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Abstract: The second-order dynamical system i + ax+ 
(3\7 2<I>(x)i: + \i'<I>(:c) = 0, a> 0, (3 > 0, where the Hessian \7 2 <I>(x) 
acts as a geometric damping, is introduced, mainly in view of the 
rninirniz:ation of <I>. Miuiruiz:ing <I> is a problem equivalent to the 
minimization of the functional Wa,b(x,y) = p<I>(x) + ~Jax + byj 2

, 

a > 0, b > 0. The latter naturally appears in the proximal regula
riz:ation of <I>; it may also Le viewed as an energy. The continuous 
steepest descent method applied to \II a,b yields a first-order system, 
which proves to Lc equivalent to the above-mentioned second-order 
system, when <I> is of class C2 

0 
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1. Introduction 

Let H be a real HiiLert space and <I> : H ----* lR U { + oo} a proper, lower sernicou
tiuuous, convex function. Consider the convex minimization problem 

(P) inf{<I>(:r: ): x E H} 

and let S := argrnin <I> denote the solution set of (P). 
In relation with (P), we wish to introduce a new dynamical system, called 

(DIN), which naturally arises and enjoys remarkable properties in convex opti
mization (its range of applications is much wider indeed). When <I> is a smooth 
C2 function, (DIN) assumes the following form 

(DIN) i(t) + ni:(t) + (3\7 2ci>(x(t)):i:(t) + \i'<I>(x(t)) = 0 
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This dynamical system can be viewed from different perspectives. 

The second derivative i(t) (which induces inertial effects) may be considered 
as a singular perturbation, and in fact regularization, of the possibly degenerate 
classical continuous Newton dynamical system 

\7 2<P(x(t))x(t) + 'V<P(x(t)) = 0. 

That is the origin of the terminology: (DIN) stands in short for Dynamical 
Inertial Newton-like system. 

The system (DIN) also naturally derives from the Heavy Ball with Friction 
dynamical system (see Poliak, 1987, Antipin, 1994, Attouch-Goudou-RedonL 
2000) 

(HBF) i(t) + o::i:(t) + 'V<P(x(t)) = 0. 

The damping term o:x(t) confers optimizing properties on (HBF), but it acts 
isotropically and ignores t e geometry of <P. Adding a geometric damping term 
like ,8\72 <P(x( t) )x( t) puts down the possible oscillations of the trajectories and 
gives rise to (DIN). 

Lastly, the system (DIN) is closely related to the minimization of the function 

1 
(x,y) E H x H f---+ ·tjJ(x,y) = <P(x) + 

2
Ai:c- Yl 2 

where A is some fixed positive parameter. Indeed, the Continuous Steepest 
Descent method applied to ·t/J yields 

{ 
:i;(t) + 'V<P(x(t)) + ±(:c(t)- y(t)) = 0 

y(t) + t(y(t)- x(t)) = 0. 

Eliminating y, we obtain the following (DIN) systern 

i(t) + ~x(t) + \7 2<P(x(t)):i:(t) + ~'V<P(x(t)) = 0. 
A A 

Introducing the function ·1/J is no contrived idea, since it naturally appears in 
two circumstances at least . 

First, the proximal regularization method applied to (P) (see Moreau, 1965, 
Martinet, 1972, Rockafellar, 1976) is nothing else than the iterated minimization 
of ·tjJ alternatively with respect to the x and y variable. This point of view is set 
out in Section 2 .. 

The function ·1/J appears, though, as well in the study of the following discrete 
analogue of the (HBF) system 

--~ __ ( ,,., , ,. • \ I 
A ___ \l<T,( , . . - \- fl 
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which is obtained by discretizing (HBF) with /). as a time-step. The investiga
tion of the sequence (xi) owes much to the discrete energy function ·tf;(x·i+l, Xi) = 

2 
<I>(x;+l) + ~~x;+~xi I, the exact replica of the energy <I>(:r:(t)) + ~lx(tW in the 

continuous case. By the way, in recent years there has been au increasing in
terest in studying the interaction between discrete and continuous dynamical 
systems in variational analysis and optimization (see Alvarez.-Attouch, 2001 , 
Attouch-Teboulle, to appear, Flam-Horva th , 1996, Antipin, 1994, Polyak, 1987 , 
Lemaire, 1996, Corninetti, 1997). 

The guideline of our introduction of (DIN) as a tool in optirniz.ation is the 
111 ethod of proxiwal regulariz.ation , which permits to solve general convex rnin
imiz.ation problems with the help of well-posed convex minirniz.ation problerns 
(without degeneracy of the conditioning). 

2. From proximal regularization to (DIN) 

l11 many situat io11s of practical importance, the minimiz.ation problem (P ) is 
not well-posed, see for example Dontchev and Zolezzi (1993) for a thorough 
exposition of the notions of well-posedness and the presentation of various situ
at ions occurring in ma thematical programming, calculus of variations, statistics, 
control theory, inverse problems, where well-posedness fails to be satisfied. 

To regulariz.e the problem (P), a fruitful idea is to add a positive definite 
quadratic term, typically clxl2 , to «<>(:c). This leads to various methods, like the 
Tikhonov approximation method, but in that case the conditioning becomes 
worse and worse as the approximation parameter c goes to z.ero. By contrast, 
proximal regularization methods allow to preserve the conditioning away from 
z.ero . 

The basic idea. which li es behind the proximal methods is the following: take 
SOJlle x* E S = argrnin <I> and some A > 0. Then, consider the miuimiz.ation 
problem 

(P.) min{<P(x) + ~i:r: - :r:* l2 : x E H} . 
2,\ 

Clearly, (P.) is a well-posed convex minimization problem with x* as unique 
solution and inf(P) = inf(P. ). Unfortunately, this method is not constructive, 
since it makes use of some :r:* E S, which is unknown. Nevertheless, from a 
theoretical point of view, this method has proved to be quite fruitfuL It was 
used by Barbu (1981) in the optimal control of vari a tional inequalities , then 
Lions (1983) made a systematic use of it in the study of singular distributed 
control problems, in order to obtain optimality conditions. 

The proximal w ethod , which has been developed for numerical purposes 
consis ts in solving (P.) not as a rninimiz.ation problem (which is impossible, x• 
• 1 ....... • 
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the rninimi<~ation problem 

rnin { <I>(x) + 
2

1
). lx- yj 2 

: x E H}, 

whose unique solution is denoted by Jf(y). Clearly, x* is a solution of (P) if and 
only if Jf(x*) = x*. Taking advantage of Jf(y) being a contraction (indeed, 
a firmly nonexpansive mapping), the proximal method consists in solving this 
fixed point problem by the successive approximation method. One obtains the 
following classical algorithm 

xo given 
Xk ____, :ck+l = argmin{<I>(x) + 2lk lx- Xk l2 : x E H}. 

This method, first introduced by Martinet (1972) in co vex optirni<~ation, has 
been developed in a general framework by Rockafcllar (1976) (see Lemaire, 1996, 
for a thorough exposition and further references) . When writing the optimality 
condition for (Pk) one obtains 

which can be interpreted as the implicit discreti<~ation of the generali<~ed con
tinuous steepest descent method 

:i:(t) + 8<I>(x(t)) 3 0. 

Note that, in this continuous-discrete interaction, the property L:t~ Ak = +oo 
corresponds tot----> +oo (since x(tk) = Xk, and Ak = h+l- tk). It is a remark
able property that both systems (discrete and continuous) enjoy a very similar 
asymptotical behaviour. In both cases, with Opial lemma one can prove that 
the trajectories converge weakly in H to an optimal solution. In the continuous 
case, this result has been obtained by Bruck (1975). 

Let us notice, too, that the continuous dynamical system allows to treat 
paraholic PDEs like (nonlinear) heat equations, see Bre<~is (1973). 

Let us now come to the original aspect of our approach. To that end, let 
us give a different formulation of the proximal regularization method. We are 
going to interpret it as a relaxation method applied to an energy-like function. 
Indeed, as we have already observed, the function of two variables 

·t/J : H x H f-+ lR U { + oo} 

(:r , y) f-+ ·t/J(x,y) := <I>(x) + (2>-.)- 1 jx- yj 2 

plays the central role in the above results. In order to get some flexibility we 
introduce two other parameters: 

DEFINITION 2.1 Let a, bE lR be two real pammeters, wdh b -:f 0. We define 

'tPa ,b : H X H f-+ lR U { +oo} 
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by the following fommla 

It is called the energy function attached to the convex rninimizat·ion problem (P) , 
(wdh pammeter-s a and b). The energy minimization problem (Pa,b) is defined 
by 

inf{<I>(x) + ~lm: + byl 2
: (x,y) E H}. 

2 

Let us notice that we are not in the classical perturbation theory for convex 

problems since ·1/Ja,b(x, 0) = <I>(x) + ~la:Lf is not equal to the original function 
<I> (unless a= 0). Let us make precise the connection betweeu (Pa,b) and (P). 

PROPOSITION 2.1 For- any val·ues of a, b E lR, b -1- 0 the .follo'W'iny e(ruaz.itie8 
hold: 

(i) inf{<I>(x): :r E H} = inf{ ·I/Ja,b(x,y): (:r,y) E H X H}. 
(ii) lf :c* is an optinwl sol-ution of (P), then (x*,- f :c*) i8 an opt·imal iiolv.tion 

of (Pa,b)· 
(iii) Conver·iiely, if (:c*, y*) E H X H ·iii an optimal sol-ution of (Pa ,b). then 

y* = - f,:c*, and x* iii an optimal solutio·n of (P). 

PToof. The statements are easy consequences of the following facts 

V(:c, y) E H x H, <I>(:c) :S 4Ja,t,(:c, y), 
a 

<I>(:z:) = ·1/Ja ,b(x, y ) <=? y = - y;:r. 0 

As a consequence, solving (P) is equivalent to solving (Pa,b)· Note tha t (Pa,b) 
is only partially well-conditioned. It is not globally well-conditioned hecause of 
the direction y = -f,x , a long which the <-tuadratic form is degenerate. 

ludeed , the strategy of the proximal method consists in minilllizing 4Ja,/, hy 
usiug a relaxa tion method making only use of directions, along which (Pa ,b) is 
well-conditioned , namely the x- a nd y-subspaces. Let us make this precise in 
the following statement 

PROPOSITION 2.2 Th e pm:cinwl 'lnethod ·is the relaxation min·im·ization m.etlwd 
applied to ·1/Ja, -a , for· a = ~. Mor·e vrecisely 

(xk, Yk = xk)-+ (xk+l• Yk+l): :ck+l = argmin {4Ja,-a(x, Yk): x E H} 
Yk+l = a·lgmin{·I/Ja, - a(:ck+ l ,y) : y E H}. 

Proof. By definition of the proximal method, by taking a2 = ± 
:Gk+ J = a rgrnin{ <I>(:c) + _2_ 1x- :rkl 2

: :z: E H } 
2.\ 
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since Yk = Xk · Next, when considering Yk+ l as 

a2 
Yk+l = argmin{<I>(xk+l) + 2lxk+l - Yl 2

: y E H} 
I 

one clearly gets Yk+l = xk+l· And so on. • 
From the numerical point of view it is tempting to minimize 1/Ja,b using better 

descent directions than those u pTiori given by the x and y directions. A natural 
candidate is the steepest descent method. Let us decribe it when it is applied 
to 1/Ja,b· Indeed, it is convenient to consider the function 

1 1 
Wa,b(x,y)= b2 <I>(x)+21ax+byl2 

in order to obtain a quite simple formulation (note that replacing <I> by b<I> 
does not change anything to the minimization problem (P) and, like 1/Ja,b, Wa ,b 
may be called an energy associated to <I>). 

THEOREM 2.1 Let <I> : H f--7 IR U { +oo} be a convex, lower sernicontinuous, 
propeT function. Let u, b be real constants with b =I 0. 

a) The geneml-ized continuous steepest descent method when applied to 

1 1 2 
Wa ,b(x,y)= b2 <I>(x) +21ux+byl 

provides the following system (energeticul steepest descent} 

(ESD) { 
x(t) + bo<I> (x(t)) + a[ax(t) + by(t)] 3 0 

y(t) + b[ax(t) + by(t)] = 0 

(ESDi} 

(ESD2} 

b) When <I> ·is a smooth C2 funct ·ion, and a =I 0, the above system (ESD} 
can eq·u·ivulently be written (by eliminat·ing the var·iable y} 

x(t) + (a2 + b2 )x(t) + bl2 \7 2<I>(x(t))i(t) + 'V<I>(x(t )) = 0. (1) 

c.l) For any initial condition xo E dom <I> and Yo E H, there exists a uniq·ue 
solut-ion (x, y) of (ESD} in the follow·ing sense 

. x : [0, +oo[f--7 H is a contin·uo·us funct-ion, with :c( t) E dorn <I> Vt > 0, 
Lipschitz continuous on [8, +oo[ for every 8 > 0, 

. y : [0, +oo[f--7 H is a C1 fun ction, wdh u Lipschdz continuous der·ivative 
on [8, +oo[ for every 8 > 0, 

(ESDi} is satisfied almost everywhere on ]0, +oo[, 
. (ESD2} is satisfied .for every t E]O, +oo[, 
. x(O) = xo and y(O) =Yo· 

c.2) As t---+ +oo, <I>(x(t)) converges to inf <I>, whetheT the latter· be finite or not. 
w-H 

c.3) If S = argrnin <I> =10, then x andy weakly converge as t---+ +oo: x(t) -----+ 
w-H 

X 00 E S and y(t) -----+ -T, x 00 • 
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Pmu.f. a) The geueralized continuous steepest descent (see Bn§zis, 1973) applied 
to W a,b reads 

(:i:(t), y(t)) + OWa,b(:c(t), y(t)) 3 0. 

Making the inclusion above explicit yields (ESD). 
b) Let ( :c, y) be a solution of (ESD). Since <I> is C2 we have 

. 1 
x + b2 Y'<D(:c) + u[a:c +by]= 0 

y + b[a:c +by] = 0. 

Differentiate (3) to get 

.. 2. 1 n2;r,( ) . b. 0 :c + a :c + b2 v '±' x x + a y = . 

(2) 

(3) 

(4) 

(5) 

Perform a linear combination of (3), (4), (5) with b2
, -ab, 1 as coefficients to 

obtain (1). 
Conversely, let x satisfy (1): define y by (3), which is legal siuce ab i 0. 

Differentiatiug (3) yields (5) as above. Perform a linear combination of (1), (3), 
(5) with -1, b2

, 1 as coefficients to obtain aby + ab2 [ax +by] = 0, which is 
equation (4). 
c.l) The function W a,b is proper, lower sernicontinuous and convex; the point 
(:co, Yo) belougs to dom <!> x H = dorn Wa,b· A theorem of Brezis (1973, Th. 
3.2) theu asserts the existence and uniqueness of a continuous function (x, y) : 
[0, +oo[r--+ H x H, with (:c(t), y(t)) E dorn Wa,b for any t, x(O) = xo, y(O) =yo, 
which is Lipschitz continuous 011 [5, +oo[ for every 5 > 0, and which satisfies (2) 
almost everywhere. This result readily entails the assertions. 
c.2) After Lemaire (1996, Cor. 2.1) we have: Wa,b(x(t),y(t))-) infWa,b, as 
t-) +oo. The inequalities inf tr<I> = infWa,b ::; ~<D(x(t)) ::; Wa,u(x(t) ,y(t)) 
then entail the asserted convergence result. 
c.3) If argmin <I> i 0 then argrnin Wa,b i 0. It is now a theorem of Bruck 
(1975), which asserts the weak convergence of (x,y) towards a minimum poi11t 
(:c oo , Yoo ) = (x=, -~:c=) of Wa,b as t-) +oo. 
c.4) lf <P is even, then so is W a,b· Resorting once more to a theorem of Bruck 
(1975) yields the strong convergence. • 

To keep with clarity, let us briefly sum up how (DIN) has been derived. 
By analogy with the proximal regularization method, the minimization of 

the convex function <P is replaced by the minimization of the convex function 
Wa,b( :c, y) = tr<P(x) +~lax+ byl 2

. 

To that end, the continuous steepest descent method is applied to Wa,b, 
which gives rise to system (ESD). Any solution (:c,y) of the latter is such that 
x(t) weakly converges to a minimum point of <I> as t-) +oo. 

If_? is C2
, th~n (E~D )_is equivaleut to a (DIN) system with o:/3 > 1 ( o: = 
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3. Optimizing properties of (DIN) in general 

In this part, the optimizing properties of (DIN) are examined with more gener
ality than before, i.e. <I> need not be convex and a/3 > 1 need not hold. Facts 
are stated without proofs, which may be found in F. Alvarez et al. (2002). 

Let a, /3, A, B, C be real constants, arbitrary for the moment. The system 
(DIN), which we recall 

(DIN) i(t) + ai(t) + f]V' 2<I>(x(t))i(t) + V'<I> (x(t)) = 0 

bears a strait relation with the following first order system 

(g-DIN) { 
:i.: + CY'<I>(x) +Ax+ By= 0 
y +A:r:+By=O 

as the next proposition shows. In spite of t heir resemblance, (g-DIN) is not a 
gradient system (except if A = B) while (ESD) is. But the equivalence between 
(DIN) and (g-DIN) is more general than the equivalence between (DIN) and 
(ESD), which requires af] > 1. 

PROPOSITION 3.1 S·uppose <I> E C2(H), and let the con8tant8 a, /3, A, B, c 
satii:ify 

The sy8tems (DIN) and (g-DIN) ar·e eq·uivalent in the sense that x is a sol-ution 
of (DIN) 'if and only if iheTe exists y E C2 ([0, +oo[, H) such that (x, y) is a 
sol·ution of (g-DIN). 

Beyond being of first order in time, the system (g-DIN) is interesting because 
it does uot involve the Hessian of <I> . As a fi rst consequence, the numerical 
solution of (DIN) is highly simplified, since it may be performed on (g-DIN) 
and only requires approximating the gradient of <I>. As a second consequence, 
(g-DIN) allows to give a sense to (DIN) when <I> is of class C1 only, or when 
<I> is nonsmooth or involves constraints, provided that a notion of generalized 
gradient is available (e.g. the subdifferential set for a convex function <I>). But 
that remark would be of little utility if (g-DIN) did not have good existence 
and asymptotic convergence properties as t _, +oo, under the sole assumption 
<I> E C1(H). Actually (g-DIN) retains some of the optimizing properties of 
(DIN), at least if <I> E C1

•
1(H). 

THEOREM 3.1 (optimizing pmpeT'i·ies of (g-DIN)) 
Ass·ume that <I> : H f---7 lR is bo·unded from below, differentiable with V'<I> 

Lipschdz continuous on the bo·unded s·absets of H; assume farther C > 0, B > 0, 
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(i) Fo·r each (:c0 , yo) ·in H x H , lheTe exis ts a uniq·ue solution (x,y) of (g
DIN) defined on the whole inteTval [0 , +oo [, ·which belongs to C1 (0 , oo; H) x 
C2 (0 , oc ; H) and satisfies the initial condit·ions x(O) = xo and y(O) =YO· 

(ii) • :i; und \i'ell(x) belong to L2 (0 , + oo; H), 
• lirnt ...., +oo ell(x(t)) exists, 
• limt...., +oo (i(t) + C\i'<P(x(t)) = 0. 

(iii) Assuming, moreover, that x is ·in L00 (0, + oo; H) , we have 
• x, \i'<P(x) are bo·unded on [0 , +oc [, 
• lirnt....,+oo \i'ell(x(t)) = lirn t....,+oo i(t) = 0. 

In view of Proposition 3.1, when <!> belongs to C2(H) , the conditions C > 0, 
B > 0, B +A > 0 for (g-DIN) are easily seen to be equivalent to a > 0, {3 > 0 
for (DIN). This readily implies the following corollary of Theorem 3.1. 

CoROLLARY 3.1 (optimizing properties of (DIN)) 
Ass·ume that ell : H f-> lR is bo·unded fmrn below, twice differentiable wdh 

\7 2 ell Lipschitz continuous on the bo·unded subsets of H ; assume further a > 0, 
{3 > 0 in (DIN). Then the following pmper·ties hold: 

(i) For each (x0 , i o) in H X H , there ex·ists a uniq·ue sol·ution x of (DIN) 
defin ed on the whole inteTval [0 , + oo [, which belongs to C2 (0 , oo; H) and 
satisfies the initial condd·ions x(O) = xo and i(O) = i:o . 

(ii) • :i; and \i'ell(x) belong to L2 (0, + oo; H) , 
• limt ....,+oo ell(x(t)) ex·ists, 
• limt....,+oo (x(t) + {3\i'<Px(t)) = 0. 

(iii) Ass·um·ing, mor·eover, that x is in L00 (0, + oo; H), we have 
• x, \i'<P(x) ar·e bo·unded on [0 , + oo[, 
• lirnt...., +oo \i'<P(:c(t)) = lirnt ...., +oo i(t) = 0 . 

Let us finally state two convergence results (F. Alvarez et al. , 2002). 

THEOREM 3.2 In add-ition to the hypotheses of TheoTem 3.1, assume that<!> ·is 
convex, and that argmin <!>, the set of rninirnizeTs of ell on H, is nonempty. Then 
for· any sol·ut·ion (x , y) of (g-DIN) , x(t) weakly converges to a minimizer· of<!> 
on H as t goes to ·infinity. 

THEOREM 3.3 Ass·ume that <!> : JRN f-> lR is analytic, and let x be a bounded 
sol·ution of (DIN) with a > 0, {3 > 0. Then :i; belongs to L1(0, + oo ; H) and x(t) 
converges towar·ds a cr"itical point of ell as t -+ oo. 

4. An entropy-like version of the system (ESD) 

From now on, H is assumed to be finit e-dimensional, that is H = JRN, N 2 1. 
A common feature in constrained optimization consis ts in replacing the 

quadra tic kernel in the proximal point algorithm by a distance-like functional 
. - -
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set . If C is a non empty closed convex subset of JRN, this leads to dynamics of 
the type 

xk+ 1 E argmin{<I>(x) + >..~.. d( :t , :c k ): :c E C}, Ak > 0, 

where d : C x C --> lR U { + oo} is strictly convex with respect to its first vari
able. Let us mention, for inst ance, the comprehensive survey of Kiwiel (1997) 
on generalized Bregman distances, the entropy-like algorithm usiug Czisar r.p 
divergences proposed in lusem-Svaiter-Teboulle (1994) , and also the recent log
arithmic quadratic method of Auslender-Ben Tiba-Teboulle (1999). 

Inspired by those fruitful ideas, and mot ivated by the properties of (DIN). 
we devote this section to the construct ion of au inertial method of the type 
(ESD), but with a r.p divergeuce kernel - see formula (7) below- instead of the 
quadratic term (x,y)--> ~la:c +byl 2 . 

The choice of this pC:rticular kernel is suggested by its remarkable jointly 
convex property, which naturally fits our energy-like descent method approach. 

Let us now specify the setting. Consider the problem 

inf{ <I>(x): :c: E JR~ }, 

where the objective function <I> : ~N ----> lR U { + oo } is assumed to be lower 
semicontimtous and convex with 

dom <I> n JR~+ ::j:. 0, !H.~+ = {x E IH.N lx; > 0, V·i E {1, ... , N} }. (6) 

r.p divergences are generated by the functions r.p : !H.++ ----> !H. satisfying the fol
lowiug properties 

{ 

(i) c,o r.p is continuous and nonnegati ve on ~+ , 
(H) c,o (i i)c,o r.p is strictly convex, 

(iii) c,o r.p( 1) = 0. 

Define the r.p d ivergence dc,o : !H.N x !H.N ----> !H. U { +oo} as 

(7) 

EXAMPLE. As in Iusem et al. (1994 ), where many other examples are given , a 
particularly interestiug example is provided by 

r.po(s) = s log s - s+ 1, s~ O , 

with the convention 0 log 0 = 0. The associated r.po divergence is the K ullback
Liebler entropy, that is 
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It is worthwile pointing out that d'Fo can also be viewed as the D function 
of the Bregman function IR~ 3 x --> I:i=l..N Xi log Xi. This has relevant conse
quences in the asymptotic analysis of the proximal-like dynamics associated to 
d'Fo, Iusern et a!. (1994), Attouch and Teboulle, to appear. 

The 'f! divergence d'P need not be lower semicontinuous. In order to meet 
the classical assumptions in minimization problems, we introduce the lower 
selllicontinuous regularization of d'P, denoted by d'F. It is characterized by the 
following properties 

(a) For all (x, y) E JRN x JRN, and for all sequences satisfyiug (:ck , yk) --> (x, y) 
as /;;--> +oo, 

(b) For all (x, y) E JRN x JRN , there exists a sequence satisfying (:c\ yk) --> 
(:c,y) ask: --> +oo, such that 

limsupcl'P(:rk,yk)::; d'F(:~:,y). 
k--'+00 

We have the following 

LEMMA 4.1 Let 'f! and d'F satisfy (H) 'P and (7) . Then 

(i) ~ ·is a pmper, lower- senticont·inuo'U,s, convcr: f uncbon, 
(ii) d'P ~ 0, 

(iii) FaT all (x,y) E lR~+ x lR~+' d'F(:c,y) = d'F(:c,y ), 
(iv) For all (x, y) E IRN X IRN, the following sepamt'ion ZJTOJWrty holdc;, d'F (:c, y) 

= 0 <=> X = y' X E IR~ . 

Proof. The convexity of d'P, and therefore ('i), comes from (ii)'P and the following 
fact: 

g:R++--> R is convex if and only if (T,s)E(IR++) 2 -->sg(s- 1
T) is convex. 

One recognizes in (r ,s) E (~+) 2 --> sg(s- 1T) the Hi:irmander's perspective 
function of g; for a reference and further developments on the topic, see Man§chal 
(2001). The property (ii) follows from the fact that d'P ~ 0, while (iii) is a 
consequence of (i)'P. 

To deal with (iv), let us examine the values of d'P. If (x,y) ~ (IR~) 2 then, 

obviously, d'P(:c, y) = +oo and by (i·i·i) d'P(:c, y) = d'F(x, y) as soon as (x, y) E 
(IR~+ )2. 

To cope with the case of (:c, y) E CI(IR~ )2 , where CI(IR~ )2 denotes the bound
ary of (IR~ )2

, let us first notice that t he definition of d'P, allows to restrict 
the requirement (a) to nonnegative sequences. Besides, in order to compute 
lim inf k__.+ oo d'F (:rk', yk), where (xk, yk) is a nonnegative sequence, observe tha t 
the structure of d"' permits to argue on each coordinate, and thus it can be 
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For (x ,y) E aiR~ = { (x, y) E IR~ I xy = 0} , let (xk,yk) xk,yk > 0 be a 
sequence converging to (x , y) as k --> +oo. Three cases are distinguished, 

• :c = 0, y =/=- 0. From (i).,, ('ii) ., and ('i ·i·i)., it ensues that cp is non in
creasing on (0, 1) and achieves its minimum at s = 1. Therefore d.,(xk, yk) --> 

y liru s-+O+ cp( s) > 0, as k --> +oo. 
• x =/=- 0 and y = 0. Fix s0 > 1, and let us apply the convex inequality to cp , 

tltis'gives for all s E ll4+ and for all g E acp(so) 

cp(s) 2: cp(so) + g.(s - so) 2: g.(s- so). (8) 

Observe that ('i) .,, (i·i).,c and (hi)., imply that all subgradients contained in 
acp(so) are positive. Hence (8) yields 

k k k xk k k 
d'i' (x , y ) = y cp( -k ) 2: gx - gy so, 

y 

where g E acp(so), g > 0, and thus limiufk->+oo d<p (xk,yk) 2: gx > 0. 
• :c = y = 0. Just notice tha t d'P ( i , i) = 0 for all k 2: 1. 
Applying the above results together with the properties ('i).,, (·ii)'i', we easily 

deduce ('iv). • 

Take d'P as above and efine for all (x, y) E JRN x JRN 

\lf 'I' ( :1:, y) = <1) (X) + d'f (X, y). (9) 

By Lemma 4.1 and (6) this gives rise to a proper lower semicontinuous convex 
function. The optimality properties of \ll 'I' and <P are linked in the following 
way: 

L EMMA 4.2 Let cp , d'i' und W'i' sulisfy (H'P ) , (7) und (9). Then 

Proof. It relies on Lemma 4. 1, and 0 11 the relations 

w., (x,x ) = <P(x) V:c E IR~ , 

w 'i' (X, y) 2: <1) (X) v (X' y) E IR~ X IRN . • 

For each x, y E IRN let us set X = (x, y) E JRN x JRN. Following the lines of 
Section 2, let us define the dynamical system 

{ 
X (t) + ai!J <p (X(t)) 3 0 a.e. on [0 , +oo[ 
X (O) = Xo 

where X 0 = ( :~: 0 ,yo) E d rn \ll 'l' and X(.) is the unique continuous solution 
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\[J If a classical theorem concerning the subdifferential of a sum (Ekeland and 
Tema rn , 1973, Th. 5.6). Hence (ESD) 'P can be rewritten 

(ESD) op { 
~ (t) + oci>(x(t)) + 8xdop(x(t), y(t)) 3 0 a.e. on [0, +oo[, 
y(t) + oydop (x(t), y(t)) = 0, Yt ~ 0, 

with x0 E dom ci> n IR~ and Yo E IR~ . 
The dynamical system (ESD) 'P presents the advantage of taking the con

stra ints JR~ into account without penalizing ci> , more precisely we have the 
following 

THEOREM 4.1 Let d'P be a r.p d'iv e·tgence, and \[J 'P as in (9) . Let t --+ X ( t) 
(x(t) , y(t)) be a sol'Ut·ion of (ESD) 'P then 

(i) ci>(:z:(t))--+ inf{ci>(x )J x E IR~ } as t --+ +oo. 
(ii) If, moreover, S+ = argrnin{ci>(x)Jx E IR~} is non empty, then there exists 

:c* E S+ s·uch that (x(t ), y(t ))--+ (x*,x*) as t--+ +oo . 

Proof It is a consequence of the previous lemma and of the results proved in 
Lema ire (1996) for (i) , and in Brezis (1973), Bruck (1975) for (ii). • 

REMARKS. 1. Paralleli zing the derivatiou of (ESD ) and (ESD )'P from \[J a,& 

and \[J 'P , respectively, via the continuous gradient method , we could a lso de
rive a nonautonornous version of (ESD ) by considering the followiug fa mily 
of fuuctions: \[J t(x, y) = b ~(t) ci> (:z:) + ~Ja ( l ) :c + b(t)y J2 , where a a mi b are po

sitive functions of t . This would lead to the foll owing differenti al inclusimt: 
(:i::(t), y(t) ) + 8\[J t(x (t ), y(t )) 3 0 (see Baillon, CorniHcL ti, 2001 , Furuya ct a l. 
1986, for facts a bout this type of probletns). 

2. lt would be interesting to know if (ESD )'P is a dyna tllical interior point 
method. Indeed its munerical treatmeitt. tnay be delicate if a tra jectory happeus 
to to uch the bounda ry of (IR~+) 2 , since 1L'P is li able to singula rity t here; cltoosiug 
numericall y good funct ions rLy; is not so easy. Yet , we presume t l1 a t , under 
fairly genera l assumptiolls ott ci> a !ld r.p, each trajectory starting from (:ro , yo) E 
( dotn <p n JR~+) x JR~+ rellla.im; in the iut.e ri or of the const ra iHts . Cer tainly this 
c1uestion deserves further study. 

References 

A LVAREZ, F. , and ATTOUC H, H. (2001 ) An inertia l proxim altnet!tod fo r ntax
irnal monotone operators via discre tization of a nonlinear oscilla tor witlt 
cla mping . Set- Val·ued Analys·is, 9 , Issue 1/ 2, 3- 11. 

ALVAREZ, F. , ATTO UC H, H. , B OLTE, J. a nd R EDONT, P. (2002) A second
order gradient-like dissipa tive dyna mical sys teu1 witlt Hess ian driveu 
damping. lo'Umal de Mathem.aL·iqne::J Pun~::J ei Appliq"Uee::J, 81 , 747- 779. 

A NTIPIN, A .S. (1994) Minimization of couvex fuHct ions ou convex sets by nt e<:ws 
r , . rr 



656 H.ATTOC CH, J . BOLTE, P. REDONT 

9, 1475- 1486, Sep. 1994; (English translation: Differential Equations, 30, 
n° 9, 1365-1375, 1994) . 

ATTO UC H, H., GOUDOU, X. and R EDONT, P. (2000) The heavy ball with fric
tion method, I. The cont inuous dynamical system: global exploration of 
the global minima of a real-valued function by asymptotic analysis of a 
dissipative dynamical system. Cornmunications ·in Contentporar·y Mathe
mat·ics, 2, 1-34. 

ATTOUCH, H. and TEBOULLE, M. A regularized Lotka-Volterra dynamical sys
tem as a continuous proximal-like met hod iu optimization. to appear. 

AUSLENDER, A., TEBOULLE, M. and BEN-TmA , S. (1999) Interior proximal 
aud multiplier methods based on second order homogeneous kernels. Math
emat·ics of Opemtion Research, 24, 645- 668. 

BAILLON, J.-B. and COMINETTI, R. (2001) A Convergeuce Result for Sub
gradient Evolution Equations and its Application to the Steepest Descent 
Exponential P enalty Trajectory in Linear Programmiug. Jo·u·rnal of Func
tional Analysis, 187, 263-273. 

BARDU , V. ( 1981) Necessary conditious for distributed control problellls gov
erued by parabolic variational iuequalities. SIAM J. on Contr·ol and Op
timization, 19, 64- 86 . 

BREZIS, H . (1973) Op6rateurs maximaux rnonotoues. Mathe:nwtics Stud-ies 5, 
North-Holland-American Elsevier. 

BRUCK , R.E. (1975) Asymptotic convergence of nonliuear contraction semi
groups in Hilbert space. Jo·umal of Functional A·nalys·is, 18, 15- 26. 

COMINETTI, R. (1997) Coupling the proximal point algorithm with approxima
tion methods. J. Optim. Theor·y Appl., 95 , 581- 600. 

DONTCHEV , A.L. and ZOLEZZI, T. (1993) Well-Posed optimization problems. 
Lect·a·res Notes in Mathematics , 1543, Springer. 

EKELAND, I. and TEMAM, R. (1973) Analyse convexe et problernes var·iat·ion
nels. Dunod, Paris. 

FLAM, S.D. aud HORVATH, CH. (1996) Network games; adaptations to Nash
Coumot equilibrium. Annals of Opemtions Resea·rch, 64, 179- 195. 

FURUYA , H. , MIYASHII3A, K . and K ENMOCHI , N. (1986) Asymptotic Behav
ior of Solutions to a Class of Nonlinear Evolution Equations. Jom·nal of 
Differential Equat·ions, 62, 73- 94. 

IUSEM, A.N., SVAITER, B.F. and TEBOULLE, M. (1994) Entropy-like proximal 
methods in convex programming. Mathematics of Opemtion Researdt, 19, 
4, 790- 814. 

KIWIEL, K.C. (1997) Proximal mimization methods with generalized Bregman 
functions. SIAM J. of Control and Optimizat·ion, 35, 4, 1142- 1168. 

LEMAIRE, B. (1996) An asyrnptotical variational principle associated with the 
steepest descent rnetho for a convex functiou. Joumal of Convex Analy
sis, 3, 1, 63-70. 

LIONS, J .-L. (1983) Controle des systernes distribu6s singuliers. Methodes Math-



Opti1nizing properti es of an inertial dyna mica l systen1 657 

MARECHAL, P . (2001) On the convexity of the multiplicative potential and 
penalty functions and related topics. Mathemat·ical Programming, Ser. A 
89, 505-516. 

MARTINET, B. (1972) Determination approchee d'un point fixe d'une applica
tion pseudo-contractante. Cas de !'application prox. Comptes-Rend·us de 
l 'Acadernie des Sciences de Par·is, 27 4, 163- 165. 

MOREAU , J.-J. (1965) Proxirnite et dualite dans un espace hilbertien. B'Ull. Soc. 
Math . Fmnce, 93, 273-299. 

POLYAK , B .T. (1987) Introduction to Optimization. Optimization Software, 
New York. 

ROCKAFELLAR, R.T. (1976) Monotone operators and the proximal point algo
rithm. SIAM Jo·urnal on Control and Optimization, 14, 877-898. 




