extensiou 
of the Morse theory, a paper by Malivert (1982), providing an extension of the 
Ljusternik-Schnirelman category, and the receut one by Degiovanni , Lucchetti 
and Ribarska (2002), where a deformation lemma, a mountain pass theorem 
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Here we work in t he same setting as in Degiovanni , Lucchetti aud Riba rska , 
tha t we describe now . We are givcu a continuous fun ction f: X__, Y , where X 
is a complete metric space a ud Y a Da.uach space , ordered by a closed convex 
cone P. It is also given a subset Po of P, uot coutaiui11g zero. The 11otiou of 
critical point for f depends on the se t Po , which has essentially the n1eaning of 
providiug the effective descent directions for the function .f. In the scala r case. 
usually one takes P as the positive reals, and Po the half line [1 , oo). 

Iu this paper we prove another mountain pass theore111 , under the assu n1ption 
that Po is of the form Po = e + P, for some 0 of. e E P. Tltis allows us to locate 
the value of the critical point. Furthermore, we provide also a locali t.ation of 
the critica l point in the dornaiu space X, iu the spirit of the ana logous result 
for the scalar case, giveu by Ghoussoub aud Preiss (1989). Our proof relies on 
applyiug a scalar mountaiu pass theorem to a suita ble real-valued functiou y 
associa ted with the given fuuction .f. We fi11 a lly prcseut sollle cousidera.tiou ou 
the connec tions between the critical points off ami !J· 

2. Some preliminary definitions and notions 

Throughout this paper (X, d) will sta 11d for a metric space ami (Y, II · II) will 
deuote a real Banach space . We deuo te by P a proper nonempty clo::;ed convex 
c011e in Y , aud by Po a nonempty closed convex subset of P uot containing the 
origin. As a typica l exa lllple, oue may tltiuk of Y a::; the Euclidean space IR11

, 

with P a ud Po the positi ve coue iu IR11 a11d t he se t {y = (y1 , . . . , y,) : y; 2: 1}. 
Silllilarly, iu the more general case when Y is a fuuction space over so1 ne set T , 
the above choices are P := {f E Y : f (i ) 2: 0 for every t E T} ami Po := {.{ E 

Y : f E ft. + P} , for some given uont.ero ftwctiou h E P . 
In this setting , Degiovanui , Lucchetti a ud Riba rska (2002 ) propose the fol­

lowing defiuition of weak slope for a vec tor-valued fuuctiou . Let f : X __, Y 
be a coutiuuous fuuctiou , aud deuote by B(:c, 5) , as usual, the open ball iu X 
ceutered a t :c EX with radius 5 > 0. 

DEFINITION 2.1 The wea" slope of .f al :c E X w-ith '1-e:-;pect to Po i:; the 
S'll]J'I"C'frt 'lt 'm of cr E [0 , oo) s o that the·1·e ex·isl 5 > 0 u.nd a conti'll:u ov.s 'IIWJ!]J'tng 

tJ : B(x , 5) x [0, 6] --; X s·uch thai for evr::ry pai·r (:1:1
, L) E B(:c, 5) x [0 , 6] the 

followin.!J a1·e lTue: 

(a) d(TJ(:c' , t) , :c') ::; t , 
(b) f(rJ( :c' ,t)) E f( :c')- crtPo- P. 

We rle-no le this S'LL]J'I'W t 'U711 by lclru.fl (:c) . 

It is easily seen tha t the weak slope ldp0 fl (-) is a lower se1uicoutiuuous 
function iu X. 

In the sequel the se t Po is assumed to be of the fon11 Po = e + P , for some 
uonzero element e E P. In this case, as one could see, au equivalent formul ation 
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(b') J('rJ( x', t)) E f(x')- (Jte- P . 

In the scalar case Y = IR, when we take P = [0 , oo) and Po := [1, oo) , 
this d~finitiou agrees with the definition of weak slope given by Degiovanni and 
Marzocchi (1994), see also Corvellec, Degiovanni and Marzocchi (1993) and Ioffe 
and Schwartzman (1996), aud is simply denoted by ldfl (:t) (for more details see 
also Canino aud Degiovanni , 1995). It is well-known that in this case the weak 
s lope is a generalizatiou (fo r fuuctions which are no t differeutiable) of the uorm 
of the derivative. Therefore, in our lllOre general settiug the following defiuition 
agaiH given in Degiovanni, Lucchetti a nd Ribarska (2002) is natural: 

DEFINITION 2.2 A point x EX ·is said l.o be critica l for f with Tespecl to Po 'if 
ldpofl (x) = 0. 

We continue by giving two more definitions: a subset C of Y is called in­
vanani if C = C - P. Along the paper we will often use, without special 
remark, the following elementa ry monotonic property of a given invari a ut set 
C : if e is an element of the cone P t hen for a uy n, f3 E IR, with n < (3, we have 
C + ne C C + (Je. 

Further, a set F C Y is said to be 'l'eachable from A C Y with Tespeci to Po 
if there exists t 2: 0 so that F - tPo C A. An equivalent assertion of the last 
definition is that for some t ;::: 0 we have: 

F c n (A+ t:y). 
yEPo 

If the set Po is of the special form e + P for some non zero e E P , then, if A 
is invariaut we have: 

n (A+ ty) =A+ ie. 
yEf'o 

We end this preliminary section by introducing son1 e lllore Hotation as well 
as an appropriate scalar mouutaiu pass theorem which will ue used la ter. (T, S) 
will be a fixed pair of compact sets: by this we mean that T is a Hon-elllpty 
compact metric space and Sis a non-empty closed subset ofT. Given a con1pletc 
metric space ( Z, d) and a continuous 1nappi ng ·lj; : S --+ Z we denote by r( Z, 41) 
the following set: 

f(Z, ·¢) := {p: T--+ Z: pis continuous, piS= ·¢ }. 

We will consider on f( Z, ·lj;) the usual uniform metric p: for p1 , P2 E r( Z, lj;), 
p(pl,P2) := sup{d(p1(t) ,p2(t)) : t E T} . Then, (f(Z, ·Ij;),p) is a complete metric 
space. 

Finall y, we recall a version of a scalar mountain pass theorem , that one can 
find in Conti (1994). Below, as usual, d(- , A) denotes the distance function in 
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THEOREM 2.1 Let (Z, d) be a complete metric space and 'ljJ: S---> Z be cmdin­
·uous. Suppose that g : Z ---> lR is a continuous functi on and set 

c := inf maxg(p(t)) . 
pH(Z,,P) tET 

Let L be a non-empty closed s·ubset of the set { z E Z : g(z) 2: c}, :;·uch that, fo ·r 
all p E f(Z,'Ijl) we have: 

p(T) n L of: 0 1\ 'lji (S) n L = 0. 

Then, joT any c > 0 theTe exists Z 0 E Z with the following pToperties: 
1. d( zc, L) ~ 2c ; 
2. c - (1 / 2)c2 ~ g(zc) ~ c + 2c2

; 

3. [dg[(zc) ~ 3c. 

We mention that the classical mountain pass theorem takes as the set T the 
interval [0 , 1] and as S its endpoints 0 and 1. In this case f(Z, ·lj;) is the set 
of all continuous paths in Z connecting zo := ·lj;(O) with z 1 := '1/J(l). On the 
other hand , considering the above more general sett ing allows getting theoren1s 
as the saddle point theorem, see Rabinowitz (1986). This is the reason why we 
shall make use here of a 1ore general formulation, though we do not insist in 
furnishing a vector versio of t he saddle point theorem. 

3. A mountain p ass theorem 

In this section we will establish a rnountaiu pass theorem for vector-valued fuu c­
tions. Here we make a less general assumptiou on the set Po than in Degiovanui , 
Lucchetti and Ribarska (2002) , but ou the other !taud we get a lllOre precise 
localization both of the criti cal poin t :c and of its value. Moreover , we do not 
use a deformation lemma as it was done in Degiovauui , Lucchetti a nd Ribarska 
(2002), but we appeal to a scalar mountain pass theorem, based on the use of 
the Ekeland variational principle. 

Before establishing our theorem, we need to introduce some wore notions. 
Let us, as above, be given a complete metric space (X , d), a real Banach space 
Y, a closed convex cone P in Y, and the set Po = e + P, for some uonzero 
element e E P. Furthermore, let us be given a continuous function f : X ---> Y. 
We provide now a P alais-Smale condition suitable for our vector-valued settiug. 
To introduce such a condition, let C be an invariant closed subset of Y, L be a 
non-empty closed subset of X and c be a real number. 

DEFINITION 3.1 A sequence {xn} C X is said to be a P alais-Srnale sequence 
joT f (with Tespect to L, C and c), denoted by (PS)Lc,c-sequence, if 

1. [dp0 f [( xn) ---> 0; 
2. d(xn, L)---> 0; 
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The j1mction f satisfies the (PS hc, c. -condition if every (PS hc,c-seq·uence hal! 
a duster point. 

From condition 1, and the fact that the weak slope is lower sernicontinuous, 
every cluster point of a (PS)Lc,c-sequence is a critical point for f. Moreover, 
since C is closed and invariant we have 

n (C + (c + c)e) \ (Int C + (c- c)e) = C \ Int C + ce, 
e>O 

and consequently every cluster point x of a (PS)Lc,c-sequence, is also such that 
f(x) E (C \ lnt C)+ ce. 

Finally, let the pair of compact sets (T, S) be given, let F be a closed invari­
ant subset of Y such that f(X) n F =f. 0, let ·1/J: S __, f- 1(F) be a continuous 
function and set r := r(f- 1(F),·Ij;). 

Now, we are ready to formulate and prove our mountain pass theorem: 

THEOREM 3.1 Let (X, d) be a complete rnetTic space, Y a real Banach space 
with ordering closed convex cone P and let Po = e + P, for some nonzem 
element e E P. Let f : X __, Y be a contin'UO'US funct-ion. S·uppose F is a 
closed ·invariant set and the pa·i'f' of compact sets (T, S) and the mapping 'ljJ are 
as above. Let C be an invariant closed convex set in Y with nonempty interior 
lnt C. S·uppose, mor-eover, the following conditions are tr'Ue: 

1. F n f(X) is reachable fmm Int C and r =j:. 0; 
2. TheTe ·is a E ~ s·uch that Vp E f :It E T: f(p(t)) rt lnt C + ae; 
3. Set c := sup{ a E ~ : a fulfills condition 2} and s·uppose there is a closed 

S'UUSet L of X' sv.ch that, joT all p E r' 
f(L)n(IntC+ce)=0 1\ p(T)nL=j:.0 1\ ·lj;(S)nL=0; 

4- f satisfies the (PS)Lc,c - condition. 
Then, f possesses a critical point x E L I!O that f ( x) E ( ( C \ Int C)+ ce) n F. 

Pmof. We start with some remarks. First, the set Int C is invariant. This, 
together with condition 1 of the theorem, shows that the number c in 3 above 
is well-defined and finite. Next, the following monotonic property holds: 

(C + o:e) n f(X) n F c lnt C + {3e, 

if {3 > o:. Let us prove it. Let {3 > o: and take any pointy E ( C +ne) n f(X) n F. 
Then y-ae E C and since f(X)nF is reachable from lnt C we have y-te E lnt C 
for some t ?': 0. We may think that t > {3. Then the point y - {3e is on the 
segment [y- te, y- ne[. Since C is convex, this entails y- {3e E Int C. 

We divide now the proof into several steps. 

Step 1. Define the function g: X__, [- oo, oo]: 

g(:r:) := inf{n E ~: j(x) E (C + ae)}, x EX, 
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We shall consider the restriction of the function g to the set f- 1 (F). Since 
the set F n f(X) is reachable from Int C, for every x E f- 1(F), there exists 
at least one o: satisfying the property in the brackets. Now, we claim that, for 
no y E Y, C can contain the line y + Ae, A E R Suppose the contrary, i.e. 
the existence of y E Y such that y + Ae E C , for all ). E !It Take an elerneut 
x E f - 1 (F) such that f( x) rf. Int C + ae, for some a E JR: the existence of such 
an element is guaranteed by assumption 2. As F n f (X) is reachable from lnt C, 
there is t 2: 0 such that f( :c)- te E Int C. By convexity of Int C ami the fact 
that y + Ae E C for all A E IR, it follows that f (:c) - te + Ae E Iut C, for all 
A E R But this implies f( x) E Int C + ae: a contradiction. Thus, g(x ) > - oo 
and finally g is real valued on f- 1 (F ). Observe also that, for x E f- 1(F) , 
clearly the infimum in the definition of g is attained. 

We shall get the existence of a critical point for f by finding a critical point 
of g, restricted to the set f - 1(F), with the help of the scalar mountain pass 
theorem (Theorem 2.1). 

Step 2. The function g: f- 1 (F) _, lR is continuous in the induced topology 
on f- 1(F). 

Let xo E r 1(F) and E > 0 be arbitrary. As f( :co) E (C + g(:co)e) n F , then 

f( xo) E (Int C + (g(xo) + c)e) n F. 

By the continuity off there is some open subset U1 of X coutaining :c 0 so that 

.f(x) C (Int C + (g( xo) + c)e) n F 'V:c E U1 n .r- 1(F). 

Then 

g(:c) ~ g(xo) + E 'V:c E ul n r 1(F). (1) 

Further, by the definition of g and the rnonotonicity propert ies of the sets C + o:e 
we have that f(xo) rf. (C + (g(xo) - c)e) n F. Since the latter set is closed in 
Y and f is cont inuous we have the existence of an open set U2 of X containing 
x0 and so that .f(x) rf. (C + (g(x 0 )- c)e) n F for any :c E U2 n .f - 1(F). Agaiu 
by the monotonic properties of the sets C + o:e and the definition of g we have 
that 

g(:c) 2: g(xo)- c (2) 

for each X E u2 n f- 1(F). Hence, upon putting u := ul n u2, by (1) and (2) 
we see that 

lg(x)- g(xo) l ~ E 'Vx E u n .r- 1(F). 

Therefore, g is contiuuou on f - 1 (F) . The proof of step 2 is completed. 
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There is nothing to prove if idp0 fi(x) = 0. Then, take some 0 < a < 
idrof i(x) for which there exist 8 > 0 and a continuous mapping rJ : B(x , 8) x 
[0 , 8] ~ X so that for every (x', t) E B(:r:, 8) x [0 , 8] we have: 

(a) d(TJ(x', t), x') ~ t, 
(b) j(TJ(x' , t)) E f(x')-ate-P. 

Let :r' E B(x, 8)nj- 1(F). Then f(x') E F and since F is invariant (F-P = 
F) we conclude that 

f(x') - atPo C F for every t 2: 0. 

Thus by (b) we get f(TJ(x', t)) E F for any x' E B(x, 8) n f - 1(F) and t E [0 , 8]. 
Therefore, the restriction of TJ to B(x ,8) n .r-1(F) x [0, 8] takes its values in 
j - l(F). 

Moreover, take any (x', t) E B(:c , 8) n .f - 1(F) x [0 , 6]. Then 

.f(x') E (C + g(:c')e) n F 

whence, because C is inva riant, 

f (TJ(:c', t)) E (C + (g(:c' )- at)e) n F. 

Jt follows tha t 

(V) g(TJ(:c' , t)) ~ g(x') - at. 
This, together with (a), shows that idgi (:c) 2: a , and since a< lciro .f i(:c) was 

arbitra ry, we can therefore conclude that ici.r.ti(:c) 2: lcip0 fi(:c). The proof of the 
third step is completed. 

Step 4. Let us now see tbat we can apply Theorem 2.1 to the function y, to 
Z = .f- 1(F) and to th e set L n .r-1(F ). 

From step 2, we know that y is continuous. Further, we show tha t c = 
c := infpEf maxtET g(p(t)) . Let a be so tbat for auy p E f tbere is [ E T witb 
f(p( t)) rj. Int C + ae. Then, g(p( l)) 2: a, otherwise there would be a < a such 
that .f(p([)) E C + ae and by the rnonotouic properties listed in the beginuiug 
of the proof we would have f(p(l)) E Int C + ae. The contradictiou shows that 
g(p(l) ) 2: a for any p E f, and therefore, c ~ c. 

Suppose that c > c and take a E lR with c > a > c. By the defiu ition of 
c there is some p E r such that .f(jj(t )) E C + ne for auy l E T. But this 
iillplies y(jj(t)) ~ a for every t E T. By the defiuitiou of c this Jll eaus c ~ a, a 
coutradictiou. Thus, c = 2 

Fiually, as we assumed that .f(L) n (Int C + ce) = 0. we sec that Ln .r- l (F) C 

{:c : g( :~;) 2: c}. Hence, we can apply Theorem 2.1 , to conclude that , for every 
c > 0 tl1ere exists :c c; E .f - 1(F) so that: 

1. d(:&c;, L ) ~ 2c- ; 
2. c - (1/2)c2 ~ g(:c o: ) ~ c + 2c2 ; 
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From step 3, we can conclude that :cE fulfills a lso idp0 .fi(:c" ) < 3c. Moreover , 
condition 2 amounts to saying that 

f(x <) E (C + (c + 2c2 )e) \ (Int (C + (c- (1/2)c2)e )). 

Now we use this to construct a (PS) Lc.c-sequence which l>y the Palais-Smale 
condition has a cluster p int x E L , which is critica l for f. Moreover :c satisfies 
the property f(x) E (C \ lnt C)+ce. Finally, siuce :rE E .f- 1(F), then f( :c) E F , 
and the proof of the theorem is completed. • 

REMARK. When e is au interior point of the cone P. it is easy to see that 
c- ae E Int C for every c E C and a > 0. T ltis implies , in particular , that C is 
reachable from Int C, thus a natural choice for the set F could be F = C + /,;e 
(k la rge). However , here it is uot ass umed tha t C is reachable from Jut C. 
Observe also that, when the cone P lw.s iuterior points ami coHdit.ion 2 of the 
theorem is fulfilled, the functiou !J is everywhere fmite aud coutiuuous. For , if 
e E Int P. for every :c E X aud c E C t here is a E R such tha t e- f (:~:) + c E P , 
so tha t /(:r) E c- P + ae C C + ae, showiug tha t !J is finite at :c. C~utinui ty 
follows from the argulllcut used in s tep 2 of Thcon.ut 3. 1. 

4. Pareto optima and critical points 

We cud the paper with sou1e considcratious and results rela ted to the mountain 
pass theorem proved in t he previous sectiou. Firs t , let us recall the notion of 
Pareto optimum, see Luc (1 989): le t Y be a real Ba11 ach space with a positive 
closed convex couc P which is pointed (the lat ter meaus tha t JJ, -p E P is 
possible only wheu p = 0). Let J :X --' Y be a llla.pping frow X into Y. The 
poiut xo E X is said to be a lucal Pu:retu 'lll:iniuwm (resp. lllaxiiiiUiu) with resp ec t. 
toP if there is a ueigbourhood U of :c 0 so th at (f (x 0 )- P) n J(U) = {.f(:c0 ) } 

(resp. (f( :co) + P) n !( V) = {f(:co)} ). 
In the scalar case, it is well-knowu that if a point is a local uJiuium111 for a 

coutiuuous function f , tl1en the weak slope off a t this poiut is zero. Iu otlwr 
words, local Ininillla are critical points with respect to the weak s lope. Jt is 
the san te wheu the nwge space is a vector spa.ce as it can be easily seeu by 
the secoml cond ition (b) in the dcfi11itiou of t he weak slope. The situa tion witli 
the local Hmxin1unt , however, is di ffereut; in a general metri c one lllay have 
a fuuction with a local maximulll , without !taviug tlt e weak slope zero at thi s 
point . A s it11ple exalllple is: X:= [0 , 1], f( :1:) := :c; when l«f l( l ) = 1. But wheu 
X is a finite clirneusiou al Ba.11 ach space. tlt e answer is positive , as mentioned itt 
Conti and Lucchetti (1995) (in infiuite dil1lensional X the questiou is sti ll opeu). 
Here we see that the sau1 e result holds when the nmge space is a Banach space. 

PROPOSITIO N 4.1 Let Y be a flan.ach :S JJa ce unle1·ed by a clo::;ed conve:c ]Jointed 
cone P , lei. Po be a clu:;ed :;'abet uf P , nul contu:in'iny zem, and let f : lR"" __. Y 
be a cmJ,i'inuuus fand ion. S'nppu:;e :co is a local Pa1du ma.:cim:am fu.,. f 'W'tih 
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? ·roof. The proof goes as the aualogous result in the scalar case. We include 
it here for convenience of the reader. Suppose, by contradictiou , that there are 
CJ > 0, 8 > 0 and TJ as in the definitiou of the weak slope. We may think that 8 
is so small that (f(:~; 0 ) + P) n f(B(:~;0 , 8)) = {f(:co)}. Let(}: B(xo, 8)---> [0, %J 
be a continuous function such that: -

1. B(:ro) > 0; 
2. (}( :~;) = 0 if ll x- xoll ~ 8/2. 

Let h : B( :~; 0 , 8) ---> B(xo , 8) be defiued as h(:c) = TJ( :c, (}( :c)). As h( :~;) = :I.: if 
llx- xo ll = 8, it follows, by Brower theorem, that there is x such that h(:C) = x 0 . 

This leads to the desired contrad iction. For, 'IJ( i, (}(:t)) = :I.: o forces (}(:!;) = 0. 
This is readily seen by the fact that 

f (xo) = f(TJ(i, (}(i)) E f (i)- CJfJ(:c)Po - P 

and that :I.:o is a local Pareto maximum. But this implies :T; = :I.:o (as TJ(-u, 0) = -u 
for any ·u), which coutradicts the relation (}(:c 0 ) > 0. The proof is completed . • 

We showed our main theorelll by usiug an appropriate real valued function 
(the function g) aimed at finding crit ical points of the given vector valued func­
tion f. A natural questiou is tlteu what kind of relations exist between the 
cri t ical poiuts of g and f. Step 3 iu the proof shows that act ually every critical 
point of 9 is automatically critical for f. Can this staterneut be made more 
precise? For iustance, is a local maximum for y automatically a local Pareto 
maximum for f ? This is the case for local 8t·rict rnaxillla for 9, as it can be 
easily sltowu. But in geueral the answer is negative, as the following example 
shows . 

EXAMPLE 4.1 Let X= IR2 , P = IR~, Po= (1, 1) + P , C = (- 1, -1 ) - P and 
let 

T hen all the points (:c 1 ,:r2 ) sucl1 tha t rnax{:r: 1 , :r: 2 } ~ 0 are 111 axima for 9, while 
only the points (:c 1 , :~; 2 ) with min{:~; 1 , :c2} ~ 0 are Pareto maxima for .f. The 
points of the form(0, :~; 2 ) and (:~; 1 ,0), :~; 1 ,:~; 2 < 0, are criti cal points for f which 
are not local rniuima/tuaxirna . 

Ou the other haud, suppose there is a closed convex pointed cone P such tl1at 
P \ {0} c Int P. Then , if we take as set C, C := z - P, for some z EX , in t hi s 
case locallllaxima/miuill!a for 9 do correspond to local vector maxima/minima 
for f , as t he following propositiou shows. We do not know if a critical point for 9 

of sadd le point type could again correspond to some vector minimum/ maximum 
for .f, or it must be something different. 

Pn.OPOSITION 4 .2 With the above P , P and C, let :l; be a local Tnaxim'U'In/m-in-i-



554 R.E. LUCCHETTI, J.P. REVALSKI , M. THERA 

Pmof. We prove the statement for a maximum, aud for easy notation we suppose 
it is a global maximum. So, suppose x is not a maximum for f. Then there is 
x such that f(x) E f( x) + P, and f( x) =f. f(x). Thus 

f(:Y:) E f(x)- Int P. 
As 

f(x) E z - P + g(x)e, 

then 

f( :T;) E z - P + g(x) e - Int PC lnt C + g(x) e. 

It follows that y(x) < y( :1: ): a contradiction. • 
Finally, in the followi ng example we see that a Pareto maximum for f does 

not need to be a local maximum for g. Even more, we exhibit a point with weak 
slope zero for f which is Hot critical for the associated real- valued function g. 

EXAMPLE 4.2 Let X= ll~.2, P = JR~, Po= (1,1) +P, let C = ( -1, -1 ) - P ami 

f( :I:t, :c2 ) = (x1, miu{O, :c2 } + miu{O, -xd ). 

It is no t difficult to show that .f(X) = {(x1 , x2) : x2 :S rnin{O, -:cJ}} aHd 
thus that (0 , 0) is a Pareto maximum for f. A direct calculatioH, or reference 
to Proposition 4.1, show that actually Jdp0 .fJ(O, 0) = 0. However, g does not 
have a critical point at (0, 0). For, it cau Le showu without rnucli effort that 
y(x1,:c2) = 1 + tuax{:I:1,x2} ami that JdgJ(O, O) = 1. 
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