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Abstract: We are interested in the solution of Horizontal Lin-
ear Complementarity Problems, HLCPs, thal is complementarity
problems with more variables than equations, Globally metrically
regular HLCPs have nonempty solution sets that are stable with
respect to “right-hand-side perturbations” of the data, hence are
numerically attractive, The wain purpose of the paper is to show
how the stability or conditioning properties of globally metrically
regular HLCPs are preserved by a homotopy framework for solving
the HLCP that finds a “stable” direction at each iteration as a lo-
cal minimizer of a strongly convex quadratic program with lincar
complementarity constraints, QPCOC. Apart from jutrinsic interest
in numerical solution of HLCPs, this investigation has application
in solving horizontal nonhoear complementarity problems and nore
broadly in the area of mathematical programs with complementarity
constraints, MPCCs.
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1. Introduction
We investigate solving the Horizontal Linear Complementarity Problem, HLCP:

0= Liz.y)=Mz+Ny+yq (1)
0<zlyz0

where x and y are vectors of variables in ", M and N are given matrices in
R™*", g€ R™ is also given, and L denotes orthogonality (zTy = 0 above).
We are interested in n > wm, ie. feasibility problems. The solution sei
of (1), denoted F, will be polyhedral and generally nonconvex, i.e. the union
of finitely many closed, convex polyhedra. Hence, we will approach its solution
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The focus of this paper is globully metrically regular HLCPs, a concept which
says that if the equation L(z,y) = 0 is perturbed to L(x, y) = p for any p € R™,
then the solution sets of the original HLCP and the perturbed HLCP will be
nonemply and separated (in terms of Hausdorfl distance) by at most a constant
factor of ||p|l. That is, the solution set of the HLCP is stable with respect to
arbitrary right-hand-side perturbations. It turns out that stability with respect
to right-hand-side perturbations implies stability with respect to much more
general (functional) perturbations, see Dontchev and Hager (1994), Kummer
(1999), a fact we will not use, however., Section 2 provides formal definitions.

While global metric regularity is our topic, the approach we consider can
very well be applied to investigate local metric regularity since, for instance,
local metric regularity about a solution & of a piecewise alfine system [1(z) =0
can be characterised by global regularity of the directional derivative IT'(2:-).
(We use a kind of converse of this idea in Lemma 4.1 where it is shown that the
global condition number is inherited locally.)

There are several motivations for this investigation. First, consideration of
F is a step towards handling general nonconvex polyhedral sets. Using the
concrete problem class of HLCPs makes the development a little more dirvect,
however; for example we have the advantage that the set of complementary
nonnegative pairs (z,y) is a piecewise affine manifold, Eaves (1976). Robiu-
son (1993), in R®*", which has a convenient and explicit structure. Second,
consider Horizontal Nonlinear Complementarity Problems, HNCPs, which have
the same format as (1) except that L{z,y) is replaced by a smooth nonlinear
function F : B*" — R™. The papers of Dontchev (1996), Kummer (1999) give
convergence theory for a general type of Newlon method that can be applied to
solving HNCPs by solving a sequence of HLCPs in a stable way. The newly pub-
lished book by Klatte and Kummer (2002) is recommended for this and other
material on solvability and solution stability of nonsmooth mappings relating
to complementarity problems. Third, apart from intrinsic interest, horizontal
linear and nonlinear complementarity problems are important in Mathematical
Programs with Equilibrium Constraints, MPECs, and in particular Mathemat-
ical Programs with Complementarity Constrainis, MPCCs, where they appear
as constraints in what would otherwise be standard nonlinear programs. See the
monographs Luo, Pang and Ralph (1996), Outrata, Koévara and Zowe (1998)
for an introduction to this area, as well as the more recent publications, Fletcher,
Leyffer, Ralph and Scholtes (2002), Fukushima and Pang (2000), Hu and Ralph
(2002), Huang, Yang and Zhu (2001), Jiang and Ralph (1999), Lue, Pang and
Ralph (1998), Ralph (2001), Scheel and Scholtes (2000), Scholtes (2001, 2002).
Scholtes and Stéhr (2001), Fukushima and Tseng (2002), that will be referred
to later,

With regard to nonlinear programming formulations, note that if we rewrite
the orthogonality condition in (1) as a bilinear equation z7y = 0 then the en-
tire systemn, though smooth, violates classical nonlinear programming constraint
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MPCC-LICQ, and possibly other conditions. We will demonstrate that any local
minimizer of the direction-linding subproblem satislics two stability properties
necessary to show that the homotopy path reaches the feasible set of the HLCP
after a finite number of iterations, while preserving the numerical conditioning
of the HLCP. For concreteness, we show how an active set method, Scholtes
(2002), for QPCC can be applied to the direction-finding subproblem. In short,
we propose a framework for stable solution of (1) that is readily implementable.

From the standpoint of practicality, there may be other methods for finding
feasible points of the HLCP that are easier to deseribe or are attractive due to
fast or robust implementations. For example, any of the methods mentioned
can be applied directly to the QPCC (2), though the stability properties of a
solution obtained in this way would have to be investigated.

The paper is laid out in the ollowing way. Basic definitions relating to metric
regularity are given in Scction 2. A formal homotopy approach is presented in
Section 3 including a finite convergence result, based on “face-stable” directions,
that appears to be new. Section 4 gives the direction-finding QPCC and shows
that any of its local minimizers satislies the stability properties required. An
active set method which is a specialisation of Scholtes (2002) is applied to this
QPCC under an MPCC-LICGQ. In Section 5, the main result is that for almost
all starting points 2% = (2, ¢°), and every iterate z* = (2*,4*) on the homotopy
path, the direction-finding QPCC is feasible such that the MPCC-LICQ holds
at all feasible points., We conclude by summarising the properties of the hybrid
Homotopy-Active-Set method.

Before proceeding, we give a simple example as motivation.

ExaMmPLE 1.1 Let ¢ be a small positive number, and consider the line in the
(1, x2)-plane, £2 = —ex;. We form a closely related HLCP by taking m = 1,
n=2M=[1l]]eR*' N=-Mandg=0.

The reason for choosing such a trivial example, apart from simplicity, is
that its stability properties are clear: Take 2% = (0,0),%" = (0,0). If the right-
hand-side is perturbed away from zero to p > 0, then = = (0,p),y = (0,0) is a
solution of the perturbed HLCP: Ma + Ny =p, 0 < 2 L y = 0. This solution
is at distance p from the origin (2% 4°). Il p < 0, we may take z = (0,0) and
y = (0,—p). In fact, the Hausdorlf distance between solution sets associated
with different right-hand-sides p and ¢’ is is exactly |p — ¢'|/V1+ €2, hence
less than |p — p/| no matter how small ¢ becomes. (In Section 2, the quantity
1/v1 + €* will be called the modulus of metric regularity of the HLCP.)

Now consider an intuitive pivolal approach Lo solve the perturbed HLCP
where the right-hand-side is p > 0, given (2%, 4%) at the origin as above, We
identify a complementary basis, Cottle and Dantzig (1974), that is a set of m
variables that would not violate complementarity if all were positive, for which
the corresponding submatrix of [MN] is invertible. Here m = 1 and we are free
to choose any single variable. For instance, take the basis as x; with all other
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Remarks

L. If the HLCP (1) is globally metrically regular, then L{P) = R™, hence

[MN] is surjective and of course has full rank. A partial converse is
that 5. (R",R™) = oo if [MN] does not have full rank, because then
L{P) # K™, hence F(p) = 0 for some p € R™.

. Suppose P = R*™ (drop the complementarity requirement), I/ = R" and

V = R™ (global metric regularity). Write A = [MN] € R™*2"_ Then

(a) v = ]JA~Y| if A is an invertible square (2n = m) matrix. Note the
classical condition number of an invertible matrix [|A[[||4~], Golub
and van Loan (1984).

(b) vz = |AT(AAT)=Y| if rank(A) = m (= 2n > m), and we are using
the 2-norm,

(€) i = o0 if 2n < m since [M N] does not have full rank.

. Consider a subclass of HLCPs for which M = [AB] and N = [-] 9],

where A, 1 € R™*™ [ is the identity, B.0 € B"=™*m 454 8 is the
zero matrix. Partitioning the variable veclors © = (L, u), v = (v, w) where
fve R and w,w € B"™™, we sec that (1) takes the form of a parametric
linear complementarity problem in § whose complementary vector is v,

0<tlov=At+Bu+qgz0

0<u
where u can be thought of as a parameter, and w, which is supposed to
be nonnegative and orthogonal to w, plays no role and can be fixed as the
zero vector, Suppose there is a unique solution (¢, v) for any fixed u and g,
e A is positive definite or, more generally, a P-matrix, Cotile, Pang and
Stone (1992). In this case the solution (f.v) is a piccewise afline, hence
globally Lipschitz function of {u.g) and global metric regularity follows
easily, in the style of Luo, Pang and Ralph (1996, Section 4.4).

. Mordukhovich's coderivative calculus is a general tool that is useful in

characterising and investigating necessary and sullicient conditions for lo-
cal (and, by extension, global) regularily of systems of equations, and
even systems posed using set-valued mappings. See Mordukhovich (1997)
for an introduction to coderivatives and applications, and Mordukhovich
(1996) for the particular case of stability of solution maps to parametric
variational inequalities, of which HLCPs are a special case.

3. A homotopy framework for globally metrically regular
H-LCPs
Henceforth we use the Euclidean or 2-norm. || - || = || - 2.

Assume (1) is globally metrically regular with modulus of regularity . We
apply a homotopy framework for solving this HLCP given a starting point z

ﬂ:
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s Let p® = L(z"), the initial residual.
# Derive a path z(t) = (x(t), y(t)) such that

20)=2"% z2()eP, L{z(t))=(1-t)p® fort>0. (3)

s If the path extends to ¢ = 1, then (z,y) = 2(1) solves (1).
The size of the initial residual, ||p°|, is a measure of the distance from z° to the
solution set of the HLCP.
Our goal is to give a method that generates a path of points z(t) € F((1 -
t}p") as above, such that the global “condition number” 5 is preserved at each
point on the path,

dist[z® | F((1 - 6)p")] < [12° = (&)l < tvlle°l-

That is, computationally, we want to replace “dist” term by |1z° = z{t)]]. To
this case, when we reach a solution of the problem at ¢ = 1, we will have
[12% = z(1)|| < 7llp°||, which does indeed preserve the conditioning of the HLCP.
Such a vector z(1) might be called a stable solution of the HLCP relative to 2%,

In fact, we will show that a continuous stability property holds all along the
path: for any st € [0,1],

ll2(s) = 2()|| < |s = t]7]ls°]- (4)

We will do this by generating z(-) as a PA path in P with breakpoints {z* =
(=%, 4*) Wy, where K is to be determined, and with corresponding scalars 0 =
gty <... <ty =1such that for k=0,... K -1,

L(z**1) = (1 = teq)p° (5)
="+ = 24| <t = )" (6)
2+ s(zk = 2Ky e P for s € [0,1). (7

Thus, the major work at each iteration of the homotopy method will be to find
a suitable direction d that can be scaled by a stepsize s > 0 in order to generate
the next iterate, z5*! = z* + sd.

3.1. A formal homotopy method
Given z = (z,y) € P, let T(z|P) be the tangent (contingent) cone of P at z:

T((z,u)|P)

={(u,v)eR" xR": u;=0 if 2 =0 <y,
=0 irIg}U'=y|',
0<u; Ly >0 il'z,-={}=y,}.

Since P is polyhedral, then o € T'(z|P) il and only if z+sd € P for all sufficiently
small s > 0. (Actually, since P is conical, the characterisation holds for all
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AL iteration k, suppose we have z* € P and ¢ € [0,1) with L(z*) = (1 -
ty}p°. Consider the subproblem of finding a direction d = (u,v) € R?" such that
L(z* 4 sd) = L{z*)—sL{z") and z* + sd € P for all small 5 > 0, or equivalently,

[MN]d = —L(z*) where d € T(z*|P). (8)
Any solution d of (8) and scalar s satisly
L(z* + ad) = (1 = s)L(z*) = (1 = 8)(1 = £ )p".

Also, z* + sd € P for small s > 0. Observing that s € (0,1] implies (1 = 5)(1 -
te) = 1 = where ¢ =t + s(1 — &) € (i, 1], it follows that d extends “the”
path for all small 5 > 0. So, let d* be a solution of (8).

Next let s be the maximum value of s € (0, 1] such that z* + sd* € P, the
latter condition being equivalent to nounegativity of z* + sd* because z* € P
and d* = (u,v) € T(z*|P) implies z* + su L y* + sv for all scalars 5. Let
fer1 = bp =+ sp(l = g), hence {0y > & since s > 0. If 5. = 1, that is,
¥ = Sk g gk > 0, then gy = 1 and z**! solves the HLCP.

We are now in a position to state a formal homotopy method for HLCP.
Homotopy Method

0. Initial conditions. We are given 2" e P. Lel =0, k= 0.

1. Direction. Find a solution d = d* of the subproblem (8).

2. Stepsize. Let s; = max{s € (0,1]: z* + sd* > 0}.

3. Update. Let z**! = 25 4 gpd*+! 0y = ty+sp(1—1g), and k = k+1.
4. Stopping test. If {x = 1 then STOP; z* solves HLCP.

5. Next iteration. Go to step 1.

This algorithm is still formal rather than computational in that we have not
discussed existence or calenlation of directions required in step 1. Nevertheless,
the above discussion shows that it is well defined, provided that a solution « of
(8) can be found (in step 1) at each iteration, in which case the path relations
(5) and (7} are immediate. Moreover if each d* satisfies ||d*|| < 4||L{z*)]}. i.e.
d* is “stable” solution of (8), then the promised stable path property (6) (and
hence (4)) also follows. Existence and computation such stable directions are
discussed in Section 4.

Our next step in this section is to show finite termination of the Homotopy
Method, assuming it is well defined, at a solution of the HLCP. To achieve this
we will need a further condition on the direction generated at each teration that
is based on a natural decompesition of the polyhedral nonconvex set P (and its
tangent cones) into finitely many closed, convex, polyliedra {cones).

3.2. Branches of P and face-stable directions

By I(z*) we denote the family of (possibly empty) subsets I of the index set
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satisly
ID{i:zf>0), I°o{i:9f >0}
Define

Pr={{z.y): m=0=y ifiel,
r=0<y ifiel}.

Each set P corresponding to I € I(2*) is called a branch of P at z*. (The
total number of branches of P at all feasible points can be as large as 2", ie.
exponential in the dimension of & and y, which helps to explain why optimization
over such a feasible set is an NP-hard problem.) It can easily be seen, Luo, Pang
and Ralph (1996), for small neighborhoods U of 2% that ' NP is contained in
Ujez(z+) Py, hence that

TE Py= | T* P
Tel(z%)

By a face of P we mean a face of one of its branches. By a face of T(z* | P} we
mean a face of one of the convex polyhedral cones T(z* | P;) with [ € I(z*).

It is well known, Rockafellar (1970), that the relative interiors of the laces
of a polyhedral convex set € partition that set. In other words, every member
of C lies in the relative interior of a unique face of €. Also, if € is convex
polyhedral cone, then the faces of € are also convex polyhedral cones. We state
a minor extension of this to piecewise affine manifolds such as P.

LEmMma 3.1 Let z € P and d € Tz | P). There is ¢ unique face F of P such
thet z € rint F; moreover any foce of P confaining 2 also condains F . Likewise
there 15 a unigue foce K of Tz | P) such that d € rint X; moveover any foce of
Tz | P) containing d also conteins K.

Proaf. It can be verified by inspection that the intersection of two or more faces
of P is also a (possibly) empty face of P, and that this property is inherited ly
it tangent cones. Hence the first statement follows the above property of closed
convex polyhedral sets C, by taking €' to be any branch Py with T € I{z).
Likewise, the second statement follows by taking C = T(z | P) for any T € I(z)
such that d € T(z | Py). | |

DEFINITION 3.2 Let z¥ € P und d be a solution of (8). If there is a face K of
T(z* | P) such that d solves

min %|||:!||2
subject to [MN]d = —L(z*) (9)
dell

then we say z* is a face-stable solution of (8), with respect to K, or simply
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There is no restriction placed on a direction d € T(z* | P) by requiring it to
lie in a face T(z* | P). However, for d to be face-stable it must be the shortest
solution of (8) associated with some face of T(z* | P). In fact (9) is a strongly
convex quadratic program, because we are using the 2-norm. The existence of
a unique solution (depending on K) therefore follows if the problem is feasible,
as it is assumed to be by the above definition.

ExAMPLE 3.3 Returning to Example 1.1, recall the 2 x 1 matrices M = [e 1],
N = —-M, where ¢ is small and positive, and let g =0 ¢ R. We have alveady
seen that this HLCP is globally metrically regular with ¥ = 1/v/1+¢2. Let
z* = (z*,9*), with z* = (1,0), ¢* = (0,0), which has a residual of L{z*) =
Mz*+ Ny¥+q==

There are three faces of P containing z*: Fy, given by 51,22 > 0=y, = y=:
Fao,given by ay,y2 2 0= =y and Fz, given by 5y 2 0=z =9 =12. F}
and Fs are two-dimensional faces that share F5 as a comumon facel, where F;
contains z° in its relative interior. The faces of the tangent cone T(z* | P) are
tangent cones of these faces at z*:

Ky = {(u,v) € B*** 1 uy > 0,0 =0}
Ko ={{u,v) € R >0,up = v, = 0}
'K‘-'a = '[{‘H.,‘U] E REKE Tl =1 = = []]..

We list the face-stable solutions of the system (8), i.e. minimizers d = d' of the
quadratic program (9) with X = X;. This QP is infeasible for X, and yields
solutions d? = ((—€2,0),(0, ¢))/(1 + €2) for K3 and d* = ((-1,0),(0,0)) for K;.
The solution d® has length ey, whereas the solution &® is less stable, having
length 1.

The following statement is an immediate consequence of Lemma 3.1,

COROLLARY 3.4 Let d € T(z* | P) and K be the face of T(z* | P) containing
d in its relative inferior. Then d is a foce-stable solution of (9) of end only if i
is face-stuble with respect to K.

Another corollary is that if the constraints (8) are feasible, then any global
minimizer of .%,1[{.!”2 subject to these constraints iz face-stable, because it must
be face-stable with respect to any face that contains it. This idea will be furiher
developed in the next section.

The main result of this section is that if the homotopy method uses face-
stable directions at each iteration then it finds a selution of the HLCP after
finitely many iterations. The proof shows that certain kinds of cycles are im-
possible, namely that the “worst” face containing a direction d* in its relative
interior — where worst means d* has the largest norm relative to the right-
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By squaring both sides and applying the Cauchy-Schiwartz inequality, we observe
that the above inequality is satisfied as an equality only if the directions d* /||d* ||
are identical for k = k,..., K; in fact for some positive scalars Toprre o TR we

have d* = Trde. Recalling that z**! = 2* 4 s,d* for each k, this leads to

. K N K
R Z spde = 25 + ("T +- Z Sm_-):ii:
® T4l

which is not possible since, from Step 2 of the Homotopy Method, if s > s

then z* 4 sd* # 0 hence z* + sd* g P. We conclude that strict inequality holds,
namely

K
<+ - ) < an*“ st D DL ACHEAI
R‘H‘i‘ k-;
< wltesr = )00 Wb

Now
[MN](zF+! = 2%) = L(z"*") - L(z%) = (t; - tica 0"
Thus for
|:-E= i{‘zh.*'l __zr}
tgr — g
we have

[MN)d = - (1 - () = —L(z"),

i.e. d solves (8). We also have z/+1 — 2* € & from above, hence d € K. Finally,
using (11) and then (10) gives

Il < (1 = )l = lla -

The desired contradiction arises because d* is face-stable which means, by Corol-
lary 3.4, that it must be the shortest vector in K satisfying (8). L]

The usual convergence techuigue, Allgower and Georg (1990), Eaves (1976),
for homotopy methods applied to square systems is quite different to the above
proof, since the former relies on the path being locally uniquely defined at
least generically (for infinitesimal perturbations of the right-hand-side vector
—L{z")). This means that there is no need to require global metric regularity,
which has the advantage that the method may be well defined even if regularity
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double back on itself) along a continuous piece of the path without jeopardising
existence of the path.

We mention further that homotopy approaches to square piecewise afline sys-
tems, explored extensively in Eaves (1976), and used for solving one-parameter
LCPs in Lemke's method, Cottle and Dantzig (1974}, Cottle, Pang and Stone
{1992), have the nice property in the {generic) nondegenerate case, that at each
iteration there is a unique pivot that determines the next line segment on the
path. Looking ahead to the next section, we see for the homotopy methods
applied to general HLCP, that there are possibly many pivot choices, some of
which are more stable than olhers.

4. Finding stable directions

By a y-stable solution of (8) we mean a vector o that satisfies hoth this system
and the bound ||d|| < 7||L(z*)||. Here, v is the the modulus of global metric
regularity of the HLCP (1). In Example 3.3 there are two face-stable directions
d* and d® identified at the point z*, of which only d® is y-stable.

Il there exists a y-stable solution them, obviously, any global minimizer of
the following problem must also be y-stable:;

¥ 1 2
win 3 /1|l
subject to  [MN]d = —L(z*) (12)
de T(z*|P).

This is the direction-finding subproblem, which can be written as a QPCC by
formulating the constraints as in (13) below.

Subsection 4.1 contains the main result of the section, Proposition 4.3, whicl
says that each local minimizer d of the direction-finding subproblem is both -
stable and face-stable. This yields a considerable reduction of computational
effort compared to global optimization with regard to y-stability. Nevertheless,
even veriflying stationarity of a feasible point may require examination of an
exponential number of branches (of the tangent cone), another combinatorial
optimization problem.

To make the local minimization idea more concrete, in Subsection 4.2 we
apply an active sel method, that can be derived from Scholtes (2002}, to (12).
(We could have instead applied the piecewise sequential quadratic program-
ming, PSQP, method of Luo, Pang and Ralph, 1996, see also Ralph, 2001, as
described for the case of QPCC in the Remark following Proposition 2 of Jiang
and Ralph, 1999.) Then we discuss a regularity condition, called the MPCC-
LICQ, which is sufficient for the Active Set Method to find a local minimizer of
(12). Initialisation of the Active Sel Method is the subject of Subsection 4.3.

Looking ahead 1o Section 5, we see that the MPCC-LICQ almost always
holds as needed, hence the Active Set Method produces directions that arve both



HB8 D. RALPH

generate a stable path that reaches the HLCP solution set after finitely many
iterations. Note that we are not limited o the Active Sel Method, since there are
many other methods that also produce local minimizers under the MPCC-LICQ,
and perhaps other assumplions, at limit points of the iteration sequence, see
Fletcher, Leyfer, Ralph and Scholtes (2002}, Fukushima and Pang (2000), Hu
and Ralph (2002), Huang, Yang and Zha (2001), Luo, Pang and Ralph (1998),
Scholtes (2001), Scholtes and Stohr (2001), Fukushima and Tseng (2002).

4.1. Local minima of the direction-finding subproblem

Recall our assmnption, throughout, that the HLCP (1) is globally metrically
regular of modulus 4. We will show stability of local solutions of (12) using two
minor results, The first, Lemma 4.1, says that localised systems like (8) are at
least as stable as the whole system (1), This is to be expected since the zlobal
modulus of regularity is necessarily more conservative than the local modulus,
The second. Lemma 4.2, s a general result about projections.

LEMMA 4.1 Write A = [MN]. For anyz € P, d € B*" and f€ R™,
dist(d | A7 @) N T(z | P)) < 7l Ad = G-

Proof. Write p = L(z) and observe for any d € R*" and nonzero scalar ¢ that
Ad=fF& Lz+td) - Liz) =t Lz + td) = p + L.

Also, d € T(z | P) if and ounly il z 4+ td € P for all small enough £ > 0. These

observations imply that there exists a scalar ¢ = 0 for which
de A"GHNT(z|P) e z+ide L™ (p+t§) NP = Flp + 7).
Thus
tdist(d | A=) NT(z | P)) = dist(z + td | Fp + i)
< AIL(z + td) — p ~ 17]] = Al|L(= + td) - L(2) - 7]| = tr]|Ad - 7]
and we are done. |

Next, we have a general fact about*local projections”.

LEMMA 4.2 Let T be a local solution of the problem minggg ||<||, where § s a
subset of a normed space. Then for some t € [0,1), T 15 a global solution of
minge g ||o = £x]|.

Proof. For any t € [0,1], the triangle inequality yields
B(tz, (1 - 1)) < B0, [[Z]]),

where B{z,r) is the closed Lall of centre & and radius r = 0. By hypothesis
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t € [0,1) large enough such that B(tZ, (1 - t)||Z]]) is contained in /. On the one
hand, if z € U N S then
|l — t2l 2 Jl=f| — tllE)] 2 (1 - e)li]].

On the other hand, if x € §\ U then x ¢ B(tZ, (1 — £)||Z]|), hence ||z - tZ]| =
(1=0)||Z]]. Finally, ¥ lies in SNB(tZ, (1 —2)||Z]|), s0 it must be a global solution
of minges ||z — tZ). B

We present the main result of this section. A cousequence is that if Step 1
of the Homotopy Method is defined by taking d as a local minimizer of (12),
then the Homotopy Method is well defined, terminates finitely by Theorem 3.5,
and the iterates (2%, f5) satisfy the desired properties (5)-(7).

ProposITION 4.3 The direction-finding subprollem (12] is feasible and bounded
below, such that every local minimizer 15 a y-stable and foce-steble solution

of (8).

Proof. Feasibility of (12) is implicit in the statement and proof of Lemma 4.1,
and of course the ﬂbjﬂﬂl-l\"& function is bounded below by zero,

Let d be a local minimizer of (12). The face-stable property is straightfor-
ward. For suppose that X is a face of T{z | P) containing d hence d is a local

minimizer of the convex QP (9). Then, d is also a global minimizer of the same
QP, and by definition is face-stable.

Showing v-stability requires more effort. Write A = [MN] and p* = = L{z*).
From Lemma 4.2, there exists £ € [0, 1) such that d is a global solution of the
problem

min %"d - ?ﬂ]!
subject to Ad = p*
d € T(z* | P).

Thus

(1= Dlldl| = dist(d | A~ () N T | PY)

< 4||L(td) - p*|| by Lemma 4.1

= (1 = Dlp*ll = (1 - HILEH).
Since ?{ 1, ]| € ¥lIL(z*)] as claimed. ]

4.2. An active set method

We leave it to the reader to check, by examining the tangent cone T(z* | P),
that the feasible set of (12) can be written with d = (u,v) € B" x R" as
[MN)d = -L(z*%)
wi=0 forie L(y") (13)
O<u Lv; >0 forie By(z")
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where for z,y € B*,

I{z) = {i:z; > 0}
folx) = {i:z; =0}
Bo(z,y) = To(x) N Jo(y)-

The letter B in By(x.y) refers to the description of “bi-active” indices that
form this set. I orthogonality was omitted from these constraints, we could
apply a standard active set method, Fletcher (1987), to solve the resulting
strictly convex QF. It will be a simple matter to adapt the standard approach
to (12) by adding conditions (on the “entering candidates” in Step 5 below)
that preserve complementarity of ilterates. The resulting Active Set Method will
retain the advantage of relatively cheap iterates, by rank-1 updates of matrix
factorizations, and the possible disadvantages of cycling and of the number of
iterations being exponential in the problem dimension.

The following algorithm is actually a specialisation of the active set method
for gquadratic programs with complementarity constraints given by Scholtes
(2002).

Each iteration of the method requires a feasible point d = (%,%) and a
corresponding pair I, J of index sets such that

fuJc{l,....,n}, InJ=§,
I L (aMYuI@), Jo LY@, (14)
A = [M;N;] has full rank m,

where My and N; are the respecilive submatrices of M and N corresponding
to columns indexed by i € I and j € J. (The condition I N J = @ is required
for complementarity.) By a slight abuse of terminology from complementary
pivoting methods for linear complementarity problems, e.g. Cottle and Dantzig
(1974), we refer to the triple d, I, J as a complementary basis, though the matrix

A is not necessarily square, and ditself as a complementary basic feasible solution
of (13).
The iteration requires the solution of a strictly convex QP,

min |lw|® subject to Aw = —L(z¥)

by solving the linear Lagrangean system

[TST](E)E(—L?;J}) (15)

where Id is the n x n identity matrix and p € E™ is a standard Lagrange
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ProrosSITION 4.4 The Active Set Method s well defined and generates a se-
quence of feasible points (%, 7) of (8).

Having a well defined method, however, does not preclude the possibility
of cycling, i.e. taking a sequence of steps in which (i, ¥) remains constant and
in which zome complementary basis is eventually repeated. Cycling may only
occur if there is more than one candidate for the leaving index at some iteration,
as can be shown easily by induction. These comments apply equally to active
set methods applied to QPs.

The meaning of the stopping condition is not clear at a first glance, given the
definition of the entering candidate list. We next look at a linear independence
(full rank) condition that provides some justification for the active set approach.

We have already identified the direction-finding subproblem {12} as a QPCC.
We say that the MPCC linear independence constraint gualification, MPCC-
LICQ, holds at a feasible point o of this problem if the active constraint gradi-
ents of the formulation (13), ignoring the orthogonality conditions, are linearly
independent. See Luo, Pang and Ralph (1996, 1998), Scheel and Scholtes {2000)
for details and more general discussion. To be explicit, let {u,v) = d be a fea-
sible point of (13), I = I4(z*) U Ii(u), and J = . (y*) U [;(v). Then the
MPCC-LICQ at d is equivalent to requiring ull rank of [M;N;]. Comparing
this with the definition of a complementary basis (14), we see that the MPCC-
LICQ requires that the first two lines of {14) imply the third line,

The beauty of the MPCC-LICC() is that it relieves the combinatorial difficulty
of checking stationarity of a feasible point, see Luo, Pang and Ralph (19898),
Scheel and Scholtes (2000). The next result is more or less well known in the
study of MPCC; it is a corollary of the results of Luo, Pang and Ralph {1998),
Scheel and Scholtes (2000) and is used in the general active set approach of
Scholtes {2002). A proof will not be given for this reason.

PROPOSITION 4.5 Let d = (@, ) be one of the iterates generated by the Active
Setl method. Suppose the MPOC-LICE) holds for (13) at d. Then cither d is a
local minimizer of (12) and the algorithm stops (in Step 6), or d is not a local
minimizer of (12) and the elgorvithm takes a nonzere step (to strictly decrease
the value of ||;E‘1|j in the next iteration.

An implication of this result is that cycling cannot occur at an iterate sat-
isfying the MPCC-LICQ; the analogous result is well known in standard active
sel methods for QF. If, by luck, every iterate (i, ¥) generated by the Active Set
Method satisfies the MPOC-LICQ, then the method is bound to stop, after a
finite number of iterations, at a local minimizer of (12). Actually, it has been
shown, Scholtes and Stéhr (2001), that the MPCC-LICQ is a generic property
of MPCCs. a result that we will be able to use in Section 5 t.o_show that the
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4.3. Initialising the Active Set Method under another linear inde-
pendence condition

Consider the homotopy path described by (3) which we restate Lere for conve-
nience:

Liz)=(1-)L(z%), 0<zly>0

As previously, let (z*,4,) be a point on the path with ¥ = (%, y*). We now
show how to find a starting complementary basic feasible solution of the feasible
set (13), which is required in Step 0 of the Active Set Method.

We will see shortly in Proposition 5.1, for almest all 2%, that the MPCC-
LICQ holds at all feasible points (z,t) of the path system (3) where { is con-
sidered to be a variable, i.e. [M;N;L(z%)] has full rank for I = I (x*) and
J = I(y*). For now., we take this MPCC-LICQ condition at (z*,4,) for
granted.

The easy case for defining an initial complementary basic feasible solution
of (13) is when [M;N;] has full rank, in which case we determine a vector
d = (u,v) with [M;N;)(up,vs) = =L{z*) and upe = 0, vye = 0. The hard case
is when [M; N ;] is rank deficient, in which case full rank of [M; N, L(2")] implies
rank [M;Nj] = m — 1. The latter case can still be dealt with efficiently as we
next show,

LEMMA 4.6 Let (25, 4x) be a point on the homotopy path (3) at which MPCC-
LICQ holds, z* = (z*, y*) and [ =1,(z*), J=1,(y*). Bither rank [M; Nj] =m
or there exists a variable, either u; or v; for some i € By(2*), and a correspond-
ing column e, equal to M; or N; respectively, such that [MiNe] has full rank
and for some (wp,vy) = 0 and scelar & 2 0,

Myus + Nyvy + be = =L(z"%). (16)

Proof, The result derives from the investigation of Ralph (2002). We sketch the
proof,

We may assume without loss of generality that rank [M;N;] = m = 1. Let
A = [MN;] and B represent the family of matrices B = [Ac] for which ¢
i5 either M; or V; for some 1 € Bn{z"]. Assume, to contradict global metric
regularity of (1), that none of the matrices B € B has the required property.
Consider the halfspace H of vectors (uy, vy, 8) where up and vy are arbitrary,
while & > 0. Observe that each B € B maps I either to a half space or a
hyperplane ((m = 1)-dimensional subspace) in ™. If B(H) is a hyperplane
then ¢ is necessarily in the range space (i.e. column space} of A, denoted G,
hence B(H) = G'. If B maps H to a halfspace then the latter is defined by

H' = G' + {§L(z*): § > 0},
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A separate argument shows that [MN](T(z* | P)) is the convex hull of the
sets B(H), for B € B. It follows that [MN](T(z* | P)) is contained in H’, i.e.
[MN)(T(z* | P)) is not equal to R™. The equivalent systems (8) and (13) are
therefore not metrically regular, contradicting Lemma 4.1 m

Clearly, any solution uy, vy, 6. described above, corresponds to a comple-
mentary basic feasible solution of {13). Such a solution can be found by checking
(16) for each of the columns ¢ equal to M; or N; for i € Bg(2*) in the follow-
ing straightforward way. Given ¢, factorize [MN¢| (or its transpose, e.g. using
the QR factorization, Golub and van Loan, 1989) in order to determine first a
solution of (ﬁf,ﬁ_j:g} of (16}, and, second, a basis for the nullspace or kernel of
[MNe). If 5 < 0 then existence of a solution of (16) with & > 0 is equivalent
to the basis having at least one column whose last component is nonzero. If a
particular column ¢ does not provide satisfaction then rank-1 updates can be
used to replace ¢ by another valid column. The rank-1 updating procedure will
also detect any columnn ¢ for which [M N¢] has rauk m — 1; these columus are to
be discarded. The first factorization could be carried out on [MN L(z*)], which
has full rank because L(z*) is a nonzero multiple of L(z") = p°, after which the
rank-1 updating occurs as described,

5. Stability of the Homotopy-Active-Set Method for al-
most all starting points

The aim of this section iz to complete the task of showing that the Homo-
topy Method is practical. We already know, by using a local minimizer of the
direction-finding subproblem (12) at each iteration, that the Homotopy Method
will terminate after finitely many steps at a stable solution of the HLCP. We
know further that finding a local solution of (12) s practical, by applying a
method designed for QPCCs or possibly MPCCs, Fletcher, Leyfler, Ralph and
Scholtes (2002), Fukushima and Pang (2000), Hu and Ralph (2002), Huang,
Yang and Zhuo (2001), Luo, Pang and Ralph (1998), Scholtes (2001}, (2002).
Scholtes and Stéhr (2001}, Fukushima and Tseng (2002), provided a suitable
MPCC-LICQ holds at the iterates encountered by the method. It is left to
Subsection 5.1 to prove, using Scholtes and Stihr (2001), that the MPCC-
LICQ holds as required throughout the Homotopy Method, for almost all initial
points z° = (z%,4%) of the method. Subsection 5.2 summarises the convergence
properties of the hybrid method, which combines the Homotopy and Active Set
methods, and also briefly considers the degenerate case in which some of the
iterates (z*, ;) do not yield the required MPCC-LICQ properties.

5.1. MPCC-regular systems of complementarity constraints

Given z = (x,y) € P and p € R™, we have scen, see, (13), that the conditions
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[MNld=p
=0 forie L{y) (17)
D0<u; Ly 20 forie Bylz)

vi=0 forjel(z)

We say that this system is MPCC-reqular if the MPCC-LICQ holds at every
feasible point of (17). (The term “regular” was used in Scholtes and Stéhr (2001)
but we prefer MPCC-regular to help distinguish it from metric regularity.)

By almost all or a.a. we mean all points but for those in a set of Lebesgue
measure zero. By a.a. z € P we mean all points of P except for those in a sel
whose intersection with each of the n-dimensional branches P has Lebesgue
weasure zero with respect to the affine hull (i.e. subspace Pr — ) of that
branch. (An aliernative definition could use the fact that P is homeomorphic
to B". Robinson, 1993, and define a.a. z € P via zero measure sets in B".)

ProrosiTiON 5.1
I. For wa, pe B, und ench 2 € P, the system (17) i MPCC-reqular.
2 For w2V € P, lhe following stulements both hold:
fa)} The homolopy path syslem {3) 15 MPCC-regular.
{b) For every (z,8) with ¢ < 1 on the path (3), the local system (17) with
p=—(1-t)L(z%) is MPCC-reqular.

Proof. 1. 1t is easy to show for fixed z = (x, y) (i.e. fixed index sets I, (x), 14(y).
Bu(z)) and a.a. p. that the solutions of (17) satisfly the MPCC-LICQ. The short
proof of Corollary 2 from Scholtes and Stohr (2001), using Sard’s theorem, can
be immediately adapted for this purpose.

Part 1 of the result now follows because there are only fnitely many distinct
triples (£(y), Bal(z), [ (x)) for all possible z.

2(a). Similar to the first paragraph of the proof, it is an easy corollary of
Sard's theorem that the system in (z,¢) given by L{z) = {1-8)p, 0 €2 Ly = 0
is MPCC-regular for a.a. p € R™.

For 2(b), the fact that L maps neighborhoods in P to neighborhoods in
R™, which is a corollary of Lemma 4.1, yields MPCC-regularity of (17) with
p = =L{z") for a.a. 2" and every z, by Part 1. Let 2% be a point such that
(17) is MPCC-regular for p = —L{z") and every z. Consider the scaling p =
—sL{z") for any s > 0, and, given z, denote the corresponding feasible set (17)
by G(z,2% 5). Obviously G(z,2° s) = s6G(z,2% 1), hence MPCC-regularity of
G(z,2% 1) implies MPCC-regularity of G(z, 2%, s). This holds for any s > 0 and
z, and we are done. =

Metric regularity is not required for Part 1 of the Propesition (or for Sard’s
theorem). It is used in Part 2 because the statement involves the domain space
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5.2. A summary of the Homotopy-Active-Set Method

As in Section 4, consider the Homotopy Method in which the direction-finding
subproblem is solved by the Active Set Method. We call this lybrid the
Homotopy-Active-Set or HAS Method,

Under the standing assumption that the HLCP (1) is globally metrically
regular of modulus «, the following statements are valid for a.a. z° € R™:

1. At iteration k of the HAS method, where & < 1:

(a) the MPCC-LICQ holds for the homotopy path (3) at the point (2%, 1),
hence the Active Set Method for the direction-finding subproblem (12) can
be initialised as described in Subsection 4.3.
[Proposition 5.1, Part 2(a); Lemma 4.6]
(b) the feasible set (13) of (12) is MPCC-regular;
[Proposition 5.1, Part 2(Db)]
() The Active Set Method terminates after finitely many iterations at a
local minimum of (12), hence a solution of (8) that is both y-stable and
face-stable. [Proposition 4.5, Proposition 4.3]
2. (a) The HAS Method iz well defined and terminates after finitely many
iterations, in iteration K. with a solution z = z® of the HLCP (1).
[Theorem 3.5]
(b) The iteration sequence {(z*,1)}{ satisfies the stable path property
(6), in particular [|z¥ = 2% < 4||L(z°)||. In addition {tx}} is strictly
increasing, [Subsection 3.1]
(¢) The piecewise affine path defined on [0, 1] by
2(t) = Dbt =F o Bt e
by — L by — Iy
for t € [th,te4a] and &k = 0,..., K — 1, satisfies z(t) € P, L{z(1)) =
(1 = t)L{z") and the continuous path stability property (4).
[Subsection 3.1]

At this point it would be useful to mention that there is potential for an
anti-cycling strategy that would allow any starting point 2% € P.

Consider an iterate z* such that the feasible set (13) is not MPCC-regular.
We know that arbitrarily small perturbations of z% will mend this situation.
Therefore we can in principle refine the Active Set Method to use infinitesi-
mal perturbations so that it will not cycle, but will terminate in finitely many
iterations. The terminal iterate d will not necessarily be a local minimizer of
(12}, unless the MPCC-LICQ holds at d, but nevertheless it will still be a point
satisfying (13) that is both ~-stable and face-stable, by continuity arguments.
A similar infinitesimal anti-cycling strategy would be needed to initialise the
Active Set Method.

Lexicographic ordering is & well known anti-cycling procedure for pivotal
algorithms. For homotopy methods applied to square piecewise affine homotopy
systems, lexicographic ordering is used, Eaves (1976), to solve the degenerale

. -
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terms of infinitesimal perturbations, where the perturbations restore regularity
similar to the above description.

For HLCP and every starting point z% € P, such anti-pivoting strategies
would yield the same convergence results as listed above, apart from 1{a) and
1(b), i.e. omitting the statements involving MPCC-LICQ or MPCC-regularity.
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