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1. Introduction

Second-order generalized differentiation of nonsmooth functions is a rapidly
erowing arca of analysis, especially related to its variational aspects, oplimiza-
tion, and sensitivity under perturbations. There s a vaviety of sccond-order
generalized differential constructions useful in optimization and variational anal-
vsis. The book of Rockafellar and Wets (1998) and Bounans and Shapivo (2000)
contain systematic expositions and references on second-order theories of gen-
eralized dilferentiation and their applications to optimization=related problems.

The classical analysis offers Lthe two possibilities of defining the second-order
derivatives: via derivatives of derivatives and via Taylor-like expansions of the
original function. It iz well known that these two approaches are generally
ol equivalent. Bolh of them have conmterparts in nonsmoolll analysis, where
various second-order constructions are defined in these ways; see the books men-
tioned above and their references. Regarding the “derivative-of-derivative™ ap-
proach, there are various possibilities of delining the second-order derivatives of
nonsmoolh functions depending on what is used as an analogue of Lhe rst-order
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derivative and what is further employed for the differentiation/approximation
of first-order constructions.

Motivated by applications to sensitivity analysis in nonsmooth optimiza-
tion, a notion of “second-order subdifferential” was introduced in Mordukhovich
{1992) for extended-real-valued funclions on finite-dimensional spaces. This con-
struction was defined as the coderivative of the first-order subdifferential map-
ping and can be viewed as a realiwation of the dus! “derivative-of-derivative”
approach in nonsmooth analysis, since the first-order subdifferential is a nat-
ural counterpart of the classical gradient for nonsmooth functions while the
coderivative provides a dual-space approximation of the set-valued subgradient
mapping: see Section 2 for more details.

The second-order subdifferential and associated constructions were success-
fully applied to a range of problems in optimization and variational analy-
sis. This particularly includes: the study of robust Lipschitzian stability of
solutions maps to parametric variational and hemivariational inequalities in
Mordukhovich (1994b, 1994b): complete characterizations of strong regularity
for variational inequalities over convex polyhedra in Dontehev and Rockafellar
{1996); sccond-order characterizations of stable optimal solutions to nonsmooth
optimization problems in Poliuin and Rockafellar (1998) and Levy, Poliguin
and Rockafellar (2000); necessary optimality conditions for mathematical pro-
grams with equilibrium constraints in Outrata (1999, 2000}, Treiman (1999), Ye
{2000), Ye and Ye (1997}, and Zhang (1994); sensitivity analysis for mechanical
equilibria in Mordukhbovich and Outrata (2001), ete.

This paper deals with extensions of the second-order subdifferential Lo Fumne-
tions defined on Banach spaces. We propose two exlensions depending on whal
kind of coderivatives is applied to the first-order subdifferential mapping. Our
main concern is Lo develop the basic calculus (sum and chaiu) rules for Lthe
second-order subdilferentials important for the theory and applications. Known
results in this directions are available only in finite-dimensional spaces; see Mor-
dukhovich and Outrata (2001). We extend these resulis to the case of infinite-
dimensional spaces and obtain two kinds of caleulus rules. One part of the cal-
culus resulis hold in arbitrary Banach spaces imposing stronger requirements
on functions and mappings involved in compositions. The other part requires
the Asplund structure of the spaces in question (in particular, their reflexiv-
ity) imposing essentially more general assumptions on functions and mappings.
Note that some of the important results presented below are new even in finite
dimensions.

The rest of the paper is organized as follows. Section 2 contains basic defi-
nitions and properties of the second-order subdifferentials and related construe-
tions used in the sequel. Section 3 is devoted to second-order sum rules. In the
final Section 4 we present the main results of the paper on chain rules for the
second-order subdifferentials,

Throughout the paper we use standard notation of variational analysis; see
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and denote it by D*F(x, y)(y*) when £ = 0. We may omit y in (2.3) for (z.y) €
gph F' if F is single-valued at x. Based on (2.3), we now define two limiting
coderivatives of F at (%,4) € gph F' depending on the sequential convergence
{weak® or norm) in ¥*; in X* we always use the weak® convergence. The normal
coderivative of F at (£, §) is a multifunction D3 (Z,7): Y= = X~ with the values

Dy F(2,5)(5°) := Limsup D:F(z,y)(y")
{.r.y]-:fl.ﬂ!
"_"‘ﬁ‘

|0
(@, ~v") € N((z.9heph F) }. (24)

while the mized coderivafive is defined by

~feex

D3 F(&,§)(5") ;= Limsup DIF(z,y)(v"). (2.5)
(w9 =+(2.8)
it |
|l

Obviously, D}, F(Z,§)(§*) € Dy F(Z,5)(§") for all y* € Y*, and both coderiva-
tives agree when dimY < oo (in this case we denote them by D*F(Z,§)).
However, (2.5) may be strictly smaller than (2.4) even for single-valued Lips-
chitzian mappings with values in Hilbert spaces that are Fréchet differentiable
at the point in question; see Example 2.9 in Mordukhovich and Shao (1998).
Note that £ > 0 may be equivalently removed from the definitions [2.4) and
(2.5) if both X and Y are Asplund and F' is locally closed-graph.

Let ¢: X — R := [-02, 00| be an extended-real-valued function finite at
and let E.: X =t R be the epigraphical multifunction

Eo(z):={peR|n2p(x)}

associated with ¢. The (first-order) basic subdifferentiol and singular suldifJer-
enfiel of ¢ at & are defined, respectively, by

dp(#) 1= D*Eo(z, p(@)(1), 9%p() := D" Ey(z,0(2))(0). (2.6)

Recall that 8=p(z) = {0} if ¢ is locally Lipschitzian around Z. If  is lower
semicontinuous (ls.c.) around %, then the basic subdifferential in (2.6) admits
the representation

dilz) = Limsup E.{E_.qp{z'}
I-ETE]I’
in terms of the e-subdifferentials

B ocafd i .r...- e 1.-'-| T wlu) - ¢w ~ _.=1
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for any mapping f: X — ¥ strictly differentiable at £ If ¢ € C' arvound E,
then dip(z) = {Ve(z)} for all 2 near . Applying the above coderivative result
to the mapping f: X — X% with f(x) := Vi(e) and using Definition 2.1, we
artive at the desired conclusion. =

Next we present useful descriptions of the sccond-order subdifferentials for
locally ! functions w: X — R, ie., such functions ¢ that are continuously
differentiable around & with the derivative Vi Lipschitez continuous aronnd this
point. The following proposition gives an unconditional formula for the mixed
second-order subdifferential (2.8) of any C! [unction on an arbitrary Banach
space, while the corresponding representation of the normal one (2.7} holds
under additional requirements on X and .

According to Mordukhovich and Shao (1996a), [: X — Y is stricty Lips-
chilzian around 3 if it is Lipschitz continnous avound this point and the sequence
{If (2 + tih) = fla )]/} admits a norm convergent subsequence whenever
ap — F, b |0, and i € X, It is proved by Thibault (1997) that the lal-
ter property is actually equivalent Lo the basic version of his original concept
of compactly Lipschilzian mappmgs introdueed in Thibault (1978). Note that
this class includes. in particular, Fredholm integral operators with Lipschitzian
kernels, whicli are important for applications to optimal control.

ProrPosITION 2.3 Let X be a Banuch spuce, and lel o: X = R be a O fune-
tion around &, Then

Ayp(E)(u) = du, Vi)(E), ue X", (2.9)

If, in addition, X is Asplund and Vi is strictly/compacily Lipschilzian around
. then

8 0(2)(u) = Blu, Vo) (2), uwe X" (2.10)

Moreover, both sets 8%,0(2)(u) and 8%,0(2)(u) are nonempty for uny v € X**
if pe OV ground # and X is Asplund.

Proaf. It is proved in Theorem 5.2 from Mordukhovich and Shao {1996a) that
Dy J(E)(y") = 8ly", [)(E) forall 3" € ¥* (2.11)

if f: X — Y is strictly Lipschitzian around  and X is Asplund. This immedi-
ately implies (2.10) for f = Vg: X — X*. A slight modification of the latter
proofl allows us to conclude that the mixed coderivative analogue of (2.11) holds
for every Lipschitzian mapping f: X — Y belween Banach spaces. This yields
(2.9). The last conclusion of the proposition follows from (2.9) and the fact
that de(x) # 0 for any locally Lipschitzian function on an Asplund space; see
Corollary 3.9 in Mordukhovich and Shao (1996a). [ ]

The next result contains an important formula for computing the basic nor-

] N N a o LT = onn
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space setting as well as in Asplund spaces. To derive second-order sum and
chain rules, we proceed similarly to Mordukhovich (1994a) and Mordukhovich
and Ouirata (2001) in the case of finite-dimensional spaces and apply calculus
rules for the normal and mixed coderivatives to sel-valued mappings generated
by the basic first-order subdifferential (2.6). In this way we have to restrict our-
selves to favorable classes of functions for which the corresponding first-order
subdifferential {but not coderivative) calculus rules hold as equalities, since nei-
ther normal nor mixed coderivatives enjoy monotonicity properties that may
allow one to use a more developed inclusion-type subdifferential calenlus for
{2.6). The results oltained are new in infinite-dimensional spaces; some of
them are new even in finite dimensions.

In this section we present sum rules for second-order subdifferentials (2.7)
and (2.8). The first theorem contains sum rules for two functions provided that
one of them is smooth,

THEOREM 3.1 Let X be o Banach spuce, lel p;: X = R, i = 1,2, be finite at &,
and let § € Iy + w2 )(E). Suppose that @, € C' wround & with iy, := Vi (E)
while s 15 an arbitrary exlended-real-valued function with 3 .= -4, € ﬂlpg{m}
The following ussertions hold for both nermal (8* = %) and mived (8° = 93,
second-order subdifferentials.

(i) Assumme that Vg i3 strctly differentioble of & with the strict derivative
V2o1(E) (this is automatic when @, € C?). Then

(01 + w2)(Z, ) (u) = V21 (Z) u + O a(Z, G2)(u) for allu e X**.

(i1) Assume that both X and X* wre Asplund, that the graph of dips is norm-
closed wround (E,9s), and thai either v, € C"' around £, or dps is PSNC at
(Z.5) and

Ao (2,51 )0(0) N (=8F,2(2,52)(0)) = {0}. (3.1)
Then for all u € X** one has
(01 + w2 )&, 7)(w) C (2, 51 )(u) + 0*pa(, G2)(u). (3.2)

Proof. It is easy to see that if ¢; € €' around Z, then there is a neighborliood
U of  such that the equality

1 + w2)(x) = Vi (x) + dpa(x) forall z € U (3.3)

holds whenever ws: X — R. Applying to (3.3) Theorem 3.5 from Mordukhovich
and Shao (1996b) and its counterpart for the mixed coderivative, we arrive
at the equality sum rule (i) for both second-order subdifferentials in arbitrary
Banacl spaces.

If the spaces X and X* are Asplund, we apply to (3.3), in tlu: case when
Fi = Vi is single-valued, the inclusion sum rule
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that holds for both normal and mixed coderivatives of set-valued mappings
between Asplund spaces under the mired qualification condition

Dy Py (2,51)(0) N (-Djy Fa(2,52)(0)) = {0}

and the assumption that one of the mappings F; is PSNC at (£, ). i = 1,2;
see Mordukhovich (1997) and Mordukhovich and Shao (1998). In the case of
second-order subdifferentials, the latter mixed qualification condition reduces
to (3.1). Note that 83,¢1(%,51)(0) = {0} and Vi, is automatically PSNC at
(z,51) if ¢y € C"! around . Thus we have justified (3.2) under the asswnptions
made in (ii). [ |

Next, let us derive second-order sum rules in the case when both ; are
nousmooth. In contrast to Theorem 3.1, we now impose symimetric assumptions
on ; to ensure the equality in the first-order subdifferential sum rule needed
to begin with.

Recall that a set-valued mapping 5: X = Y between Banach spaces is inner
semicontinuous at (Z,9) € gph S if for every sequence x, — & with S{x,) #
@ there is a sequence yr € S(x.) converging to 4. The mapping S is inner
semicompact at T if for every such xy = & there are yp € 5(x;) converging
to some § € S(x) along a subsequence of k = oo; the requirement § & 5(i)
is redundant if the graph of § is closed. Note that the inner semicompactness
property always holds if § is closed-graph and locally compact around # (locally
bounded in finite dimensions).

The two second-order sum rules in the following theorem are distinguished by
which of the above properties is imposed on the the multifunction S: X x X* =
X* x X* with the values

Sz, y)
= {(y,42) € X x X* |1 € Dpu(z), w2 € dpalz), n + 12 =9} (3.4)

THEOREM 3.2 Lel X and X* be Asplund spaces, let o X — R i=12 le
Ls.c. around &, and let § € gy +w2)(E). Assume thal there 15 2 neighborhood
U of & such that

A% ()N (—8%e2(z)) = {0} forall xe U

and thet one of the functions p; is SNEC at each x € U (both assumptions are
Sulfilled when one of p; @5 Lipschitz continuwous wround £). Suppose alse that
both functions @; are lower regular af each = € U, Then the following hold,
where 8% stands for either (2.7) or (2.8).

(i) Fiz (ih,92) € S(2.%) in (3.4) and suppose that § is inner semicontinu-
ous al (Z,5,11,72). Assume also thet the graphs of both do; are norm-closed
wround (E,9:), thel one of the mappings dyp; is PSNC ot (Z,§:), and that the
qualification condition (3.1) is fulfilled. Then the sum rule (3.2) holds for all
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(ii) Suppose that S s inner semicompact at (&,7) and that the assumplions
an (1) are fulfilled for any (i, 02) € Sle.y). Then for all w € X™ one has

& (1 + wa)@. 9)(u) C U [ o1 (2, 31) () + 2l &, diz2) (u)].
(i Fa2)ES(2.8)

Proof. By employing the Corollary 3.4 from Mordukhovich and Shao {19961:),
we get the equality

Ny + w2)le) = dp{a) + deplx) Torall we l/ (3.5)
under the general assumptions of the theorem. Now following the prool of
Theovem 3.1(i1), we apply to (3.5) the coderivative sum rules from Theorem 4.2

in Mordukhovich (1997). In this way we arrive at the conclusious of (i) and (ii)
under the assumptions made therein, |

4. Second-order chain rules

In this section we oblain several chiain rules for the second-order sulidilferentials
of compositions

o) 1= (o h)(e) = $(h(a)) (1.1)

involving inner mappings h: X' — # between Banach spaces and extended-real-
valued outer functions ¢ & — B, The [irst resull holds with no restrictions on
X, Z, and ¢ in (4.1), while imposing strong assumptions on the inner mapping,.

THEOREM 4.1 Let X and 2 be Banach spaces, lel the compesilion @ = ol
be finite at £ € X, and let £ := W(F) Assume thet b € C around & with the
derwative Vi strictly differentiable al &, and that the operator Vh(E): X — 2
15 surjective. Given i € dpl(x), we find the unigue veclor ¢ € Z° sulisfying Uhe
velulions

i=VhE)D, 0 d:E). {4.2)
Then one has the melusion

Fo(z, 7)(u) € VD, h)(Z)'u

+?Il{ij':?ﬁriﬁ'{.iﬁ}{?h{;ﬂ"uL we X", (4.3)

for both second-order subdifferentials 8* = ﬂ'ﬁr and 8% = ﬂi,. Moreover, (1.3)
holds as equality for 8* = 8% if the kernel of Vh(ZE) is complemented in X, i.e.,
there 15 a closed subspace L C X with L@ ker Vh(z) = X.

Proof. 1t is sufficient to prove inclusion (4.3) for 92 = 8%,. To furnish this, we
follow the prool of Theorem 3.4 in Mordukhovich and Outrata (2001) devel-
oped in the case of finite-dimensional spaces, with some changes allowing us to
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equality in (4.3) for @ = 8% under the assumptions made, which ends the proof
of the theorem. m

The next theorem contains second-order subdifferential chain rules for com-
positions (4.1) that do not require the surjectivity of Vh{z) while imposing more
assumptions on the outer function 4 and the spaces in question under frst-order
and second-order qualification conditions.

THEOREM 4.2 Let o = Yo h be composition (4.1) of e X — Z and = Z — R,
where the spaces X, £, und Z* are Asplund. Given & € X, we assume Hhat
h € C' wround T with the derivaltive Vh strictly differentiable ot z, that ¢ is
lower semicontinuous and lower reqular around z := h(z), and that k™! i3 PSNC
al (2,£). Assume also that ¢ 15 sequentially normally epi-compact around z and
that the first-order qualification condition

=y(h(x)) Nker Vi(z)" = {0} (4.10)

is sabisfied around T (the lost two conditions are automatic when 4 15 locally
Lipschitzian around ©). Then the following assertions hold for both second-onder
subdifferentiols 9° = 83, ond 8 = 95%,.

(i) Given § € 8p(2), we assume that the mapping §: X = X* = Z° with the
values

S(x,y):={ve Z* | vedP(h{x)), Vh(z)'v =y} (4.11)

s inner semicontinuous al (2,9,0) for some © € S(Z,§), thal the graph of
P 1z norm-closed around (2, 9), and thet the wazed second-order qualificalion
condition

A% p(h(2), v)(0) N ker Vh(z)* = {0} (4.12)

iz sabisfied for v = 0. Then, (4.3) holds.

(ii) Given y € dp(z), we gssume hal the mapping § i (4.11) is nener semi-
compact af (Z,9) und thel the other assumplions in (i) are solisfied whenever
v € Sz, y). Then

Po@am c | Vo, h)@) u+ Th(E) 92, 0)(Vh(2)u)],
vESEF)
n e X*™. (4.13)

Proof. It suffices to prove (i) for 9 = 3%, which implies the other statements
due to the definitions. We begin with application of Corollary 4.5 from Mor-
dukhovich and Shao (1996L) that ensures the first-order chain rule equality
{4.5), in some neighborhood U of Z, under the general assumptions of the the-
orem. This allows us to represent di in the composition form (4.6) with the
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holds, we conclude from the proof of Theorem 4.6 in Mordukhovich and Shao

(1996h) that

Fo(®,7)(u) C V2o, W) (@) (w)
+ D\ (9 0 h)(&, B)(VI(E)"u), ue X", (4.14)

if the mapping S in (4.11) is inner semicontinuous at (Z,§,¥). It remains to
compute the normal coderivative of the composition ek in (4.14). To furnish
this, we use Theorem 4.5 from Mordukhovich (1997) that ensures the coderiva-
tive chain rule

5 (o h)(E, 8)(v") € VA(E) o (Dyd)(Z.0)(v"), ©* € Z*, (4.13)
under the PSNC assumption on =" and the mixed qualification condition
(D}, 89)(2,9)(0) N ker VA(z)" = {0}.

Now substituting (4.15) into (4.14) and using Definition 2.1, we arrive at the
second-order chain rule (4.3) under the qualification condition (4.12). u

When Z is finite-dimensional (X may be not), some of the assumptions in
Theorem 4.2 either are satisfied automatically or can be simplified. In this way
we get the following result, where 8% stands for the common second-order
subdifferential of ¢: &™ — R while %y is the same as in the theorem.

COROLLARY 4.3 Let p = o h with h: X — B™. ¥:R™ — R, and i € dylE).
Assume that X is Asplund, that k € C' around & with the dertvalive strictly
differentiable al &, and that ¥ is Ls.c. and lower regular around 2 = hiz) with
closed yrup.ﬁ:f of M and =Y near 5 the latier holds, in particular, when b is
either continuous or conver. Assume also that (1.10) is satisfied al v = & and
thuot

* (2, v)(0) N ker Vh(E)* = {0} 4f
vEdP(Z) with Vihiz)v=4. (1.16)

Then one has the second-order chain rule (4.13).

Proof. The SNEC property is automatic for functions on finite-dimensional
spaces. Further, one can easily check that if (4.10) holds at & while Z is finite-
dimensional, it also holds in a neighborhood of . Indeed, assuming the contrary
and taking into account that dy(-) is a cone, we get sequences of 2 — & and
zp € 8%¢(h(xk)) with Vh(z)*z; = 0 and ||zg|| = 1 for all K € N. Then
z* € =4(z) with VA(Z)"z* = 0 and ||2*|| = 1 for a cluster point z* of {2}
due to the closedness of gph ™4 near 2; this contradicts (4.10) al &. Similarly
we can check that the mapping §: X = X" = R™ from (4.11) is always inner
semnicompact at (£, %) when the qualification condition (4.10) is satisfied at x.
Thus we get {4.13) from Theorem 4.2(ii). [ ]
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REMARK 4.4 If both spaces X and 2 are lnite-dimensional and the second-
order gqualification condition (4.12) holds, then all the other assumptions of
Corollary 4.3 are automatically satislied for the class of strongly amenable func-
tions @, i.e., for such ¢: R" — R that are locally represented in the composition
form (4.1) with h € C? and a proper, ls.c., convex function ¥: R™ — R under
the first-order qualification condition (4.10) at &; see Section 10.F in Rockafellar
and Wets (1998). Terry Rockafellar {personal communication) developed an-
other proof of the second-order chain rule (4.13) in this case based on quadratic
penalties.

Note that if ¢ is C'! and lower regular around 2, then all the assumptions
of Theorem 4.2 involviug ¢ are automatically satisfied. In this case the second-
order chain rule {4.13) reduces to the form (4.3) and can be simplified due to
the scalarization formula (2.10). On the other hand, if h is Lipschitz contin-

uous around F and ¢ is continuously differentiable around z, then there is a
neighborhood U of # such that

Ao h)(z) = HVP(h(x)), W(x) = DY) o V(h(x)), zel, (4.17)

with no other assumptions on the composition data in (4.1); see Theoremw 6.5
in Mordukhovich and Shao (1996a), the proof of which holds for any Banach
spaces, and the mixed scalarization formula (2.9). This helps us to evaluate the
second-order subdifferentials of compositions involving simooth outer functions
and nonsmooth inner mappings. For the formulation of the next theorem it is
convenient to use the second-order coderivalive sets to e X — £ at (&,0,5) €
X % 2° x X* with § € &(3, h)(E) defined as follows

D2h(z, 7, §)(u) == (D" h))(&, 6, §)(u), we X", (1.18)

where D" stands for either normal (D = Dy, then D* = D%,) or mized (D* =
Dy, then D* = D3,) coderivative of the mapping (x,v) — &{v,k)(x). One
easily has

D3 h(z, 9, 9)(u) = D5 b, o,5)(u)
= (V{5, h)(2)"uw, VR(Z)""u), ue€ X", (4.19)

when & is C* around # with Vh strictly differentiable at this point.

THEOREM 4.5 Let l: X — Z be v mapping belween Banach spaces thut is Lip-
schilz continvous wround &, lel ¥n £ — B be continuvously differentrable around
Z:= hx), and let © := Vi{(2). The following assertions held for beth second-
order subdifferentials 0* = 9% and & = 83, of the composition ¢ = o |
at (£.5) with § € d¢(z), where D? stands for the corresponding second-order
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from the same theorem. Combining this with (4.24), we arrive at {4.21).
Finally, let ¥y be strictly differentiable at 2. Then (4.25) holds in any
Banach spaces, which follows from Theorem 4.6 in Mordukhovich and Shao
(1996b). This gives the last statement in (ii) and concludes the prool of the
theorem. [ |
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