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Abstract: We are interested in t he solution of Horizm1ta l Liu­
ear Complementarity Problems, HLCPs , that is complementarity 
problems with more variables than equatious. Globall y metrically 
regular HLCPs have nonenq.>ty solu tion sets tha t are stable with 
respect to "right-hand-side pert urbatim1s" of the data, hence are 
uumerically attract ive. The ma in purpose of the paper is to show 
how the stability or conditioning properties of globally metrically 
regular HLCPs are preserved by a l10motopy framework for solving 
the HLCP that finds a "stable" d i reclio11 at each i tera tiou as a lo­
cal minimizer of a strougly CO J1 vex quadrat ic program with linear 
complementarity co11 straints , QPCC . Apart from iutrinsic interest 
in nurnerical solution of HLCPs, this invest igation has application 
in solving ltorizo utal nonlinear coniplenientarity problems a nd more 
broadly in the area of lll athellla tical programs wiLlt COJIIplernenta rity 
constraiuts, MPCCs. 

Keywords : horizouta l linear cou1plemeutarity problem, matiie­
rnati cal program with cornplelllent CLrity coustraiuts, piecewise af£ne 
system, global metric regularity, pseudo-Lipschi h cout inui ty, s ta­
ble solution, homotopy method , pa th followiug, active set method, 
MPCC, MPEC, QPCC, MPCC-LICQ. 

1. Introduction 

We investiga te solving the Horizontal Linear Complelllentarity Problem, HLCP: 

0 = L(:c, y) = M :c + Ny + q 
O:<:; :c ..L y2:0 

(1) 

where x and y are vec tors of variables in IR.n, M and N are given mat rices in 
IR.mxn, q E IR.m is a lso given, and ..L J eno tes orthogoua li ty (:cT y = 0 above) . 

We are interested in n 2: m , i. e. feasibility problems. The solution set 
of (1), denoted F , will be polyhedral and generally nonconvex, i.e. the union 
of finitely many closed, convex polyhedra. Hence, we wi ll approach its solution 



576 D . RALPH 

The focus of this paper is globally ·metrically Teg'UlaT HLCPs, a concept which 
says that if the equation L(x, y) = 0 is perturbed to L(x, y) = p for any p E !Rm , 
then the solution sets of the original HLCP and the perturbed HLCP will be 
nonernpty and separated (in terms of Hausdorff distance) by at most a constant 
factor of IIPII - That is, the solution set of the HLCP is stable with respect to 
arbitrary right-hand-side perturbations . It turns out that stability with respect 
to right-hand-side perturbations implies stability with respect to much more 
general (funct ional) perturbations, see Dontchev and Hager (1994) , Kummer 
(1999), a fact we will not use, however. Section 2 provides formal definitions. 

While global metric regularity is our topic, the approach we consider can 
very well be applied to investigate local metric regularity since, for instance, 
local metric regularity about a solution i: of a piecewise affi ne system (x ) = 0 
can be characterised by global regularity of the directional derivative II' (i: ; ·). 
(We use a kind of converse of this idea in Lemma 4.1 where it is shown that the 
global condition number is inherited locally.) 

There are several motivations for this investigation. First , consideration of 
F is a step towards handling general nonconvex polyhedral sets. Using the 
concrete problem class of HLCPs makes the developmeut a little more direct , 
however; for example we have the advantage that the set of complementary 
nonnegative pairs (x, y) is a piecewise affi ne manifold, Eaves (1976), Robin­
son (1993), in IR2n, which has a convenient and explicit structure. Second , 
consider Horizontal Nonlinear Complementarity Problems, HNCPs, which have 
the same format as (1) except that L(x , y) is replaced by a smooth nonlinear 
function F : IR2n ___, IRrn . The papers of Dontchev (1996) , Kummer (1999) give 
convergence theory for a general type of Newton method that can be applied to 
solving HNCPs by solving a sequence of HLCPs in a stable way. The newly pub­
lished book by Klatte and Kummer (2002) is recommended for this aud other 
material on solvability and solution stability of nonsrnooth mappings relating 
to complementarity problems. Third , apart from int rinsic interest , horiw ntal 
linear and nonlinear complementari ty problems are important in Mathematical 
Programs with Equilibrium Constraints , MPECs, and in particular Mathemat­
ical Programs with Complementarity Constraints , MPCCs, where they appear 
as constraints in what would otherwise be standard uonliuear programs. See the 
monographs Luo, Pang and Ralph (1996), Outrata, Kocvara and Zowe (1998) 
for an introduction to this area, as well as the more recent publications, Fletcher, 
Leyffer , Ralph and Scholtes (2002), Fukushima and Pang (2000) , Hu and Ralph 
(2002), Huang, Yang and Zhu (2001) , Jiang and Ralph (1999), Luo, Pang and 
Ralph (1998) , Ralph (2001), Scheel and Scholtes (2000), Scholtes (2001 , 2002) , 
Scholtes and Stohr (2001 ), Fukushima and Tseng (2002), that will be referred 
to later. 

With regard to nonlinear programming formulations, note that if we rewrite 
the orthogonality condition in (1) as a bilinear equation xTy = 0 then the en­
tire system, though smooth, violates classical nonlinear programming constraint 
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bility. Therefore we prefer to treat the HLCP by taking explicit account of its 
piecewise affine structure. Nevertheless standard nonlinear programming meth­
ods applied to problems with such constraints can be very successful, as shown 
in Fletcher, Leyffer, Ralph and Scholtes (2002). 

The "most stable" solution of the HLCP with respect to a given point 
(:c 0 , y0 ) is simply the globally nearest solution, i.e. a global minimizer of II (x, y)­
(x0 ,y0 )1 1 subject to (:c,y) E F. When using the Euclidean norm, this is equiva­
lent to finding a global minimum of the problem with a strongly convex quadratic 
objective function: 

min ~[[(x, y)- (:c 0
, y0

)[ [
2 subject to (:c, y) E F. (2) 

This is called quadratic program with complementarity constraints, QPCC. 
Given the polyhedral nature of :F, global optimization can be carried out by an 
enumerative procedure: for each of the finitely many convex polyhedra whose 
union is :F, find the nearest point of this set to (:r0 , y0 ) by solving a strongly con­
vex quadratic program, QP. A more sophisticated global optimization method 
might attempt to use the problem structure, namely complementarity, to set 
up a branch and bound framework. However, the heavy hammer of global op­
timization is unnecessary as we explain next. 

The main purpose of this paper is to show that the stability property of 
globally metrically regular HLCPs can be readily transferred to a numerical 
solution method, namely a PA homotopy method. The basic homotopy or path 
following or continuation idea is, of course, rather standard for "square" systems 
like linear complementarity problems, as demonstrated by the classic paper of 
Cottle aud Dantzig (1974) that employs Lemke's method for this purpose. (For 
square systems, see Cottle, Pang and Stone, 1992, for a full treatment of linear 
complementarity problems, Eaves, 1976, for a general homotopy approach to 
more general PA systems and, for homotopy methods in the nonlinear case, 
Allgower and Georg, 1990.) Hmnotopy approaches to feasibility problems are 
rare, although some feasibility problems can be written as projection problems 
whose stationary conditions admit a homotopy approach. 

The proposed homotopy approach is greedy in that it attempts to locally 
optimize progress at each iteration by finding a suitable direction along which to 
generate the path. The direction-finding subproblem at iteration k is a QPCC 
that is formed by a kind of "localisation" of (2) about the iterate zk 011 the 
homotopy path, for which we seek a local minimizer. It turns out that the 
direction-finding subproblem is always feasible and, almost always, every feasi­
ble point satisfies a linear-independence condition called the MPCC-LJCQ, see 
Scheel and Scholtes (2000). This means that finding a local minimizer is com­
putationally practical; indeed we may use any of the growing family of methods, 
Fletcher, Leyffer , Ralph and Scholtes (2002), Fukushirna and Pa.ug (2000), Hu 
and Ralph (2002), Huang, Yang and Zhu (2001), Jiang and Ralph (1999), Luo, 
Pang and Ralph (1998), Ralph (2001), Scholtes (2001 , 2002), Scholtes and Stohr 
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MPCC-LICQ, and possibly ot her coudiLiou:;. We will dernonsLrate that auy local 
minimizer of the directiou-finding suLproblern satisfies two stability properties 
necessary to show that the homotopy path reaches the feasible set of the HLCP 
aft er a finite uumber of iterat ions, while preserving the numerical conditioning 
of the HLCP. For concreteness, we show how an active set method, Scholtes 
(2002), for QPCC can be a pplied to the direction-finding subproblem. In short, 
we propose a framework for stable solution of (1) that is readily implementable. 

From the standpoint of practicality, there may be other methods for finding 
feasiLle points of the HLCP tha t a re easier to describe or a re a ttractive due to 
fas t or robust irnplemcnta t ions. For example, any of the methods mentioned 
can be applied directly to the QPCC (2), though the stability properties of a 
solution obtained in this way would have to be iuvestigated. 

The paper is laid out in the following way. Basic definitions relating to metric 
regularity are given in Section 2. A formal homotopy approach is presented in 
Section 3 including a finite convergence result, based on "face-stable" directions, 
that appears to be new. Section 4 gives the direction-fin ing QPCC and show::; 
tha t any of its local minimizers sat is fi es the stability properti es required. An 
active se t method which is a specialisation of Scholtes (2002) is applie to this 
QPCC under au MPCC-LICQ. Iu Section 5, the main result is that for almost 
all star tiug points z0 = (:c0, y0), and every iterate zk = (xi.:, yk) on the homotopy 
path, t he direction-finding QPCC is feasible such that the MPCC-LICQ holds 
a t all feasible points. We conclude by summarising the properti es of the hybrid 
Homotopy-Active-Set method . 

Before proceeding, we give a simple example as motivation. 

EXAMPLE 1.1 Let E be a small positive uurnber, and consider the line in the 
(x1, x2)-plane, X2 = - Ex1. We form a closely rela ted HLCP by taking rn = 1, 
n = 2, M = [c 1] E JR2 x 1

, N = -M and q = 0. 
The reason for choosing such a trivial example, apart from simplicity, is 

that its stability properties are clear: Take x0 = (0, 0), y0 = (0, 0) . If the right­
hand-side is perturbed away from zero top 2: 0, then :c = (0, p), y = (0, 0) is a 
solution of the perturbed HLCP : Mx + Ny = p, 0 ::; x _!_ y 2: 0. This solution 
is at distance p from the origin (x 0 ,y0 ). If p::; 0, we may take x = (0,0) and 
y = (0, -p). In fact, the Hausdorff dis tance between solution sets associated 
with different right-hand-sides p and p' is is exac tly IP - p'l/ v1 + E2 ' hence 
less than IP- p'l no matter how small E becomes. (In Section 2, the quantity 
1/~ will be called the modulus of metric regularity of the HLCP.) 

Now consider an intuitive pivotal approach to solve the perturbed HLCP 
where the right-hand-side is p > 0, given (:c0 , y0 ) at the origiu as above. We 
identify a complernentaTy bas·is, Cott le and Dant.zig; (1974) , t hat is a set of m 
variables that would not violate complementarity if all were positive, for which 
the corresponding submatrix of [M N] is invertible. Here '/II. = 1 a ud we a re free 
to choose any single variable. For instance, Lake the bas is as :c 1 with all other 
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system E:r 1 = p, hence produces t he so lu tion (x, y) = ((JJ/E, 0) , (0, 0)) which is 
at a la rge distance p/E from (:r0, y0 ). 

The diffi culty is that we cauu ot be sure which basis is staole in the sense of 
producing a solu tion that is near to our starting point. We are ouly rep eati11 g 
what has been long kuowu in linear a lgebra: the condi tion uumoer, Golub ami 
va u Loa n (1989), of a fu ll rank rectang ular 1nat rix A E ~exn, e < n , cannot be 
a pproxin1ated by the condition number of an arbi t rary basis matrix. 

The a bove idea of using inver tible cornplc!uentary bases was the subj ect of a 
previous investigat iou by the author , R alph (2002) . W hile this li as a certain con­
sisteucy in the history of pivota l methods for mathematical progranuuiu g, the 
example warns it can lead to unnecessary nun;erical diffi cul t ies if applied ua ivcly. 
We modify t his idea later to allow subrnatrices of complementary coluu1n::; of 
[M N] that have fu ll rank but are not uecessari ly invertiole (square). 

2. The modulus of metric regularity 

We assume the HLCP is globally metrically regular, as defined below . Let 

P = { (X, y) E ~2" : 0 ~ :r j_ y 2: 0}. 

This is a polyhedra l (nonconvex) set, i.e. the union of fin itely many convex 
polyhedra. The perturbed feasible set, for p E ~m, is 

F(p) = {z E P: L(z) = p} = P n L - 1(p) 

where z denotes (:c, y). The distance of any point z to F(p) is 

dist(z I :F(p)) = inf{llz- z' ll: z' E F(p)} 

which is taken to be oo if :F(p) = 0. 
Let U a nd V be nonernpty subsets of ~2" a nd ~m, respectively. T he modulus 

of (metric) regula rity of (1) with respect to U, V, denoted '"'fL(U, V) , is the 
infimum of 1 2: 0 such that 

dis t( z I :F(p)) ~ I ' II L(z) - Pll , Vz E u n P , p E v. 

Note that we require z E P iu the aoove definit ion since we are only interested 
in complementary solutio us of L(z ) = p. 

If 1£(~2" , ~m) < oo then we say that F is globally metrically regular. Also, 
we write /L for 1L(U, V) when U a nd V a rc clear from the context. 

The study of metric regulari ty a nd rela ted concepts is long and deep. Having 
/L < oo is variously referred to as pseudo-Lipschitz continuity, Lipschi tz-like 
behaviour , Aubin continuity, or openness at linear rate of the multifunction 
F : P --.. ~2". It is the same as metri c or pseudo regularity of the system 
z E P , L(z ) = 0. See Dontchev (1996), Dontchev and Hager (1994), I<latte and 



580 D . RALPH 

Remarks 

1. If the HLCP (1) is globally metrically regular , then L(P) = JRm , hence 
[M N] is surjective and of course has full rank. A partial converse is 
tha t I L(!Rn , JRm) = oo if [M N] does not have full rank, because theu 
L(P) ::f !Rm , hence :F(p) = 0 fo r some p E JRm. 

2. Suppose P = JR2n (drop the complementarity requirement), U = !Rn and 
V = !Rm (global metric regularity) . Write A= [M N] E !Rmx 2n. Then 

(a) 'YL = IIA- 1
11 if A is an invertible square (2n = m) matrix. Note the 

classical condition number of an invertible ma trix IIAIIIIA - 1 11 , Golub 
and van Loan (1989) . 

(b) / L = IIAT (AAT)- 1 11 if rank(A) = rn (==> 2n 2: m) , and we are using 
the 2-norm . 

(c) 1 L = oo if 2n < rn since [ M N] does not have full rank. 

3. Consider a subclass of HLCP s for which M = [AB] and N = [-I 8], 
where A,J E !R"'xm , I is the identity, B,8 E JR(n-m)x m and 0 is the 

hero ma trix. P art itioning the vari able vectors :c = (t, ·u) , y = (v, w) where 
t , ·u E JRm and ·u, w E JR"-m, we see t hat ( 1) takes the form of a pa rametri c 
linear complementarity problem in t whose complementary vector is v, 

0 :::; t ...L v = At+ B u + q 2: 0 
0:::; 'U 

where u can be thought of as a pa rameter, and w, which is supposed to 
be nonnegative and orthogona l to u, plays no role aud can be fixed as t he 
zero vector. Suppose there is a unique solu t iou (t ,v) for any fixed u and q, 
e. g. A is positive definite or, more genera lly, a P-1ua trix, Cottle, Pang and 
Stone (1992). In this case the solution (t, v) is a piecewise affine, hence 
globally Lipschith function of (u , q) and global metric regulari ty follows 
easily, in the style of Luo, P ang a nd Ralph (1996, Section 4.4). 

4. Mordukhovich's coderiva tive calculus is a general tool tha t is useful in 
characterising and invest igating necessary and sufficient conditions for lo­
cal (and , by extension , global ) regularity of systems of equa tions, and 
even sys tems posed using se t-va lued mappings. See Mordukhovich (1997) 
for an introduction to c derivatives and applications, and Mordukhovich 
(1996) for the particular case of s tability of solu t ion maps to parametric 
varia tional inequalities, of which HLCPs a re a special case. 

3. A homot opy framework for globally metr ically r egu lar 
H -LCPs 

Heuceforth we use the E clidea n or 2-non u, II· II = II · ll2· 
Assume (1 ) is globa lly metri call y regular with 111odulus of regularity f. We 

apply a homotopy framework fo r solving this HLCP given a sta rting point z0 = 
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• Let p0 = L( z0 ), the initial r·esidual. 
• Derive a path z(t) = (x(t),y(t)) such that 

z(O) = z0
, z(t) E 'P, L(z(t)) = (1- t)p0 fort> 0. (3) 

• If the path extends tot= 1, then (x,y) = z(1) solves (1). 

The size of the initial residual, IIP0 II , is a measure of the distance from z0 to the 
solution set of the HLCP. 

Our goal is to give a method that generates a path of points z( t) E F( (1 -
t)p0

) as above, such that the global "condition number" 1 is preserved at each 
point on the path, 

That is, computationally, we want to replace "dist" term by liz0 - z(t) il· In 
this case, when we reach a solution of the problem at t = 1, we will have 
ll z0 - z(1) 11 :::; r iiP0 II , which does indeed preserve the conditioning of the HLCP. 
Such a vector z(1) might be called a stable solution of the HLCP relative to z0 . 

In fact, we will show that a continuous stability property holds all along the 
path: for any s, t E [0, 1], 

llz(s)- z(t)i l :S is- tiriiP0 II· (4) 

We will do this by generating z(-) as a PA path in 'P with breakpoints { zk = 
( xk, yk)} {(=O, where K is to be determined, and with correspouding scalars 0 = 
to < t 1 < ... < if( = 1 such that for k: = 0, . .. , K- 1, 

L(zk+l) = (1 - tk+dP0 

llzk+l- zkl l :::; 1(tk+l- tk) IIP0 II 

zk + s(zk+1 
- zk) E 'P for s E [0 , 1]. 

(5) 

(6) 

(7) 

Thus, the major work at each iteration of the homotopy method will be to find 
a suitable direction d that can be scaled by a stepsize s > 0 in order to generate 
the next iterate, zk+l = zk + sd. 

3.1. A formal homotopy method 

Given z = (x, y) E 'P, let T(zi'P) be the tangent (contingent) cone of Pat z: 

T((x, y)IP) 
= { ( U, V) E JRn X JRn : 'Lii = 0 

'Ui = 0 
0 :::; 'lli j_ Vi 2': 0 

if X; = 0 < Yi, 
if Xi > 0 = y;, 
if Xi = 0 = yi}. 

Since Pis polyhedral, then dE T(ziP) if and only if z+sd E P for all sufficiently 
small s > 0. (Actually, since P is conical, the characterisation holds for all 
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At iteration k, suppose we have zk E P and tk E [0, 1) with L(zk) = (1-
tk )p0

. Consider the subproblem of finding a direction d = ( u, v) E JR2
n such that 

L(zk + sd) = L(zk)- sL(zk) and zk + sd E P for all smalls > 0, or equivalently, 

[MN]d = -L(zk) where dE T(zkiP). (8) 

Any solution d of (8) and scalar s satisfy 

L(zk + sd) = (1- s)L(zk) = (1- s)(l- tk)p0 . 

Also, zk + sd E P for smalls> 0. Observing that s E (0, 1] implies (1- s)(1-
tk) = 1- t where t = tk + s(1- tk) E (tk, 1], it follows that d extends "the" 
path for all smalls> 0. So, let dk be a solution of (8). 

Next let Sk be the maximum value of s E (0, 1] such that zk +sdk E P, the 
latter condition being equivalent to nonnegativity of zk + sdk because zk E P 
and dk = (·u, v) E T(zk IP) irnplies xk + su .l yk + sv for all scalars s. Let 
tk+I = tk + sk(1 - tk), hence tk+l > tk since sk > 0. If sk = 1, that is, 
zk+ 1 = zk + dk 2: 0, then tk+ 1 = 1 and zk+l solves the HLCP. 

We are now in a position to state a formal homotopy method for HLCP. 
H omotopy Method 

0. Initial conditions. We are given z0 E P. Let La= 0, k = 0. 

1. Direction. Find a solution d = dk of the subproblem (8) . 

2. Stepsize. Let Sk = rnax{s E (0, 1]: zk +sdk 2: 0}. 

3. Update. Let zk+ 1 = zk+skdk+ 1
, tk+ 1 = tk+sk(1-tk), and k = k+l. 

4. Stopping test. If tk = 1 then STOP; zk solves HLCP. 

5. Next iterat ion. Go to step 1. 

This algorithm is still fonual rather than computational in that we have uot 
discussed existence or calculation of directions required in step 1. Nevertheless, 
the above discussion shows that it is well defined, provided that a solution d of 
(8) can be found (in step 1) at each iteration, in which case the path relat.ious 
(5) and (7) are immediate. Moreover if each dk satisfies lldkll :::; iiiL(zk)ll, i. e. 
dk is "stable" solutiou of (8), theu the promised stable path property (6) (and 
heuce ( 4)) also follows. Existence and computation such stable direc tions are 
discussed in Section 4. 

Our next step in this sectiou is to show finite termination of the Homotopy 
Method , assuming it is well defined, at a solution of the HLCP. To achieve this 
we willuccd a further condition on the direction generated at each iteration th at 
is based on a uatural decomposition of the polyhedral nonconvex set P (and its 
taugeut cones) into finitely many closed, convex, polyhedra (co11es). 

3.2. Branches of P a nd fa ce-stable directions 

By I(zk) we denote the fami ly of (possibly empty) subsets I of the index set 
' ' ' 
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satisfy 

I :J {-i: x~ > o}, r :J {·i: v~ > o}. 

Define 

PJ={(:c,y): :c;.2 0=y; if·iEI, 
:c; = 0 :S: y; if 'i E fC}. 

Each set P1 corresponding to I E I(zk) is called a bmnch of P at zk. (The 
total number of branches of P at all feasible points can be as large as 2", i.e. 
exponential in the dimension of :candy, which helps to explain why optimization 
over such a feasible set is an NP-hard problem.) It can easily be seeH, Luo, Pang 
aud Ralph (1996), for small neighborhoods U of zk, that U n Pis contained in 
UIE I(zk) PJ, hence that 

T(zk I P) = U T(zk I PJ). 
IEI(z') 

By a face of P we mean a face of one of its branches. By a face ofT(zk I P) we 
mean a face of one of the convex polyhedral cones T(zk I PI) with I E I( zk). 

It is well known, Rockafellar (1970), that the relative interiors of the faces 
of a polyhedral convex set C partition that set. In other words, every member 
of C li es in the relative interior of a unique face of C. Also, if C is convex 
polyhedral cone, then the faces of C are also convex polyhedral cones. We state 
a minor extension of this to piecewise affine manifolds such as P. 

LEMMA 3.1 Let z E P and dE T(z I P). There 'is a unique face F ofP s·uch 
that z E rint F; nwreover any face of P conta·ining z also conta·ins F. L-ikewise 
the·re ·is a un·iqv.e fac e K ofT( z I P) such that d E rint K; rnoTeover any fa ce of 
T( z I P) containing d also contains K. 

Pmof. It can be verified by inspection that the intersection of two or more faces 
of P is also a (possibly) empty face of P, and that this property is inherited by 
it tangent cones. Hence the first statement follows the above property of closed 
convex polyhedral sets C, by taking C to be any branch PI with I E I(z). 
Likewise, the second statement follows by taking C = T(z I P1) for any I E I(z) 
such that dE T(z I PI). • 

DEFINITION 3.2 Let zk E P and d be a solution of {8). If there is a face K of 
T(zk I P) such that d sol-ves 

mm ~lldll 2 

subject to [MN]d = -L(zk) 
dE K 

(9) 

then we say zk is a face-stable solution of (8), with respect to K, or simply 
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There is no restriction placed on a direction d E T(zk I P) by requiring it to 
lie in a face T(zk I P). However, for d to be face-stable it must be the shortest 
solution of (8) associated with some face of T(zk I P) . In fact (9) is a strongly 
convex quadratic program, because we are using the 2-norm. The existence of 
a unique solution (depending on K) therefore follows if the problem is feasible, 
as it is assumed to be by the above definition. 

EXAMPLE 3.3 Returning to Example 1.1, recall the 2 x 1 matrices M = [t: 1], 
N = -M, where E is small and positive, and let q = 0 E R We have already 
seen that this HLCP is globally metrically regular with 1 = 1/~. Let 
zk = (xk, yk), with xk = (1, 0), yk = (0, 0), which has a residual of L(zk) = 
Mxk + Nyk + q =c. 

There are three faces of P containing zk: F1, given by x1, x2 ::::: 0 = Yl = Y2; 
F2, given by x1, Y2 ::::: 0 = :r2 = y1; and F3, given by x1 2: 0 = X2 = Yl = Y2· F1 
and F2 are two-dimensional faces that share F3 as a common facet, where F3 
contains z0 in its relative interior. The faces of the tangent cone T(zk I P) are 
tangent cones of these faces at zk: 

IC1 = {(u,v) E .IR2x2 : 'U2::::: O,v = 0} 

IC2 = {(u,v) E lR2x2 : v2::::: O,u2 = v1 = 0} 

IC3 = {(u,v) E .IR2 x2
: ·u2 = v1 = v2 = 0}. 

We list the face-stable solutions of the system (8), i.e. minimizers d = di of the 
quadratic program (9) with !C = IC;. This QP is infeasible for !C 1 and yields 
solutions d2 = (( -E2 , 0), (0, t: ))/(1 + t:2 ) for !C2 and d3 = (( -1, 0), (0, 0)) for !C3 . 

The solution d2 has length q, whereas the solution d3 is less stable, having 
length 1. 

The following statement is an immediate consequence of Lemma 3.1. 

COROLLARY 3.4 Let d E T(zk I P) and fC be the face of T(zk I P) containing 
d in its r-elat·ive inter"ioT. Then d is a face-stable solution of {9) if and only ·if it 
is face-stable with Tespect to fC. 

Another corollary is that if the constraints (8) are feasible, then any global 
minimizer of ~lldll 2 subject to these constraints is face-stable, because it must 
be face-stable with respect to any face that contains it. This idea will be further 
developed in the next section. 

The main result of this section is that if the homotopy method uses face­
stable directions at each iteration then it finds a solution of the HLCP after 
finitely many iterations. The proof shows t hat certain kinds of cycles are im­
possible, namely that the "worst" face containing a direction dk in its relative 
interior - where worst means dk has the largest norm relative to the right-
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of the proof) - contains no other direction in its relative interior. For sub­
sequent iterations, the same argurnent shows that the relative interior of the 
second-worst face cau only visited once etc. 

THEOREM 3. 5 Let z0 E P. guppose, for each itemtion /;;, thut there e1:ists a 
face-stable sol-ution ilk of {8). Then the Homotopy Method is well defined and 
it terminates a.fte1· finitely many demtions with a sol'Ution. of {1). 

Pmof. The only claim that has not been verified iu previous discussiou is finite 
termination of the method (note that finite termination implies that the last 
iterate calculated solves the HLCP). 

Suppose the method generates the sequence { (zk, tk) H:~' where kmax is 
either the iteration number at termination, or oo if the sequence does not ter­
minate. For each k, let Fk be the face of P with zk E rint Fk and Kk be the 
face of T(zk I P) with rlk E rint Kk. From the above, { tk} is strictly increasing. 
For each /;; < kmax, defiue 

(10) 

Now rlk = (z"+ 1 - zk)/ Skis face-stable which means, by Corollary 3.4, that it is 
the shortest vector in Kk Lo satisfy [M N]rlk = -L(zk) = -(1- tk)p0. It follows 
by a scaling argument that 'lk = "Y.i if Kk = K:i, and therefore that 'lk takes on 
only finitely many values even if kmax = oo. 

Suppose the maximum value of 1k occurs in iteration k (and possibly iu 

other iterations), and let F = i'k, K = ;c'k and 9 = Fk+l. We will show 

that no subsequent iteration zk can have (F\ Kk, Fk+ 1) = (F, K, 9). Tl1e 
same argument can he applied recursively by considering the subsequent iterates 
{ zk} k>k in order to eliminate another triple (F, K, 9) from appearing more th an 

once, and so on. Polyhedrality of P implies that there are only finitely many 
distinct triples (F, K, 9), where F and Q are faces of P, and K is the face of the 
tangent cone to P at some point. Hence, the recursive argument implies that. 
the algorithm must terminate after a finite number of iterations. 

Assume, to get a contradiction, that at some iteration J( E (k, /crn"x) we have 

(FK, KK, FK+l) = (F, K, 9). Since K is a face F of T(i I P) thea (i +K) nP 

is a face of P, denoted J:. This face contains i+1 , since 1F E K. Also i+ 1 is 
a relative interior point of the face 9; thus J: :J 9. As a result , our assulll ption 

FK+l = 9 yields that zK+l E i + K. 
Next, the triangle inequality gives 

]( 

llzK+l- i11:::; L llzk+l- zkll· 
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By squaring both sides and a pplying the Cauchy-Schwartz inequality, we observe 
that the above inequality is satisfied as an equality ouly if the directions dk /lldk II 
are identical for k = k, ... , ]{; iu fact for some positive scalars Tk+l, ... , TJ( we 

have dk = Tkd;· Recalling that zk+ 1 = z k + skdk for each k, this leads to 

J( f{ 

ZK+l = i + I>kdk = i + (~+ I>kTk)rl; 
k k+l 

which is not possible since, from Step 2 of the Homotopy Method, if s > sk' 

then i + si 'f. 0 hence zk + si (/. P. We conclude that strict ineq uali ty holds, 
namely 

J( [( 

ll zK+l- i 11 < L ll zk+l - zkll = L l'k(tk+l- tk) IIP0 II 

k=k 
~ "fk(tK+l- tk') IIP0

11 · (11) 

Now 

[MN](zK+l - i) = L(zh.+ l )- L(i) = (tk- tK+l)p0
. 

Thus for 

we have 

[MN]d = - (1 - lf;;)p0 = -L(i), 

i.e. J solves (8). We also have z K +l - i E K from above, hence J E K. Finally, 
using (11) and then (10) gives 

The desired contradiction arises because i is face-stable which means, by Corol­
lary 3.4, that it must be the shortest vector in K satisfying (8) . • 

The usual convergence technique, Allgower and Georg (1990) , Eaves (1976) , 
for homotopy methods applied to square systems is quite different to the above 
proof, since the former relies on the path being locally uniquely defined at 
least generically (for iafinitesirual perturbations of the right-hand-side vector 
-L(z0 )). This means tha t there is HO need to require global metric regularity, 
which has the advantage that the method may be well defined even if regularity 



A s table ho motopy approach to hor izonta l linea r complementarity pro blems 587 

double back on itself) along a continuous piece of the path without jeopardising 
existence of the path. 

We mention further that homotopy approaches to square piecewise affine sys­
tems, explored extensively in Eaves (1976), and used for solving one-parameter 
LCPs in Lemke's method, Cottle and Dantzig (1974), Cottle, Pang and Stone 
(1992), have the nice property in the (generic) nondegenerate case, that at each 
iteration there is a unique pivot that determines the next line segment on the 
pat h. Looking ahead to the next section, we see for the homotopy methods 
applied to general HLCP, that there are possibly many pivot choices, some of 
which are more stable than others. 

4. Finding stable directions 

By a 1-stable solution of (8) we mean a vector d that satisfies both this system 
and the bound lldll ::::; r iiL(zk)ll· Here, 1 is the the modulus of global metric 
regularity of the HLCP (1) . In Example 3.3 there are two face-stable direct ions 
d2 and d3 identified at the point zk, of which only d2 is 1-stable. 

If there exists a 1 -stable solution then, obviously, any global rniHimizer of 
the following problem must also be 1-stable: 

rrun ~lldll 2 

subject to [MN]d = -L(zk ) 
dE T(zk I P). 

(12) 

This is the direction-finding s·abpmblern, which can be written as a QPCC by 
formulating the constraints as in (13) below. 

Subsection 4.1 contains the main result of the section, Proposition 4.3, which 
says that each local minimizer d of the direction-finding subproblem is both / ­
stable and face-stable. This yields a considerable reduction of computational 
effort compared to global optimization with regard to 1-stabili ty. Nevertheless, 
even verifying stationarity of a feasible point may require examination of an 
exponential number of branches (of the tangent cone), another combinatorial 
optimization problem. 

To make the local rninirni<mtion idea more concrete, in Subsection 4.2 we 
apply an active set method, that can be derived from Scholtes (2002), to (12). 
(We could have instead applied the piecewise sequential quadratic program­
ming, PSQP, method of Luo , Paug and Ralph, 1996, see also Ralph, 2001 , as 
described for the case of QPCC in the Remark following Proposition 2 of Jiang 
and Ralph, 1999.) Then we discuss a regularity condition, called the MPCC­
LICQ, which is sufficient for the Active Set Method to find a local minimizer of 
(12). Initialisation of the Active Set. Method is the subject of Subsection 4.3. 

Lookiug ahead to SectioH 5, we see that the MPCC-LICQ almost always 
holds as needed, hence the Active Set Method produces directions that are both 
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generate a stable path that reaches the HLCP solution set after finitely many 
iterations. Note tha t we are not limited to the Active Set Method, since there are 
many other methods that also produce local minimizers uuder the MPCC-LICQ, 
aud perhaps other assum tions, at limit points of the iteratiou sequence, see 
Fletcher, Leyffer, Ralph and Scholtes (2002), Fukushima and Pang (2000), Hu 
and Ralph (2002) , Huang, Yang and Zhu (2001), Luo, Pang and Ralph (1998), 
Scholtes (2001), Scholtes and Stohr (2001), Fukushima and Tseng (2002). 

4 .1. Local minima of the direction-finding subproblem 

Recall our assumption, throughout , that the HLCP (1) is globally metrically 
regular of woclulus "(. We will show stability of local solutions of (12) using two 
miuor results. The first, Lemma 4.1, says that localised systems like (8) are at 
least as stable as the whole system (1). This is to be expected since the global 
modulus of regularity is necessarily more conservative than the local modulus. 
The secoud, Lemma 4.2, is a general result about proj ections. 

LEMMA 4. 1 Write A= [MN]. For any z E P , dE JR2
n and qE lRm, 

Jist((ll A- 1(q) nT(z I P)) ~ 'Y IIAd - iil l· 

Proof. Write p = L(z) and observe for any d E IR2" and nonzero scalar t that 

Ad= q ¢:? L(z + td)- L(z ) = tq ¢:? L(z + Ld) = p + Lq. 

Also, d E T(z I P) if and only if z + td E P for all small enough t > 0. These 
observations imply that tllere exists a scalar t > 0 for which 

dEA-l ((j) n T( z 1 P) ¢:? z + td EL- l (p + tq) n P = F(p + tq). 

T hus 

tdist(d l A- 1 (q) n T(z I P)) = dist(z + td l F(p + tq)) 

~ 1' IIL(z + td)- p - tiJI I = 1'IIL (z + td)- L(z) - tiJI I = h ii Ad - iill 

aud we are clone. • 
Next, we have a general fact about "local projections". 

LEMMA 4.2 Let x be a local sol'Ulion of the pTOblern rnin:rES llxll, wher-e S is a 
s'Ubset of a nonr~ed space . Then for· some t E [0 , 1) , x is a global so l'Ution of 
minxES llx - txll· 

Pmof. For any t E [0 , 1], the triangle inequality yields 

IB(tx, (1- t)ll xl l) c IB(o, llxll), 

where IB(x, T) is the closed Lall of centre x and radius r 2: 0. By hypothesis 
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t E [0 , 1) large enough such that lffi(tx , (1 - t) IIX II) is contained in U. On the one 
hand, if X E U n S then 

ll x- txll ~ ll:r:ll- tllxll ~ (1- t)llxll· 

On the other hand, if x E S \ U then x rf. lffi(tx, (1- t)llill), hence llx- ti ll ~ 
(1- t) ll xl l· Finally, x lies in Snlffi(tx, (1 - t)lli ll ) , so it must be a global solution 
of minxES ll x - ti ll· • 

We present the main result of this section. A consequence is that if Step 1 
of the Homotopy Method is defined by taking d as a local minimizer of (12), 
then the Homotopy Method is well defined, terminates finitely by Theorem 3.5, 
and the iterates (zk, tk) satisfy the desired properties (5)- (7). 

PROPOSITION 4.3 The dir·ect·ion-finding s·ubpmblem {1 2) is feasible and bo·unded 
below, S'Uch that eveTy local minimizeT is a -y -stable and face-stabl e sol·ution 
of (8). 

Pmof. Feasibili ty of (12) is implicit in the statement and proof of Lemma 4. 1, 
and of course t he objective function is bounded below by zero. 

Let dbe a local minimizer of (12). The face-stable property is straightfor­

ward. For suppose that K is a face of T(zk I P) containing J, hence d is a local 

minimizer of the convex QP (9) . Then, d is also a global minimizer of the same 
QP, and by definition is face-stable. 

Showing -y-stabili ty requires more effort. Write A= [M N] and r} = - L(zk). 
From Lemma 4.2, there exists t E [0, 1) such that dis a global solu tiou of the 
problem 

Thus 

mm ~ li d- tdil 2 

suhject to Ad = pk 
cl E T(zk I P). 

(1- tJ II dl l = dist(tdl A- 1(pk) n T(z"' I P)) 

:S -r iiL(td)- Pk ll hy Lemma 4.1 

= -r(1- tJ II Pk ll = -r(1- tJ IIL(zk) ll · 

Since t < 1, IIJil :S -r ii L(zk) ll as claimed. 

4.2. An active set method 

• 

We leave it to the reader to check, by examining the tangent cone T(zk I P) , 
that the feasible set of (12) can be written with d = (u, v) E ~n x ~n as 

[M N ]cl = -L(zk) 
U; = 0 

0 :S ·u; j_ v; ~ 0 
for ·i E I+(Yk) 
fori E Bo(z~) 

(13) 
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where for x, y E !Rn, 

I+(x) = {·i: x; > 0} 

Io(x) = {'i: :J.:; = 0} 

Bo(x, y) = Io(x) n Io(y) . 

D. RALPH 

The letter B in Bo(x , y) refers to t he description of "bi-active" indices that 
form this set . If orthogonality was omitted from these constraints, we could 
apply a standard active set method, Fletcher (1987) , to solve the resulting 
strictly convex QP. It will be a simple matter to adapt the standard approach 
to ( 12) by adding condi tions (on the "entering candidates" in Step 5 below) 
that preserve complementarity of iterates. The resulting Active Set Method will 
retain the advantage of rela tively cheap iterates, by rank-1 updates of matrix 
factorizations, and the possible disadvantages of cycling and of the number of 
iterations being exponential in the problem dimension. 

The following algorithm is actually a specialisation of the active set method 
for quadratic programs with complementarity constraints given by Scholtes 
(2002) . 

Each iteration of the method requires a feasible point d = (u, 0) and a 
corresponding pair I , J of index sets such that 

IuJc{1 , .. . ,n} , InJ= 0, 

I:) I+(xk) u I+(u), J :) h(yk) u I+(v), 

A= [M1NJ] has full rank rn, 

(14) 

where M1 and N J are the respective subrnatrices of M and N corresponding 
to columns indexed by ·i E I and j E J. (The condition In J = 0 is required 
for complementarity.) By a slight abuse of terminology from complementary 
pivoting methods for linear complementarity problems, e.g. Cottle and Dantzig 
(1974) , we refer to the triple d, I , J as a complementaTy basis, though the matrix 

A is not necessarily square, an ditself as a complementary bas'ic f eas'ible sol'Ution 
of (13). 

The iteration requires the solution of a strictly convex QP, 

min ~llwll 2 subject to Aw = -L(zk) 

by solving the linear Lagrangean system 

(15) 

where Id is the n X n identity matrix and tt E IR111 is a standard Lagrange 
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Act ive Set Method 

0. Init ial conditions. We are given a complementary basic feasible point 
d of (13) and associated index sets I , J such tha t (14) holds. Our 

initial itera te J = (u, v) is d. 

1. Solve Lagrangean system. Let (w, f.t) solve (15). 

2. Stepsize. Let ·w = (u1,vJ) and}( be set of indices ofw such tha t w 1..: 

does not correspond to any ·u1, ·i E I+(:ck) , or Vj, j E I+(Yk). 
Lets= lllax{s E [0 , 1]: (1 - s)tih: + S'W!( 2: 0}. 

3. Update iterate. Let (u 1,vJ) = (1- s)·w + sw and J = (u,v) . 

4 . Leavin g in dex. If s < 1 choose a leaviny variable, either u1 for some 
·i E l \ I+(:ck ) such that u; = 0, or v1 for some j E J \ I+(Yk) with 
vj = 0. 

Update basis: If u.; (or v:i) is leaving, let I = I \ ·i (or J = J \ j , 
respectively) all(] delete the corresponding column from A. 

Go to Step 1. 

5 . Entering candidate lis t . Let the list of enieTiny cand·idates be ti; for 
i E I c n B0(zk) n B0(d) and v1 for j E JC n B0(z J..') n B0(d) . 
Let E be the corresponding submatrix of colurnns of [M N]. 

6. Stoppin g test. If the list of entering candidates is empty, or p7 E 2: 0 
then STOP a ll(\ retum J = (u, v). 

7. Enterin g index. Let c be a colunm of E with f.tT c < 0, and the 
corresponding entering candida te be u; or Vj . 

Update basis : If ·u;. (or v7) is enteriug let I = I U ·i, J = J \ ·i (o r 
J = J U j, I = I \ j, resp.) and insert the column c into the basis 
mat rix A. 

Go to Step 1. 

The list of enteriug candidates in Step 5 has to allow for a ny va ri a ble tt; that 
is not already basic , and whose coTnplement v; neither has a posit ive current 
va lue v; nor is associated with the free index set h(yk). E utering candida tes 
Vj satisfy similar couditions. 

By a basic linear algebraic argument that is familiar in standard ac:live set 
methods , a column can only be deleted (Step 4) fron1 the basis 111a trix A if the 
new basis matrix still has full rank. Of course, adding a column (Step 7) to 
the bas is matrix cannot affect the rank since the rank of A is a lready at its 
maximum value m. Therefore, like convergence proofs of active set methods for 
QPs, an inductive argument using the representa tion (13) easily establishes that 

the vector d = (u, v) and the index sets I, J satisfy (14) at every iteration. This 
means that Step 1, and hence the entire method , is well defined and moreover 
that each iterate (u, v) is a feasible point of (8). We have just sketched a proof 
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PROPOSITION 4.4 The Active Set Method is well defined and generates a se­
q'Uence of feasible points (u, v) of (8). 

Having a well defined method, however, does not preclude the possibility 
of cycling, i.e. taking a sequence of steps in which (u, v) remains constant and 
in which some complementary basis is eventually repeated. Cycling may only 
occur if there is more than one candidate for the leaving index at some iteration, 
as can be shown easily by induction. These comments apply equally to active 
set methods applied to QPs. 

The meaning of the stopping condition is not clear at a first glance, given the 
definition of the entering candidate list. We next look at a linear independence 
(full rank) condition that provides some justification for the active set approach. 

We have already identified the direction-finding subproblem (12) as a QPCC. 
We say that the MPCC linea,- independence constraint qualification, MPCC­
LICQ, holds at a feasible point d of this problem if the active constraint gradi­
ents of the formulation (13), ignoring the orthogonality conditions, are linearly 
independent. See Luo, Pang and Ralph (1996, 1998), Scheel and Scholtes (2000) 
for details and more general discussion. To be explicit, let ( u, v) = d be a fea­
sible point of (13), I = I+(xk) u J+('u), and J = h(:t/) U J+(v). Then the 
MPCC-LICQ at dis equivalent to requiring full rank of [M1NJ]. Comparing 
this with the definition of a complementary basis (14), we see that the MPCC­
LICQ requires that the first two lines of (14) imply the third line. 

The beauty of the MPCC-LICQ is that it relieves the combinatorial difficulty 
of checking stationarity of a feasible point, see Luo, Pang and Ralph (1998), 
Scheel and Scholtes (2000). The next result is more or less well known in the 
study of MPCC; it is a corollary of the results of Luo, Pang and Ralph (1998), 
Scheel and Scholtes (2000) and is used in the general active set approach of 
Scholtes (2002). A proof will not be given for this reason. 

PROPOSITION 4.5 Let d = (u, 0) be one of the 'iterates genemted by the Active 
Set method. S·uppose the MPCC-LICQ holds for (13) at d. Then either-dis a 
local rnin·imizer of (12) and the algo ,-ithrn stops (in Step 6), or d ·is not a local 
minimizer of (12) and the ulgoTdhrn takes a nonzero step (to strictly decrease 
the val'Ue of II ~IJ in the next itemtion. 

An implication of this result is that cycling cannot occur at an iterate sat­
isfying the MPCC-LICQ; the analogous result is well known in standard active 
set methods for QP. If, by luck, every iterate (u, 0) generated by the Active Set 
Method satisfies the MPCC-LICQ, t hen the method is bound to stop, after a 
finite number of iterations, at a local minimizer of (12). Actually, it has been 
shown, Scholtes and Stohr (2001), that the MPCC-LICQ is a generic property 
of MPCCs, a result that we will be able to use in Section 5 to show that the 
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4 .3. Initialising the Active Set Method under another linear inde­
pendence condition 

Consider the homotopy path described by (3) which we restate here for conve­
mence: 

L(z) = (1- t)L(z 0
), 0 ~ x j_ y 2: 0. 

As previously, let (zk,tk) be a point on the path with z"' = (:c\y"'). We now 
show how to find a starting complementary basic feasible solution of the feasible 
set (13), which is required in Step 0 of the Active Set Method. 

We will see shortly in Proposition 5.1, for almost all z0 , that the MPCC­
LICQ holds at all feasible points (z, t) of the path system (3) where t is con­
sidered to be a variable, i.e. [M1NJL(z0 )] has full rank for I = I+(:ck) and 
J = h(yk). For now, we take this MPCC-LICQ condition at (zk, t,) for 
granted. 

The easy case for defining an initial complementary basic feasible solution 
of (13) is when [M INJ ] has full rank, in which case we determine a vector 
d = (·u, v) with [MINJ]('UJ, 'VJ) = -L(zk) and 'UJ c = 0, 'VJ c = 0. The hard case 
is when [M1NJ] is rank deficient, in which case full rank of [M1NJL( z0 )] implies 
rank [M1 NJ] = rn- 1. The latter case can still be dealt with efficiently as we 
next show. 

LEMMA 4.6 Let (zk, tk) be a point on the homotopy path (3) at which MPCC­
LICQ holds, zk = (xk, yk) and I =h(xk), J =I+(Yk). E-ither mnk [MJ NJ] = ·m 
o·1· ther·e exists a variable, eitheT ·u; OT v; joT some i E Bo(zk), and a cOTTespond­
ing col·urnn c, eq'Ual to lvi; or- Nj r-espect·ively, s·uch that [MINJc] has full Tan/.; 
and for some (·u1, VJ) 2: 0 and scalar 8 2: 0, 

(16) 

Proof. The result derives from the investigation of Ralph (2002). We sketch tbe 
proof. 

We may assume without loss of generality that rank [M1 N J] = Tr! - 1. Let 
A = [M1 N J] and B represent the family of matrices B = [Ac] for which c 
is either M; or N; for some ·i E Bo(zk). Assume, to contradict global metric 
regularity of (1), that none of the matrices B E B has the required property. 
Consider the halfspace H of vectors ('u1 , v1 , 8) where ·u1 and VJ are arbitrary, 
while 8 2: 0. Observe that each B E B maps H either to a half space or a 
hyperplane ((m - 1)-dirnensional subspace) in !Rm. If B(H) is a hyperplane 
then cis necessarily in the range space (i.e. column space) of A, denoted G', 
hence B(H) = G'. If B maps H to a halfspace then the latter is defined by 

H' = G' + {8L(zk): 8 2: 0}, 
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A separate argument shows that [ M N ] (T( zk I P) ) is the convex hull of the 
sets B (H ), forB E B. It follows that [M N] (T (zk I P)) is contained in H' , i. e. 
[M N] (T (zk I P)) is note ual to IRm. The equivalent systems (8) and (13) are 
therefore not metrically regular, contradicting Lemma 4. 1. • 

Clearly, any solution ur , VJ, 8, described above, corresponds to a comple­
mentary basic feasible solution of (13). Such a solut ion can be found by checking 
(16 ) for each of the columns c equal to M ; or N; for ·i E B 0(z k) in the follow­
iug straightforward way. Given c, factorize [M N c] (or its transpose, e.g. using 
the QR factorization, Golub and van Loan, 1989) iu order to determine first a 

solu tion of (th , VJ,lf) of (16), and , second , a basis for the nullspace or kernel of 
[M N c]. If 8 < 0 then existence of a solution of (16) wi th 8 ~ 0 is equivalent 
to the basis having at least one columu whose last compouent is nonzero. If a 
particular column c does not provide satisfaction theu rank-1 updates can be 
used to replace c by another valid column. The rank-1 updating procedure will 
also detect any column c for which [M N c] has rauk rn- 1; these columus are to 
be discarded. The first fac torization could be carried out on [M N L(z k)], which 
has full rank because L(zk) is nonzero multiple of L(z 0 ) = p0 , after which the 
rank-1 updating occurs as described. 

5. Stability of t he Hom ot opy-Active-Set Method for al­
m ost all starting p oints 

The aim of this section is to complete the task of showing that the Homo­
topy Method is practical. We already know, by using a local minimizer of the 
direction-finding subproblem (12) at each iteration, t hat the Homotopy Method 
will terminate aft er fiuitely many steps at a stable solution of the HLCP. We 
know further that finding a local solution of (12) is practical, by applying a 
method designed for QPCCs or poss ibly MPCCs, Fletcher, Leyffer , Ralph and 
Scholtes (2002) , Fukushima aud Pang (2000) , Hu and Ralph (2002), Huang, 
Yaug aud Zhu (2001 ), Luo, Pang and Ralph (1998), Scholtes (2001 ), (2002 ). 
Scholtes aud Stohr (2001 ), Fukushima and Tseug (2002), provided a suitable 
MP CC-LICQ holds at the iterates encountered by the method. It is left Lo 
Subsection 5.1 to prove, using Scholtes and Stohr (2001), that the MPCC­
LICQ holds as required throughout the Homotopy Method, fo r almost all initial 
points z0 = (:c0 , y0 ) of the method . Subsection 5.2 summarises the couvergence 
properties of the hybrid method, which combines the Homotopy and Active Set 
methods, and also briefly considers the degenerate case in which sorne of the 
iterates (zk, tk) do not yield the required MP CC-LICQ properties. 

5.1. MP CC-regular systems of com plementarity constraints 

Given z = (x, y) E P and p E lR"', we have seen, see, (13), that the conditions 
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[MN ]d= p 
'U; = 0 

0 ::; 'U; l_ V; 2: 0 
Vj = 0 

fori E I+ (Y) 
for ·i E Bo(z) 
for j E I+(x) . 
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(17) 

We say that this system is MPCC-regular if the MPCC-LICQ holJs a t every 
feasible point of (17). (The term "regular" was used in Scholtes and Stohr (2001 ) 
but we prefer MPCC-regular to help Jistiaguish it from metric regularity.) 

By almost a ll or a.a. we mean all points but for those in a set of Lebesgue 
measure zero. By a.a. z E P we mean all points of P except for t hose in a set 
whose intersection with each of the n-Jirnensional branches P1 has Lebesgue 
measure zero with respect to the affine hull (i.e. subspace Pr - Pr) of that 
branch. (An alternative Jefiai t ion could use the fact tha t P is ltollleornorphic 
to JRil, Robinson, 1993, and defiue a .a . z E P via zero measure sets in lRn.) 

PROPOSITION 5. 1 

1. Fo·,. a.a.. fJ E lRm, u:nd each .?: E P, the system (17) is MPCC-·,.eg'U.la·,·. 
2. Fo·,. a. a. z 0 E P , /.he .following statements both hold: 

(a) The houwtopy path sy::; tem. (3) is M PCC-1·eg·ular. 
(b) Fo ·,. every (z, t) with t < 1 on the path (3), the local system (17) wil.h 
p = -(1- t)L( z0 ) is MPCC-1·eg·a.lar. 

Proof. 1. It is easy to sli ow for fixed z = (:c, y) (i .e. fixe<.! index sets I+ (x), I+ (y) , 
B0(z)) and a .a. p, that t he solu tions of (17) satisfy the MPCC-LICQ. The short 
proof of Coro lla ry 2 from Scholtes and Stohr (2001 ), using Sard 's tli eorem, can 
be inttllediately adapted for this purpose. 

Part 1 of the result now follows because there are only finitely many distinct 
triples (I+(y) , Bo(z),I+(:c)) for all possible z. 

2(a). Similar to the first paragraph of the proof, it is an easy corollary of 
Scud's theorem tha t the sys tem in (z, t) given by L(z ) = (1-t)p, 0 ::; x l_ y 2: 0 
is MPCC-regular for a.a. p E lRm. 

For 2(b), the fact t hat L maps neighborhoods in P to neighborhoods in 
lR"', which is a corollary of Lemma 4. 1, yields MPCC-regularity of (17) wi th 
p = -L(z 0 ) for a.a. z0 and every z, by Part 1. Let z0 be a point such that 
(17) is MPCC-regular for p = -L(z0 ) and every z. Consider the scaling p = 
- sL(z0 ) for any s > 0, and, given z , denote the corresponding feasible set (17) 
by Q(z,z0 ,s). Obviously Q(z ,z0 ,s) = sQ(z,z 0 , 1) , hence MPCC-regularity of 
Q(z , z0 , 1) irnplies MPCC-regularity of Q( z, z0 , s ). T his holds for any s > 0 and 
z, and we a re done. 

Metric regu larity is not required for Part 1 of the Proposition (or for Sarcl 's 
t heorem). It is used ia Part 2 because the statelllent iuvolves the domain space 
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5.2. A summary of the Homotopy-Active-Set Method 

As in Section 4, consider the Homotopy Met hod in which the direction-finding 
subproblem is solved by the Active Set Method. We call this hybrid the 
Homotopy-Active-Set or HAS Method . 

Under the standing assumption that the HLCP (1) is globally metrically 
regular of modulus /, the following statements are valid for a . a. z0 E JR.rn : 

1. At iteration k of the HAS method, where tk < 1: 
(a) the MPCC-LICQ holds for the homotopy path (3) at the point (zk, tk), 
hence the Active Set Method for the direction-finding subproblem (12) can 
be initialised as describe in Subsection 4.3 . 

[Proposition 5.1, Part 2(a); Lemma 4.6] 
(b) the feasible set (13) of (12) is MPCC-regular; 

[Proposition 5.1, Part 2(b)] 
(c) The Active Set Method terminates after finitely many iterations at a 
local minimum of (12), hence a solution of (8) that is both 1-stable and 
face-stable. [Proposition 4.5, Proposition 4.3] 

2. (a) The HAS Method is well defined and terminates after finitely many 
iterations, in iteration K , with a solution z = zK of the HLCP (1). 

[Theorem 3.5] 
(b) The iteration sequence { (zk, tk) }{( satisfies the stable path property 
(6), in particular ll zK- z0 ll :::; riiL(z0 )11- In addition {tk}{( is strictly 
increasing. [Subsection 3.1] 
(c) The piecewise affine path defined on [0 , 1] by 

( ) 
tk+l - t k t- tk k+l 

z t = z + z 
tk+l - tk tk+l - tk 

for t E [tk, tk+l] and k = 0, ... , K - 1, satisfies z(t) E P, L(z (t)) 
(1- t)L(z0 ) and the continuous path stability property (4). 

[Sub::>ection 3.1] 
At this point it would be useful to mention that there is potential for au 

anti-cycling strategy that would allow any starting point z0 E P. 
Consider an iterate zk such that the feasible set (13) is not MPCC-regular. 

We know that arbitrarily small perturbations of z0 will mend this situation. 
Therefore we can in principle refine the Active Set Method to use infinitesi­
mal perturbations so that it will not cycle, but will terminate in finitely many 
iterations. The terminal iterate d will not necessarily be a local minimizer of 
(12), unless the MPCC-LICQ holds at J, but nevertheless it will still be a point 
satisfying (13) that is both 1-stable and face-stable, by continuity arguments. 
A similar infinitesimal anti-cycling strategy would be needed to initialise the 
Active Set Method. 

Lex'icogmph'ic oTdeT'ing is a well known anti-cycling procedure for pivotal 
algorithms. For homotopy methods applied to square piecewise affine homotopy 
systems, lexicographic ordering is used, Eaves (1976), to solve the degenerat e 
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terms of infinitesimal perturbations, where the perturbations restore regularity 
similar to the above description. 

For HLCP and every starting point z0 E P, such anti-pivoting strategies 
would yield the same convergence results as listed above, apart from 1(a) and 
1(b ), i.e. omitting the statements involving MPCC-LICQ or MPCC-regularity. 
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