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Abstract: The second-order dynamical system % 4 og+
AVED(x)i + VP(x) = 0, @ > 0, 3 > 0, where the Hessian V2%(x)
acls as a geomelric damping, is introduced, mainly in view of the
minimization of &, Minimizing ¢ is a problem equivalent to the
minimization of the functional ¥, 4(z,y) = f®(x) + tlaz + by|?,
a > 0,0 >0, The latter naturally appears in the proximal regula-
rization of 4 it may also be viewed as an energy. The continuous
steepest descent method applied to ¥, vields a first-order system,
which proves to be equivalent to the above-mentioned second-order
system, when @ is of class C2.

Keywords: dypamical systems in optimization, proximal reg-
ularization method, steepest descent method, entropic methods in
optimization.

1. Introduction

Let H be a real Hilbert space and @ : if — RU {400} a proper, lower semicon-
tinuous, convex function. Consider the convex minimization problem

(P) inf{®z):z € H)}

and let 5 := argmin? denote the solution set of (P).

In relation with {P), we wish to introduce a new dynamical system, called
(DIN), which naturally arises and enjoys remarkable properties in convex opti-
mization (its range of applications is much wider indeed). When @ is a smooth
C? function, (DIN) assumes the following form

(DIN) #(1) + ad(t) + AVEB(x(t))i(t) + Ve(z(t)) = 0
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This dynamical system can be viewed from different perspectives.

The second derivative 2(t) {which induces inertial effects) may be considered
as a singular perturbation, and in fact regularization, of the possibly degenerate
classical continuous Newton dynamical system

VEd(z(t))E(t) + VO(z(t)) = 0.

That is the origin of the terminology: (DIN) stands in short for Dypamical
Inertial Newton-like systen.

The system (DIN) also naturally derives from the Heavy Ball with Friction
dynamical system (see Poliak, 1987, Antipin, 1994, Attouch-Goudou-Redont.
2000)

(HBF) E(t) + ai(t) + VO(=(1)) = 0.

The damping term a@(t) confers optimizing properties on (HBF), but it acts
isotropically and ignores the geometry of &. Adding a geometric damping term
like V2 (x(t))i(t) puts down the possible oscillations of the trajectories and
gives rise to (DIN).

Lastly, the system (DIN) is closely related to the minimization of the lunction

(r,9) € H x H v (z,y) = $(z) + e

where X is some fixed positive parameter. Indeed, the Continuous Steepest
Descent method applied to ¢ vields

i(t) + V(x(t)) + 3(z(t) = y(t)) =0
y(t) + s (y(t) = =(t)) = 0.

Eliminating ¢, we obtain the [ollowing {IDIN) system
9
E(L) + i;‘c{.‘.‘,l + V2D(x(2))i(t) + %?T{wl{t}} =0

Introducing the function ¢ is no contrived idea, since it naturally appears in
two circumstances at least.

First, the proximal regularization method applied to (P) (see Moreau, 1965,
Martinet, 1972, Rockafellar, 1976) is nothing else than the iterated minimization
of ¢ alternatively with respect to the x and y variable. This point of view is set
out in Section 2.,

The function ¢ appears, though, as well in the study of the following discrele
analogue of the (HBF) system

1 . A
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which is obtained by discretizing (HBF) with /X as a time-step. The investiga-
tion of the sequence (z;) owes much to the discrete energy function ¢z, 2:) =
Plzisr) + %l:—’?’fizl the exact replica of the energy ®(z(t)) + 3|&(¢)® in the
continuous case. By the way, in recent years there lias been an increasing in-
terest in studying the interaction between discrete and continuous dynamical
systems in variational analysis and optimization (see Alvarez-Attouch, 2001,
Attouchi-Teboulle, to appear, Flam-Horvath, 1996, Antipin, 1994, Polyak, 1987,
Lemaire, 1996, Cominetti, 1997).

The guideline of our introduction of (DIN) as a tool in optimization is the
method of proximal regularization, which permits to solve general convex min-
imization problems with the help of well-posed convex minimization problems
(without degeneracy of the conditioning).

2. From proximal regularization to (DIN)

In many situations of practical importance, the minimization problemn (P) is
not well-posed, see for example Dontchey and Zolezzi (1993) for a thorough
exposition of the notions of well-posedness and the presentation of various situ-
ations occurring in mathematical programming, caleulus of variations, statistics,
control theory, inverse problems, where well-posedness fails to be satisfied.

To regularize the problem (P), a fruitful idea is to add a posilive definite
quadratic term, typically £|z|?, to ®(x). This leads to various methods, like the
Tikhonov approximation method, but in that case the conditioning becomes
worse and worse as the approximation parameter £ goes to zero. By contrast,
proximal regularization methods allow to preserve the conditioning away lrom
e,

The basic idea which lies behind the proximal methods is the following: take
some £* € 5 = argmin® and some A > 0. Then, cousider the minimization
problei

(P.) win{®(z) + 5=l ~ 2 € H).

Clearly, (P.) is a well-posed convex minimization problem with z* as unique
solution and inf(P) = inf(P.). Unfortunately, this method is not constructive,
since it makes use of some £* € 5§, which is unknown. Nevertheless, from a
theoretical point of view, this method has proved to be quite fruitful. It was
used by Barbu (1981) in the optimal control of variational inequalities, then
Lions (1983) made a systematic use of it in the study of singular distributed
control problems, in order Lo obtain oplimality conditions.

The proximal method, which has been developed for numerical purposes
consists in solving (P, ) not as a minimization problem (which is impossible, =*
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the minimization problem
(P,) min{d(x) + %JI—FF :x € H},

whose unique solution is denoted by J{ (y). Clearly, z* is a solution of (P} if and
only if JY(x*) = z*. Taking advantage of J)'(y) being a contraction (indeed,
a firmly nonexpansive mapping), the proximal method consists in solving this
fixed point problem by the successive approximation method, One obtains the
following classical algorithm

g glven

Ty — $ppq = argmin{®(x) + ?{TL{: —z|?:x € H).

(Pic)

This method, first introduced by Martinet (1972) in convex optimization, has
been developed in a general framework by Rockafellar (1976) {see Lemaire, 1996,
for a thorough exposition and further references). When writing the optimality
condition for (P} one obtains

A ey — xk) + 00(zp4) 30

which can be interpreted as the implicit discretization of the generalized con-
tinuous steepest descent method

#(t) + 8®(z(t)) 3 0.

Note that, in this continuous-discrete interaction, the property E::; A = +00
corresponds to ¢ — +oo (=gince z(iy) = rp, and Ay = te1 — &), 1t is a remark-
able property that both systems (discrete and continuous) enjoy a very similar
asymptotical behaviour. In both cases, with Opial lemma one can prove that
the trajectories converge weakly in H to an optimal solution. In the continuous
case, this result has been obtained by Bruck (1975).

Let us notice, too, that the continuous dynamical system allows to treat
parabolic PDEs like (nonlinear) heat equations, see Brézis (1973).

Let us now come to the original aspect of our approach. To that end, let
us give a different formulation of the proximal regularization method. We are
going o interpret it as a relaxation method applied to an energy-like function.
Indeed, as we have already observed, the function of two variables

Yo Mo o~ Ru{+oc}
(2, y) — lz,y) := D(z) + (20) e - o

plays the central role in the above results. In order to get some flexibility we
introduce two other parameters:

DEFINITION 2.1 Lef a,b € R be two reel parameters, with b # 0. We define
tap Hx H— RU{+cc}
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since g = rp. Next, when considering yu4, as

2
her = argmin{®(zi1) + - lzes = 9 1y € H)

1
one clearly gets yi+1 = Zi41. And so on. m

From the numerical point of view it is temupting Lo minimize 1, 5 using better
descent directions than those a priori given by the r and y directions. A natural
candidate is the steepest descent method. Let us decribe it when it is applied
to Ya . Indeed, it is convenient to consider the function

1 1
Vau(@,y) = 37 8(a) + 5laz + byl

in order to obtain a quite simple formulation (note that replacing & by L®
does not change anything to the minimization problem (P} and, like 1, 4, T,
may be called an energy associated to @),

THEOREM 2.1 Let @ : H — RU {+oc} be a conver, lower semicontinuous,
proper function. Let a, b be real constants with b # 0.
a) The generulized continuous steepest descent method when applied to

1 1
Va,b(2,y) = 3 @(x) + 5oz + byl*

provides the following system (energelical steepest descent)
#(t) + grd®(z(t)) + alaz(t) + by(t)] 30 (ESDI)
() + blax(t) + by(t)] = 0 (ESD2)

b) When ® is a smooth C* function, and a # 0, the above system (ESD)
can equivalently be writlen (by eliminating the variable y)

@so) |

i(t) + (a? + 07)a(t) + ;—2?*@(1{:}}&{:1 + Vib(z(t)) = 0. (1)

c.1) For any initial condilion g € dom® and yg € H, there exisls o unigue
solution (z,y) of (ESD) in the following sense

.z : [0,40c[— H is a continuous function, with z(t) € dom® ¥t > 0,
Lipschitz continuous on [, + o0 for every d > 0,

» y: [0, 4|~ H is a C! funclion, with a Lipschitz continuous derivative
on |6, +oc| for every § > 0,

. (ESD1) is satisfied alnost everywhere on |0, o2,

. (ESD2) is satisfied for every t €]0, +oc|,

. z{0) = zg and y(0) = yy.
c.2) Ast — +oo, (x(t)) converges to inf &, whether the latter be finite or not.
c.3) If 5§ = argmind £ @, then x and y weakly converge as t — +o00: (i) s

Eoe € 8 and ylt) wl — 3o
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Proof. a) The generalized continuous steepest descent {see Brésis, 1973) applied
to U, 4 reads

(E(6), 9(0)) + DUy pl(t), y(t)) 3 0. (2)

Making the inclusion above explicit yvields (ESD).
b) Let (&, v) be a solution of (ESD). Since & is £? we have

i+ b-IE'\T"I‘{;J:]- + afax + by =0 (3)
y + bax + by) = 0. (4)

Differentiate (3) to get
1
#+ a’ + FT%{'J;}IJ: + aby = 0. (5)

Perform a linear combination of (3), (4), (5) with §*, —ab, 1 as coeflicients to
obtain (1).

Conversely, let = satisfy (1) define y by (3), which is legal since ab # 0.
Differentiating (3) yields (5) as above. Perform a linear combination of (1), (3),
(5) with —1. %, 1 as coefficients Lo obtain aby + -rtbziur + by] = 0, which is
equation (4).

c.1) The function ¥, is proper, lower semicontinuous and convex; the point
(zg. o) belongs to dom® x H = domW, . A theorem of Brézis (1973, Th.
3.2) then asserts the existence and uniqueness of a continuous function (x,y) :
[0, +oc[— H x H, with (z(1),5(t)) € dom ¥, 4 for any &, =(0) = =, ¥(0) = vo.
which is Lipschitz continuous on [8, +oc| for every # > 0, and which satisfies (2)
almost everywhere. This result readily entails the assertions.

c.2) Afler Lemaire (1996, Cor. 2.1) we have: W, {z(1), y(t)) — inf ¥, 4, as
t — +oc. The inequalities inf ¢ = inf ¥, < FP((t)) < Waulx().y(t))
then entail the asserted convergence resull.

c.3) If argmind # @ then argmin T, # 0. It is now a theorem of Bruck
(1973), which asserts the weak convergence of (x,y) towards a minimuwm point
(Tons Tea ) = (Tesy —f.tm} of ¥,y a8 t — 4o,

c.4) Il & is even, then so is ¥, ;. Resorting once more to a theorem of Bruck
(1973) yields the strong convergence, |

To keep with clarity, let us briefly sum up how (DIN) has been derived.

By analogy with the proximal regularization method, the minimization of
the convex function @ is replaced by the mwinimization of the convex function
Vou(e,y) = 9(z) + dlaz + byl

To that end, the continuous steepest descent method is applied 1o ¥,,,
which gives rise to system (ESD). Any solution (x,y) of the latler is such that
x(f) weakly converges to a minimum point of ¢ as t — +oc.

\ If ? is 2, tlliﬂill (ESD) is equivalent to a (DIN) system with af > 1 (a =
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3. Optimizing properties of (DIN) in general

In this part, the optimizing properties of (DIN) are examined with more gener-
ality than before, .e. $ need not be convex and af > 1 need not hold. Facts
are stated without proofs, which may be found in F. Alvares et al. (2002).

Let @, A, A, B, C be real constants, arbitrary for the moment. The system
(DIN), which we recall

(DIN) E(t) + ai(t) + BV (z(t))(t) + Ve {z(t)) =0
bears a strait relation with the following first order system

: i+ CVe(z) +Az+ By =0
(g-DIN) { i +Az+ By =0

as the next proposition shows. In spite of their resemblance, (g-DIN) is not a
gradient system (except if A = B) while (ESD) is. But the equivalence between
(DIN) and (g-DIN) is more general than the equivalence between (DIN) and
(ESD), which requires «f > 1.

PROPOSITION 3.1 Suppose ® € C*(H), and let the constents a, 8, A, B, C
sulisfy
1 1
0, d=a==, B==,C=4.

g # 3 3 I
The systems (DIN) and {g-DIN) are egquivalent in the sense that x is a solution
of (DIN) if and only if there exists y € C2([0, +oc[, H) such that (z,y) is a
solution of (g-DIN).

Beyond being of first order in time, the systemn (g-DIN) is interesting because
it does not involve the Hessian of &, As a first consequence, the numerical
solution of (DIN) is highly simplified, since it may be performed on (g-DIN)
and only requires approximating the gradient of . As a second consequence,
{g-DIN) allows to give a sense to (DIN) when @ is of class C' only, or when
P is nonsmooth or invelves constraints, provided that a notion of generalized
gradient is available (e.g. the subdifferential set for a convex function @). But
that remark would be of little utility if (g-DIN) did not have good existence
and asymptotic convergence properties as { — +o00, under the sole assumption
& e CY(H). Actually (g-DIN) retains some of the optimizing properties of
(DIN), at least if & € CV'(H).

THEOREM 3.1 (optimizing properties of (g-DIN))
Assume thal ® : H = R is bounded from below, differentiable with V¢
Lipschitz conlinuous on the bounded subsels of H ; assume further C >0, B > 0,
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(i) For ench (xg.yg) in H x H, there erists a unique solution (z,y) of (g-
DIN) defined on the whole interval [0, +o0c|, which belongs to C*(0, 0c; H) x
C*(0,00; H) and satisfies the initial conditions z(0) = z¢ and y(0) = yy.

(i) ® & und V®(x) belong to L0, 4+00;: H),

o ling .y oo Tx(t)) exists,
o Ly oo (1) + CVE(z(t)) = 0.
(ili) Asswming, moreover, that x is in L=(0,+oc; H), we have
o &, VO(x) are bounded on [0, +o2],
o limg— oo VE(z(t)) = limg— 4o 2(t) = 0.

In view of Proposition 3.1, when & belongs to C2(H), the conditions C > 0,
B>0,84A>0for (g-DIN) are easily seen to be equivalent to a > 0, @ > 0
for (DIN). This readily implies the following corollary of Theorem 3.1.

CoroLLARY 3.1 (optimizing properties of (DIN))

Assume thet ¢ : H — R is bounded from below, twice differentiable unth
V2® Lipschitz continuous on the bounded subsets of H; assume further o > 0,
3> 0 in (DIN}. Then the following properties hold:

(i) For each (xo,%o) in H x H, there exists o unigue solution x of (DIN)
defined on the whole interval [0, +oc[, which belongs to C(0,00; H) and
satisfies the mitial conditions (0) = g and £(0) = Ig.

(i) ® & and V®(x) belong to L*(0,+o0; H),

o limy—yoe P(x(t)) erists,
o limy— oo (E(2) + BVE2(1)) = 0.
(iii) Assuming, moreover, that x is in L>=(0,+o0; H), we have
o &, VO(x) are bounded on [0, +of,
® lit e gne V(1)) = limyy e &(£) = 0.

Let us finally state two convergence results (F. Alvarez et al., 2002).

THEOREM 3.2 In addition fo the hypotheses of Theorem 3.1, assume that $ is
conver, and thal argmin @, the set of minimizers of & on H, is nonemply. Then
Jor any solution (x,y) of (g-DIN), z(t) weakly converges lo a minimizer of $
on H as i goes Lo infincly.

THEOREM 3.3 Assume that & : RV — R is analytic, and let * be a bounded
solution of (DIN)with a > 0, § > 0. Then & belongs to L0, 400; H) and (1)
converges towards a critieal point of & as § — oo.

4. An entropy-like version of the system (ESD)

From now on, H is assumed to be finite-dimensional, that is H =RY N > 1.
A common feature in constrained optimization consists in replacing the
quadratic kernel in the proximal point algorithm by a distance-like functional
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set. If C is a non empty closed convex subset of BY, this leads to dynamics of
the type

o g argmin{®(xr) + Aed(z, z°) 12 € C}, A >0,

where d : C x C — RU {4cc] is strictly convex with respect to its first vari-
able. Let us mention, for instance, the compreliensive survey of Kiwiel (1997)
on generalized Bregman distances, the entropy-like algorithm using Cuisir ¢
divergences proposed in lusem-Svaiter-Teboulle (1994), and also the recent log-
arithmic quadratic method of Auslender-Ben Tiba-Teboulle {1999).

Inspired by those fruitful ideas, and motivated by the properties of (DIN),
we devote this section to the construction of an inertial method of the type
(ESD), but with a ¢ divergence kernel - see formula (7) below- instead of the
quadratic term (z,y) — %|u.r + byl*.

The cholce of this particular kernel is suggested by its remarkable jointly
convex property, which naturally fits our energy-like descent method approach.

Let us now specily the setting. Consider the problem

(Py) inf{®(z) : x € RY},

where the objective function & : RY — R U {4oc) is assumed to be lower
semicontinuons and convex with

dom®NRY, #0, RY, ={x R >0, Vie{l,...,N}}. (6)
t divergences are generated by the funclions p : By — R satisfying the fol-

lowing properties

(i)  is continuous and nonnegative on Ry,
(H), (i),  is strictly convex,
(i), (1) = 0.

Define the ¢ divergence d, : RY x RY — RuU {+ec} as

d.(x,y) = { Tz wely'w) if (z,9) € (RY, ), (7)

+o¢ elsewhere.

EXAMPLE. As in lusem et al. (1994), where many other examples are given, a
particularly interesting example is provided by

wols) =slogs—s+1, s=0,

with the convention 0log0 = 0. The associated g divergence is the Kullback-
Liebler entropy, that is

N
dodz.) =Y zilozZE 4y —x:, Viz.) eRY xRY, .
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For (z,y) € OR% = {(z,y) € B2 |zy = 0}, let (z*,4*) z%,9* > O bea
sequence converging to (z,y) as k — +ooc. Three cases are distinguished,

o x =0,y # 0. From (i),, (i), and (i), it ensues that ¢ is non in-
creasing on (0, 1) and achieves its minimum at s = 1. Therefore d(z*,y*) —
glim,_g+ w(s) >0, as k — +o0.

o x # 0and y =0. Fix s > 1, and let us apply the convex inequality to ,
this*gives for all s € Rs . and for all g € dep(ap)

w(s) = ¢(s0) + g.(s = s0) = g.(s — 30). (8)
Observe that (i), (i), and (i), imply that all subgradients contained in
dio(sp) are positive. Hence (8) yields

ok
£
do(z*,y*) = y”w{y—kl > gz* — gy*s0,

where g € dp(s0), g > 0, and thus minfy_ ;.0 d (2%, v%) > gz > 0.
o & =y = 0. Just notice that d,,,,{%. L)=0forallk>1.
Applying the above results together with the properties (i).., (ii).., we easily

deduce (iv). |
Take o as above and define for all (z,y) € RY x RY
W (a.y) = () + To(z, ). (9)

By Lemma 4.1 and (6) this gives rise to a proper lower semicontinuous convex
function. The optimality properties of ¥, and @ are linked in the following
Wiy

LEMMA 4.2 Let o, d. und V. salisfy (H,), (7) and (). Then

inf T =iul ¢
RN wRN Rf

argmin{¥.(z,y) : (r.y) € RN x R¥} = {(r,x):z € argmitlnf P},
Proof. 1t relies on Lemma 4.1, and on the relations

Vo(z.z) = b(x) vzeRY,

Volz,y) 2 ®(z) Vir,y)eRY xRY. ™

For each 2,y € RV let us set X = (r,y) € RY x RY. Following the lines of
Section 2, let us define the dynamical system

(ESD),

X(t)+ 0V, (X(t)) 30 ae on[0,+og]
A(0) = Xg
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P, a classical theorem concerning the subdifferential of a sum (Ekeland and
Temam, 1973, Th. 5.6). Hence (ESD).. can be rewritten

(1) + 0B(x(t)) + Oedo(2(t), (1)) 3 0 ae. on [0, +o0],
\EE0) { i(0) + Byd((t),y(0)) = 0, VE 2 0,

with zg € dom @ NRY and yo € RY.

The dynamical system (ESD),. presents the advantage of taking the con-
straints Rf into account without penalizing €, more precisely we have the
following

THEOREM 4.1 Lel d,. be a p divergence, and U, as in (9). Lelt — X(t) =
(z(t), y(t)) be a solution of (ESD),, then
(i) ®(x(t)) — inf{®(z)|z € RY } as t — +oo.
(i) If, moreover, 4 = argmin{®(z)|x € RY } is non emply, then there exisls
z* € 5, such that (z(t),y(t)) — (z*,2*) es t = +oo.

Proof. Tt is a consequence of the previous lemma and of the results proved in
Lemaire (1996) for (i), and in Brezis (1973), Bruck (1973) for (ii). ]

REMARKS. 1. Parallelizing the derivation of (ESD) and (ESD), from ¥,
and W, respectively, via the continuous gradient method, we could also de-
rive a nonautonomous version of (ESI)) by considering the following family
of [unctions: ¥z, y) = F]m?[rj + gle(t)e + b(t)yl*, where a and b are po-
sitive functions of £. This would lead to the following differential inclusion:
(&), #(t)) + Felz(t), y(t)) 3 0 (see Baillon. Cominetti, 2001, Furuya et al.
1986, for facts about this type of problems).

2. It would be interesting to know il (ESD), is a dypamical interior point
method, Indeed its numerical treatment may be delicate if a trajectory happens
to touch the boundary uf{ﬁft )2, since d, is liable to singularity there; choosing
mumerically good functions o is not so easy. Yel, we presume that, under
fairly general assumptions on P and p. each trajectory starting from (xg.40) €
(dom P NRY, ) x RY, remains in the interior of the constraints. Certainly this
question deserves further study.
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