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Abstract: We study two types of second-order subd ifferent ials 
of ex tended-real-va lued functiorr s oa Banach spaces tha t are illlpor­
tant for applications in variational a nalysis , especia ll y to sens itivity 
issues ami second-order opt irua lity coaditious. The ruain concern of 
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1. Introduction 

Secoud-order generalized difFerentiat ion of aoasuJ ooth funct ions is a rapidly 
growing a rea of a ualysis, espec ia lly related to its variational aspects , optimiza­
tion, a nd sensitivity under perturba tions . There is a varie ty of secoml-order 
geuerali zed d ifle reatial constructions useful ia optimization am! variational anal­
ysis. The book of Rockafell ar a nd Wets (1998) a nd Bounaas a nd Shapiro (2000 ) 
conta in systematic expositions a mi rcfereuces ou seco nd-order theories of gen­
era li zed differe11tia tiou a nd their a pplica tions to optiruiza tion-related problellls. 

T he classical a nalysis offers tl1 e Lwo possibilities of defining tl1 e second-order 
derivat ives: via derivat ives of derivatives ami vi a Tay lor-like expaasious of the 
origin a l fuuction. It is well known tha t these two a.pproacbcs are generally 
not equi valent. Both of them have counterparts iu nousu1ooth a ualysis , where 
various sccoud-order cous tnrcLioas a re def111 ed in these ways; see the books HICn­
tioned above ami their references. Regarding the '·derivative-of-deri vative" ap­
proach , there are various possibilities of defining the second-order deri vat ives of 
IIOIISIIIOOL!t fuu ctious depending on wl1a.t is used as an a nalogue of the first-order 
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derivative and what is fur ther employed for the differeutiatiou/ approximatiou 
of first-order constructions. 

Motivated by applicatious to sensitivity aualysis in uonsrnootlt optimi~a­
tion, a notion of "second-order subdifferential" was introduced in Mord ukhoviclt 
(1992) for extended-real-valued functions on finite-dimensional spaces. This con­
struction was defined as the coderivative of the first-order subdifferential map­
ping and can be viewed as a reali~ation of the duul "derivative-of-derivative" 
approach in nonsmooth analysis, since the first-order subdifferential is a nat­
ural counterpart of the classical gradient for uonsmootlt functions while the 
coderivative provides a dual-space approxirnation of the set-valued subgradient 
mapping; see Section 2 for more details. 

The second-order subdifferential and associated constructions were success­
fully applied to a range of problems in optimi~ation and variational analy­
sis. This particularly includes: the study of robust Lipschit~ian stability of 
solutions maps to parametric variational and hernivariational inequalities in 
Mordukhovich (1994b, 1994b); complete characteri:oations of strong regularity 
for variational inequalities over convex polyhedra iu Dontchev and Rockafellar 
(1996); second-order characteri:oations of stable opt.imal solutions to uo!lsmooth 
optimi:oation problems in Poliquin and Rockafellar (1998) ;-tlld Levy, Poliquill 
and Rockafellar (2000); necessary optinmlity conditions for mathematical pro­
grams with equilibrium constraints in Outrata (1999, 2000), Treiman (1999), Ye 
(2000), Ye and Ye (1997), ami Zhang (1994): seHsitivity analysis for mechauical 
equilibria in Mordukhovich and Outrata (2001), etc. 

This paper deals with extensions of the secoucl-mder subdiffereutial to f'tlllc­
tions defiued on Banach spaces. We propose two extensions depending 011 whaL 
kind of coclerivatives is applied to the first-order subdiffereutial mapping. Our 
main concern is to develop the basic calculus (sum aud chain) rules for tli e 
second-order subdifferentials important for the theory and applicatious. Kuown 
results in Litis directions are available only in finite-dimensional spaces; see Mor­
dukhovich and Outrata (2001). We extend these results to the case of infiHite­
dirnensional spaces and olltain two kinds of calculus rules. One part of the cal­
culus results hold in arbitrary Bauach spaces imposing stronger requirements 
on functions and mappings involved in compositions. The other part requires 
the Asplund structme of the spaces in question (in particular, their reflexiv­
ity) imposing essentially more general assumptions on functions and mappings. 
Note that some of the important results presented below are new even in finite 
dimensions. 

The rest of the paper is organiJ~ed as follows. Section 2 contains basic defi­
nitiolls and properties of the second-order su bdifferentials and related construc­
tions used in the sequel. Section 3 is devoted to second-order sum rules. In the 
final Section 4 we present the main results of t he paper on chain rules for the 
second-order subdiffereutials. 

Throughout the paper we use standard notation of variational analysis; see 
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F: X =l X * between a Bauach space X and its topological dual, 

LilllsupF(x) := {:r* E X*j:Jsequeuces :~;k--+ :i; and :t'j. ·~ :r* 
.J; ---t i: 

with :c'j. E F(:ck) for all k E N} 
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dcuotes the seq'Uenl·ial Pa·inleve- J(·umlo·ws/,;·i U]JfJe1· (oute-r ) liTni l with respect to 
the llOl'Jll topology iu X a.nd the weak* topology in x ·. Depeuding 0 11 context, 

the S,Y lltbols :c ~ :1: aud :r .'£, :1: for se ts \2 and functious cp lllCau , respectively, 
tha t X--+ :1: with a: E \2 and :r--+ :1: wit h cp(:r)--+ cp(:I:). 

2. Basic definitions and some properties 

lu t his secLion we in troduce the basic second-order constructions of our study, 
discuss some of their properties, a llCi preseHt the necessary prelirniuari es used in 
what fo llows. We begin with the first-order coustructions of geuemlized uonnab 
to se ts, coderi vatives of set-valued llla ppings, and subdifferentials of ex tended­
real-valued fuuctions . Regardi ug these obj ects, the reader can find more det ail::; 
aud refcreuces iu the books of Mordukhovich (1988) and Rockafellar and Wets 
(1998) for fiuit e-dimcusioHal spaces and in the papers of Mordukhovich (1997) 
and Mordukhovich and Shao (1996a, 1996b) in infini te dimensions. 

We start geometrically with t he set of E. -'nOl"IIWls to n c X a t :r E n defined 
by 

(2.1 ) 

for any subset n of a Banach space ami any E. ~ 0. As usuaL we put Fl10 (:c; 12 ) = 0 
if :r ~nand denote (2 .1) by N(:r: !:1) fo r E.= 0. The basic '110 '1"/IWl C0'//.1:'. ton a t 
:1: E r2 is defined via the sequential Painleve-I< ura.towski limit 

N(:I:; !:2) := Liu1 sup JV"(:r; n), (2.2) 
:r ---+ :t 
d O 

tha t is, :r* E N(:I:; !:1) if ami only if there are sequences E. t.: l 0, :c~,; --+ :1: , ami 

:r~ w~ :c* such that X !: E n a mi :r'j. E Nc; k (:c , ; !:1) for all /;: E N. If n is locally 
closed and X is au Aspl-und space (i.e., such a Banach space ou which every 
couvex coutinuous functions is generically Frechet differentiable, in particula r, 
any reflexive space; sec Phelps , 1993 for rnorc informat ion) , then one cau equi v­
alently put e = 0 iu (2.2) due to Theorem 2.9 from Mordu khovich and Shao 
(1996a). Note tha t , despite the nouconvexity of this uorrnal cone, it enjoys a. 
fair ly rich calculus iu both finit e and infinite dimeusions . 

Considering a set-va lued mapping F: X =l Y between Bauach spaces, we 
dcfiue its E. - coder-ival·ive J5; F(x, y) : Y* =l X * a t (:c, y) through the set of E.­

HOnnals (2. 1) to the graph by 
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and denote it by D*F(x ,y)(y*) when c: = 0. We may omit yin (2.3) for (x ,y) E 

gph F if F is single-valued at :c. Based on (2.3) , we now define two limiting 
coderivatives ofF at (x, y) E gplt F depending on the sequential convergence 
(weak* or norm) in Y*; in X* we always use the weak* convergence. The normal 
coder·ivative of F at (x , y) is a multifunction D jy(:c, y): Y* =l X* with the values 

D'fvF(x ,y)(y*) := Lim sup f5;F(x ,y)(y*) 
(:r ,y)->(x,y) 

y'"~y· 
dO 

= { x* E X*l (x* , -y*) E N((x ,y) ;gphF)} , 

while the mixed coderivative is defined by 

D~1 F(x, y)(y*) := Lirnsup f5;F(x, y)(y*). 
(x,y)->(x ,y) 

y"' --+Y"' 
dO 

(2.4) 

(2.5) 

Obviously, DMF(x, y)(y*) C DjyF(x, y)(y*) for ally* E Y*, and both coderiva­
tives agree when dim Y < oo (in this case we denote them by D* F(x, y)). 
However, (2 .5) may be strictly smaller than (2.4) even for single-valued Lips­
chitzian mappings with values in Hilbert spaces that are Frechet differentiable 
a t the point in question; see Example 2.9 in Mordukhovich and Shao (1998). 
Note that c: > 0 may be equivalently removed from the definitions (2.4) and 
(2.5) if both X and Y are Asplund and F is locally closed-graph. 

Let <p: X -+ 'i := [-oo, oo] be an extended-real-valued function fi nite at:/:, 

and let E., : X =tlR be the epigraphical multifunction 

associated with <p. The (first-order) basic s'Ubdiffer·ent·ial and sing'Ular s'UbdiffeT­
ential of <p at x are defined, respectively, by 

Recall that o00 r.p(x) = {0} if r.p is locally Lipschitzian around x. If <p is lower 
sernicontinuous (l.s.c.) around i, then the basic subdifferential in (2.6 ) admits 
the representation 

or.p(:l: ) = Lirn sup Bgr.p(x) 
'I' -

X--+X 

<: 10 

in terms of the c:-subdifferentials 

~ r I <p('U)- r.p(x) - ('c* 'U- x) ~ 
>l ,_(,.\ ·- ... • r V* 1; .. , ;,.,f __ ' ' '> _,. l 
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where c can be omitted if X is Asplund. It is well known that both orp(:c) 
and Brp(:c) := B0 rp(:c) are non empty on dense subsets of their domains, for 
any l.s.c. function rp, if and only if X is Asplund. Moreover, orp(x) # 0 if 
rp is Lipschitz continuous around :c. Similar characterizations hold in terms of 
Frechet normals and basic normals at lJoundary points of closed sets; see Fabian 
and Mordukhovich (1998). 

The functiou <p is called lowe·r r·ey·ulaT' at i; if orp(:c) = Brp(:C). It happens, 
in particular, when <p is convex and also for some important classes of non­
convex functions; see Rockafellar and Wets (1998), where a stronger notion of 
subdifferential regularity has been considered in finit e dimensions. 

Now let us introduce the main objects of our study: second-onle1· subd'if­
fer-er~t'ials of extended-real-valued functions on Banach spaces . Generally we 
construct them as codeT'ivat'ives of jiTst-o·rde:r s·abd'if/eTent'ials. In this paper we 
apply this scheme to the basic first-order subdifferential defined in (2.6) and the 
two kinds of coderivatives defined in (2.4) and (2 .5). 

DEFI NITIO N 2.1 Let X be a Banach space , let rp: X --> iR be finde at i, and let 
y E orp(:c) . Then the ·rrwpviny o'Jvrp(:c,y):X** =l X* w·ith the vaZ.aes 

o'Jvrp(:c, y)('u) := (D'fvorp)(x, y)(u), u EX** , (2.7) 

·is called the normal second-order sub differential of <p at x ·relat·ive to y. 
S·in~ ·ilady, the rnapving ox1 rp(x, y): X** =l X* wdh the va.l-aes 

(2.8) 

'is the mixed second-order subdifferential of <p at :c Telat'ive toy. 

When X is finite-dimensional, both constructions (2.7) and (2.8) reduce to 
the second-order subdifferential 82rp(:I , y) introduced in Mordukhovich (1992). 
The following result shows that, for C2 (and for slightly more general) func­
tions on arbitrary Banach spaces, values of both second-order subdifferential 
mappings in Definition 2.1 are singletons coincidiug with images of the adjoiut 
operator to the classical second-order derivative. 

PROPOSITION 2.2 Let X be a Banach space, and let rp: X -->IE. be cont-inuously 
d'iffeTent·iable amund x . Assume also that the deTivat'ive opemto·1· \lrp: X--> X* 
is stT'ictly d·iffer·entiable at x w-ith ds str-ict de·,..ivative denoted by \72rp(x). Then 
one has 

Pmof. It follows from the proof of Theorem 3.5 in Mordukhovich aud Shao 
( 1996b) that 

T"'\* r 1-\1 * \ T"'\* r t-\1 * \ * - 17* 
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for any mapping J: X __, Y strictly d ifferentiable a t :1:. If <p E C 1 around i , 
then Drp(x) = {V'rp(x)} for all :r uear :1: . Applyiug the above coderiva tive result 
to the mapping f: X __, X* with !(:1.:) := \lrp(:c) and using Definition 2.1 , we 
arrive at the desired conclusion. • 

Next we present useful descriptio11s of the second-order subdiffereuti als for 
locally C1

•
1 functions rp : X __, 1R, i.e. , such functions rp that arc continuously 

differentiable arouud i with the derivative V' rp Lipschitz continuous around this 
point. The following proposition gives au uncomlitioual formula for the mixed 
second-order subdifferential (2.8) of any C 1• 1 function on an arbitrary Banach 
space, wl1ile the corresponding represeutation of the normal oue (2. 7) holds 
uuder additioual requirements 011 X a.11d <p. 

Accordi11g to Mordukhovich and Sha.o (1996a.) , f: X __, Y is st·rictly Lips­
chitzian arouud :1: if it is Lipschitz continuous around this point ami the sequence 
{[f(:~:k + t~ch) - f(:~:k)l/t:d admits a norm convergent subsequence wheuever 
:r k __, i:, t;~,, j 0, a11d h E X. It is proved by Tl1ibault (1997) that the lat­
ter property is actually cqui valeut to the basic vers io11 of his origiua.l coucept 
of CO'Irt7Jactly L-ipschilzian ·mapvings iutroduced iu Thiba ult (1978) . Note th a t 
this class includes, in parti cular , Fredl10lrn integral operators with Lipschitzian 
kernels, which are irnportaut for applicat ious to opti1nal coutrol. 

PROPOSITION 2.3 Let X ue a Banach space, U'lullel rp:/ __, IR ue a C 1·1 fu:n.c­
tion amnnd i . Then 

(2 .9) 

If, in. addition, X is Aspl-und and V'rp ·is str·icllyjc0111paclly Lipscll'ilziau. amnnd 
i, then 

(2.10 ) 

Moreove1·, uoth sets Diirp(x )(n) and 8~rp(i)('U) a·re nonent.ply for auy u EX** 
if <p E C1

•
1 around x and X is Aspl·and. 

PToof. It is proved in Theorem 5.2 from Mordukhovich and Shao (1996a) tb a t 

D*f;f(i)(y*) = 8(y*, f)(i) for a ll y* E Y* (2.11) 

iff: X __, Y is strictly Lipschitzian arouud i and X is Asplund. This immedi­
ately implies (2.10) for f = \l rp: X __, X*. A slight rnodificatiou of the latter 
proof allows us to conclude tha t; the mixed coderivative analogue of (2.11) holds 
for every Lipschitzian mapping f: X __, Y between Banach spaces. This yields 
(2.9). The last conclusion of t he proposition follows from (2.9) and the fact 
that orp(x) -::f. 0 for any locally Lipschitzian function on an Asplund space; see 
Coroll a ry 3.9 in Mordukhovich and Shao (1996a). • 

The next result contai ns an importaut formula for computing the basic nor-
- 1 ~ - - - J - • 
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Banach spaces. Its proof is rathe r involved and is given ill Mordukhovich and 
Waug (2002). 

PROPOSITION 2.4 Let .f: X ---+ y ue (J, 'IIWJJ]J'i'll.g uetween Eunuch spaces, und let 
A C Y withy:= f(x) EA . As!5u'lfl.e tlwl f i!5 sl·riclly different·iuule ut :I with the 
smjective de·rivalive \l.f (:I): X ---+ Y. Th en one hus 

N(x; r 1 (A))= \l.f (x)* N(y; A), 

where f- 1(A) := {:c EX l.f(:c) E A}. 

Finally in this sectiou , let us consider compactness-like properties of the set­
valued mappings am! exteuded- rcal-valucd functions tha t arc automat ic iu finite 
dimeusions while playing a ll essential role in iufi11ite-dimellsional variat ioual 
ana lysis . We say that a set-valued mappiug F: X =i Y between Banacb spaces 
is puT'liully seq·uenf'iully ·rw'I"ITw.lly cmnpact (PSN C) at (:I, y) E gph P if for any 
sequence ( Ek , :c k , Yk, x'k, yZ) E [0 , oo) x (gp!t F) x X * x Y* satisfyiug 

(:c'k ,iZ) E Nc:k ((xk , yi.:); gphF ), Ek J. 0, 

(xk, yk)---+ (x, y) , IIYZII---+ 0, and :cr. ·~ 0 

one has ll x'k ll ---+ 0 as k ---+ oo. This property was fon11ulated iu Mordukhovic!J 
and Shao (199Gb) with Ek = 0 for all /,: E N, wl1 ich is equi valent to the above 
defi nition if both spaces X and Y a rc Asplund am! F is locall y closed-graph; sec 
also Joffe (2000) and the references therein for rela ted compactness-like proper­
t ies, their genesis and cha racterizations. 

T he PSNC property obviously holds if X is finit e-dimensional. In general 
Banach spaces this property is ensured by some Lipsclli tz- likc behav ior of mul­
tifunctions. In pa rti cular , F is PSNC at (i , y) if it is pa rt ia lly cou1pact ly epi­
Lipschit zian at this point in the sense of Joumni am! Thibault (1995). Allother 
illtportant property ens uring the PSNC iu the Banach space frarnewor k is the 
so-called "pseudo-Lipschitzian" property in troduced by Aubin (1984) ; see Mor­
dukbovich (1997), Rockafellar and Wets (1 998) , ami the references tbereia for 
characterizations of the lat ter property and their applications in finit e and infi­
niLe dilllensious. 

Employiug the PSN C property in the case of a constant mappiug F(:c) = n, 
we get the seq'Uentiul nonnul cumpactnes!5 (SNC) properLy of a se L. We say 
tha t a function <p: X ---+ 1R is seq'Uentiully nunnally epi-cornpact (SNEC) a t :I if 
its epigraph is SNC a t (x,<p( x )). It always ltappeus when <p is compactly epi­
Lipschi tzian in the sense of Borwein and Strojwas (1985): iu parti cular , wlie11 
either <p is locally Lipschitzian a round :r or X is fiait e-ditltensiolla l. 

3. Second-order sum rules 

The maiu concern of t his paper is to develop principal calculus (sulll am! 
cha in ) rules for the second-order subdifferentials from Definition 2.1 in iufini te-
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space setting as well as in Asplund spaces. To derive second-order sum and 
chain rules, we proceed similarly to Mordukhovich (1994a) and Mordukhovich 
and Outrata (2001 ) in the case of fi nite-dimensional spaces aud apply calculus 
rules for the normal and mixed coderivatives to set-valued mappings generated 
by the basic first-order subdifferentia] (2.6). In this way we have to restrict our­
selves to favorable classes of functions for which the corresponding fi rst-order 
subdifferential (but not coderivative) calculus rules hold as e£rualdies, since nei­
ther normal nor mixed coderivatives enjoy rnonotonicity properties that may 
allow one to use a more developed inclusion-type subdifferential calculus for 
(2.6). The results obtained are new in infinite-dimensional spaces; some of 
them are new even in finite dimensions. 

In this section we present surn r"ules for second-order subdifferentials (2. 7) 
and (2 .8). The first theorem contains sum rules for two functions provided that 
one of them is smooth. 

THEOREM 3.1 Let X be a Banach space, let 'Pi: X---+ i , ·i = 1, 2, be finite at :T; , 

and let fj E 8(r.p1 + 'P2)(:T;) . Suppose that 'Pl E C1 aro·und i wdh Yl := V'r.p1(:T;) 
wh-ile 'P2 ·is an arbitm·ry extended-real-valued funct ·ion with fjz : = fj- Yl E ar.pz ( :1;). 
The following assert·ions hold j o'f' both no·rrnal ( 82 = o'fv) and Tniud ( 82 = EJ'fw) 
second- o·r-det· s·ubdiffeTent·ials. 

( i) A ss·ume that \7 r.p1 ·is stTictly d·iffer·entiable at :c with the str"ict deT'ivat·ive 
\72 'Pl ( i) ( th·is is a·utontatic when r.p1 E C2). Then 

82(r.p1 + 'P2)(i, y)(u) = V' 2r.p1(i)*u + 8 2 r.pz(:c, fj2)(u) joT all ·u EX**. 

(ii) Ass'U'fne that both X and X* a·1·e Aspl-und, that the gmph of or.pz ·is 'IW'I "tn ­

closed arv·und (X' Y2)' and that edhe'f' 'Pl E C1 '1 aro·und X! U'f' O'{J2 is p SN c at 
(x , y2) and 

(3.1) 

Then fo ·r all ·u E X** one has 

(3.2) 

Proof. It is easy to see that if r.p 1 E C 1 around i, then there is a neighborhood 
U of x such that the equality 

a(r.pl + r.pz)(:c) = \i'r.p1(x) + or.p2(:c) for all x E U (3.3) 

holds whenever r.p2: X ---+ i. Applying to (3.3) Theorem 3.5 from Mordukhovich 
and Shao (1996b) and its counterpart for the mixed coderivative, we arrive 
at the equality sum rule (i) for both second-order subdifferentials in arbitrary 
Banach spaces. 

If the spaces X and X* are Asplund , we apply to (3.3), in the case when 
F1 = V'r.p1 is single-valued , the inclusion surn rule 
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that holds for both normal and mixed coderivatives of set-valued mappings 
between Asplund spaces under the m-ixed qualification condition 

and the assumption that one of the mappings Fi is PSNC at (x, Jj;), i = 1, 2; 
see Mordukhovich (1997) and Mordukhovich and Shao (1998). In the case of 
second-order subdiffereutials, the latter mixed qualification condition reduces 
to (3 .1). Note that ax1 cp 1(x, :i.h)(O) = {0} and \7cp1 is automatically PSNC at 
(x, Jh) if cp 1 E C 1

•
1 around :c. Thus we have justified (3.2) under the assumptions 

made in (ii). • 

Next, let us derive second-order sum rules in the case when both cp; are 
nonsmooth. In contrast to Theorem 3.1, we now impose symmetric assumptions 
on 'Pi to ensure the equality in the first-order subdifferential surn rule needed 
to begin with. 

Recall that a set-valued mapping S: X =l Y between Banach spaces is inner 
serrricontirruo'Us at (:c, y) E gph S if for every sequence Xk ___, :c with S(:ck) -:f-
0 there is a sequence Yk E S(xk) converging to y. The mapping S is inner 
semicornpact at x if for every such Xk ___, i there are Yk E S(:ck) converging 
to some y E S(x ) along a subsequence of k ___, oo; the requirement y E S(:"c) 
is redundant if the graph of S is closed . Note that the inner semicompactness 
property always holds if S is closed-graph and locally compact around x (locally 
bounded in finite dimensions). 

The two second-order sum rules in the following theorem are distinguished by 
which of the above properties is imposed on the the multifunction S: X x X* =l 
X* x X* with the values 

S(x,y) 

:= {(yl,Y2) EX* X X* I Yl E acpl(x), Y2 E 8cp2(x), Yl +Y2 = y}. (3.4) 

THEOREM 3.2 Let X and X* be Aspl·und spaces, let cp 1: X ___, i, ·i = 1, 2, be 
l.s.c . aro'Und x, and let y E 8(cp1 +cp2)(x) . Ass'Urne that there is a neighborhood 
U of x s·uch that 

and that one of the functions 'Pi is SNEC at each :z; E U (both ass'Umptions are 
fulfilled when one of 'Pi is Lipschitz contin·uo·us am'Und x). S·uppose also that 
both functions 'Pi aTe lower· reg'Ular· at each x E U. Then the following hold, 
wheTe a2 cp stands for either (2. 7) OT' (2.8) . 

(i) Fix (Jh,Y2) E S(i,y) in (3.4) and suppose that Sis inne·1· seTnicontinu­
o·us at (x,iJ,yl,fJz). Ass'Ume also that the gmphs of both acpi are norm-closed 
ar-o'Und (i , y;), that one of the rnapp'ings acpi i8 PSNC at (i, y;), and that the 
q'Uaz.ification condition (3 .1) is fulfilled. Then the s'Urn rule (3.2) holds for all 
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(ii) S'Uppose that S is inner sem·icompac:t at (x, y) u:nd that the ass·umpt·ions 
in (i) a·re.fulfilledfor an.y (fJJ , fJ2) E SUr,y). Then for- all ·u EX** one has 

u 
(!Jt ,!I<)ES(x,!J) 

PToof. By ernploying the Corollary 3.4 from Mordukhovich and Shao (1996b), 
we get the equality 

(3.5) 

under the general assumptions of t he theorelll. Now followiHg the proof of 
Theorem 3.1(ii), we apply to (3 .5) the coderivative su1u rules from Theorem 4.2 
in Mordukhovich (1997). In tliis way we arrive at the couclusions of (i) aml (ii) 
under the assumptions made therein. • 

4. Second-order chain rules 

In this section we obtain several chain rules for the second-order su bdi fferentials 
of compositions 

<p(:c) := (¢ o h)(:c) := 4J(h(:t)) ( 4.1) 

involving inner ruappiugs h: X __, Z between Banach spaces and extended-real­
valued outer functions 4J: Z __, i:. The first result holds with no restrictions on 
X, Z , and ·¢ in (4.1), while imposing strong assumptions on the inner mappi11g. 

THEOREM 4.1 Lel X and Z /;e Banach spaces, lel the cmn7Josdion <p = ·~J o h 
be finite at :(; E X, and let z := h(:c) Ass·u·rne llwl h E C1 am'Und :1; with the 
de·rivative V h stTictly difl'eTen l'i able at ;I;, and that the OJJemtor V h(x ): X __, Z 
is surjective. Given!} E o<p(x), we find the 'Uniq'Ue vector fiE Z* satisfying the 
·relations 

fi = Vh(x)*:u, DE 8·1/J(z). (4.2) 

Then one has the ·inclu.s·ion 

8 2<p(x , y)(u) c V 2 ('1J, h)(x)*u 

+ Vh(x)*o~ ·t/J(z,D)(Vh(x)** ·u) , ·u EX**, ( 4.3) 

faT both second-or-der subdifferentials 8 2 = [)~ and 8 2 = oR1 . MoTeoveT, ( 4.3) 
holds as equaldy .faT 82 = [)~ ·if the kernel of'lh(x) is complemented in X, i.e., 
there is a closed subspace L C X with L EB ker 'lh(x) =X. 

Pr·oof. It is suf£cient to prove inclusion ( 4.3) for 8 2 = 8~. To furnish this, we 
follow the proof of Theorem 3.4 in Mordukhovich and Outrata (2001) devel­
oped in the case of finite-dimensional spaces, with some changes allowing us to 
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We begin with the observation that the surjectivity of \lh(x) implies the 
coderivative and first-order subdifferential chain rules 

D"tv(F o h)(:c, y)(y*) = \lh(:c)* D"tvF(h(x), y)(y*), 

x E U, y E (F o h)(x) , y* E Y* , 

8(·1/J o h)(x) = \lh(:c )*o·~~(h(:c)), x E U, 

( 4.4) 

(4.5) 

where F: Z =i Y is an arbitrary multifunction between Banach spaces, ·1/J: Z --> 

i", and U is a neighborhood of :L Indeed, ( 4.4) follows from Proposition 2.4 
applied to the mapping (h, I): X x Y --> Z x Y with the identity operator 
J:Y--:-' Y; we obviously have (h,J)- 1(gphF) = gph(F o h). The first-order 
subdifferential rule (4.5) is a special case of (4.4) for F = E 1 : Z =i JR. 

Observe further that due to (4.5) the composite function (4.1) admits the 
representation 

o1.fJ(x) = (f o G)(:c), :c E U, ( 4.6) 

where the mappings f: X X Z* --; X* and G: X =i X X z· are defined by 

f( :c, v) := \lh(:c)*v, G(:c) := (:c, 8·1/J (h(x))) . (4.7) 

Taking into account that f in ( 4. 7) is smooth and the operator \l h(-) is surjec­
tive near :c, we apply to (4.6) the coderivative chain rule from Theorem 4.6 in 
Mordukhoviclt aud Shao (1996b) the proof of which ensures the inclusion 

D"tv(f o G)(x, y)('U) 

C D'tvG(:c , :c, 'D) (\12 (TI, h) (:c)* u, \l h(:c)** 'U), tt E X**, ( 4.8) 

umler the assumptions made, where D is uniquely defined by (4.2). It easily 
follows frorn the construction of G in ( 4. 7) and the coderivative definition (2.4) 
that 

D"tvG(x, x, D)(x*, v*) = :c* + D"tv(EN o h)(x, D)(v*), 

:c * E X*, v* E Z**. ( 4.9) 

Now , using the coderivative chain rule (4.4) for F = 8'¢1 and combining it with 
(4.8) and (4.9) , we arrive at (4.3). 

If \lh(:c) is invertible (i.e. , one-to-one in addition to its surjectivity), then 
the well-known theorem of Leach ( 1961) ensures that the inverse mapping h - 1 is 
locally single-valued and strictly differentiable at h(:c) with the strict derivative 
\lh(:c) - 1 at this point. Applying inclusion (4.3) to the composition ·ljJ = I.(JOh- 1, 

we get the opposite inclusion in this case, which justifies the equality in ( 4.3) 
for invertible \lh(:c ). Finally, using the procedure suggested in Exercises 6.7 
and 10.7 of Rockafellar and Wets (1998) for first-order chain rules in finite 
dimensions , one can reduce the general case of surjective \lh(:c) with the com-

, • 1 1 """"" ' ( - \ • • 
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equality in ( 4.3) for 8 2 = 8'fv under the assumptions made, which ends t he proof 
of the theorem. • 

The next theorem cont ains second-order subdifferential chain rules for corn­
positions ( 4.1) that do not require the surjectivity of V' h( x) while imposing more 
assumptions on the outer function ·t/J and the spaces in question under first-order 
and second-order qualifica tion conditions. 

THEOREM 4.2 Let cp = ·tjJ o h be compos'il'ion (4.1) of h: X---+ Z and ·t/J: Z---+ i, 
where the spaces X, Z, and Z* aTe Aspl-und. G·iven x E X , we assmne that 
h E C1 aTO'Und x with the der'ivat'ive V' h str·'ictly d·iffeTent'iable at x, that ·tjJ is 
lower sem'icont'inno·us and loweT Teg·ular am·und z := h( x), and that h -l ·is P SN C 
at (z, x). Ass·ume also that ·t/J 'is seq·uent'ially noTrnally ep'i-compact aro·und z and 
that the fiTst-o·rdeT q'Uaz.ificat'ion condd·ion 

800 ·1/J(h(x)) n kerV'h(x)* = {0} ( 4.10) 

'is sat-isfied aro·und :c (the lust two condd'ions aTe a·utomat'ic when ·t/J 'is locally 
L-ipschitz-ian am'Und :c). Then the follow-ing asseTt'ions hold joT both ~:~econd-oTder 
subd·iffeTent·ials 82 = 8Jv and 82 = 8~1 . 

( i) G-iven y E 8cp( x), we a~:~s·ume that the mapp-ing S: X x X* :::t Z* w·ilh the 
val-ues 

S(x,y) := {v E z· I v E 84J(h(:c)), V'h(:c)*v = y} (4.11) 

zs inner· sern'icont'in'Uous ut (x , y, ,-u) joT smne ·u E S(:c, y), that the gmph of 
8·tjJ 'is nann-closed around (z, D), and that the m·ixed second-oTdeT qual·ification 
condd·ion 

8~1 ·1/J(h(x), v)(O) n ker V' h(x)* = {0} ( 4.12) 

'is l:iat·i~:~fied for v = 'li. Then, (4.3) holds. 
(ii) G-iven y E 8cp(x), we as~:~·ume that the mapp-ingS in (4.11) ·is inner semi­

compact at (x, y) and that the otlteT ass·umpt·ions in (i ) aTe satisfied whenever 
v E S(x, y). Then 

EPcp(:c, y)('u) c U [V' 2 (v, h)(x )*'U + V'h(i)*8'fv·tj;(z, v)(V'h(x)**·u)], 
vES(i:,y) 

'U EX**. ( 4.13) 

Proof It suffices to prove (i) for 82 = 8Jv, which implies the other statements 
due to the definitions. We begin with application of Corollary 4.5 from Mor­
dukhoviclt and Shao (1996b) that ensures the first-order chain rule equality 
(4.5), in some neighborhood U of x, under the general assumptions of the the­
orem. This allows us to represent 8cp in the composition form ( 4.6) with the 

/. -· ~ - .. . . .. 
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holds, we conclude from the proof of Theorem 4.6 in Mordukhovich and Shao 
(1996b) that 

o~tp(x, y)('u) c \7 2 (·D, h)(x)*(u) 

+ D'N(a't/J o h)(:c, ·u )('Vh(:T: )**tL) , ·u EX**, (4.14) 

if the mappingS in (4.11) is inner semicontinuous at (i,y, ·u) . It remains to 
compute the normal coder ivative of the composition o·lj;o h iu (4.14) . To furnish 
this , we use Theorem 4.5 from Mordukhovich (1997) that eusures the coderiva­
tive chain rule 

D'N (a't/J o h)(x , ·u)(v*) c 'Vh(:T:)* o (D'No·tf;)(z, D)(v*), v* E Z** , ( 4.15) 

under the PSNC assumption on h- 1 a llCI the mixed qualification condition 

(D'Mo't/J )(z, D)(O) n ker \7 h(x) * = {0}. 

Now substituting (4.15) into (4.14) a nd using Definition 2.1, we arrive at the 
second-order chain rule (4.3) under the qualification condition (4.12) . • 

When Z is finite-dimensional (X may be not) , some of the assumptions in 
Theorem 4.2 either are satisfied automat ically or can be simplified . In this way 
we get the following result , where 82 ·tj; stands for the common second-order 
subdifferential of ·tj;: !R711 -+ "i while 82 tp is the same as in the theorem. 

COROLLARY 4.3 Let tp = ·t/J o h with h: X -+ !Rm, ·t/J: !R711 -+ JR, andy E otp(i) . 
Assume that X ·is Aspl·und, that h E C1 aTOunrl i with the der·ivative stTictly 
d'iffe7·eni'ia.ule at i, and that ·if; ·is l.s. c. and loweT ·r·ef)'a laT a.mund i = h(:i:) w·ith 
closed gmphs of 0'1/J and 000 1/J nea.·r Z; the latieT holds, in pa'f"iic·a/a1·, when '~! 'lS 
eilhe·r contiu:uous o·r conve1:. Assmne also that (4.10) is satisfied at :c = i and 
tlw.t 

82·1/J(z,v)(O) n ker'Vh(:T:)* = {0} if 

v E 8·1/J(z) with \7 h(x)*v = y. 

Th en one has the second-oTdeT cha·in ·rule ( 4.13). 

(4.16) 

Pmo.f. The SNEC property is automatic for functious on finit e-dimensional 
spaces. Further, one can easily check that if (4.10) holds at i while Z is finite­
dimensional, it also holds in a neighborhood of i:. Indeed, assuming the contrary 
and taking into account that 8 00 ·1/J(-) is a cone , we get sequences of Xk -+ :1: and 
zk E 800 ·1/J(h(:ck)) with 'Vh(xk) *zZ = 0 and ll zk ll = 1 for all k E N. T hen 
z* E 000'1/J(z) with 'Vh(i:) *z* = 0 and ilz*ll = 1 for a cluster point z* of {zk} 
due to the closedness of gph o00 ·t/J near z; this contradicts ( 4.10) at :1: . Similarly 
we can check that the mapping S: X X x · =l IR117 from (4.11) is a lways inner 
semicompact at (:1:, y) when the qualification condition (4.10) is satisfied a t :c . 
Thus we get (4 .13) from Theorem 4.2(ii). • 
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REMARK 4.4 If both spaces X and Z are f1nite-dimeusioual and the second­
order qualification conditiou ( 4.12) holds, then all the other assumptions of 
Corollary 4.3 are automatically satisfi ed for the class of stmn.gly amenable fuuc­
tions cp, i.e., for such cp: JR." --+ lR that are locally represented in the composition 
form (4.1) with hE C2 and a proper, l. s.c., couvex fuuction ·1(;: IR.m --+ JR under 
the first-order qualifica tion condition (4. 10) at i ; see Section 10.F in Rockafellar 
and Wets (1998). Terry Rockafellar (personal co1nrnunication) developed an­
other proof of the secoud-orcler chain rule ( 4.13) in this case based on quadratic 
penalties. 

Note that if ·1/J is Cl.l and lower regular around z, then all the assumptions 
of Theorem 4.2 involving '1/J are automatically satisfied. In this case the second­
order chain rule (4.13) reduces to the form (4.3) and can be simplified due to 
the scalarization formula (2 .10). On the other hand, if h is Lipschitz contin­
uous around x and '1/J is continuously differentiable around z, then there is a 
neighborhood U of :c such that 

8('1/J o h)(x) = D(\7·1/J( h(x)), h)(:t:) = D'Mh(x) o \7·1/J(h(x)), :c E U, (4.17) 

with no other assumptions on the composition data in (4.1); see Theorem 6.5 
in Mordukhovich and Shao (1996a) , the proof of which holds for any Banach 
spaces, and the mixed scalarization forlllul a. (2.9). This !Jelps us to evaluate the 
second-order subdifferentials of COlllpositions iuvolving smooth outer functions 
and nonsmooth inner mappings. For the formulation of the next theorem it is 
convenient to use the second-order coderivat·ive se ts to h: X --+ Z at (:c, ·u, y) E 

X X Z * X X* with y E 8(·D, h)(x) defined as follows 

D 2 h(:T;, ·D,y)(u) := (D*8(-,h))(x,'D,y)(u), tt EX**, ( 4.18) 

where D* stands for either nonnal (D* = D';; , then D 2 = D7.,) or mixed (D* = 
Df.1 , then D 2 = D~1 ) coderivative of the mapping (x, v) --+ D(v , h)(x). One 
easily has 

D7.,h(x, 'D, y)(·u) = D~1 h(:c, 'D, y)(u) 

= (\72 (·D, h)(:c) *u, \lh(x)' *u) , ·u EX**, ( 4.19) 

when h is C 1 around x with \7 h strictly differentiable at this point. 

THEOREM 4.5 Let h: X--+ Z be a mapping between Banach spaces that is Lip­
sch-itz contin·uous amund i, le t ·1/J: Z --+ lR be continuously difjeTentiable amund 
z := h(x) , and let ·D := \7·1/J(z) . The following asseTt·ions hold .fm· both second­
order suMifferent·iats az = a;., and D2 = aR.1 of the cmnpos'ition cp = ·1/J o , 

at (x, y) wdh fj E 8cp(:c), where D 2 stands .fo1· the CO'!"!'espor1.ding second-m·de·1· 
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(i) Ass·ume that h and \1·1/J a·re st1·ictly d·ij]eTenl:i.u.ule u.L :1; and z, ·re::;pec:t.·ively, 
and that the O]Jemtor \12·1/J( z )\lh(:I) :X--+ z· is su:tject·i.ve. Then 

8\o(x, y)('U) = u 
(x• ,v•) ED 2 h (x ,D,!])(u.) 

·u Ex··. ( 4.20) 

The cha·in T"ttle (4. 20) also holds, wdh D 2 h co·rrqmled in (4. 19) and wi!.houl Lhe 
above s·u·rject·iv-ity u.ssv.rnpt·ion, if \1 h is st·rictly difier·eu,i'iaule at x. 

(ii ) Assv:rne that 'lj! E C1 
,l around h(i:)' that all the SJJaces X ) x·' z' and z· 

a·re Asplund, and that the graph of (x, v)--+ o(v, h)(x) is closed ·in X X z· X X * 
whenever· (x,v) are near (:£, ·u). Th en 

82cp(x, y)('U) 

c u 
(x• ,-u')E D 2 h(i:,u,jj)(u) 

[x* + D'Nh(:£ ) o o~ ·~{z)(v*)], u EX** . ( 4.21) 

Mo·reover, (4.21) holds for an ar-u'ilmry Banach space Z ·i..f'\1 ·1/J ·i.s sl'l"icily d·ijje·r· 
ent-iaule at z. 

P·roo.f. Due to the first equali ty in (4 .1 7) we locall y represe ut ocp as tl tc COl llj)O­
sition 

ocp(x) = (F 0 g)(x ), X E U, (4. 22 ) 

of t he mappings P: X X Z* :::4 X * am] g: X --+ X X z· defined by 

F(x, v) := o(u, h) (:c), g(:c) := (:c, \l'lj>(h(x))). ( 4.23) 

If g is st rictly differcuLiable at :1; with t li e s urjecti ve derivative operaLor, t heu 

D*(F o g)(i, y)('U) = 'Jg (x)* D* F(:I, ·u, y)(u), ·u EX**, 

for bo th uormal a nd mixed coderivatives; see ( 4.4) a nd Mord ukhoviclt a mi Waug 
(2002) for more details. Note Lha t \7 2 ('~! o h)(i) = 'J 2'¢J(z))\1h(:c) under t he 
coutlllOll assumptions of (i), a nd thaL Lhe surj ectivity of t he la LI:er opera tor 
iutplies the surjectivity of \lg(i). This eusures (tl.20) due to Lhe structure of 
F,g in (4.23) and the second-order constructions in (2 .7) , (2.8), ami (4.18). 
The last claim ill (i) easily fo llows from the a bove procedure: this is actually a 
classical second-order chain rule for str ict derivaLives. 

To prove (ii ), we apply to ( 4. 22) the coderi vative cha in rule from Theorem 4.5 
ill Mord uk hovich (1997) and get 

D*(F o g)(x, y)(u) C D'Ng(:c) o D* F(:c, D, y)('U), 'tt EX**, (4.24) 

for both uonnal and mixed coderi vatives umler Lite assu ll tpL i"I LS in Lite first part 
of (ii ) excepL that Z 111 ay be a 11 a rbitra ry Banach space. If, iu addition , Z is 
Asplund , Olle has 
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from the same theorem. Combining this with (4.24), we arrive at (4.21). 
Finally, let \7·1/J be strictly differentiable at z. Then ( 4.25) holds in any 

Banach spaces, which follows from Theorem 4.6 in Mordukhovich and Shao 
(1996b). This gives the last statement in (ii) and concludes the proof of the 
theorem. • 
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