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1. Introduction

Let (E, || - ||} be a separable real Banach space. Let f(-) be a real-valued convex
conlinuous function defined on an open convex subset @ C E. Mazur (1933)
proved that there is a subset 4z C £ of the first Baire category such that
on 4 Ag the function f(-) is Gateaux differentiable. Asplund (1968) showed
that if additionally the space £ has the separable dual, then there is a subset
Ap © 22 of the first Baire category such that on (1Y Ap the function f(-) is
Fréchet differentiable.

Observe tlhat the results of Mazur and Asplund trivially extend to the so
called DC-Tunctions (the functions which can be represented as differences of
convex continuous functions), which play an essential role in nonconvex analysis.

The proof of Asplund’s result consists of two parts. In the first part one
shows that if f{-) is & convex function defined on an open convex set X, which
is a subset of a Banach space K. then f(-) has a subgradient at each point of X
The functions with this property are called subdifferentiable. In the second pari
of the proof one shows that for a convex subdifferentiable function f(-) there is
a subset Ap C @ of the first Baire category such that on ©\ Ap the function
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The extension of the second part of the proof to the case of metric spaces
was done by the author, Rolewicz (1994) (see also the book by Pallaschke and
Rolewicz, 1997). Let (X.dx) be a metric space. In the paper we shall as-
sume that € is a set consisling of real-valued Lipschitz functions defined on
X. The properiies of weakly ®-subdifferentiable functions are investigated. In
particular, sullicient conditions warranting that each weakly @-subdifferentialile
function is Fréchet differentiable on a set of the second Baire category, are given.
In Banach spaces those results give us an extension of the Asplund theorem to
a larger (than convex) class of functions called strongly af-)-paraconvex (or
uniformly approximate convex) functions.

The paper is organized as lollows,

Section 2 contains the definitions of $-convex functions, $-subgradients and
Psubdifferentials in general structures and in metric spaces. Also localiza-
tions of those notions are given. In Section 3, af-)-®-subgradients and of-)-
fsubdifferentials are introduced. It is shown that of-)-$-subdifferentials are
a(-)-monotone multifunctions. Section 4 contains extensions of the famous re-
sults of Mazur (1933) and Asplund (1968) aboul the differentiability of convex
functions to the case of af-)-¥-subdifferentiable functions. In Section 5 the
notions af-)-paraconvex functions and strongly a(-}-paraconvex of real-valued
functions defined on convex subsets contained in normed spaces are introduced.
The Fréchet differentiability of strongly a{-)-paraconvex functions on a residual
set is also shown. The relations between strongly of-)-paraconvex functions and
uniformly approximate convex functions are discussed. The proof that those two
notions are equivalent is presented. As a consequence we show that each uni-
formly approximate convex function f(-) is Fréchet differentiable on 2 residual
set.

2. ®-subgradients and ®-subdifferentials

Let X be an arbitrary set. Let & be a family of real-valued funclions defined
on X. Let P+ R={d+c:¢p e dece R}
A real-valued function f{:) defined on X is called $-conver if it can be
represented as
f(&) = sup ¥(x), (2.1)
VED,
supremum being taken over a subfamily ¢, C ¢ + R.

A Tunction @(-) € ® is called a ®-subgradient of a function f(-) at a point xq
if
f(x) = [(xo) 2 d(x) = $(xa), (2.
for all £ € X (see for example Pallaschke and Rolewics, 1997).

The set of all ®-subgradients of the function f(-) at the point zy is called
. R 1 i # - ]
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derivative in the directions e, al the point ¥ we see that such $-subgradient
would be of the form y = (2,2,...). Buty & £2.

Modifying Example 2.1 we can oblain a metric space X and a family of
Lipschitz functions & such that there is a @-convex function which does not
have a $-subgradient at any point. Indeed

ExampLe 2.3 Let X = (—1,1) with the standard metric. Let & be the sel of
linear functions with rationel coefficients. Let f(z) = cx, where ¢ is irrational.
Of course, f(z) is ®-conves. On the other hand il is easy to see thatl it does not
have a @-subgradient al any poind xg € X.

For the class & given in Example 2.3, "’& iz not complete in the Lipschitz

norm. A natural question arises: suppose that X is complete and ¥/, is complete
in Lipschitz norm. Does there exist for every ®-convex function f(-) a point xg
such that dg f|., # 07

In the case when X is a compact set and & consists of continuous functions
we have

ProPoSITION 2.4 Let X be a compacl set and & consist of continuous functions
defined on X. Let f(-) be a continuous $-conver function. Then for each ¢ € &
there is £y € X such that § € 34 f|-, .

Proof. Since f(-), #(-) are continuous and X is compact, there is a point x4 € X
such that

J(z4) = $(z4) = min[f(z) — ¢(x)].
Thus, for all z € X,
flz) = ¢lz) = [(xa) — dlzs),
which implies
flz) = [lzs) 2 ¢lx) = d(xs),
i.e. ¢ is a P-subgradient of f(-) at x4, =1

In the case of metric spaces [or even more general topological spaces) we can
introduce the notion of a local $-subgradient. Namely ¢ € & is called a local
D-subgradient of o function f{-) at a point zg € X il there is a neighbourhood
U{s, zg) of zg such that

f(z) = f(zo) 2 $(x) = Plxo) (2.2)

for z € U, xzn). If a function f{-) has local $-subgradients for all mg € X we
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3. al-)-P-subdifferentials and «(-)-monotonicity

Let a(t) be a nondecreasing function mapping the interval [0, +20) into [0, +o¢]
such that
aft) _ ;
=0 @
A function ¢(-) € ¢ is called an - )-P-subgradient of the function f{-) at a
point g if for all £ € X,

f(z) - f(xo) 2 d(z) — $(z0) — ald(z,20)). (3.2)

In the particular case at) = 0 we obtain the definition of ®-subgradient (see
for example Pallaschke and Rolewicz, 1997).

The set of all af-)-P-subgradients of the function f{-) at the point xy is
called the a(-)-®-subdifferential of f(-) at zo and it is denoted by 83 fls,. In
the particular case a(t) = 0 we obtain the definition of $-subdifferential (see
for example Pallaschke and Rolewicz, 1997).

In the case when X is a normed space, # = X* and aft) =7, 1 <t < 2,
we obtain the definitions of y-subgradients and y-subdifferentials introduced by
Jourani (1996).

If 83 f|: # @ for all z € X we say that () is af-)-P-subdifferentiable.

Now we shall localize the notions given above. If for a function ¢(-) € &
there is a neighbourhood U{¢, o) of a point zp such that (3.2) holds for all
x € U, o) we say that ¢(-) is a local ao-)-®-subgradient of f(-) at zp. The set
of all local af-)-®-subgradients of function f(-) at @y it is called the local af-)-
®-subdifferential of f(-) at zp and it is denoted by 85" fle. 1f 85" flzy # 0
for all xg € X, we say that f(-) is locally of-)-P-suldifferentiable.

Let, as before, a(t) be a nondecreasing function mapping [0, +oc0) into [0, +o0]
such that (3.1) holds. We say that a multifunction T mapping X into 2% is -
monotone if for all ¢, € ['(x), ¢, € I'ly) we have

$2(2) + dy(y) = d=(y) — Py(z) + ald(z, y)) 2 0. (3.3)

In the particular case a(t) = 0 we oltain the definition of monotone multi-
Junctions (see for example the book Pallaschke and Rolewicz, 1997).

In the case when X is a nonmed space, ® = X® and aft) = ¢, 1 < £ 2,
we obtain the definition of y-monotone multifunctions introduced by Jourani
(1996).

Just from the definitions we trivially obtain

Prorosition 3.1 (Rolewics, 1999). Let X be u metric space and let & be a
Jamily of real-valued functions. [f a funclion f{-) 5 o )-@-subdifferentiable,
then its af-)-®-subdifferential 33 f|, considered as u multifunction of £ is 2a(-)-
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We can localize the notion of «f-}-monotone multifunctions. Namely, we
say that a multifunction T mapping X into 2% is locally of-)-monotone if for
all zp € X there is a neighbourhood U of zg such that for all 2,y € U, ¢, €
I'(x), ¢y € I'(y) we have

$e(x) + &y (¥) — $=(v) — dy(2) + ald(z,y)) 2 0. (3-4)

Since in the definition of local $-subgradient the neighbourhood Ufd, zq)
depends on ¢, it is easy to construct examples showing that the local el )-d-

subdifferential of a function f{-), ﬂg"”_ﬂr need not be a locally af-)-monotone
multifunction.

4. Differentiability of af(:)-®-subdifferentiable functions

We shall say that a function f{-) mapping a metric space (X, dy) into R is
Fréchei ®-differentiable at a point zq if there is a function ¢ € ¢ such that

i LGE) = flzo)] = [(=) = $lzolll _

z—1xyg dy iz, zn)

(4.1)

The function ¢ will be called a Fréchet ®-gradient of f(-) at xg. The set of
all Fréchet $-gradienis of f{-) at @ is called the Fréchet ®-differential of f()
al zp and it is denoted by 85 f|s,-

In general a $-subdifferentiable function may not be Fréchet $-differentiable
at any point, as follows from

EXAMPLE 4.1 Let X = R and let ¢ = [¢(z) = —|z — zo| : zo € R}. [t is easy
to see that a funciion f(-) is ®-conver if and only if i is a Lipschitz function
with Lipschitz constant not greater than 1. Thus, the function f(z) = 0 is .
subdifferentiable. 1t is easy to see that @ is nol Fréchel P-differenticble at any
point.

However, under appropriate assumptions we can obtain an extension of the
Asplund theorem to the case of metric spaces.
The assumptions are as follows:
{a) ® is an additive group,
(sL) @ is a set of Lipschitz functions; morcover Lhe space "}{l is separable in the
Lipschitz norm ||¢| .,
{wm) the family & has the weak monolonicily properly with constant k, ie.
there is a constant &, 0 < k < 1, such that for all z € X and all ¢ € ¥,
SO | | R
h!;l_h:ip — 2 kllél|e (4.2)
In other words for all x € X, all ¢ € & and all £ > 0, there is a y € X such that
0<dix,y) <tand
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Aset M C X is said to be (3, p)-cone meagre if for every = € M and
arbitrary ¢ > 0 there are z € X, d{z,z) < ¢ and ¢ € @ such that

Mnlnt Ki(g, 3,2 0) =0 (4.8)

The arbitrariness of £ and (4.8) imply that a (3, p)-cone meagre set M is
nowhere dense.

A simple example shows thal those two notions do not coincide (see Rolewics,
1999).

We recall that a set M C X is called angle-small if it can be represented as
a union of a countable number of F-cone meagre sets Af,,,

M= G M,. (4.9)

We say that a set M C X is wealdy angle-small if it can be represented as a
union of a countable number of (3, p, J-cone meagre sets M.,

M . E:J M:n [:4.9w}

n=]1

forsome @ >0and p, >0, n=1,2,...
Of course, every angle-small set M is weakly angle-small. The converse is
also true in the case of separable X.

PROPOSITION 4.3 Let X be a sepurable metric space. Let & be a fived family of
SJunctions. Then each weally angle-small set M 15 angle-small,

FProof. By the definition, the sel M can be represented as a union of {3, py, J-cone
meagre sets M,. Sinee X is separable, we can cover it by a family of sets X
such that the diameter of Xy is smaller than g,. Let M, = M, N X,. Since
M, is a (3. p,)-cone meagre set, the sets M, ;. are also (4, g, )-cone meagre.
This means that for x € M, ;. and £ > 0, there are 2 € X, dx{z,2) < ¢ and
¢ € & such that

My N Int K{, 3,2, 00) = 0. {4.10)

Since the diameter of X is smaller than g,,, then the diameter of M, ; is also
smaller than g,. This trivially implies that

M0t K, 3,2) =0,
i, My, is a f-cone meagre set. Hence

M= G Ij . (4.11)

n=1 k=]
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It is not clear what happens when the space X is not separable. In particular,
let X = £, let & ={'. Let A= {(xg,71,...) : ; is an integer} C £~. It is
easy Lo see that A is a (3, p)-cone meagre set for 0 < f,0 < p < 1. Is the set A
angle-small?

Adapting the method of Preiss and Zaji¢ek (1984) and the proof of Rolewicz
(1994) (see also proof of Theorem 2.4.11 of Pallaschke and Rolewicz, 1997) we
can obtain

THEOREM 4.4 (compare Rolewicz, 1999). Let X be a metric space. Let & be
Jumily of Lipschit: funclions salisfying assumplions (a), (sL) and (wm). Let a
multifunction T' mapping X inte 2% be af-)-monotone and such that dom I'= X
fie.,, T(z) # O for all x € X). Then there exisls o weakly angle-small set A
such that T is single-valued and continuous (ie. simultancously lower semi-
condinwous and upper semi-continwous) af cack peint of X\ A,

Proof. The proof is almost the same as the proof of Theorem 4 in Rolewics
(1999). There is only one difference. In Rolewice (1999) we have assumed that
(m) holds. By Proposition 4.2 and the fact that & = =& {which follows [rom
(a)) it is easy to observe that the assumption (wm) is sufficient. u

Since the subdifferential 33 fle of an af-)-P-subdilferentiable Mnetion is a
2o Jemonotone multifunction of x, we immediately obtain

COROLLARY 4.5 (compare Rolewice, 1999). Lel X be a melric space. Lel @
be a famaly of Lipschilz funclions salisfying assuwmplions (a), (sL) and {(wm).
Let f{-) be an of-)-P-subdifferentioble function. Then, there 15 0 weakly angle-
smrall set A such that al each poind of X\ A the ol - )-P-subdifferential 93 f|. 15
single-valued and continuous in the metric dy .

By Proposition 4.3 in the case of X separable we can replace “weakly angle-
small” in Theorem 4.4 by “angle-small” and obtain a

THEOREM 4.6 Let X be o sepurable metric space. Led @ be a fumily of Lipschitz
Junctions salisfying assumplions (a), (sL) and (wm). Lel ¢ multifuncltion T’
mapping X inlo 2% e al-)-monotone and such that dom D" = X. Then there
exists an angle-small set A such thot T(.) is single-valued and condinuous at
each point of X\ A.

COROLLARY 4.7 Let X be a sepurable melric space. Led & be a fumily of Lips-
chilz funciions salisfying asswnplions (a), (sL) ond (wm). Let f{-) be an of-)-
b-subdifferentinble function. Then there exists an angle-small set A such that
the of-)-®-subdifferential 33 f | is single-valued and continuous wl ench point of
X\ A in the metric dy..

We recall that a set B of the second Baire category is called residual if its
complement is of the first Baire category. Since weakly angle-small sets are

T AL T o
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COROLLARY 4.8 (compare Rolewicz, 1999). Let X be a metric spuce of the
second Buire category in itself fin particular, let X be a complete melric space).
Let @ be a family of Lipsclhilz functions sulisfying essumplions (a), (sL) and
(wm). Let T be an al-)-monotone multifunction mapping X into 2% such that
['(x) # @ for all x € X. Then, there exisls a residual set B such that T(-) is
single-valued and continuous al each pomt of X\ I3

ConoLLanry 4.9 Let X be a melric space which is of the second Baire colegory
i ilself (in particular, let X be o complete meiric spoce). Let @ be a family
of Lipschilz functions satisfying asswnplions (a), (sL) and (wm). Lel (), un
aal-)-P-subdifferentiable function. Then there erists a residual set B such that
the o )-P-subdifferentinl 3% [|. is single-valued and continuous ol enwch point of
X\EB.

Recall that in the case of normed spaces Gateaux differentiability of a convex
continuous function f{-) at a point = is equivalent to the fact that the subdif-
ferential Of|, consists of one point only. Moreover the continuity of a Gateaux
differential in the norm operator topology implies that it is the Fréchet differ-
ential. Similarly, we have an extension of this fact to metric spaces (Rolewics,
1995¢, 1996). In Rolewicz (1999) we have extended this result to (- )-monotone
operalors.

We recall that the subdifferential 8f|, is lower semi-continuous at xq in the
Lipschite norm if for any ¢, € 94 f|s, there is a function (1) such that p{0) = 0
and p(t) > 0 for t > 0 and

lrimp[f.} =10 (1.12)

and such that for all x € X there is ¢, € Oy f|; such that
l$x = $zolle £ peld(z, 20)). (4.13)

ProPOSITION 4.10 (Rolewice, 1999). Lel X be a metric space. Lel € be a
family of Lipschitz functions defined on X salisfying (a) . Let f(-) be an «f-)-
b-subdifferentiable function. If the subdifferential 3 f|, 15 lower semi-continuous
al xg in the Lipschilz norm, then il 15 the Fréchet d-differential of f{-) af zg,
and of course i 15 wlso lower semi-continuous ai xg in the Lipschitz norm.

Let X be a metric space which iz of the second Baire category in itsel. Let
{1y be a residual set in X. Let {1 be a residual set in (5. Then, trivially, 2 is a
residual set in X. Thus, as a consequence of Theorem 4.4 and Proposition 4.10,
we abtain

THEOREM 4.11 (compare Rolewicz, 1999). Let X be o melric space which is
of the second Baire category in ilself (in particular, let X be a complete melric
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was introduced in Rolewicz (1979) and the ¢2-paraconvex functions were called
simply paraconvex. In Rolewicz (1979b) the notion was extended to the case of
alt) =171 <5 < 2, and the {"-paraconvex functions were called y-paraconvex.

We say that the function f(-) is strongly af-)-paraconver with constant Cy >
Oifforall z,y eand 0Kt €1,

Sl + (1= t)y) < 4 () + (1= ) (y)
+ Cy mint, (1 = O)]ad |z = y|)). (5.2)

If there is a constant Oy > 0 such that f{:) is strongly af:)}-paraconvex with
constant O, we say that f(.) is strongly of-)-paraconves

Of course, every f(-) strongly a(-)-paraconvex with constant C, is also a(-)-
paraconvex with the constant Cy.

It was shown in Rolewice (1979, 1979h) that for aft) = 7,1 < 4 < 2, any
el J-paraconvex function is strongly of: )-paraconvex,

There are of-)-paraconvex functions f(-) : X — K which are not strongly
ol - )-paraconvex. Conditions warranting that each o )-paraconvex functions is
automatically strongly a(.)-paraconvex can be found in Rolewice (2000). Iun
particular, using those conditions we find that every ~-paraconvex (i.e. t7-
paraconvex) funclion is strongly <-paraconvex if and only if 1 < + (Jourani,
1996).

ProprosiTion 5.1 Let (X, ||-||) be a normed space. Let §1 be a convez sel in X,
Let () be a real-valued function defined on 3. If f(-) is af-)-subdifferentiable,
then it is al-)-paraconver wilh consbant 1. If, additionally,

afts) < feels) (5.3)
Jor0< t <1 and s >0, then f(-) s strongly ol )-paraconver with constand 2.

Proof Take arbitrary o,y € 2. Let 0 < ¢ < 1 and let z = tz + (1 — t)y. Sinece
the function f({-) is al-)-subdifferentiable, there is a linear continuous functional
£ such that for h such that z + i € {2 we have

flz+ k) = f(z) 2 £(h) = al]lk|]). (54)
Puthy:=x—z=(1l=t){x—y) and fig ;== y = z = =i{x = y). Thus, we obtain

flx) = flz) 2 (1 - )(z - y) — a((1 - t)llz - yl]) (5.5)
and

f) = f(z) 2 —tl{z — y) — alt|z - yl))- (5.6)

Multiplying inequality (5.5) by {, inequality (5.6) by 1 —t and adding we obtain
tf(x) + (1= t)f(y) = [tz + (1 = 2)y)

a T8 T [TEY FtY
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The function «f-) is nondecreasing, thus
ta((l - t)ll= — yll) + (1 - talt]z - yl))
< ta(fle = yll) + (1 = allz - vll) = allz = vl). (5.8)

Inequalities (5.7) and (5.8) imply that f(-) is af-)-paraconvex with constant 1.
If (5.3) holds, then a(tlz - y]) < ta(llz — y]) and a((1 - Oz - yl) <
(1 — (]l = y|l)- Thus we have

ta((1 = t)llz = yll) + (1 - ta(tllz - yl))

< (1 = t)a(llz — yl) + (1 = theee(|lz — yll)
= 2t(1 = tha(llz — yll) < 2minft, (1 - &)]a(llz - yl). (5.9)
Inequalities (5.7) and (5.9) imply that f(-) is strongly a(-)-paraconvex with
constant 2. [ ]

For the purpose of further considerations we shall localize the notions of
af-)-paraconves and strongly af-)-paraconvex functions.

First we recall the classical notion of locally convex sets. We say that a set
A € X is lpcally converif for each x € X there is a neighbourhood U of x such
that AN is convex. In particular it is easy to see that each open set is locally
convex. If a locally convex set is conmected and closed, then it is convex (see
Tietze, 1928, Matsumura, 1928 for B", Klee, 1951, for general linear topological
spaces).

We say that a set A € X is uniformly locally conver if there is a neighbour-
hood V of 0 such that for each x € X the set AN (x + V) is convex. Observe
that if A is uniformly locally convex, then its closure A is also uniforily locally
convex. Thus, by the above mentioned Tietze—Matsumura-Klee theorem its
interior is a union of open convex sels A, v € T', such that their closures are
disjoint.

We say that a real-valued function f(.), defined on a locally convex set
¢ X, is locally {strongly) al-)-paraconver with constant C > 0 if for each
zg € 1 there is a neighbourhood U of x4 such that f{-) restricted to U is
(strongly) af-)-paraconvex with constant . We say that f{-) is locally (strongly)
af-}-paraconver if there is C, such that it is al-)-paraconvex with constant C.

We say that a real-valued function f{-), defined on a uniformly locally convex
set £} € X, is uniformly locally (strongly) al-)-paraconver with constant C' > 0
il there is a neighbourhood V of 0 such that for each xy € 2 the function f(-)
restricted to {10 (zo + V) is (strongly) of-)-paraconvex with constant C. If
there is a constant C > 0, such that f(-) is uniformly locally (strongly) af-)-
paraconvex with the constant C we say that f{-) is uniformly locally (strongly)
wx(-)-paraconver.

In general a local af-}-P-subgradient need not be an af-}-P-subgradient.
However in the case of strongly af-)-paraconvex funclions defined on open con-



G614 5. ROLEWICE

THEOREM 5.2 (Rolewicx, 2001; in the case of at) = 17, 1 < ¢ < 2, Jourani,
1996). Let (X,||.)]) be a real Benoch space, and let f(-) be a slrongly of-)-
pargconver function defined on an open conver subsel 8 C X, Then, ench local
ol -)-subgradient of f() al o point 2q, 15 awlomalically an of )-subgradient of

J(-) at zo.
Thus we have

ProrostTion 5.3 Lel (X, ||-||) be a real Banach space, and let f{-) be a locally
stromgly ol -)-paraconver function defined on an open subset 1 € X. Then,

the local of-)-X"-subdifferentzal of [(-), ﬂg‘lmﬂt, 5 a locally 2a(-)-monolone

multifunction.

FProof. Let xp € §1. Since f{-) is locally strongly af-)-paraconvex, there is a
convex open neighbourhood U of zg such that the restriction [y (x) is strongly
o -)-paraconvex. Thus by Theorem 5.2, 3'{’""”5 = dy. flv. Hence by Propo-

sition 3.1 H}‘fmﬂu is a 20e(-)-monotone multifunction. Therefore, 8% fly is a
locally 2e(-}-monotone mmltifunction. ]

As a simple consequence of Propositions 5.1 and 5.3 we get

ProprosiTiON 5.4 Let (X,|| - ||} be o normed space. Let §2 be o (uniformly)
locally convex sel i X. Let f{-) be a realvelued funclion defined on S If
Ti-) is af - )-subdifferentiable, then it is (unifermly) locally ol )-paraconver with
constant 1. [f, additionally

alls) < tofs) (5.3)

Jor0 <t < 1 and s > 0, then the function f{-) is (uniformly) locally strongly
al -} -paraconver with constant 2.

Let f(-) be a real-valued function defined on a uniformly locally convex set
Q. If for every £ > 0 there is 2 & > 0 such that

tf(z) + (1 - t)f(y) - fliz+ (1 - t)y)} 2 ~et(l - )]z - y]| (5.10)

for all =,y € £ such that ||z — y|| < & we say that the function f(-) is uniformly
approcimate conver (Rolewice, 2001b), This is a uniformization of the notion
of approximate convex functions introduced in Luc-Ngai-Théra (2000).

ProrosiTiON 5.5 Let (X, ||-]) be a normed space. Let © be a uniformly locally
conver set in X. Let f(.) be a real-valued function defined on £, Suppose that
(3.1) holds. If the function f(-) is af-)-subdifferentiable, then it is uniformly
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Proof. First we shall show that there is a function 3(-) such that 8(t) > a(t)
for all 0 < ¢ and (5.3) holds for 3(t).

Let Go(t) = supge, <, iiﬂ Of course Gy(t) is nondecreasing and by (3.1),
limy o Bo(£) = 0. We put 3(t) = tfo(t). Of course B(t) = tF(t) > 1@ = aft).
The function G(t) is nondecreasing, hence for 0 < s < 1 we have

Bist) = stfp(st) < stfa(t) = =6(t). (5.3")

Since 3(t) = alt) the function f(-) is #{-)-subdifferentiable.

Since limgyg Fo(t) = 0 for every £ > 0, there isa § > 0 such that for 0 < s < &
we have fo(s) < §. Let By = {z : ||z|| < &}. By Proposition 5.4 there is a
neighbourhood V oof 0, V' € B, such that for each =y € © the function f{.)
restricted to the set zq + V is strongly 8(-)-paraconvex with constant 2. Thus

tf(x) + (1 = )f () = ftz + (1= t)y) 2 —2minft, (1 - O]B(llz - yl)
= —2mint, (1 - £)}Go(ll= - yl)llz - vl
> —2minlt, (1 - E}]%[lw - yll = —et(1 - t)]l= - y]|.

The arbitrariness of £ implies that f(-) is uniformly approximate convex. B

Between uniforinly approximate convex and strongly af-)-paraconvex func-
tions the following relations are true.

ProOPOSITION 5.6 (Rolewicz, 2002). Let (X.||-||) be ¢ normed space. Let £ be
a unifermly locally convex sef in X. Letl f(-) be a real-valued funclion defined
on . IF F(-) 45 uniformly locally strongly of-)-puraconves, then it is uniformily
approzimalely conver,

Conversely, of f{-) is uniformly approcimate convex, then there 5 o nonde-
creasing funclion of-) mapping [0, +2o¢) inte [0, +oc] satisfying (3.1) such that
JU-) 15 uniformly locally sirongly of-)-paraconver,

The converse of Proposition 5.1 requires the openness of the set (2.
We start with

ProrosiTiON 5.7 (see Rolewicz, 2000). Let (X, || - ||) be a normed space. Lel
o real-valued function f{-) defined on a (locally) conver set 2 € X be (locally)
strongly o-)-paraconver. If f(-) s locally bounded, then it is locally Lipschitz.

Using category methods we can oblain

PrOPOSITION 5.8 (see Rolewics, 2000). Let (X, || -||) be a Banach space. Let
a real-valued funclion [(-) defined on an open (locally) conver set @ C X be
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ProrosITION 5.9 (see Rolewicz, 2001; in the case of aft) =17, 1 < ¢ < 2,
Jourani, 1996). Let f(.) be a locally strongly of-)-paraconver function defined
on an open subsel 11 of a Banach space X. Then the locol of -)-subdifferentiols
and Clarke subdifferentials of f{) comcide,

COROLLARY 5.10 (see Rolewicz, 2001). Let f(-} be a {locally) strongly of-)-
paraconver function defined on an open (locally) conver et 0 of a Banach spuce
X. Then f(-) 45 (locally) of-)-subdifferentiable.

FProof. By Proposition 5.8 f(-) is locally Lipschitz. Thus, at each point its
Clarke subdifferential is not empty. Hence, by Proposition 5.9 its (local) af(-)-
subdifferential is also not empty. ]

Since every open set is locally convex, we do not need to assume convexity
of 11 in the local versions of Propositions 5.8, 5.9 and Corollary 5.10,

As a consequence of Corollary 5.10 and Theorem 4.11 5 we get the following
extension of the Asplund (1968) theorem:

THEOREM 5.11 Let (X, ||.]) be a real Banach space, with separable dual X*.
Let J(-) be a locally strongly o) -paraconves function defined on an open subsef
R C X. Then there is a subsel Ay C 0 of the first Buire calegory such that
on O\ Ay the function J() is Fréchel differentioble. Moreover, the Fréchet
P-gradient is continuous in the conjugate norm || - ||*.

It is of interest to find the relation between {Y-paraconvex functions and
DC-functions.

Firtst we shall consider the relation between DC and t*-paraconvex fune-
tions.

We have
Prorosition 5.12 (Rolewicz, 1980). Let (X, |- ||) be a norvmed space. Then,
each t*-paraconver function is a difference of a conver function and a quadratic
function. Thus, each t*-paraconver funclion is o DO-function.

Unfortunately, for 1 < v < 2 the situation is not so nice.

ProrosSITION 5.13 Let X =R, Let | < v < 2. Then there is a {7 -subdifferent-
table (1., y-paraconver with constant 1) function which is not ¢ DC-function.

The proof is based on the following

LEMMA 5.14 The funclion f(t) = =7, 1 < v < 2, defined on (0,400) is ¢7-
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Proof. Take an arbitrary &y > 0. The [unction f(1) = =7 is differentiable and
its derivative at £y is equal to —yle?~!. By definition, the function f(t) = -7
is #7-subdifferentiable with constant 1 if and only if

—(to+ b)Y = <" —4ta" " h = |A|". (5.11)
for all t5 = 0 and & such that i > =tg. This holds if and only if
glh) = =(to + 1) + " + vt 'h+ |h]" 2 0. (5.12)

Observe that g{0) = 0. We shall show that g{/) is increasing for & > 0 and
decreasing for & < 0.
Indeesd, let fo > 0. Then

glh) = =(to+ k)" +to” +4t" Th+ k",
Let us calculate its derivative:
g'(h) = =1t + )~ 4+t + R

Since 0<y—1<1,4'(h)>0.
Now let i < 0. Then

glh) = (g + W)Y + 8" + 48" h + (-h)
and

g(h) = =y(tg + R~ + 47" — 4(=h)7?
= (ta = |RD"" + 277" = (R

Since 0 < v—1 < 1 in this case, ¢'(k) < 0. Thus (5.11) holds and the function

fit) = =17, 1 < v < 2, is {¥-subdifferentiable with constant 1. o
Proof of Proposition 5.13. Let X = R Let
ty = 3 F.,l
-
k=1

Since 1 < «, the sequence {£,} is bounded. Let g(t) = max[-|t - I.,j"']] and let

F(8) = [ g(s)ds. We shall show that f(t) is locally weakly ¢*-subdifferentiable
with constant 1. Indeed, if t,.—;}; <t<it,,n=12,...ilisobvious, since the
function f{-) is locally convex in the neighbourhood of 4. If t, <t < ¢, + #;_.
n=0,1,2,... then it follows from Lemma 5.14.

At t =t,, 0is a local t"-subgradient with constant L, since fit,,+h)—f{L,) =
e fﬂ”'l 87" 1ds = —L|h|". Recall that by Jourani (1996) this shows that f(t) is
t7-subdifferentiable.

On the other haund, since g(:) is not of bounded wariation, f{:) is not a
T fmetinm ]
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