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1. Introduction

The main objective of the paper is to provide a complete solution to the following
singularly perturbed optimal control problem.

1
maximize ] lwi(t) = 2ua(t)|dt
0

|

subject to ET?EL = -y +u (L1)
dy2
EI = —2y2 +u,

with y; and yz scalars, and u € [-1,1]. To this end, we examine a general class
of optimal control problems that (1.1) belongs to, namely,

1
maximize ﬁ clyl(t))di
(1.2)

i
subject to  e— = g(y, u),
it
with y € R™ and u € R*, and e(y) : B™ — R a continuous function.
In both the general case (1.2) and the particular case (1.1), we are interested
in solving the problem for small £ > 0, namely, we wish to reveal the limit
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A tool for the determination of the aforementioned limit behaviors is to
identify a variational limit problem, namely, an optimal control problem whose
value is the limit of the values of {1.2), and whose solutions can be used to
generate solutions of (1.2) for small e. We show in this paper that, under certain
conditions, a specific infinite horizon problem is an appropriate variational limit
of (1.2), and indicate how its solutions generate the near optimal solutions to
(1.2). For the specific case of (1.1} we offer an explicit feedback solution.

We wish to point up {ront that the optimal control problem obtained by plug-
ging £ =0 in (1.1), referred to in the literature as the order reduction method,
would not produce an appropriate variational limit. The order reduction method
of solving singularly perturbed problems by addressing the case with e=0, has
been proven useful in many circumstances, with remarkable applications, see
Kokotovic and Khalil (1986), Kokotovic, Khalil and O'Reilly (1986), and refer-
ences therein. However, for the method to be applied certain conditions have
to be met, and without these conditions the method may provide wrong solu-
tions. Veliov (1996, Example 5), stated problem (1.1}, pointing out that the
order reduction does not apply. Indeed, the system (1.1) with e =0 yields an
optimal value equal to 0. Yet it is easy to see that a higher value can be ob-
tained in the limit as e —0. Several approaches to overcome the difficulty have
been suggested, see Artstein (1999), (2000), Artstein and Gaitsgory (1997a),
{1997b), Artstein and Vigodner (1996), Gaitsgory (1992), (1993), Gaitsgory
and Leizarowitz (1999), Vigodner {1997). The particular structure of the prob-
lem (1.2) enables the use of ideas worked out in Artstein (1999), (2000}, Artstein
and Gaitsgory (1997a), Artstein and Vigodner (1996) and Vigodner (1997), and
with some additional observations, an explicit solution can be reached.

In Section 2 of this paper we examine the general case (1.2). We introduce
a solution concept, find how it is related to the limit occupational measures of
the differential equation on the fast scale, and relate these to finitely optimal
solutions on the infinite horizon. Section 3 is devoted to the examination of the
concrete problem (1.1), resulting in the solution.

Acknowledgement. In my conference talk I presented a general account
of the role of invariant measures in forming variational limits. Following my
talk Vladimir Veliov presented to me problem (1.1), originally introduced in his
paper (1996), and suggested that the techniques I mentioned may be applied.
Vladimir's observation was correct, and I am indebied to him for offering the
problem and for very helpful discussions.

2. The general case

In this section we examine a solution notion for the general case (1.2) and,
under certain conditions, establish existence. The derivations employ several
approaches available in the literature and, along with some new results, make
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We start with some terminology and notations. When referring to a function
we either use a dot in the argument, e.g. y(-), or use a boldface font, for example
¥. The value and the solution of (1.2) may depend on an initial condition, say
w0) = yo. An admissible trajectory of the differential equation in {1.2) is a
pair (y(-),u(-)) defined on [0,1] with u(-}) measurable, satisfying the equation
2 = g(y(t),u(t)). When convenient, we refer to the state coordinate y(-) of
an admissible trajectory as an admissible trajectory. Indeed, the payoff of the
admissible trajectory (y,u) depends on y only, as determined by (1.2). We
write

1
payoff(y) = fn o(y(t)) dt. (2.1)

Notice that ¥ may be generated by more than one control.
For a fixed € > 0 and a fixed initial condition yy we define

val (£, 40) = sup{payoff(y) : (¥, u) admissible and y(0) = y}. {2.2)

We are interested in the limit of val(s, yp) a5 ¢ — 0, and we want to have a
procedure to generate optimal or near optimal solutions for small e.
As a tool in the analysis of (1.2), consider the differential equation

dy i
e gly, u) (2.3)

obtained from (1.2) by the change of time scales £ = £s. Notice that solving
(1.2) on the time interval [0, 1] is equivalent to maximizing

£ f; cly(s)) ds (2.4)

subject to solving equation (2.3) on [0,e=!]. Thus, the limit as e — 0 of (1.2) is
related to an infinite horizon problem. We wish to make this relation apparent.

ConveNTION 2.1 We need to examine o given bajectory as o function of both
time scales t and 5. When a function is considered as a function of s we put o
bar owver i,

The following notion reflects our version of a near optimal solution of (1.2).

DeFiNITION 2.1 A limiting solution of (1.2) (with initial condition yg) is an
admissible pair (¥,1) defined on [0,00) and satisfying §(0) = yo, such that the
trajectories (e, u.) obtained from (¥,0) by restricting it to [0,e7!] and then
applying the change of time scale t = es, satisfy val(e, yo) — payoff(y.) — 0 as
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In the sequel we relate the limit value and limiting solutions of (1.2) to
limit occupational measures of the equation (2.3). We then establish, under a
controllability condition, existence of limiting solutions. Finally, we consider an
approach to detection of the limiting solutions and point out a relation to an
infinite horizon optimization problem.

Trying to eliminate the less relevant complications, we work throughout
under the following assumption:

HYPOTHESIS 2.1 For a given initial condition y(0) = yp there exists a fomily of
admissible trajectories (y.,u.) such that val(e, yo) — payoff(y.) = 0 as e = 0,
and such thal the values y.(t) for all t and all & belong io o bounded closed sel
D in B™.

The preceding hypothesis assumes, in particular, that yo € D. In the sequel
we need only that with equation (2.3) the initial condition gy can be steered into
I} in a finite time (on the s scale). We leave out the details of this possibility.

Recall the following terminology. Let ¥ : [S;,8:] — R™ be given. The
occupational measure associated with ¥ is the probability measure u(¥, [S), 53])
on A™ given by

ul¥, [S|, S‘I]]{H} = ﬁl{.‘i tp(s)EB, S1 << S;r} {2.5)

where A is the Lebesgue measure on the real line. We need also the concept
of weak convergence of probability measures, which we recall for completeness
(see, e... Billinglsley, 1963). The sequence of probability measures y; on R™
converges weakly to pg if

f bty = f Yy holdy) (2.6)
R it

for every bounded and continuwous v : R™ — R,

DEFINITION 2.2 A probability measure pg on R™ is a limil occupational mean-
sure of (2.3) if there are admissible solutions (¥,,7;) to (2.3), defined, respec-
tively, on intervals [S; 1, Sia], such that S;2 — S;; — 20 as i — oo, and such
that the corresponding oceupational measures p; = p(¥, [Si1.Si2]) converge to
po. We say then that pg 15 generaled by the sequence [¥;,0;).

With a limit occupational measure g we associate the value

wal) = [ clahuldy) 27)

Arguments similar to the following observation were used in the literature
in even more general situations, see Artstein (1999), Artstein and Gaitsgory
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ProPoOSITION 2.1 Suppose that Hypothesis 2.1 holds. Suppose that p° is a maz-
imizer of val(p) among all limit occupational measures supported on I} and gen-
erated by solufions ¥, with values in D, Let {y.,u;) be admissible trajeciories
of (1.2) on [0,1] with y.(t) € D for all t and alle. Then limsup val(e, y.(0)) <
val(pu*).

Proof (sketched). Let y., be a subsequence such that

lim payoff(y., ) = limsup val(e, y-(0)). (2.8)

The boundedness implies that a further subsequence exists, and we can assuine
it is the subsequence itsell, which converges to a mapping v(-), which assigns to
each ¢ € [0,1] a probability measure on R™, and the convergence is in the sense
that

1 1
j; (b, e, ()t — j; fm-ﬁ:t.mumwyn (2.9)

for every bounded and continuous real function (-, -). {The probability measure
valued maps are called Young measures, and the convergence is referred to as
the narrow convergence, or statistical convergence, or convergence in the sense
of Young measures.) The particular choice of v(t,y) = (y) implies then that

1
K pageElh = [] val(v(t)) dt. (2.10)

Now, the proof would be complete if we show that for almost every ¢ the measure
(1) is a limit occupational measure. ludeed, it is clear that »(1) is supported on
D, hence the right hand side of {2.10) is bounded by val{g"). To verify Lhat for
a given g € [0,1) the probability measure v(tg) is a limit occupational measure,
we employ the change of time scales s = 7't — 3). We choose S, — o<
such that eS; — 0. On the one hand the occupational measures p(¥, , [0, 5;,])
converge to the family of limit occupational measures, while on the other hand,
they converge for almost every tg to v(ty). This completes the proof. | |

Under some conditions the value of the maximizer p* mentioned in Propo-
sition 2.1 is related to limiting solutions and to the limit as £ — 0 of val{e, yq)
for every yg, as follows:

DEFINITION 2.3 Eguation (2.3) has the finile controllalility property m the re-
gion I C RB™ if there ts a time §' such hat for every initial condition gy
and any terminal condilion yy in I, there ensts an admissible trajectory (¥,1)
of (2.3), defined on the interval [0, 5] such thet T(0) = yo, F(5') = 1 and
Tls) € D forall 0 < 3 < 5. We say then thal ¥ steers yo o . (See
[ r ’ ooy

I . T B A )
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ProrosITION 2.2 Suppose that Hypothesis 2.1 holds and that (2.3) has the fi-
nite confrollability property on D. Then, there exists o probabilily measure p*
which is @ mazimizer of val{p) among all imit occupational measures supported
on D and generated by solutions to (2.3) with values in D. Furthermore,

val(e, yo) — val(u®) (2.11)
Jor every yn € D. Moreover, a limiting solulion of (1.2) exists.

Proof. Existence of the maximizer u* follows from a simple compactness ar-
gument. Let (¥,,1;) be admissible trajectories of (2.3) generating u*, namely,
they are defined, respectively, on intervals [0, S;], and satisfy 7,(s) € D for every
i and every s € [0, 5;]. (Since the equation is time invariant we can assume that
all the intervals start at s = 0.} By repeating, possibly, an index i several times,
we may assume that S;(S, +--- +8;_1)" ' = 0 as i — oo,

Let g € D be given. Consider the admissible trajectory (¥, ) constructed
by a concatenation procedure, as follows. On [0, 5] let the trajectory be the
one steering yo to ¢:(0) 4s guaranteed by Definition 2.3. Denote §" = s;. On
|51, 81 + S1] we define (¥, 1) to be the shift by s; of (¥;,WM). Inductively, on
(8,8 + ;] let (¥,10) be the shilt by s; of (¥,,W). On [s + 5,8 + 5 + )
let (¥,@) be the admissible trajectory that steers F(s; 4 S;) to F;,,(0). Define
Sig1 = 8+ 8;+ 5. As i — oo the procedure yields a well defined admissible
trajectory on [0, 0c).

Now, the condition 5;(8; + -+ 8;_1)"! — 0 as i — oo, together with the
weak convergence criterion, imply that

g
5 L e(y(s))ds — val(u") (2.12)

as § — oo, ln view of Proposition 2.1 this implies that (¥, 1) is indeed a limiting
solution, and that for every gy the number val{p®) is the limit of val(e, o) as
g — 0. This concludes the proof. ]

In view of the preceding result, a reasonable approach to finding a limiting
solution to (1.2) would be to identify a limit occupational measure, say p*, which
maximizes the value function in a set D given by Hypothesis 2.1, and then (if
finite controllability holds on ') to use the concatenation of trajectories that
generate p* to come up with a solution as given in the preceding proposition. A
method to identify such & p* is to examine optimal solutions on long intervals,
as follows:

DEFINITION 2.4 An admissible trajectory (¥,1) of equation (2.3), defined on
[81, 5z], 15 relatively optimal (wath respect to the payoff function e(y)) if

IrS'; I‘rs:
alfTl &Y T e = P L R i 172%
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then the inequality
B(8i, = ko;, )5, < (2.20)

helds. Now, we use the controllability condition to produce an admissible tra-
jectory which steers Zj (aj,) to Z;,(0) on the interval [0,5'] as guaranteed by
Definition 2.3. When this trajectory is concatenated with Zj,, we get a periodic
trajectory on an interval of length o, + §', which we denote by . It is clear
from (2.16) and (2.17) that the following estimate holds for Z':

[val(u(Z', [0, a5, + 5°])) = val(u®)| < 29, (2.21)

The latter estimate clearly holds also for the trajectory obtained by iterating '
for several periods. We consider (k 4 1) such iterations, with k& determined by
(2.19). Denote the resulting periodic trajectory on [0, (k + 1)(a;, + S'}] by Z’
also.

The last two modifications of 2 are to replace it on the interval [0, 57] by a
trajectory which steers F(0) to Z'(S") and replace it on the interval |S;, — 8", 8,,]
by a trajectory steering (S, = 8') to H(5,,). In both cases the modification
can be done with the values of the trajectories being in [, Both modifications
are possible in view of the finite controllability property given in Definition 2.3,
Denote the resulting trajectory on [0, S;,] by 2.

The estimates (2.16), (2.17), (2.18), (2.20) and (2.21) imply that

val(u®) — val(u(z",[0,5.,])) < 5n. (2.22)

The latter inequality together with (2.13) imply that if 5 is chosen such that
6n < Ag, when Ay is given by (2.14), then the relative optimality of § on [0, S;,]
is refluted. This completes the proof. [ |

REMARK 2.1 The controllability property given in Definilion 2.3 requires the
steering to hold on intervals of the preseribed length 8'. Proposition 2.2 would
be valid also if the steering is guoranieed only for an interval of length less than
or equal to 8'. If in addifion we assumne that the steering time is conlinuous os

a function of the initial point, Proposition 2.3 would still be valid. We leave oul
the details.

A relation of the preceding analysis to an infinite horizon optimization prob-
lem is as follows.

DEFINITION 2.5 An admissible trajectory (¥,0) of equation (2.3), defined on
[0,80), is finitely oplimal (with respect to the payoff function e(y)) if it is rela-
tively optimal on each subinterval |5, Sa].

THEOREM 2.1 Under Hypothesis 2.1, and when equation (2.3) hes the finite



An m:u.—upnl.l'nllal measure solution 631

respect o the eriterion cly), sey (.0, i a limiting solution to (1.2}, Further-
more,

|III1 val(e, o) = llm }ﬂj c(Fls)) ds [2.23)
for every yg € D.

Proof. Let y. be obtained from ¥ by a restriction to [0,27'] and then the
change of variables ¢ = £s. Let M be the family of limit occupational measures
supported on D, which maximize the criterion val{p) and are generated as the
narrow limit of admissible trajectories with values in 0. It is clear that M
is closed with respect to the weak convergence. In view of Proposition 2.3, a
cluster point of y, in the narrow convergence (see (2.9)) is a measure valued map,
say #(-), such that ©(t) € M for almost every £. Since payoff(y,) converges to
_f“' val{(t})dt, it follows from Proposition 2.1 that (¥, T) is a lmiting solution to
(1.2). Equality (2.23) follows then from Proposition 2.3 (in fact, a more relaxed
form follows, namely, the averaged integration in the right hand side may be
taken over intervals [}, S3] as long as §; — §) tends to oc). |

The notion of finite optimality as given in Definition 2.5 and used in The-
orem 2.1, is satisfied practically by all natural notions of optimality over an
infinite interval, see Carlson et al. (1991). In particular, conditions guaran-
tecing existence of solutions of an overtaking nature imply exisience of finitely
optimal trajectories, see Carlson et al. (1991). For completeness, we now display
a simple sufficient condition for the existence of finitely optimal trajectories. To
this end denote by v(y, ¥, S) the maximal payoff obtained when the initial con-
dition y is steered to the tenninal condition § along the interval [0, 5], with a
trajectory whose values are in the set 13,

PrROPOSITION 2.4 Assume thel Hypothesis 2.1 holds and thal (2.3) has the finite
controllafbalily property on D, Asswme thal on a finile time inlerval the sel of
admissible trojectories ¥ of (2.3) 15 closed with respect o the sup norm. [f for
any fived instial condition y € D, for S large enough, the umppmy vly, ¥, 5)
is continuous in the variable § on the domain where v(y, ¥, 5) is finile, “then a
Simitely optimal trajeclory of (2.3) (wilh respect o the criterion oy)) exists,

Proof. The closedness of the [amily of solutions implies that for every (y, ¥, S) an
optimal solution to the steering problem exists. The continuity of the mapping
v(y, ¥, §) in the variable i implies that if a sequence of optimal solutions, say y;,
satisfies y(0) = y and y(5;) = y; and converges in the sup norm on, say, [0, 5], to
a trajectory, say yo, then yg is an optimal solution of the steering problem with
terminal condition § = yalS). Consider a sequence of such optimal solutions
with a fixed initial condition y, defined on intervals [0, 5] with §; — o0, A
subsequence converging uniformly on compact intervals exists and its limit is
clearlv a finitely antimal traiectore of (2 30 =
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3. Solving (1.1) explicitly

In this section we provide an explicit solution to the concrete problem (1.1)
along the lines described in the previous section. In particular, we need to
analyze on the infinite horizon s € [0, 20) the equation

d
_.I’.'_l. = -y +u
@ RTS

with ¥ = (11,12) € R? and u € [=1,1]. This equation is the analogue of (2.3)
in the case of (1.1). Since in this section practically all the derivations concern
the fast time scale s, we do not use the bar convention of the previous section.

When u(s) = —1 the trajectories converge to the equilibrivm point (=1, =21},
while when u(s) = 1 the trajectories converge to the equilibrium point (1, 3).
Marked as dashes in Fig. 1 are the trajectories emanating from y = (1, 3) and
from ¢ = (-1, —é], with controls, respectively, u(s) = =1 and u(s) = 1.

Figure 1.

OBSERVATION 3.1 For any admissible trajectory (y,u) the function y(-) con-
verges to the region encircled by the trajectories indicated in dashes as drawn in
Fig. 1.

Progf. Obvious. E

In particular, it is easy to see that Hypothesis 2.1 is satisfied with respect
to the payoff criterion

ey, v2) = [y — 2pa| (3.2)

on the region pointed out in the previous observation. This region would not be
suitable for the analysis suggested in the previous section since equation (3.1)
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holds if we exclude the end points (=1, ——} and (1, 5} and the boundary tra-
Jectories starting at them, but even then, hml..e controllability does not hold).
This drawback can be fixed as follows:

PrOPOSITION 3.1 Let I be the regron encireled by the twe fragectories emonat-
ing from the poinls (1= 8, %]I and (=148, ——] using, respeclively, the controls
ws) = =1 and uls) = 1 (see Hu' region encircled by the continuous line in

Y. 1), If & > 0 &5 small enough, then (3.1) with the crilervion (3.2) satisfies
both Hypothesis 2.1 and the finile controllalality property on D.

Proof. The finite controllability property on a region as encircled by the two
trajectories portrayed in Fig. 1 is clear. We claim that Hypothesis 2.1 holds il &
is iltlﬂ” enough. Indeed, as follows from (3.2), near the two points (-1, —-}l and
(1,%) the payoff function contributes values close to zero. The uptlmal value
of the problem is positive: for instance, tracking the two trajectories which
determine the boundary of the defined region yields a positive value. It is
therefore clear that for £ small, a solution to (1.1), or equivalently, a solution to
the analogous problem on the fast scale (see (2.3)-(2.4)), would not stay a long
time near either of these points. Since starting at a point inside the region and
reaching a close proximity of either of these extreme points would take a long
time, it is clear that for small £ the sc-lut.m]t stays out of a small neighborhood
of either of the points (=1,~1) and (1,1). |

As was pointed out after the statement of Hypothesis 2.1, there is no need
to assume that the prescribed initial state be in D; it 15 enough that the initial
state could be steered Lo I on a finite time. This property clearly holds for the
set [ identified in the preceding result.

Now we examine the structure of velatively optimal solutions to (3.1) with re-
spect to the payoff criterion (3.2). Recall that a trajectory is relatively optimal if
it is optimal given itz initial and terminal states, see Definition 2.4, We cousider
relatively optimal trajectories within the set D described in Proposition 3.1.

LEMMA 3.1 There is a bound S such that a relatively optimal trajectory in D
does not stay on one sule of the dingonal yy = 2yp for a time inlerval longer
than 5 without crossing lo the other side of the diagonal.

Proof. An admissible trajectory y(-) of (3.1) which stays on one side of the men-
tioned diagonal inust converge to the diagonal itsell. Oun the diagonal the payoll
criterion is zero. The optimal value of the problem s positive (as mentioned in
the proof of the previous result, tracking, for instance, the trajectories in Fig. 1
yields a positive value). Hence, the finite controllability on D jmplies that a
relatively optimal trajectory would not stay near the diagonal for too long. B

LEMMA 3.2 On one side of the dingonal 4y = 2y, o velatively optimal solution
of (3.3) 15 bang-banyg (i.e., vses only the values w = 1 and u = —1), and the
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Proof. Notice that on one side of the diagonal the payoll function is linear in
the state. Consider the region y; > 2y (the reasoning for the other side is
analogous). We add a third coordinate, denoted by i3, to the payoff criterion
and consider in R the control equation

dy
v&-t-—ﬂy+£m (3.3)
where
-1 0 0 1
A= 0 =2 0 =111, (3.4)
1 =2 0 0

and with an initial condition y3{0) = 0. With this choice, for a trajectory on
[0, 8] the value y3(5) coincides with the payoll associated with the trajectory.

We follow now a technique demonstrated in, e.g., Pontryagin et al. [1962),
Hermes and LaSalle (1969, Section 14). Given an initial condition y(0) € R?,
the solution to (3.4) is given explicitly by

£
¥(5) = e*5y(0) + f A=y (s)ds (3.5)
0
where
e~? 0 0
e = 0 e 0. (3.6)

b T A |

Consider a relatively optimal trajectory on [0, §]. Then y3(S) is maximal among
the possible payoffs, hence y(S) is on the boundary of the attainable set of tra-
jectories on the interval [0, 5] emanating from y(0). Consequently, a supporting
vector p = (py,p2, pa) exists, namely, the scalar product p - {5) is maximal
among all the attainable points. Furthermore, p; > 0. Resorting to the explicit
formulas (3.5) and (3.6), we conclude that the optimal control, say u®(s), which
is employed in generating the optimal path must maximize, point-wise almost
everywhere, the expression

(2ps + (p1 = pa)e™ 5% 4 (py + py)e™25N)y . (3.7)

subject to =1 < u < 1; this for s € [0, 5]. Hence, the values of u*(s) must be
equal to either =1 or to 1, and a switch between the two values may occur only
when the coefficient is equal to 0. Since the function multiplying u is the sum

of two exponentials and the constant 2py > 0, it is clear that there is at most
one zero of the coefficient. [ ]

The following is a useful direct consequence. It could be checked (though
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CoOROLLARY 3.1 The steering time of an tnilial point to a lermanal poind with
o rajectory on one side of the diagonal 1 = 2y 15 independent of the chosen
path.

Proof. Between two points on one side of the diagonal there are at most two
trajectories meeting the specifications of Lemma 3.2, If in addition to the time
consumed by the optimal trajectory there was another possible steering time,
then there would be a continuum of possible steering times, and, consequently,
there would exist relatively optimal trajectories with more than one switching
point. [ |

COROLLARY 3.2 A relatively optimal trajectory of (3.1)-(3.2) with the stale
values in D has the following structure. The trajectory allernales between the
two sides of the diagonal 3, = 2ya, spending at most § units of lime on each
side, and in each side the oplimal control has exaclly one swilch between the
values | and —1, except possibly on the initial and terminal time seqments where
no switch may occur.

Proof. An immediate consequence of Lemmas 3.1 and 3.2,

Next, we locate a maximizer of the value among the limit occupational mea-
sures in 2. We say that a periodic trajectory in the state space is eye shaped if
each period consists of exactly two segments, generated by u = 1 and u = -1,
respectively. We say that it is symmetric if it is symmetric around y = 0.
Any periodic trajectory generates a limit occupational measure supporied on
its state space trajectory. We say then that the limit occupational measure is
eye shaped, or symmetric, if the associated periodic trajectory is eye shaped or
symmetric, respectively. The solid line in Fig. 1 represents a limit occupational
measure of symmetric eye shape. |

LEmmA 3.3 For any lwe poinis, say 2y and 32, on the diagonal 3 = 2y in D,
there exists exactly one eye shaped periodic orbil. Let u(3), Z) be the associated
eye shaped occupational measure. Then val(pp(3;.%2)) is a conlinuons function
of (%1, %a).

Proof. Follows directly from the structure of the vector feld. i

LEMMA 3.4 Let 2 and 23 be two points on the diagonal yy = 2y2 in D. Let
y be the trajectory steering Z) lo % on one side of the dingonal, where the
associated control has only one swileh between 1 and —1, say on the interval
[0,5]. Then val{u(y, [0,5])) is the mazimal value amony occupational measures
of trajectories steering 31 to 33 on one side of the diagonal.

Proof. Follows directly front Lemma 3.2 and Corollare 3.1 [ ]
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THEOREM 3.1 There exists u limal occupational measure p* of (3.2), which is
symmetric and eye shaped, and which maezimizes the criterion

wall) = [ 1 = 2mlutty) 39)
among all limit occupetional measures generafed by admissible trajectories in 0.

Proof. We first verify that there is a limit occupational measure p* of (3.2),
which is eye shaped. and which maximizes the criterion (3.8). Later on we show
that it must be synnnetric.

Denote by m* the maximal value obtained in (3.8). The maximum is indeed
obtained as noted in Proposition 2.2,

Case 1. There exists a sequence, say p;, of the eye shaped oceupational mea-
sures such that val{je) — m".

Since the family of the eye shaped occupational measures supported on D is
clearly compact with respect to weak convergence, a cluster point of g; would
verily the existence of an eye shaped maximum in this case.

Casg 2. There are admissible trajectories of arbitrary length in D, say (2, u;)
defined on [0, 5;] and §; — oc. such that 2; = (y1,:(-), ¥2.:(-)) does not intersect
itself in R? during [0, 5], and the corresponding values satisfy

val(p(z:,[0,5]) = m® as i— oo (3.9)

furthermore, each trajectory alternates between the two sides of the diagonal
yi = 2y2. where on each side the trajectory does not spend more that S units
of time without crossing to the other side.

Let Zi(3), 4 = 1.....N{1). be the points of intersection of #; wilth the
diagonal g1 = 2y in . Let s(3) be the respective times of intersection.
Since the time intervals s;(7 + 1) — s:(4) are uniformly bounded, 1t follows that
N(i) grows indefinilely as i — oo, Due to the two-dimensional geometry, and
since z; is not self-intersecting, the sequences (25 + 1) and Z(25) of iuter-
section points with odd and, respectively, even, indices are monotonic on the
diagonal. In view of (3.9) the quantity m* — val{u(z;, [0, S])) can be chosen
arbitrarily small. On the other hand, val(p(z;, [0, S:])) is the weighted aver-
age of the values val(u(z,, [s:(5),5:(j + 2)])). Since the length of the latier
intervals is uniformly bounded, it follows that for most of the indices 7 the
values val(pe(z;, [s:(7), 5:(7 + 2)])) are close to (or greater than) m®. Among
the latter measures (since the diagonal is finite), there are such measures with
1Zi(7) = Z(7 + 2)| small. It is clear, then, that if  is the occupational measure
generated by the eye shaped periodic orbit determined by the points Z3(7) and
Zilg + 1), then, by Lemma 3.4, val{p) is either close to or greater or equal to
val(p(zi, [5:(5), 5i(7 +2)])). This implies that the eye shaped occupational mea-
sures exist as described in Case 1, namely Case 2 implies Case 1 and the claim
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Casg 3. Suppose that the condition in Case 1 does not hold.
Then a bound & > 0 exists such that

m” — val{u) > & {3.10)

for every eye shaped occupational measure. Furthermore, since we showed that
the condition in Case 2 implies the condition in Case 1, it follows from Propo-
sition 2.3 that in Case 3 a bound § exists, such that any relatively optimal
trajectory of length greater than or equal to 5 intersects itself.

Let S5 be such that whenever a relatively optimal trajectory 2 = (g (-], w2(-))

is defined on the interval [0, 5] with § > S;, then
1
Iwr‘lll = "‘a‘]'{.“{zs [ﬂ!S]}H < E'ﬁ' (3.11)

The estimate S, exists in view of Proposition 2.3, We can assume that 5; > 5
and S5 > 25, where § and 5 are given, respectively, by the previous paragraph
and by Corollary 3.2.

It is clear that for equation {3.1) with the payoff criterion (3.2) relatively op-
timal trajectories of an arbitrarily large length exist (see, e.g., Proposition 2.4).
Let z be a relatively optimal trajectory defined on [0, 5] with § > 45;. Under
the condition in Case 3 the trajectory 2 must intersect itsell. Let zy be the
first intersection point in D, and let sy and oy be the first two times where
z(s1) = z(e1) = zr. The structure of relatively optimal trajectories described in
Corollary 3.2 implies that on [s,, o] the trajectory has either the structure of
the curve of Fig. 2 or the structure of the curve of Fig. 3 (according to whether
until time sy, the trajectory was spiraling in or spiraling out, respectively). In
particular a7 — 87 < 25. In view of (3.10) and Lemima 3.4 it follows that

m* = val(p(z, [s1,01])) = 6. (3.12)

1 v T
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=112

Figure 3.

In both cases let z; be the trajectory obtained by skipping the part of g over
[s.,a.]. The trajectory z; is defined on an interval of length S = (e = 3). Since
val(u(z, [0, 5])) is a weighted average of val(p(z, [s1,01])) and val(p(z,[0,5 -
{ey — 51)])), it follows from (3.11) and (3.12) that

lm® = val{p(z,, [0.5 = (o = 51)]))] < iﬁ. (3.13)

Denote Sy = § = (o = 5;). Inductively, suppose that z; is defined on [0, 5;]
such that the following inequalities are satisfied:

= val(u(z5. 0, ;)] < 36 (3.14)
and
m® = val(p(z;-1,[2;,2;])) 2 & (3.15)

If §; = S;, then z; intersects itself. Although z; may not be relatively optimal
anymore, the process of eliminating a loop defined by the first sell intersection of
z;, as described earlier for 2;, can be carried out, and again, the two possibilities
of spiraling in and spiraling out may occur. The outcome would be a trajectory
%41, for which (3.13) and (3.14) hold with the index j + 1.

The process can go on until 55 < §; < 25;. Say, this occurs when j = jg.
Now, the value in (3.11) is the weighted average of the value in (3.14) for the
index j = jp, and of the values in (3.15) for j = 1,...,7s. Since the sum of
aj—s; forj=1,...,jois §— 5, we clearly get a contradiction when §;, < 35.
The latter inequality will be reached due to the choice S = 55, Hence, a
contradiction has been established.

This contradiction implies that the condition in Case 3 does not occur, and
the existence of an eyve shaped occupational measure which maximizes the value
is established. Suppose it is determined by the points 2 and Z> on the diagonal.
Symmetry of the occupational measure means that =, = —%;. If the latter does
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measure determined by =% and =% is also a maximizer of the value. Suppose
IZ1] > |32]. A simple examination of the geometry reveals that the symmetric
eye shaped occupational measure determined by %) has a value greater than the
alleged maximizer. This verifies that Z; = —Za, namely that the eye shaped
occupational measure at which the maximum is achieved is symmetric, [ ]

THEOREM 3.2 The oceupational measure whose exislence 15 established in The-
orem 3.1 w5 the one associaled with the eye shaped periodic solulton through the
poinds (0.63423,0.31712) and (—0.63423, =0.31712), and the optimal value is
0.29129 (the numbers are given up lo five significant digits).

Proof. The numbers are a result of tedious derivations combined with numerical
computations. We display here the main steps. We know that the occupational
measure which maximizes the value is symmetric and eye shaped. Thus, the
value is a function of its intersection point (1, %n} on the diagonal, hence it is
a function of 1. Consider 1 > 0. We know that the optimal control generating
the maximizer is u = =1, say on an interval [0, 5], then switches to u = 1, say
on the interval [Sy, S + Sa], where the diagonal is reached again at the point
(—m.— %‘I‘J']I. For the equations (3.1) the point y(5;) can be expressed analytically,
namely

u($1) = (u'slm +1)= 1,56+ 1) - é—) (3.16)

The same point should be reached starting at the initial condition (-, —%u}
when employing the control w = 1 in the reversed time direction, namely on the
interval [—S3,0]. The result is

y(S)) = (- e +1)+1, -%u”*{n +1) + é) (3.17)

The equalities {3.16) and (3.17) provide two equations for 5; and Sa, parame-
terized by 1. They can be solved analytically, yielding

S =-log(l - Ti'}:l +log(n+ 1), S:=log(l+ ﬂ'l'} = log{n+1). (3.18)

At this point, for each such eye shaped occupational measure, which we denote
by pin), the average expressed in (3.8) as a space average can be calculated as
the time average over the interval [0, 5, + Sa], of the quantity y1(s) = 2ya(s),
with respect to the initial condition (1, 1) and the controls u = -1 on [0, 5]
and u = 1 on [8;, S2]. This can still be carried out explicitly, yielding

T

log(1 +n%) = log(1 = g1)’

val(u(n)) = (3.19)

The optimal payoff is the maximum of the expression (3.19) for 0 < 5 < 1,
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maximum. At this point I could not figure out the analytic expressions, hence
I resdrted to numerics. The numbers displayed in the statement of the theorem
are a result of a simple computer calculation. (The computation shows also that
the value is a concave function of  and that there is a unique maximum). B

REMARK 3.1 The closed solid line of Fig. 1 is a good upprozimalion of the
trujectory which generates the oplimal occupational measure for (1.1).

A limiting solution (see Definition 2.1) to (1.1) can now be constructed as
follows. Given an initial condition (yy,y2), find a control which steers it to the
point (1, %*.r;] with n = 0.63423. At this point use the control u = -1 for a
period of 85; = 2.08270 units of time, and from thereon alternate between « = 1
and u = —1 on time intervals of period 5, + 5> = 2.25676; the length of the
intervals is derived [rom (3.18) for 5 = 063423, A drawbeack of such a solution is
that computational errors are accumulated. In addition, the intervals are in the
s scale, and the adjustment to the slow scale t depends on the specific £. The
two drawbacks can be removed by using a feedback procedure, or a synthesized

form, which applies directly to both time scales, and is independent on £, as
follows.

| / Th

Figure 4.

THEOREM 3.3 The line of Fig. 4 marks the part of the trajectory of (3.1) gen-
erated by the condrol u = =1 and passing through the peint (0.63423,0.31712),
and part of the trajectory generated by u = 1 and passing through (—0.63423,
—0.31712). Denole by R the region in R® to the vight of the marked line, in-
cluding the marked portion on the first brajectory. Denote by L the complement
region. The feedback control defined by w(y) = -1 for y € R and u(y) = 1 for
y € L conslitules u near optimal control for the singularly perturbed problem
(1.1}, namely, the resulting payoff is arbitrariy close to the value of the problem
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Proof. Obwious. [ |
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