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differentiable on a residual set. 
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1. Introduct ion 

Let (E, 11·11) be a separable real Banach space. Let J(-) be a real-valued convex 
continuous function defined on an open convex subset D C E. Mazur (1933) 
proved that there is a subset Ac C D of the first Baire category such that 
on n \ Ac the function ](-) is Gateaux differentiable. Asplund (1968) showed 
that if additionally the space E has the separable dual, then there is a subset 
AF C D of the first Baire category such that on D \ AF the function j(-) is 
Fn?cltet differentiable. 

Observe that the results of Mazur and Asplund trivially extend to the so 
called DC-functions (the functions which can be represented as differences of 
convex contiuuous functions), which play an essential role in nonconvex analysis. 

The proof of Asplund's result consists of two parts. In the first part one 
shows that if j(-) is a convex function defined on an open convex set X, which 
is a subset of a Bamtelt space E, then J(-) has a subgradient at each point of X . 
The functions with this property are called s·ubdifferentiable. In the second part 
of the proof one shows that for a convex subdifferentiable function J(-) there is 
a subset Ar c n of the first Baire category such that on D \ AF the function 



602 S. ROLEvVJCZ 

The extension of the second part of the proof to the case of metric spaces 
was done by the author, Rolewicz (1994) (see also the book by Pallaschke and 
Rolewicz, 1997). Let (X , dx ) be a metric space. In the paper we shall as
sume tha t <!> is a set consisti ng of real-valued Lipschitz functions defined 011 
X. The properties of weakly i[>-subdifferentiable functions are investigated. In 
particular, sufficient conditions warranting that each weakly <P-subdifferentiable 
funct ion is Frecltet differentia ble on a set of t he second Baire category, are given. 
Iu Ba nach spaces those results give us an extension of the Asplund theorern to 
a la rger (tha n convex) class of functions called strongly o{ )-paraconvex (or 
uni fo rmly a pproxima te convex ) functions. 

The paper is organized as follows. 
Section 2 contains the defi nitions of <!>-convex functions, <P-subgradieuts a nd 

<P-su bdifferentials in general structures and in metric spaces. Also localiza
tions of those notions are given. In Section 3, o{ )-<P-subgradients and ct (- )
<P-subdifferentials are introduced. It is shown that a(-)-<1>-subdifferentials are 
a (- )- rnonotone multifunctions. Section 4 contains extensions of the famous re
sul ts of Mazur (1933) an Asplund (1968) about the differentiability of convex 
functions to the case of a (-)-<1>-subdifferentiable functions. In Section 5 the 
notions a ( ·)-paraconvex functions a nd strongly a(-)-paraconvex of real-valued 
functions defined on convex subsets contained i11 norrned spaces a re int roduced. 
The Frechet differentiability of strongly a (- )-paraconvex functions on a residua l 
set is also shown. The rela tions between strongly a (· )-paraconvex funct ious ami 
uniformly approxima te convex functions are discussed. The proof that those two 
notions are equivalent is presented . As a consequence we show that each uui
fonnly approximate convex function J(-) is Frechet differentiable on a residual 
set. 

2. <P-subgradients and <I>-subdifferentials 

Let X be an arbitrary se t . Let <!> be a family of real-valued functions defined 
on X . Let <!> + lR = { ¢ + c : ¢ E <!>, c E IR}. 

A real-valued function J(-) defined on X is called <!> -convex if it can be 
represented as 

f( :c) = sup ·1/J(x ), 
<f;Eil>t 

(2.1) 

supremum being taken over a subfamily <!>I C <!> + R 
A function¢(-) E <!>is called a <1> -s'Ubgradient of a fu nc tion J(-) a t a point :c0 

if 

f( x )- f( xo) 2: ¢(x) - ¢(:co) , (2.2) 

for a ll x EX (see for example P allaschke and Rolewicz, 1997) . 
The set of a ll <P-subgradients of the function J(-) a t the point xo is called 

.:r. ,. 1 (' t' / \ , 1 I f' 1 
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Pallaschke and Rolewicz, 1997, Singer, 1997, Rubinov, 2000). If aq,flxo i- 0 for 
all xo E X we say that that f(-) is 1>-s'Ubdifferentiable. 

Till now we have not used the fact that X is a metric space. Suppose now 
that (X, dx) is a metric space and let 1> be a family of real-valued functious 
defined on X. There are several <I> and the natural choices of it and of a rnetric 
on 1> induced by the metric dx . The first one is to consider continuous bounded 
functions and the norm llfll sup = suptEX lf (t)l. This approach, however, uses 
more the topology of the space than the metric itself. 

Therefore, we consider another approach, more related to the metric. Namely 
we shall restrict ourselves to 1>, which is a family of Lipschitz functions. Let 
£ 0 be the space of all Lipschitz functions defined on X. We define on £ 0 a 
quasinorrn 

II <P IIL = sup 
x1,x2E..~X', 

x,,,a:2 

lc/>(xl)- 4>(x2) l 
dx(xl, x2) 

(2 .3) 

Observe that, if ll c/>1 - cf>2I IL = 0, then the difference of (!>I and c/J2 is a cons t aut 

function. Therefore, we consider the quotient space £ =c.
0 k_ . The quasinonn 

II <P IIL induces a norm in £. Since it will not lead to any misumlerstandi11g , this 
norm will also be denoted by I\ <Pi lL and we shall call it the Lipsch·itz norm. This 
approach seems to be proper from the point of view of subdifferentia.bili ty, since 
if <1> is a 1>-subgradient of a function f(-) at a point xo, theu so is 1> + c for a ll 
real c. It is not difficult to show that (£, \\<1> 1\L ) is a Banach space. Observe 
that in the classical case of X being a nonned space and 1> consistiug of the 
linear continuous funct ionals, 1> =X*, the norm II· IlL coincides with the norm 
of functiona ls (l lx* II L = ll :r:* ll * for all x• EX*). 

It is easy to give examples of 1>-convex functions defined on an open set 
which do not have 1>-subgradients at certaiu points. 

EXAMPLE 2.1 Let X = R Let 1> be the set of linea·,. functions w-ith mtiunul 
coefficients. It is easy lu see lhul u function f(-) is 1>-cunvex if and only ·if it is 
convex. In pu'f'liC'ulur the function f( x) = x2 is 1>-cou:uex. On lhe ulheT hand 'it 
is easy to see thul it dues not have u 1> -s'Ubgmdienl at any irTatiunul point :co. 

Of course the class 1> considered in Example 2.1 consists of Lipschitz func
tions , but <l>k_ is not complete in the topology iuduced by the Lipschitz norm 

II · II L. The following example shows that the linearity aud completeness of <l>k_ 

are not enough. 

EXAMPLE 2 .2 Lel H = £2 . Let X = {:c = (xn) : L~=l n2:c;, :::; C}, wher·e 
C = "'00 +. Let 1> be the sel of linear cuntin'Uo'Us f·unctiunals on H r·estr"tcled L.._,.n=l n 2 

to X. Of co·urse, 1> ·is lineaT and complete. Let f( :c) = L ::"=l n 2x;,. Let :c0 = 
(:c?,) = (t, ... , ~ , ... ). Of CU'U'f'Se, x 0 E X. The fun ction J(-) ·is convex and il 

f I 1 X T 
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derivative in the directions en at the point x0 we see that such ii>-subgmdient 
would be of the fomt y = (2, 2, ... ). But y rf_ f 2

. 

Modifying Example 2.1 we can obtain a metric space X and a family of 
Lipschitz functions if> such that there is a ii>-convex function which does not 
have a ii>-subgradient at any point. Indeed 

EXAMPLE 2.3 Let X= (-1,1) with the standard metTic. Let if> be the set of 
l·inear functions with rational coefficients. Let f(x) =ex , wheTe c is irmtiunal. 
Of cu·uTse, f(x) is ii>- convex. On the other hand it is easy to see that d dues not 
have a ii>-subgmdient at any point xo E X. 

For the class if> given in Example 2.3, "'k is not complete in the Lipschitz 
norm. A natural question arises: suppose that X is complete and "'k is complete 
in Lipschitz norm. Does there exist for every ii>-convex function J(·) a point x 0 

such that 8<I>fl xo -=/: 0? 
In the case when X is a compact set and if> consists of continuous functions 

we have 

PROPOSITION 2.4 Let X be a compact set and if> consist of continuu·us fun ctions 
defin ed on X. Let J(-) be a continuous ii>- cunvex function . Th en joT each ¢> E if> 
theTe is X<f> E X such that¢> E 8<I> fl x<t>. 

Pmof. Since J(-), ¢>(-) are continuous and X is compact, there is a point X<f> EX 
such that 

f( x<t> ) - ¢(x¢) = min[f(x) - ¢>(x )]. 
xEX 

Thus, for all x E X, 

which implies 

i.e. ¢>is a ii>-subgradient off(-) at X<f>· • 
In the case of metric spaces (or even more general topological spaces) we can 

introduce the notion of a local ii>-subgradient. Namely ¢> E if> is called a local 
ii>-subgmdient of a fun ction f(-) at a point xo E X if there is a neighbourhood 
U(¢, xo) of xo such that 

f( x )- f( x o) ~ ¢>(x )- ¢>(xo) (2.2) 

for x E U(¢>, x o). If a function f(-) has local ii>-subgradients for all :r:o EX we 
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3. a(· )-<I>-subdifferentials and a( · )-monotonicity 

Let o:(t) be ·a nondecreasing function mapping the interval [0, +oo) into [0, +oo] 
such that 

lim o:(t) = 0. 
t!O t 

(3.1) 

A function¢>(-) E !}>is called an o:(-)-!}>-s·ubgmd'ient of the function f(·) at a 
point xo if for all x E X, 

f(x)- f(xo) 2: ¢(x)- ¢>(xo)- o:(d(x, xo)). (3.2) 

In the particular case o:(t) = 0 we obtain the definition of !}>-subgradient (see 
for example Pallaschke and Rolewicz, 1997). 

The set of all o:(-)-!}>-subgradients of the function f(-) at the point xo is 
called the o:(·)-!}>-subdiffer-ential off(·) at Xo and it is denoted by ogflxo· In 
the particular case o:(t) = 0 we obtain the definition of !}>-subdifferential (see 
for example Pallaschke and Rolewicz, 1997). 

In the case when X is a normed space, q> = X * and o:( t) = fY, 1 < t :::; 2, 
we obtain the definitions of 1-subgradients and 1-subdifferentials introduced by 
Jourani (1996). 

If ogf lx -=1 0 for all X EX we say that f(·) is o:(·) -!}> -subd'iffer-ent'iable. 
Now we shall localize the notions given above. If for a function ¢>(-) E !}> 

there is a neighbourhood U(¢,xo) of a point xo such that (3.2) holds for all 
x E U(¢>,xo) we say that¢>(-) is a local o:(-)-!}>-subgmdientof f(-) at xo. The set 
of all local o:(·)-!}>-subgradients of function f(-) at xo it is called the local o:(-)

!}> -s·ubdiffer-ential of j(-) at Xo and it is denoted by a:•locflxo· If a:•locf lxo -=J 0 
for all xo E X, we say that f ( ·) is locally o:( ·) -!}>-subd'iffer-ertt'iable. 

Let, as before, o:( t) be a nondecreasing function mapping [0, +oo) into [0, +oo] 
such that (3.1) holds. We say that a multifunction r mapping X into 2<~> is o:(-)
monotone if for all ¢x E f(x), c/Jy E f(y) we have 

cPx(x) + c/>y(y)- cf>x(Y)- c/>y(x) + o:(d(x, y)) :::0: 0. (3.3) 

In the particular case o:(t) = 0 we obtain the definition of monotone mult-i
functions (see for example the book Pallaschke and Rolewicz, 1997) . 

In the case when X is a nonned space, q> = X * and o:(t) = fY, 1 < t :::; 2, 
we obtain the definition of "(-monotone rnultifunctions introduced by Jourani 
(1996). 

Just from the definitions we trivially obtain 

PROPOSITION 3.1 (Rolewicz, 1999). Let X be a meiT·ic space and let !}> be a 
family of r-eal-valued funct-ions. If a funct-ion f(-) 'is o{) -!}>-subd·iffer·entiable, 
then its o:(-) -!}>-s·ubdiffer·ent·ialogJ I"' cons·ider·ed as a mult·ifunct·ion of x ·is 2o:(-)-
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We can localize the notion of cx(-)-monotone multif nctions. Namely, we 
say that a multifunction r mapping X into 2<1> is locally o{) -monotone if for 
all xo E X there is a neighbourhood U of xo such that for all x, y E U, c/Ja: E 

f(x), ¢.v E f(y) we have 

¢x(:c) + ¢.v(Y) - ¢x(Y)- cp11 (x) + cx(d(x, y)) ~ 0. (3.4) 

Since in the definition of local <I>-subgradient the neighbourhood U( ¢, x 0 ) 

depends on ¢, it is easy to construct examples showing that the local cx(-)-<I>
subdifferential of a function f(-), a:·loc fix need not be a locally cx(-)-rnonotoue 
multifunction. 

4. Differentiability of a:(· )- <P-subdifferentiable functions 

We shall say that a function f (-) mapping a metric space (X, dx) into lR is 
Frechet <I>-d'ifferntt'iable at a point xo if there is a function ¢ E <I> such that 

lim l[f(x)- f(xo)]- [¢(x)- ¢(xo)] l = O. 
x-> x o dx(:c, :co) 

( 4.1) 

The function ¢ will be called a Fr·echet <I>-gmdient off(-) at xo. The set of 
all Frechet <I>-gradients off(-) a t x0 is called the Fr·echet <I> -differential off(-) 
at xo and it is denoted by a: f lxo. 

In general a <I>-subclifferentiable function may not be Frechet <I>-differentiable 
at any point, as follows from 

EXAMPLE 4.1 Let X= lR and let <I>= {cp(:c) = -lx- xol: xo E IR}. It 'is easy 
to see that a function f ( ·) is <I>-convex if and only if it is a Lipschitz funct 'ion 
with L'ipschitz constant not greater· than 1. Thus, the function f( x) = 0 'is <I>
subdiffernttiable. It 'is easy to see that it is not Fr·echel <I>-differ-entiable at any 
point. 

However, under appropriate assumptions we can obtain an extension of the 
Asplund theorem to the case of metric spaces. 

The assumptions are as follows: 
(a) <I> is an additive group, 
(sL) <I> is a set of Lipschitz functions; moreover the space <l>k_ is separable in the 

Lipschitz norm 11 ¢11£, 
( wm) the family <I> has the weak mono tonicity pmperty with constant k, i.e. 

there is a constant k, 0 < k < 1, such that for all x EX and all ¢ E <I>, 
. l¢(y)- ¢(x)l 

hrnsup d(' ) ~ kl l¢11£· (4.2) 
y->x X, Y 

In other words for all x E X, all ¢ E <I> and all t > 0, there is a y E X such that 
0 < d(x,y) < t and 
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In the previous papers (Rolewicz, 1994, 1995, 1995b, 1999) and in the book 
by P allaschke and Rolewicz (1997) the assumption (wrn) was formulated in a 
stronger way, namely 

(m) the family 1> has the munuton'ic'ity pmperty with constant k, i. e. there is a 
constant k, 0 < /;; < 1, such tha t for all x E X and all ¢ E 1>, 

li~_:~p ¢(~(;:)(x) 2: kii¢1!L - (4.3) 

In other words for a ll x E X, all ¢ E 1> and a ll t > 0, there is a y E X such that 
0 < d(x , y) < t and 

¢(y)- ¢(x) 2: kii ¢ 11Ld(y , x). ( 4.31) 

Observe that if X is a compact set, then condition (m) is never satisfied, buL 
the condition (wm) can hold (Rolewicz, 1999b) . 

For any¢ E 1>, 0 < f3 < 1, :c E X, write (Pallaschke aud Rolewicz, 1997, 
sec. 2.4, see Preiss and Za jfcek, 1984, for the linear case) 

K(¢,(3,:c) = {y EX: ¢(y)- ¢(x) 2: f3 ii ¢ iiLd(y,:c)} . (4.4) 

The set J( ( ¢, (3, :c) will be called the (3 -cone wdh vertex at x and d'i·rect'iun <jJ . 
Of course, it may happen t hat I<( ¢,(3,:c) = {x}. However , if 1> has Lite mono
tonicity property with constant k and f3 < k, then ]{ ( ¢, (3, :r) has a HonernpLy 
interior and , even more, 

x E Jut K(¢, (3, x) . (4.5) 

If 1> has the weak monotonicity property with constant /;; and f3 < k it still may 
happen t hat K(¢,(3,x) = {x }. But we have the following obvious 

PROPOSIT IO N 4.2 If <I> has the wwk rnunutonicity prope'f'Ly wdh constant k and 
f3 < k , then either the set J( ( ¢, (3, x) has a nunentpty inte·rior and 

x E IntK(¢,(3,x), (4 .5) 

or K(- ¢,(3,x) has a nonempty ·inte·riuT and 

:c E lntK(-¢,(3,x) . ( 4.51) 

Now we shall extend a little the definition of a cone. Namely the set 

K(¢ ,(3,:c,g) =K(¢,(3,x)n{y: d(x, y) < Q} ( 4.6) 

will be called the ((3, {}) -cone wdh vertex at x and direction ¢. 
Observe that just from the definition it follows that if /31 ::; (32 and g1 2: e2 , 

then K(¢,/3J,X, gl) ::::> K(¢,(32,x, {!2) · 
We recall that M C X is said to be (3 -cune rneagTe if for every :c E M and 

E. > 0 there a re z E X with d(:r, z) < E. and ¢ E 1> such that 

M n Iut K(¢, /3, .;;) = 0 ( 4. 7) 
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A set M C X is said to be (/3, a)-cone meagr·e if for every x E M and 
arbitrary c: > 0 there are z E X, d(x, z) < c: and ¢ E <I> such that 

M n Int K(¢, /3, z, a)= 0. (4.8) 

The arbitrariness of c: and (4.8) imply that a (/3, a)-cone meagre set M is 
nowhere dense. 

A simple example shows that those two notions do not coincide (see Rolewicz, 
1999). 

We recall that a set M C X is called angle-small if it can be represented as 
a union of a countable number of /3-cone meagre sets A1r,., 

00 

M= U M,. ( 4.9) 
n=l 

We say that a set M C X is weakly angle-small if it can be represented as a 
union of a countable number of (/3, an )-cone meagre sets Mn, 

00 

M= UMn (4.9w) 
n=l 

for some f3 > 0 and Qn > 0, n = 1, 2, ... 
Of course, every angle-small set M is weakly angle-small. The converse is 

also true in the case of separable X. 

PROPOSITION 4.3 Let X be a sepamble metr"ic space. Let <I> be a fixed family of 
functions. Then each weakly a:ngle-small set M is angle-small. 

Proof. By the definition, the set M can be represented as a union of (/3, (!11 )-coue 
meagre sets Mn. Since X is separable, we can cover it by a family of sets X k 

such that the diameter of Xk is smaller than Qn · Let Mn,k = Mn n Xk . Since 
Mn is a (13, Qn)-cone meagre set, the sets Mn,k are also (/3, an)-cone meagre. 
This means that for :c E 1'v1n,k and c: > 0, there are z E X, dx(x, z) < c: and 
¢ E <I> such that 

M,,k n lnt K ( ¢, /3, z, an) = 0. (4.10) 

Since the diameter of X k is smaller than (! 11 , then the diameter of Mn k is also 
smaller tl1an a,. This trivially implies that ' 

Mn,k nintK(¢,/3,z) = 0, 

i.e. Mk,n is a /3-cone meagre set. Hence 

00 00 

M= U UMn,k ( 4.11) 
n=lk=l 
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It is not clear what happens when the space X is not separable. In particular, 
let X= £00

, let<!> = £1. Let A= {(xo,xl,···): Xi is an integer} c £00
• It is 

easy to see that A is a ((3, Q )-cone meagre set for 0 < (3, 0 < Q < 1. Is the set A 
angle-small? 

Adapting the method of Preiss and Zajicek (1984) and the proof of Rolewicz 
(1994) (see also proof of Theorem 2.4.11 of Pallaschke and Rolewicz, 1997) we 
can obtain 

THEOREM 4.4 (compare Rolewicz , 1999). Let X be a met·ric iipace. Let <I> be a 

family of Lipschitz fanctions satiiify·ing aiisumptions (a), (sL) and (wrn). Let a 
·rrmltifunction r mapping X ·into 2<1> be o{)-monotone and such that dom r =X 
(i.e., f(x) -:/: 0 for all x E X). Then ther·e ex·ists a weakly angle-small set A 
iiUCh that f is single-valued and con finUO'US (i.e. ii'i'IIWltaneo·usly lower- iiern·i
confin·uo·uii and uppeT semi-cont1:n·ao·1LS) at each po·int of X \ A. 

Pmof. The proof is almost Lhe same as the proof of Theorem 4 in Rolewicz 
(1999). There is only one difrerencc. In Rolewicz (1999) we have ass umed that 
(m) holds. By Proposition 4.2 and the fact that <!> = -<!> (which follows from 
(a)) it is easy to observe that the assumption (wrn) is suffi cient. • 

Since the subdifferential ogf lx of an o{)-<P-subdi!Terentiable function is a 
2o{ )-mouotoue mult ifunction of x, we immediately ohtaiu 

COROLLARY 4.5 (compare Rolewicz, 1999). Let X be a metric space. Let<!> 
be cL .farnily of Lipschitz functions salisfy·ing ass·umptionii (a), (sL) and (wrn). 
Let .f (-) be an. o{) -<!> -subdiffer-enl:iable function . Then, the1 e ·is a weakly angle
small set A s·uch llwt at each po·int of X\ A the a.(-)-<1>-sv.bd-iffer-enl'ialo~f l ,r zs 
single-valued and continuous ·in the metric dL. 

Dy Proposition 4.3 in the case of X separahle we cau replace "weakly angle
small' ' in Theorem 4.4 by "a11gle-small" and obtain a 

THEOREM 4. 6 Let X be a sepamble metTic space. Let <I> be a family of Lipsch-itz 
functions satis.fy·ing assurnpt·ions (a), (sL) and (wrn). Let a multifunction r 
mapving X into 2<1> be a.(-) -monotone and s·ach that dom r = X. Then there 
ex·ists an angle-small set A such that r( ·) is single-valued and contin·uo·us at 
each point of X\ A . 

COROLLARY 4. 7 Let X be a iiepamble metr-ic space. Let <I> be a family of Lips
ch-itz funci'ions sat·isfying assmnptions (a) , ( sL) and ( wm). Let f (-) be an a.(-) 
<1>-subd·iffer-entiable function. Then lhe·re exists an angle-srnall set A s·ach that 
the o{)-<1>-subdiffer-erdial oZf lx is single-val·ued and contin·uous at each point of 
X \A ·in the metr-ic dL. 

We recall that a set B of the second Baire category is called residual if its 
complement is of the first Baire category. Since weakly angle-small sets are 
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COROLLARY 4.8 (compare Rolewicz, 1999). Let X be a metric space of the 
second Baire category in itself (in pa'f"iicular, let X be a complete metric space). 
Let <P be a fam·ily of Lipschitz functions satisfy·ing assumptions (a), ( sL) and 
( wm). Let f be an o{) -monotone m·ult.ifun.ct·ion ·mupving X into 2<~> such that 
f(:c) =J 0 for all x E X Then, ther-e exists a resid·ual set B such that f( ·) is 
single-valued and continuo·us at each point of X \fl. 

COROLLARY 4. 9 Let X be a met·ric space which is of the second Baire categor·y 
in itself (in paT'iicular, let X be a complete metric space). Let <P be a farn·ily 
of Lipschitz functions satisfying ass·uTnptions (a), (sL) and (wm). Let J(-), an 
a(·) -<P -sub!hfferentiable function. Then there exists a resid·ual set B s·uch that 
the c~(-) - <P -subdifferential8~J I ,: ·is s·ingle-valued and contin·uo·us at each point of 
X\B. 

Recall that in the case of normed spaces Gateaux differentiability of a convex 
continuous function f(-) at a point :r is equivalent to the fact that the subdif
ferential 8 f Ia: consists of one point only. Moreover the continuity of a Gateaux 
differential in the norm operator topology implies that it is the Frechet differ
ential. Similarly, we have an extension of this fact to metric spaces (Rolewicz, 
1995c, 1996). In Rolewicz (1999) we have extended this result to a(-) -rnonotone 
operators. 

We recall that the subdifferential 8 f Ia: is lower semi-continuous at xo in the 
Lipschitz norm iffor any qJ, 0 E 8q,f lxo there is a function J-L(t) such that tAO) = 0 
and fL(t) > 0 fort> 0 and 

lim J-L(t) = 0 
t!O 

and such that for all x EX there is ¢x E 8q,flx such that 

(4.12) 

( 4.13) 

PROPOSITION 4.10 (Rolewicz, 1999). Let X be a ntetr·ic space. Let <P be a 
family of Lipschitz functions defined on X satisfying (a) . Let J(-) be an a(-)
<P-subdiffe·rentiable function. If the s·uiJdijje'!"C"nt·ial8 !Ia: is lower senri-cont'in·uo·us 
at xo ·in the Lipschitz norm, then ·it is the Fr·echet <P-diffe·rential of J(-) at :ro, 
and of co·urse it is also low~:x sem·i-contin·uous at x0 ·in the L-ipschitz nann. 

Let X be a metric space which is of the second Baire category in itself. Let 
Do be a residual set in X. Let D be a residual set in D0 . Then, trivially, D is a 
residual set in X. Thus, as a consequence of Theorem 4.4 and Proposition 4.10, 
we obtain 

THEOREM 4.11 (compare Rolewicz, 1999). Let X be a rnetTic space which ·is 
of the second Ba·ir·e categm·y in it8elf (in paTiiculaT, let X be a complete rnetr·ic 
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and ( wm). Let f (-) be a continuous a(-) -ii> -subdifferentiable function. Then 
theTe is a weakly angle-small set A such that J(-) ·is Fn!.chet ii>-dijJeTentiable at 
eveTy point Xo E n =X\ A. MoTeoveT, on n the Fr·echet ii>-gmdient is ·anique 
and it is continuous theTe in the rnetr"ic dL . 

Suppose that X is an open subset of a Banach space Y having separable 
dual Y *. Let ii> be the family of continuous linear functionals on Y restricted 
to X. It is easy to see that ii> satisfies assumptions (a) , (sL) ami (wm). Thus, 
Theorem 4.11 can be rewritten in this case in the following way : 

THEOREM 4. lla. Let X be an open subset of a Banach spaceY having sepamble 
dual Y *. Let ii> be the fam-ily of linem· continuous functionals on Y Test ·ricted to 
X, ii> = Y *lx- Let f( ·) be u contin-aous c.Y(-) -iJ>- subdifferentiublef'unction. Then 
th e·re is n weakly angle-sTnall set A s·uch that f(-) ·is Frechet dijJeTentiable at 
every po·int :ro E !1 =X\ A . Mon:.oveT, on !1 the Fr·echet ii>-gmdient is unique 
and it is conl·in·uous theTe in the conjugate nann II · II *. 

5. a{ )-paraconvex and st rongly a{ )-paraconvex functions 

Theorem 4. 118 has a certain disadvantage. Namely it is difficult to check 
whether j(-) is a continuous a(-)-ii>-subdifferentiable function. Therefore it is a 
nat ural question to describe classes of functions which have this property. In 
this section (X, 11 · 11) will be a normed space and X* will be its dual. Let !1 C X. 
By ii> we shall denote the restriction to !1 of the elements of X *. Since it does 
not lead to misunderstanding, iu this section we shall omit ii> wheu speaking of 
a( · )-ii>-subdifferentiability and a(· )-ii>-rnonotonicity. 

Let a(t) be a nondecreasing function mapping from [0 , +oo) iuto [0 , + oo] 
such tha t 

. a(t) 
Inn -- = 0. 
tjO t 

(3.1) 

Let !1 be a convex subset of X. Let .f(-) be a real-valued function defined on 
n. We say that .f(-) is a(-)-paTaconve:r* w·ith constant c > 0 if for all x, yEn 
and 0:::; t :::; 1, 

f(tx + (1- t)y):::; tj(:c) + (1- t)f(y) + Cn(ll:~:- Yll) . ( 5.1) 

We say that the function .f (-) is n(-) -pamconve:~: if there is a constant C > 0 
such that .f (-) is a(- )-paraconvex with constant C. For a( t) = t2 this definition 

* In general in the definitions of a{ }-pa raconvex and strongly a{ )-pa raconvex fun ctions 
the assumpt ion (3. 1) is replaced by the weaker assu mption 

. a( l.) 
lim s up - < + co, 

t J 0 t 
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was introduced in Rolewicz (1979) and the t2-paraconvex functions were called 
simply paraconvex. In Rolewicz (1979b) the notion was extended to the case of 
a(t) = t"~, 1::; 1::; 2, and the t"'-paraconvex functions were called 1-paraconvex. 

We say that the function f(-) is slTO'ngly a(-)-pamconvex 'With constant C1 > 
0 if for all x, y E D and 0 ::; t ::; 1, 

f(tx + (1- t)y)::; t f (x) + (1- t)f(y) 

+ C1 rnin[t, (1- t)]a(llx- Yll). (5.2) 

If there is a constant C\ > 0 such that f( ·) is strongly a(· )-paraconvex with 
COnstant C1, we say that f (-) is StTongly a(-) -pam conveX. 

Of course, every f(-) strongly a(-)-paraconvex with constant C1 is also a(-)
paraconvex with the constant C1. 

It was shown in Rolewicz (1979, 1979b) that for a(t) = P, 1 < 1::; 2, any 
a(-)-paraconvex function is strongly a(-)-paraconvex. 

There are a(-)-paraconvex functions f(-) : X --> IR which are not strongly 
a(-)-paraconvex. Conditions warranting that each a(-)-paraconvex functions is 
automatically strongly a(-)-paraconvex can be found in Rolewicz (2000). In 
particular, using those conditions we find that every 1-paraconvex (i.e. (Y_ 

paraconvex) function is strongly 1-paraconvex if and only if 1 < 1 ( Jourani , 
1996). 

PROPOSITION 5.1 Let (X, 11·11) be a nonned space . Let n be a convex set in X. 
Let f( ·) be a Teal-valued fmu:tion defined on n. Iff(-) ·is a(-)-subdifjeTentiable, 
then it is a(·) -pamconvex 'With constant 1. If , addd·ionally, 

a(ts)::; ta(s) (5.3) 

for 0 < t < 1 and s > 0, then f ( ·) is stmngly ct( ·) -pamconvex 'With constant 2. 

Proof Take arbitrary x, y E D. Let 0 ::; t ::; 1 and let z = tx + (1- t)y. Since 
the function f(-) is a(-)-suudifferentiable, there is a linear continuous functional 
f such that for h such that z + h E D we have 

.f(z +h)- .f(z) 2: f(h)- a(llhll). (5.4) 

Put h1 := x- z = (1- t)(x- y) and hz := y- z = -t(x- y). Thus, we obtain 

.f(x)- .f(z) 2: (1- t)f(:c- y)- a((1- t)llx- Yll) (5.5) 

and 

f(y)- f(z) 2: -tf(x- y)- a(tllx- Yll). (5.6) 

Multiplying inequality (5.5) by t, inequality (5.6) by 1- t and adding we obtain 

t.f(x) + (1- t)f(y)- j(tx + (1- t)y) 
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The function o{) is nondecreasing, thus 

ta((1- t) ll x - Ylll + (1- t)a(tl lx- Yll) 

~ ta(llx- Yll) + (1- t)a(ll x - Ylll = a( ll x - Yll) . (5 .8) 

Inequalities (5.7) and (5 .8) imply that J(-) is a(-)-paraconvex with constant 1. 
If (5 .3) holds, then a(tl lx - Ylll ~ ta(llx- Ylll and a((1- t)llx- Ylll ~ 

(1- t)a(llx- Yll). Thus we have 

ta((1- t) ll x -. Yll ) + (1- t)a(tllx- Ylll 

~ t(1- t) a (llx - Yll) + (1- t)ta( ll x - Ylll 

= 2t(1- t)a(i i:c- Ylll ~ 2 rnin[t, (1 - t)]a(l lx - Yll ). (5.9) 

Inequalities (5.7) and (5.9) imply that J(-) is st rongly a(-)-paraconvex with 
constant 2. • 

For the purpose of further considerations we shall localize the notions of 
a(·) -paraconvex and strongly a(-) -paraconvex funct ions. 

F irst we recall the classical notion of locally convex sets. We say that a set 
A C X is locally convex if for each :c E X there is a neighbourhood U of x such 
that An U is convex. In particular it is easy to see that each open set is locally 
convex. If a locally convex set is connected and closed, then it is convex (see 
Tietze, 1928, Matsumura, 1928 for IR" , I<lee , 1951 , for general linear topological 
spaces). 

We say that a set A C X is ·uru:.formly locally convex if there is a ueighbour
hood V of 0 such that for each x E X the set A n (x + V) is convex. Observe 
that if A is uniformly locally convex , then its closure A is also uniformly locally 
convex. Thus, by the above mentioned T ietze- Matsurnura- Klee theorem its 
interior is a union of open convex se ts A1 , 1 E r , such tha t their closures are 
disjoint. 

We say that a real-valued function J(-), defined on a locally convex set 
n C X, is locally (stmngly) a(· )-paraconvex with constant C > 0 if for each 
xo E n there is a neighbourhood U of x0 such that J(-) restricted to U is 
(strongly) a(· )-paraconvex with constant C. We say that J(-) is locally (stmnyly) 
a(-) -paraconvex if there is C, such that it is a(-)-paraconvex with constant C. 

We say that a real-valued function J(-), defined on a uniformly locally convex 
set n c X' is 'Un·iforrnly locally (stmnyly) a (-)-pam convex with constant c > 0 
if there is a neighbourhood V of 0 such that for each x0 E n the function f ( ·) 
restricted to n n (x 0 + V) is (strongly) a(-)-paraconvex with constant C. If 
there is a constant C > 0, such that J(-) is uniformly locally (strongly) a(-) 
paraconvex with the constant C we say that J(-) is u.n·ifonnly locally (stmnyly) 
a(·) -pamconvex. 

In general a local a (-)-<P-subgradient need not be an a (-)-<P-subgradient . 
However in the case of strongly a(· )-paraconvex functions defined on open con-
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THEOREM 5.2 (Rolewicz, 2001; in the case of o:(t) = fY, 1 < t :S 2, Jourani , 
1996). Let (X , 1\ .11) be a r·eal Banach space, and let f(-) be a stmngly o{)
pamconvex function defined on an open convex S'Ubset n c X. Then, each local 
o:(·) -s'Ubgmdient off(-) at a point xo, is a'Utomatically an o:(·)-s·ubgmdient of 
f(·) at xo. 

Thus we have 

PROPOSITION 5.3 Let (X , 11 · 11) be a r·eal Banach space, and let f(-) be a locally 
str-ongly o:(.) -pamconvex function defin ed on an open S'Ubset n c X. Then , 
the local cx( ·)-X*-s'Ubdiffer·eTdial off( ·), a~·!oc fl x, is a locally 2cx(-)-monotone 
nt'Ultifun ct'ion. 

Pmof. Let Xo E n. Since f(-) is locally strongly o:(-)-paracouvex, there is a 
convex open neighbourhood U of xo such that the restriction flu(x) is strongly 

o:(-)-paraconvex. Thus by Theorem 5.2, a~·!oc flu = a~·- flu. Hence by Propo

sition 3.1 a~·!oc flu is a 2cx(-)-monotone multifunction. Therefore, a~·. flu is a 
locally 2o:(-)-monotone multifunction. • 

As a simple consequence of Propositions 5.1 and 5.3 we get 

PROPOSITION 5.4 Let (X, II · II) be a nonned space. Let n be a (un·ifor-mly) 
locally conve:c set in X . Let f ( ·) be a r-eal- val·ued fun ct·ion defined on n. If 
J(-) ·is o:(-)-s·ubdifferent·iable, then ·it is (unifor-mly) locally o:(-)-pamconvex with 
constant 1. If, add-itionally 

cx(ls) :S to:(s) (5.3) 

for- 0 < t < 1 and s > 0, then the f'Unction. f ( ·) is (uniformly) locally strongly 
o{) -pam convex with constant 2 . 

Let J(-) be a real-valued function defined on a uniformly locally convex set 
f2. If for every E > 0 there is a 8 > 0 SUCh that 

tf(x) + (1- t)j(y)- f( tx + (1- t)y) 2: -ct(1- t) ll x- Yll (5.10) 

for all x, y E n such that llx- Yll :S 8 we say that the function f(-) is ·unifonnly 
approximate convex (Rolewicz, 2001 b). This is a uniforrnization of the notion 
of approximate convex functions introduced in Luc-Ngai-Thera (2000). 

PROPOSITION 5.5 Let (X , 11·11) be a nonned space. Let n be a 'Uniformly locally 
convex set in X. Let f ( ·) be a real-val-ued funct-ion defined on n. S·uppose that 
(3.1) holds. If the fun ction f( ·) is cx(-)-s'Ubdifferentiable, then it is 'Uniformly 
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PTOoj. F irst we shall show that there is a function (3(-) such that (3( t) ~ a( t) 
for all 0 < t and (5.3) holds for (3 (t) . 

Let f3o(t) = sup0<s~t ~· Of course f3o(t) is nondecreasing and by (3 .1 ), 

lirntlO f3o(t) = 0. We put (3 (t) = tf3o(t) . Of course (3(t ) = tf3o(t) ~ t~ = a(t). 
The funct ion f3o( t) is nondecreasing, hence for 0 < s < 1 we have 

(3(st) = stf3o(st) ::; stf3o(t) = s(3(t). (5.3') 

Since (3( t) ~ a( t) the function !(-) is (3( · )-subdifferentiable. 

Since li rntlO f3o(t) = 0 for every c > 0, there is a 8 > 0 such that for 0 < s < 8 
we have f3o(s) < ~ · Let B5 = {x : llx ll < 8}. By Proposition 5.4 there is a 
neighbourhood V of 0 , V C B5, such that for each xo E !1 the function J(-) 
restricted to the set xo + V is strongly (3(- )-paraconvex with const ant 2. Thus 

tf(x) + (1- t)f(y)- j(tx + (1- t)y) ~ -2 rnin[t, (1- t)]f3(11x- Yll) 

-2 rnin[t , (1- t)] f3o( ll x - Yll)ll x- Yl l 

~ -2rnin[t , (1- t)]~l l x - Yll ~ - ct(1- t)ll:c- Yll· 

The arbitrariness of c implies that f(-) is uniformly approximate convex. • 

Between uniformly approximate couvex and strongly a(-)-paraconvex func
tions the following relations are true. 

PROPOSITION 5.6 (Rolewicz, 2002). Let (X, 11·1 1) be a nonned space . Let !1 be 
a uniformly locally conve:c set in X. Let f ( ·) be a real- valued fun ction defin ed 
on !1. If f ( ·) is un·iformly locally stTOngly a(·) -pamconvex, then 'it ·is ·an·i.forrnly 
appmX'irnately convex. 

Conversely, iff ( ·) is ·uniformly appro:rimate cunve:c, then theTe ·is a nun de
creasing fun ct·ion a(-) rnapving [0, +oo) into [0 , +oo] sati:>fying (3.1) s·uch thal 
f (-) ·is ·un·ifonnly locally stmngly a(-) -pam convex. 

The converse of Proposition 5.1 requires the openness of the set !1. 
We start with 

PROPOSITION 5.7 (see Rolewicz, 2000). Let (X, II· II) be a rwTmed space. Let 
a real-valued function f( ·) defined on u {locally) convex set !1 C X be {locally} 
stTOngly a(-) -pamconvex. If J(·) is locally bounded, then d ·is locally L-ipschitz. 

Using category methods we can obtain 

PROPOSITION 5.8 (see Rolewicz, 2000). Let (X, II · II) be a Banach space . Let 
a rwl-val·ued functi on .f(-) defined on an open {locally) convex set !1 C X be 
1 1 
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PROPOSITION 5.9 (see Rolewicz, 2001; in t he case of n(t) = rr, 1 < t :S 2, 
Jourani, 1996) . Let f(-) ue a locally ~>trongly a(-) -paraconvex functio n defined 
on an open s·ubset !:1 of a Banach ~>pace X. Th en the local c.t(-)-suud'ifferent'ials 
and Clar·ke subd-ifferent'ial~> off ( ·) coincide. 

COROLLARY 5. 10 (see Rolewicz, 2001). Let f(-) be a (locally) 1>tmngly a(-)
par·aconvex funct ion defin ed on an open (locally) convex 1>et !:1 of a Banach space 
X. Then f(-) i~> (locally) cx(-) -subd-ifferentiable. 

Pmof By Proposition 5.8 f (·) is locally Lipschi tz . Thus, at each point its 
Clarke subdifferential is not empty. Hence, by Proposition 5.9 its (local) o:(- )
subdifferential is also not empty. • 

Since every open set is locally convex, we do not need to assume convexity 
of !:1 in the local versions of Propositions 5.8, 5.9 and Corollary 5.10. 

As a consequence of Corollary 5.10 and Theorem 4.lla we get the following 
extension of the Asplund (1968) theorem: 

THEOREM 5 .11 Let (X, 11 -11) be a real Banach space, ·with sepamble dual X *. 
Let f(-) be a locally stmngly o:(-) -pamconvex fun ction defined on an open s'U bi>et 
n c X. Then there is a s·ubset A f c n of the fir~>t Bu.i·l'e category I>'UCh that 
on !:1 \ A f the funct ·ion f ( ·) i~> Fr·echet differentiable. Moreover, the Fr·echet 
i!J-gradient is contirruo·us 'in the con)'ugate nor·rn II · II *. 

It is of interest to find the rela tion between t'-paraconvex functions and 
DC-functions. 

Firtst we shall consider t he relation between DC and t2-paraconvex func
tions . 

We have 

PROPOSITION 5.1 2 (Rolewicz, 1980) . Let (X, II· II) be a nonned space. Then, 
each t2 -paraconvex function is a difference of a convex f unction and a quadmt·ic 
f'Unction. Thus, each t2-pamconvex fun ction i~> a DC-function. 

Unfortunately, for 1 < 1 < 2 the situation is not so nice. 

PROPOSITION 5.13 Let X = R Let 1 < 1 < 2. Then ther-e is at' -suudifferent
iable (i.e . 1 -paraconvex with constant 1) function which is not a DC-fun ction. 

The proof is based on the following 

LEMMA 5. 14 The .funct·ion f(t) = -t', 1 < 1 < 2, defined on (O,+oo) is t' -
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Pl'oo.f. Take an arbitrary t0 > 0. The function j(t) = - t' is differentiable and 
its derivative at t0 is equal to -1to -y-

1
. By definition, the function f ( t) = -P 

is t""Y -subdifferentiable with constant 1 if and only if 

-(to+h)"'i2: -to1 -rto1- 1h-[h[1. 

for all to > 0 and h such that h > -t0 . This holds if and only if 

g(h) =-(to+ h)""Y +to 1 + rto 1- 1h + [h[1 2: 0. 

( 5.11) 

(5.12) 

Observe that g(O) = 0. We shall show that g(h) is increasing for h > 0 and 
decreasing for h < 0. 

Indeed, let h > 0. Then 

g(h) =-(to+ h)""Y +to""'(+ rto -y-
1h + h'. 

Let us calculate its derivative: 

g'(h) = -r(to + h)""Y- 1 +"(to 1 -
1 + rh1 -

1
. 

Since 0 < 1 - 1 < 1, g'(h) > 0. 
Now let h < 0. Then 

and 

g(h) = -(to+ h)""Y + fo 'I+ rto -y-
1 h + ( -h )1 

g'(h) =-,(to+ h)1- 1 + rto 1- 1 -1( -hp- 1 

= r(to- [h[)""Y - 1 +to 1 -
1 

- ([h[p- 1
. 

Since 0 < "(- 1 < 1 in this case, g'(h) < 0. Thus (5.11) holds and the function 
f(t) = -P , 1 < 1 < 2, is t""Y-subdifferentiable with constant 1. • 

Pmuf of Pmpusii'iun 5.13. Let X= R Let 

Since 1 < 1, the sequence { tn} is bounded. Let g( t) = max[ -It - t 11r- 1
J and let 

j(t) = J~tl g(s)ds. We shall show that f(t) is locally weakly t"'~-subdifferentiable 
with constant 1. Indeed, iftn- 2~~ < t < t11 , n = 1, 2, ... , it is obvious, since the 
function j(-) is locally convex in the neighbourhood oft. If tn < t < tn + 2,~~ , 
n = 0, 1, 2, ... , then it follows from Lemma 5.14. 

At t = tn, 0 is a local f""Y-subgradient with constant 1, since f(tn+h)- f(tn) 2: 
- J~hl s"'~ - 1 ds = -~ [h[ 1 . Recall that by Jourani (1996) this shows that f(t) is 
P -subdifferentiable. 

On the other hand, since g(·) is Hot of bounded variation, f(-) is not a 
nr.-fnnrt.inn • 
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