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1. Introduction

The pioneering work concerning second order ordinary differential equations
with two boundary conditions seems to go back to Hartman (1964). Later
several authors (see Gomaa, 2000; Gupta, 1992; Marano, 1992, 1994) studied
second order differential equations and inclusions with three boundary condi-
tions. All those results deal with finite dimensional spaces. The aim of our
paper is to provide new existence results for problems of three boundary condi-
tions associated with differential inclusions or ordinary differential equations in
the general context of Banach spaces. Properties of the set of solutions are also
investigated, The results are achieved in several new settings involving some
Sobolev-like spaces and the use of weak compactness results in LL(]0,1]) and
PL([0,1]) (the space of Pettis integrable functions with values in E). The narrow
convergence for Young measures is also used in the application to a relaxation of
some optimal control problems governed by a second order differential equation
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After the Introduction, and the Preliminaries, in Section 3 we present exis-
tence and uniqueness of WE;'I{[{]. 1]}-solution for ordinary differential equation
with three boundary conditions. We suppose that £ iz a finite dimensional
space. Let f:[0,1] x Ex E — E be a mapping such that f is Lebesgue measur-
able on [0, 1] and continuous on E x E satisfying a Lipschitzean-type condition,
that is, there are Lipschitz constants Ay, Az satisfying A + A2 < -'5 such that

W (tz1,mn) = [t @z, )]l £ Jaller — 22l + Azllyn - w2l

forall t € [0,1] and for all (1, 31), (22, ¥2) € Ex E, and a growth-type condition
Itz w)ll < e(1 + Jizll + Jul). Wt z,9) € [0, 1] x EX E

for some ¢ > 0. Then the differential equation

{i{!) = f(t,u(t), u(t)), a.e t€[0,1],
w(0) = 0; w(f) = w(l),

has a unique solution u € WE-‘ A ([0,1]). As an application we present a new Bolza
type problem and a new relaxation property in Optimal Control for a second
order differential equation where the controls are Young measures.

In Section 4 we study the differential inclusion of the form

{ u(t) € Fit, u(t),u(t)) c T(t), a.e t€[0,1),
u(0) = 0; u(#) = u(l),

where F : [0,1] x E x E — E is a convex compact valued multifunction,
Lebesgue-measurable on [0,1] and upper semicontinuous on E x E, and T :
[0,1] = E is a convex compact valued, Lebesgue-measurable and integrably
bounded nultifunction, that is, the scalar function ¢ w— |T{t)] := sup{||z| :
x € I'(t)} is Lebesgue-integrable on [0,1]. In particular, we show a relaxation
property for a second order differential inclusion. Namely, we show that the
WE'([0,1])-solutions set of the differential inclusion

{iil[u!]l € ext(['(t)), a.e. t €[0,1],
u(0) = 0; u(f) = u(1),

where ext(I'(t)) is the set of extreme points of I'(t), is a Gs-dense subset for the
topology of uniform convergence of the W5'([0, 1])-solutions set of the differen-
tial inclusion

it(t) € T'(t), ae t € [0,1],

u(0) = 0; u(f) = u(1),
via a lower semicontinuity result for integral functionals.

We end this section by giving a new existence result of W2'([0, 1])-solutions
for a second order evolution inclusion governed by a class of m-accretive oper-
ator (see e.g. Vrabie, 1987) A(t) : E — 2F depending on t € [0,1] in a finite
dimensional space £ with convex compact valued perturbation

[ =ii(t) € A(t)u(t) + F(L, u(t), @(t)), a.e. t€ [0,1],
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F:[0,1]]x Ex E - Eis a convex compact valued multifunction, Lebesgue-
measurable on [0, 1] and upper semicontinuous on F x E, under the assumption
that, for every t € [0,1], D(A(t)) contains a closed ball of center 0 with radius
¥, for some v > 0. Here D{A(t)) = {z € E: A(t)r £ 0}.

A new variant for the second order differential inclusion given above is ob-
tained in Section 5 when T'(.) is convex compact valued, Lebesgue-measurable,
and scalarly Pettis uniformly integrable, that is,

{8°(2",T(.)) : ll2"]] < 1} is uniformly integrable in Li([0,1],dt),

liere 8* (', I'(t)) denotes the support function of the convex compact set I'(£) (1 €
[0.1]). In this new setting the solutions set is in Wf,i:{[ﬂ, 1]). 1t is easy to check
that if I'(.) is a convex compact valued, measurable, and integrably bounded
matilunction, then I'(.) is scalarly Petlis integrable, because in this particular
case, §* (', ['(t)) < |[(t)| for all ' € B and for all ¢ € [0,1].

2. Preliminaries and notations

Throughout, £ is a separable Banach space and E' iz its topological dual,
£(]0,1]) is the g-algebra of Lebesgue-measurable sets of [0,1], A = dt is the
Lebesgue measure on [0, 1] and 8 is a given nuber in J0, 1. By LE([0, 1], dt) we
denote the space of all Lebesgue-Bochner integrable E-valued functions defined
on [0.1]. We recall some preliminary resulls. Let [ : [(L1] = E be a scalarly
integrable function, that is, for every @' € E', the scalar lunction & — {2’ f(1))
is Lebesgue-integrable on [0, 1]. A scalarly integrable lunction f:[0,1] = F is
Pettis-integrable if, for every Lelbesgue-ineasurable set A in [0, 1], the weak inte-
gral [ f(t)dt defined by (', [, f(t)dt} = [ (", [(L))dL for all ' € E', belongs
to E. We denote by PL([0,1],dt) the space of all Pettis integrable E-valued
functions defined on [0,1]. The Pettis norm of any element f € PL([0,1]. dE) is
defined by [|fllpe = sup,.c5,, flu.il [{z, f(£)}|dt, where Be: is the closed unit
ball of E' (Geitz, 1981; Huff, 1986; Musial, 1987, 1991). The space PL([0, 1], 4!)
endowed with ||.||pe is a normed space. A subset H C PL([0,1),dt) is Peitis
uniformly integrable (PUI for short) if, for every £ > 0, there exists & > 0 such
that

MA) 6= sup [1afllpc < €.
rem

If f € PL([0,1]),dt), the singleton {f} is PUI since the set {{z’, f) : ||=']| < 1}
is uniformly integrable (Geitz, 1981; Huff, 1986). More generally, a subset
H C PL([0,1),dt), is scalarly Pettis uniformly integrable if the set {{(z', f}: f €
H, ||l='|| < 1} is uniformly integrable in the space Ly([0,1),dt). If H is scalarly
Pettis uniformly integrable, then it is PUL Indeed, we have

qli_!.::ﬁ sup - sup [ . H-"Tr-fﬂd'r' = 0.
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For any ' € B one has

* 2, = ', fld ', )] dt.
@ [ s [ e !, Pl e

A|{=' S}i=a]

Let a be large enough in order to ensure

V' € Be, Yf €N, !, f)|dt < e/2.
An(|{=!, f)>a]

Thus, the last term of (#) is < £/2. Now, if § is small enough in order to ensure
ad < £/2, we obtain

_/ [{=’, )| dt < aA(A) < /2
Anfj(x".f)|<a]

as soon as A(A) < & In the following, only the scalarly Pettis uniformly inte-
grable notion is used.

Let Cg([0,1]) be the Banach space of all continuous functions « from [0, 1]
into E equipped with the sup-norin, By W;‘I'Eﬂﬂ, 1]) (resp. Wﬁ:b{[{}, 1])) we
denote the space of all continuous functions in Cg([0,1]) such that their first
derivatives (resp, weak derivatives) are continuous and their second weak deriva-
tives belong to L1([0,1]) (resp. PE([0,1])). It is obvious that W;'}EI{[U, 1) c
Wf.'_;;t[l], 1]). When FE is finite dimensional, LL([0,1]) = PL(]0,1]), and hence
we put WE'([0,1]) := Wg'e([0,1]) = Wi ([0, 1)).

3. [Existence results in W ([0,1]) for ordinary differential
equation

We Legin with a lemma which summarizes some properties of some Hartman-
type function (see Gomaa, 2000; Ibrahim and Gomaa, 2000; Hartman, 1964;
Marano, 1992, 1994). Such a function was first introduced by Hartman (1964) to
study two boundary problems for ordinary differential equations. The lollowing
Hartman-type function seems to be introduced by Marano (1992, 1984). 1t is
useful in the study of three boundary problems for differential equations. We
include a complete proof for the convenience of the reader

LEMMA 1 Let E be a separuble Banach spuce and let G2 [0,1] % [0,1] = R be
the function defined by

fo<t<f,

—5 if0<s <,
Glbs) = 4 ~t ift<s<d, (3.1)

a% Ifa A
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fe<i<l,
-3 fi<s<t
G(t,s) {E{a—! +s(t=1))/(1-6) fo<s<t, (3.2)
ts=1)/(1-8) ift<s<l.

Then the following assertions haold:

1) Ifue WE'([0,1]) with u(0) = 0 and u(f) = u(1), then

ult) = j: G(t,s)ii(s)ds, ¥te[0,1), (3.3)

2) G{.,#) 15 derwvable on [0,1], for every s € [0,1)], that is, G(.,5) is right
derivable on [0, 1] and lefl derivable on |0,1]. s derivative is given by

fo<ti<d,

1] fO0<s <,
{t s} = { ift<s<#, (3.4)
(s=1)/(1-6) ff<s<],

ife<t<l,
8 0 fo<s<o
—a-:{t,s]l ={ (s=8)/(1-8) ife<s<t, (3.5)
¢ (s-1)/(1-8) ift<s<l.

) G{...) and %{, .} satisfies

sup |G(t.s)| €1,  sup IEPG

(t.s)] < 1. (3.6)
taE|0,1] t,8€[0.1] at

4) Let f € Li([0,1]) and let uy : [0.1] — E be the function defined by

1
up(t) = j G(t, 8)f(s)ds, Wte[0.1),
o
then,
ug(0) =0, ug(f) = up(1). (3.7)
Further, the function uy is devivable, and als devivalive 4y salisfies

lim up(t + h) — ug(t)
h—i I

= 1y(t) =fn E-é?-:{tws}f{s]ds (3.8)
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§) The function iy is scalarly derivable, that is, for everyz’ € E', the scalar
Junction (z'4,(.)) is derivable, and ifs weak derivative iy is equal o [ n.e

Proof 1) Let ' € F'. Let 0 <t < #. We have

{z', j: G(t, s)ii(s) ds) = fnl —{z', sii(s)) ds

] 1
+j! ~(a',ti(s)) ds + < f{z',[sqyﬁisj}ds

= (2", —si(s))}§ + f (' i(s)) ds — (', £(i(8) — i(t)))
i e . 45
+bgltes (o~ Vit - 1 [ @it
= (=, =tult) + ult) - u(0) = Li(8) + tix(t) + tu(8) - ﬁ{u{l} ~ u(8)))
= (', u(t) - u(0)).
Thus, {z',u(t)) = {z’, fnl G, s)ii(s)ds). Let § <t < 1. We have

1 8 ' — )+ sl —
(', f G!.s}ﬁ{a}iﬁ}=/ u{f.aﬁ{s}}dwj;{m'. L ?fﬂ“ N GieVids

f @, = =i(s)) ds

= [(', ~si(s)) + f.:. (# () ds + —5[(a', (6(e = 1) + (¢ = 1))il o))

—-_ff,x' (6 +1=1)ils) ds + (e’ (s = Vi(s)):

. ﬁ.f (z',i(s)} ds = (2, u(t) — u(0) + —{u(l}— u(8)))

- im u(t) - u(0)).
Therefore {x', u(t)} = (z', j'; G(t, s)its) ds) for all t € [0, 1]. Since the preceding
equalities hold for every z' € E', we get u(t) = fnl G(t, s)i(s)ds for all ¢ € [0,1].

2) Let t € [0,8]. For every fixed s € [0,1] and for every small k > 0 with
t < t+ k< 8, we have
G(t + h, s) - G(t, s)
h

if0<s<t<t+h,
= [-t=h+t)/h ft+h<s<d,
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Hence
i} fo<s<t,
pim St 2l Cbs) L 28 ) f ift<s<h,
4 . (s=1)/(1-8) if#<s<1,

Let t € [#,1]. For every fixed s € [0,1] and for every small h > 0 with # < t <
t4+ h <1, we have

G’{t+h,aj_g{g,s}_{ﬂ if0<s<9,

(—8h +sh)/h(1—0) f8<s<t<t+h,

h [h(s— D)/h(1-8)  ift+h<s<1.
Hence
0 if0<s<é,
lim Gle+hy; 3;3_ Glt,s) = E{if. s)=4¢ (s=8)/(1-0) fe<s<t,
e at (s—1)/(1-8) ift<s<l.

Thus G(., s) is right derivable on [0, 1] and its value is given by (3.4) and (3.5),
accordingly. Similarly, by analogous computations, it is not difficult to check
that (., s) is left derivable on |0, 1] and its value is given by (3.4) and (3.5).

3) From the definition of G, for 0 €t < # <s< 1

G(t,3)| = lt(s = 1)/(1 - 0)]
—i(1-9)/(1-8) < H1-0)/(1-B) =t <1,

forf<s<i<l

|Gt 5)| = |#(s =t)+ s(t = 1)|f(1 - &)
<B(t—s)/(1-0)+s(1-2)/(1-8)
S(i-a/1-O+(1-0)/Q-)=z(1-8)/(1-0) =1,

and for# <t <s<1
|Git,s)| =tl(s-D|/(1-) < (1=-35)f(1-8) <1
From (3.4) and (3.5) it is easy to check that

G
sup |—(t, 8)| < 1.
!,n-:[ﬂ.ul e (¢, )|

4) Let us(t) = _[:: G(t,s)f(s)ds forevery t € [0,1] with f € LE([0,1]). Then
us(0) = 0 and by the definition of &

L 1
nel1) = f —eflshde 4+ .'r 8(s ”rrmh-.qr,rm
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From 3) and Lebesgue's theorem, uy is continuous on [0,1]. We claim that
uy is derivable. Indeed, from 2), the function G(.,s) is derivable for every
fixed s € [0, 1], so is the function G(.,s)f(s). As ||G(t,s)f(s)]| < ||f(s)] for all
(t,5)€[0,1]x[0,1], it follows that uy is derivable and its derivative iy is given by

ug(t) = ) -H—{E{i'. s)f(s)ds, ¥te|[0,1]. (3.9)

5) It remains to check that iy is scalarly derivable a.e on [0,1] and its weak
derivative iy is equal to f a.e. Indeed by (3.4) we have

t 1
1511;1:5,‘]:/Il j{s]da+ﬁ/; (s—1)f(s)ds

for 0 < ¢ < #. Hence for each =’ € E', {z',i;(f)) = (', ()} for almost every
t € [0,8]. Let (¢]) be a sequence in E’ which separates the points of £. Then
we have {e] iig(t)) = (e}, f(t)) for all n € N and for almost every £ € [0,6]. So
we conclude that iy = f on [0,8]. By (3.5)

= “‘“‘f f(s)ds +— 1 Ej:l[s—l}j'{s}ds

ford <t <1. So, fﬂreuf,h.m € E' we have

@iig(0) = (. 5 f{f]+—f{f]} = (', f(t))
for almost every t € [, 1] and hence, as above, ip(t) = f(t) aet € [6,1). ]

Let us mention a useful consequence of Lemma 1.

PROPOSITION 1 Let E be a separable Banach spoee and let f:[0,1] = F be a
continuous mapping (respectively a smapping in LL([0,1])). Then the function

1
'u;{!]l:j; G(t,s)f(s)ds, Vtel[0,1]

is the unique CE([0, 1])-solution (respectively the W;‘Il,;{[{],l]}-suiuiiurlj to the
differential equation

w(t) = f(t), t[0,1],
u(0) = 0; u(f) = u(1).
The following is a three boundary version of a result due to Hartman (1964).

For the sake of completeness we give the proof in full details since several nota-
tions and results in the proof are necessary in further applications.

PROPOSITION 2 Let E be u separable Bunach space and let f : [0, 1]|x ExE — E
be a mapping sabtisfying: (i) there exist Lipschitz constanls Ay, Ao satisfying
Mt —;- such thal

Ilf{t"ﬂrl\y.l} - f{iwIE! yi}” i: }'-'I Ilml — &2 |I + -'}'-Etlyl = !J'zﬂ {31['.]






668 D, L. AZZAM, C. CASTAING, L. THIBAULT

with 0 < a = 2(A\ + A2) /{1 — 3) < 1. Fixing /; € H;n"n (0,7) for i = 1,2,

we have

up, () — up, (1)

=f Gl{t,s}j{s,hi{s},ﬁi{s}}iﬂ—f G(t,8)f (s, ha(s), hals)) ds
o 1]

i » 4
=j; G(t, s)[f(s, hi(s), hi(s)) — fls, ha(s), ha(s))] s
and hence
llun, (£} — wn (1) < -I{EIIE:&] (F{ER hl{sllJu{s:I] - f(s, hgll:a}..'.;gl:a}]ﬂ

< I - hals " I} =
<M ’été?n’f“" i1 (s) = ha(s)]| + Az g | fey(s) = hals)]|

2
< (A1 + A2)llba = hzlley o,y < m{-’h + A2)lla = halley oy

- ﬂl“ﬂ - hz"c' {fo,1])- (3.12)
In the same way, the equality

1
g, (1) = ding (1) = : E[t s)fs, hy(s) h.t[ 1= fis, hals), -':.-;{s]]]ds

EHEUTes
llden, () =t ()] < axllhs = Baller ggo,0p)

for all £ € [0, 1], which gives, together with (3.12)
lA(hy) = Alh2)ller o, € allba = halley o1y

So, by Theorem 0.1 in Hartman (1964}, the mapping A admits a unigue fixed
point, that is, the unique Cg([0, 1])-solution of the differential equation under
consideration. il

Using Proposition 2 we are able to produce the following variant.

THEOREM 1 Suppose that E s a finite dimensional space. Let f:[0,1] x E x
E — E be a mapping sutisfying the following conditions:

(i) for any fized (z,y) € E % E, f(.,z,y) is Lebesgue measurable on [0,1],

(ii) there is a constant ¢ > 0 such that ||F(t, 2. 00|l < (1 + ||z + |yll) for all
(t,x,y) €[0,1] x E x E,

(iil) f sotisfies condilion (3.10) of Proposition 2, that is, there exist Lipschilz
constants Xy, Az salisfying Ay + Ap < % such et

f(t 21, n) = f(tz2, )l € Mlles — 22l + Azlln — w2l
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(u,(.)) converges to a continuous function (.} having absolutely continuous first
derivative &t with i = w and satisfying u(0) = 0 and u(#) = u(1). It remains to
check that

w(t) = f(t,ul(t),u(t)) ae te0,1].
By construction, there is a Lebesgue null set Ny, such that
i (£) = f(t, un(t), &n(t)

forallt € J,\N,.. Let N := ([0, 1)\U,Jn)U(U, N,, ) which is Lebesgue-negligible.
If t ¢ Ny, there is an integer p := p(t) such that

iin(t) = St unlt), ()
for all = > p, which entails

it sup(a i (1)) = limsup(a’, £(¢, un(t). (1)) < (&, St u(t), (0)))

for all ' € E' and for &ll n = p. It follows that, for every measurable set
A [0,1] and for every =’ € E',

|1:|11[4{J:‘,ﬁ..{{]}fﬁ=L{Iﬂﬁ{ﬂ}'ﬁ ﬂ-[l':xf.-f{tuif}ﬂ:‘[t}}}dt

using Fatou's lemma. Consequently 4(t) = f(t, u(t), 2(t)) for a.e. t € [0, 1].

b} Uniqueness. Lot wp and uz be two WE"{[G, 1])-solutions to the differential
equation

{ﬁm = f(t.u(t),(t)), ae te0,1],
ul0) =0; u(f)=u(l).

For each t € [0, 1], we have

ity (t) = diat)ll = |58, wa(t) s (2)) = F(2, ualt), ia(t))]|
< Arllua(t) = walt)ll + Azlltea () = dea(t)|

1 G = 1 FiTel y .
= Jull’[:| G(t, s)(ity (8) — iiz(s)) ds] +J'-2an <57 (b s) i (s) = dia(s)) ds|l
< (M + Ag)lliky = diallgy ggo,up-
Thus
i & “ " 1 "
iy = si2lles, o,y < (M + Acdllii = diall oy qpo,ayy < 5l = el o,apys

which ensures iiy; = iiz, and hence by (3.3), we get u; = u,. |

Now we present a Bolza-type example of an oplimal control problem. Let
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(i)' for every (z,y,¢) € E x E x M] 1(Z), gl.,=,u,v) is Lebesgue-measurable
on [0,1];

(iii)’ there is a constant ¢ > 0 such that g(t,z,y, ML(Z)) C (1 + ||| +
lyNBe(0,1) for all (t,z,y) € [0,1] x E x E;

(iv)" there exist Lipschitz constants Ay, Az with Ay + A2 < 1 such that

gl 21, 1. 2) = glt, 22, y2, ¥)|| < Aallzr = 22| + Aallpn = wall
for all (t,z1,,v),(t, 22, 2,0) € [0,1] x Ex E x ML(Z).

For the sake of completeness, let us mention a general result of convergence
for Young measures that we need in the proof of next theorems.

ProrosiTion 3 Let (18,7, P) be a complete probability space, § be o Polish
space and E be a separable Bonach space. Let (u™) be a sequence of F-measur-
able mappings from © to E which converges pointwise on 2 to o F-measurable
mapping u™ and (") o sequence of F-measurable mappings from 2 o 8§ which
converges narrowly to a Youny measuwre X € Y(Q,F, P, ML(S)). Let J : Q2 x
Ex§ = R be ¢ Corathéodory inlegrand (that 15, J(w, .,.) is conlinuous on Ex S
Jor every w € O and J{.,2,u) is Femeasurable on 8, for every (z,u) € E x §)
such that the sequence (J{.,u"(.), (" ())a 15 uniformly integrable. Then we have

1im][; (w, u" (w), (" (w)) Pldw) = f_/-f{w u™(w), $)AZ (ds)] P(dw).

=l

Proof. See, Castaing et al {2002), Proposition 8.1.5.

Now comes a Bolza-type optimal control problem associated with a second
order-type differential equation where the controls are Young measures.

THEOREM 2 Assume that E is a finite dimensional space, | : [0,1]x ExExZ —
R is a Carathéodory integrand (that is, I1,...,.) is conlinvous on E x E x Z
Jor every t € [0,1] and I{.,x,9,2) is L-Fbrsgut*ammsuwbie on [I.'.]I 1], for every
(z,9.2) € E x E x Z) which salisfies the condition:

(C) For any bounded sequence (u™) and (v™) in Ce([0,1]) and for any sequence
{¢™) in Sp, the sequence (I, uw™(.),v"(.),C"(.)))n i3 uniformly integrable,

Let us consider the control problems

1
(Po) : cieugr[] I8, uc(£), A (2), C(t)) dt

and

1
(Pey: inf | [ Hwt). i), 2 weldz)] dt



Boundary value problems for second order differential inclusions G673

where ug (respectively u,) is the unique solution associaled with ( (respec-
tively ) to the differentiol equation (Do) (respectively (Dg)). Then one has
inf(Pp) = inf(Pg).

Proof. Let ((,) be a minimizing sequence for (Pp), that is,

1 1
tim [ 1, 0. 0. e = int [ 10000

where ue is the unigue Wg-'ll[[{].. 1]}-solution to

{ﬁcU]‘ = [t uc(t), i (t), C(8)) a.e. t € [0,1],
uc(0) = 0, uc(8) = uc(l),

and, for each n, u;_ is the unique WE_-'I[[I] 1])-solution to

{ﬂfntn = f(t,u, (B tic, (£).Ca (1)) ace. t€[0,1],
ug, (0) = 0, ug, (6) = ug,(1).

As the sequence (i, ) is relatively compact in Cg([0,1]) in view of Theorem 1
and Lemma 1, we may suppose, by extracting subsequences, that {we ) con-
verges uniformly to a Wz-'i[[li}, 1]) function u(.), (i, ) converges pointwise to i
and (itg, ) o L', L>)-converges to it with u(0) = 0, (#) = u(1). (See Theorem 4
and Lemma 5 below for a general compactness result when ¥ is a separable Ba-
nach space). Further, the sequence (8 ) of Young measures associated with ({.)

is relatively narrowly compact in the space Y([0, 1); ML (2)) of Young measures,
and hence by extracting a subsequence, we may suppose that (§; ) converges
narrowly to a Young measure v with »(I'(¢)) = 1 a.e. Using the o(L!, L=)-
convergence of (i, ) towards 4 and the narrow convergence of (8 ) towards v,
we get, for every Lebesgue measurable set 4 € [0,1]

fﬁﬁ[t}tﬂ ="Ii_|‘1;c/;ii.;_{t}d!

- il fAfl:t,u,;“{t)..ﬂ{"{r],(:,.{L]J:IE='/;.[Lf{t.u[i},-&{t],z}m{dz}]dt,

Ll k=)

the last equality following from Theoremn 1 and Proposition 3. 5o we deduce
that

]I{f ul(t), d(t), z) e (d f St w(t), alt), z) vy (dz)

for a.e. t € [0,1] (because 1(I'(t)) = 1 a.e.) with u(0) = 0,u(f) = u(l). So,
we have necessarily u(.) = w,(.), where w, is the unique W2([0, 1])-solution
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uniformly integrable assumption (C) for the cost functional f and applying again
Proposition 3 vields

1 1
inf jﬂ It uc (8), i (2), €(0) dt = lim. f“ (8, (£), gy (£), Ga8)) dt

C()eSe
1
E‘/ﬂ [j‘;I{""!“lru}ruy{”,-?}ir"ttt!;}]di_.

with

{ i, (t) = j[‘{ﬂ flt uo(t), it (t), 2) 1n(dz) ae te ll], 1,
1, (0) = 0, v, (#) = u,(1),

and hence

inf(Pr) < I T, w, (8), . (t), 2) ve(ddz) | dt = inf(Pa).
LU |

As inf{ Po) = inf(Pgr). the proof is therefore complete. [ |

REMARK. Theorem 2 and its proof provide new results in relaxed control theory
because we deal here with a second order type differential equation.

At this point we are going to show that the W2'([0,1))-solutions set (Sz)
of (Dg) is compact in Cg([0, 1]) so that inf{Fo) = min(Pg).

THEOREM 3 Under the hypotheses of Theorem 2, the Wf:'lf [0, 1])-solutions sef
(Sn) of (Dn) is compuct with respect to the topology of uniform convergence
and the ﬁ"g‘]ﬂﬂ, 1])-solutions sel (Sa) of (Do) is dense in (Sg) with respect to
the same topology.

Proof. Theorem 3 follows from the lemma below.

LEMmMa 2 Let Sp and Sv be the sel of all Lebesque mensurable seleclions of T
and £ respectively. Then the following assertions hold:

() S is dense in Sg with respect to the topology a{LS':[Z}“L(I:{z]}F
(b) Let (v") be a sequence in Sg which converges a(LE 5, L}?{z}] to ™ €
Su, and, for ench n € MU {oo}, let uon be the unique solution fo

{ﬁ.,.{t]=}'I.mf{t.u,,nu],&,.{:].z}u;*(dzj a.e. 1 € [0,1],
tun (0) = 0, wpn(8) = uun (1),

then (uen(.)) converges uniformly to w,~{.).

Proof. (a) follows from Castaing et al. {2002), Lemma 7.1.1.
(b) Fix 2 €]0, 1] such that A; + Az < (1 = #)/2. Using the estimation in
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and

1
aG

ihun (8) = fn aon| jg [, (8),un (5), 2) w2 ()| ds, W€ [0,1],
using similar computations and Lemna 1, we get the estimation

ltyee (8) = itom (O] < [l0™(8) = w" (1)

1-8 . .
+T[ [ty () = wun ()| + llituoe (8) = ttun (s)]]] ds, (3.16)
0

where

w"(t) = £ [ f %{::{Ls}f{s,u,,m{sh 00 (5], z}u:{dz}] ds, ¥te[0,1],

and
1 -
w= [ %i;u.sumuum{srrﬁuu{sumu:*{dz}}dm vt e [0,1],
0 ¥4

with w"(1) — w™=(t) — 0 for every ¢ € [0,1]. Adding (3.15) and (3.16) and
integrating we get the estimation

1
j{; (2w () — wam ()] + [ltbwoe (5) — i (s)]] s

8! [f“l o™ (2) = v™(1)]] dt + fa' flw™ (L) - w" ()] dt], (3.17)

Taking the lmits when n — 400 in (3.17) gives

1 1
f ||ul.=n[3]|-u°“{ﬂiids=f [l (5) = @>(s)|| s = 0.
o o

The preceding arguments show that for any subsequence of {u,« ) still denoted
by (2, ) there iz a subsequence which converges uniformly to w,=. Thus (w.n)
converges uniformly to w,- and the proof is therefore complete, |

4. Existence results in Wj;([0,1]) for multivalued differ-
ential equations in Banach spaces

The following result is related to some topological properties of solutions set of a
special class of multivalued differential equations with three boundary conditions
in Banach spaces.

THEOREM 4 Let E be a separable Banach spuce and let T 2 [0,1] = E be a
conves compadct valeed, measurable and inlegrably bounded mulfifunction, Then
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Step 2. In view of Lemma 1 and Proposition 1, the solutions set Ay and
Aexyry are characterized by

1
Xp = {u_, :[0,1] = B | uy(t) .—_L G(t.s)f(s)ds, Vte [0,1]; f € sjl}
and

Xexury = {7 1 [0,1] = E | ug(t)

1
=_/; G(t,s)f(s)ds, ¥t € [0,1]; f ES,'_n{r]}

respectively, Since
1
IIHJHJ-u:{ﬂIIE] |G(t,s) = G(r,s)| |/ (s)]l ds
i

< f“ 1G(t.5) - Glr, )| F(s)] ds

for all f € S} and for all ¢, € [0, 1], Xr is equicontinuous in Cg([0,1]). Further,
for each t € [0,1], the set Xp(#) is relatively compact in F because it is included
in the norm compact set J-q:: Gt 87 5) ds using the obvious property of G (see
(3.3)) and the norm compactness of the multivalued integral of a convex norm
compact valued measurable and integrably bounded multifunction mentioned
above. We claim that At is compact in Cg([0.1]). Let (fu) be a sequence in
5. As 5] is weakly compact in LL([0,1]) and the sequence (uy, ) is relatively
compact in Cg([0, 1]) by Ascoli’s theorem, we extract from (f,,) a sequence (f,,)
such that (f.) converges o(LL, L% to a function f € S} and such that the
sequence (i, ) converges uniformly to a continuous function ¢ € Cg([0,1]). In
particular, for every ' € E' and for every ¢ € [0, 1], we have

1 1
lim f (Gt 8)a, fu(8)) ds = 1i[1||_1 {:!;',] Gli, 8) frn(8)) ds
0 r—e 400 fi]

1 1
=f {cu.sht;{aj}{u:{x‘,fu G(t, 5)f(s) ds). (4.1)

As the multivalued integral [ G(f, s)I(s f.ld'-a {t € [0,1]) is norm compact, (4.1}
shows that the sequence (uy ()} = {fu (., 8) fm(5)ds) converges pointwise
to ug(.) for E endowed with the strong topology. Since (uy,, ) converges uni-
formly to { € Ce([0.1]), we get uy = (. This shows the compactness of Ap in
Cel( [[I 1]). At this point, it is worth to mention that the sequence (iy, (.)) =
U; =(., 8) fn(5) ds) converges pointwise Lo itg(.) for E endowed with the strong
tnpnl-:ngy u.‘.-]l]b the weak convergence of ( f,,) and the norm compactness of the

T " " v orl Ay (R s T
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is a normal convex lower semicontinuous integrand, the convex integral func-
tional

1
Lo(f) = fﬂ W(t, J(1)) dt

is weakly sequentially lower semicontinuous on LL([0,1]). So, repeating the
above arguments involving the sequentially weak compactness of S} and the
compactness of Ap, compactuess of AT follows from the lower semicontinuity
property of fy. This shows that X = NAT \ AL, ]

ComMmENTS. Differential inclusion of the form
ult) € ext Flt,u(f)), «u(0)=uxg

was initiated by Cellina (1980) and De Blasi-Pianigiani (Pianigiani, 1990) in a
series of papers. We refer to Gomaa (2000) and the references therein [or other
related results concerning second order differential inclusions,

Now we proceed to the existence of Wﬁ'};{[ﬂ, 1])-solutions for the differential
inclusion

{i';{r,] € F(t, u(t).u(t)) ae. t e [0.1],
w(0) = 0; u(d) =u(l).

THEOREM 5 Let F:[0,1] x E x E = E be a conver compuct velued multifune-
h'un. Lebesque-measurable on [0, 1] end upper senucontinuous on E % E and let

T:[0,1] = E be a conver compact valued, measurable and integrably bounded
nmfh_fuurhuu such that F(t,x.y) € I'(t) for all (t,z,y) € [0,1] % E x E. Then
the W E{ [0, 1])-selutions set of the above differential ineclusion is nonempty and
wr.r:;pc.rci in Cg([0,1]).

Proof. Step 1. Taking the results obtained in Theorem 4 into account, a map-
ping u:[0,1] = Eisa WE:LEHIJ, 1])-solution of the preceding equation, iff there
exists f € S} such that u(t) ;= us(t) = jﬂj G(t,s)[(s)ds, ¥t € [0,1] and such
that f(t) € F{t.ug(t),us(t)) for a.e. t € [0,1]. Let us observe that, for any
Lebesgue-measurable mappings v : [0,1] — E and w : [0,1] — E, there is a
Lebesgue-measurable selection s € S} such that s(t) € F(t,v(t), w(t)) a.e. In-
deed, there exist sequences (v,) and {w,) of simple E-valued functions such
that (v, ) converges pointwise to v and (w,) converges pointwise to w respec-
tively, for E endowed with the normn topology. Notice that the multifunctions
F{.va(.),wa(.)) are Lebesgue-measurable. Let s, be a Lebesgue-measurable
selection of F{.,v.(.),wn(.})). As su(t) € F(t,va(t), wa(t)) C ['(£), ¥Vt € [0,1]
and S} is o L, LE )-compact, by Eberlein-Smulian theorem, we may extract
from (s,) a subsequence (s}, ) which converges o(LL, LE) to a function s € S}.

Here we may invoke the fact that S is s @ weakly cumpal:t. |1||3t.1mable wet. n-f
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to (s, ) provides a sequence (z,) with 2, € eo{s], : m = n} such that (z,)
converges pointwise a.e. to s. Using this fact and the pointwise convergence of
the sequences (v, ) and (w,) and the upper semicontinuity of F(t, .,.), it is not
difficult to check that s(t) € F(t, v(f), w(l)) a.e.

Step 2. For each f € S}, let us set

B(f) = {g € S : g(t) € F(t,ug(t), is(t)) ae}

where us(t) = [; G(t,s)f(s)ds, for all t € [0,1] and is(t) = [ SE(t,5)f(s) ds,
for all ¢ € [0,1] (see Lemma 1). In view of Step 1, ®(f) is a uonempty set.
These considerations lead us to the application of the Kakutani-Ky Fan fixed
point theorem to the multifunction ${.). It is clear that () is a convex
weakly compact subset of SE. We need to check that & : St =% S} is upper
semicontinuous on the convex weakly compact metrisable set S}. Equivalently,
we need to prove that the graph of $ is sequentially weakly compact in S} x S[.
Let (f.) be a sequence in Stl. By extracting a subsequence we may suppose that
(fn) converges weakly to f € SL. Tt follows that the sequences (uy, ) and (i, ),
converge pointwise to u; and uy respectively, for E endowed with the norm
topology. Let g, € ®(f,) € S}. We may suppose that (g,) converges weakly
to some element g € SE. As g,(t) € F(t,uy, (t), iy, (t)) a.e., by repeating the
arguments given in the end of Step 1 we obtain that g(t) € F(t, ug(l), d4p(t))
a.e. Thus, the graph of @ is weakly compact in the weakly compact set Sk x S}
Hence, & admits a fixed point. So, we have proved the existence of a solution in
l-i";':'llﬂ{[{L 1]). Compactness of solutions set follows easily from the compactness
in Cg([0,1]) of

1
X = {uy:0,1] = 1-:|u,{:;|=f G(t,s)f(s)ds, Vee[0,1); f e Sk}
i]
given in Step 2 of the proof of Theorem 4 and the preceding arguments. |

REMARK. I is m:nrt.h to mention that Theorem 5 is valid when we only assume
that, for v := ‘fn |T()| dt, F is defined on [0,1) x ¥Bg(0,1) x vBg(0,1) and
satisfies F(t,x,y) € T(t) for (t,x,y) € [0,1) x vBg(0,1) x yBg(0,1).

Now we present an example of application of Theorem 5 to the existence of
W;‘;"{Ell 1])-solutions for a class of second order evolution inclusion of the form

—ii(t) € A{t)u(t) + F(t,u(t),u(t)), a.e. t€[0,1],
u(0) = 0 € D{A(0)), u(l) —u{ti‘

where A(2) : E — 2 (t € [0,1]) is an m-accretive operator in a finite dimen-
sional space. Recall that a multivalued operator A(t) : E — 2F, (t € [0,1]) is
m-aceretive, if, for each t € [0,1] and each A > 0, R(fg + AA(t)) = E, and for
cach xy € D{A(t)). 22 € D{A(L)),1n € Alt)zy. 42 € Alt)z2, we have

ller = z2ll < [I(21 = x2) + Ay — w2, ()
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If A(t) is m-accretive, then

WAz 2l = 1A (0sl
< |A(t)x]o = yeiﬁl]: llvll, ¥z € D{A(t)), (ij)
where JyA(t) = (I + AA(t))~! is the resolvent of A(t), and Ax(t) = $([g -

JyA(t)) is the Yosida approximation of A(t). We refer to Vrabie {1987) for the
theory of accretive operators and evolution equations in Banach spaces.

PRoposITION 4 Let E be a finite dimensional space, A(t) : E — 2E (1 € [0,1])
be an m-accretive operator and F : [0,1] x E x E = E be a conver compact
valued multifunction, Lebesque-measurable on [0,1] and upper semicontinuous
on £ x E. Suppose that the following assumplions are sabisfied:

(H1) For every z € E and for every X > 0 the function t — (Ig 4+ AA(2)) 'z
is Lebesgue-measurable and there exists § € L3([0,1]) such that t — (Ig +
AA(t))~'g(t) belongs to L([0,1]) for all A > 0;

(H3) There is v € L([0,1]) such that [|v]|p1 Be(0,1) € D(A(t)) for alit € [0,1]
and such that

|A(t)zlo + |F(t, 2,y < ¥(t)
Jor all (t,z,y) € [0,1] x |72 Be(0, 1) x [[7] 2 Be(0,1).
Then, there is @ W5'([0,1])-solution to the problem

{ —it(t) € A(thu(t) + F(t,u(t), 4(t)), s.e te][0,1],
u(0) =0, u(#) = ull).

Moreover, the W:_-'l{[ﬂ, 1]}-solutions sel is compact in Cg([0,1]).

Proof. Let (A;) be a decreasing sequence in |0, 1] such that A, — 0. For each
n € M, let us consider the multifunction

Mu(t,z,y) = Ay (t)z + F(i,z,v),

for every (t,z,y) € [0,1] x [4llz2 Be(0,1) % [[4ll£2 Be(0,1). In view of (jj) and
(Hz) we have

|Ma(t,z,9)| < 4(t), V(t,z,y) € [0,1] x [l Be(0,1) x 7l Be(0,1).

Let I'(t) = v(t)Bg(0,1) for all t € [0,1]. Let us consider the set

lrl
AF r f a1 ol | iy Pl WEF N0 [ ™ .'-'I‘.
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Note that (H;) implies that (£, z) — A, (t)r is a Carathéodory mapping. Ap-
plication of Theorem 5 and its remark gives a W' ([0, 1])-solution u, € X to
the inclusion

{ —tig(t) € Ay, (thun(t) + F{tun(t), a(t)). ae te€]0,1], (4.3)
un(0) =0, un(f) = ua(l). :
By (4.3) there is a measurable function g,(.) such that
{ —iig(t) = Ap, (thun(t) + gu(t), ae. t€[0,1], (4.4)
“ﬂ{m =0, “ﬂ{ﬂ} = “:r“}: £

and such that g.(t) € F(t,u.(t),%.(t)) for all t € [0,1}. Using the compact-
ness of Xy, we may suppose, by extracting subsequences, that (w,) converges
uniformly to u, (i,) converges pointwise to 4, (it,) converges o(L*, L?) to i
and (gn) converges o(L?, L*) to a measurable function g with ||g(t)]| < +4(t) a.e.
Hence g(t) € F(t,u(t), 4(1)), for almost every ¢ € [0,1], because of the upper
semicontinuity of F(1,.,.). By (4.4) we have

—iiy (1) = galt) = As, (Dua(t) € A(t) s, A(thun(t). (4.5)
But

s, Al un(2) = ()] < [l Jn, A(E)un(t) = un ()]

+|lun (£) = ult)]], (4.6)
with

15, A{t)un(t) = wa(E)] = AnllAx, (Dt (t)]] < Auy(t) (4.7)
using (77) and {Hz). As Av(t) — 0, from (4.6) and (4.7), we see that

I, A(E)un(t) = u(t)]| — 0. (4.8)

By (4.6) and (4.7) we have the estimation

193, A un(t) = ul®)]] < 7(2) +2 fu 1(s) ds

for all n € M and for all £ € [0,1]. Hence Jy A(Ju,(.) — w(.) in L3([0,1]) by
Lebesgue's theorem. Now let us consider the operator A : L3({[0,1]) — aLi:([0.1])
defined by

e Ay = :z(t) € A(t)y(t) for almost every t € [0, 1].

Then A is an me-accretive operator in Li_.[[l'.l, 1)) owing to (Hy) (see the lemma
below), and hence its graph is sequentially strongly-weakly closed in L3([0, 1)) x
L3([0,1], see e.g. Vrabie (1987). As i, + g. converges o(L*, L*) to i + g and
Iy, AlJun() = ul.) in L3([0,1]), from (4.5) we get

=ii(t) € A(t)ult) + g(t) C A(t)ul(t) + F(t, ult), w(t) a.e.
Compactuess of the solutions set follows easily from the above arguments an

blia lasmsivma srrasdis Falmaas -



684 0. L. AZZAM, C. CASTAING, L. THIBAULT

LEMMA 3 Suppose thal E is o separable Hilbert space and A(t) : E — 25(t
[0,1]), 15 an m-accretive operator satisfying ihe following assumption:

(H): For every x € FE and for every X > 0 the function § — (Ig + AA(1)) 'z
is Lebesgue-measurable and there evists § € LE([0,1]) such that ¢ — (Ig +
AA(L))7g(t) belongs to L3([0,1]) for all X > 0.

Let (uy) and (v,) be sequences in LE([0,1]) satisfying:

(1) (un) converges strongly to w€ L%([0,1]) and (v,) converges tove LE([0,1])
with respect to the lopology L%n Li?};

(ii) valt) € A(t)un(t) for alln and ol t € [0,1].
Then we have v(t) € A(t)u(t) a.e t € [0,1).

Proof. Let Iz 0.1y be the identity operator in LE ([0, 1]). Let A be the operator
in LL([0, 1]) defined by

vEAu = v(t) € A(t)ult) a.e t€[0,1).

As A(t) is accretive for each £ € [0,1], it is easy to check that A is accretive in
L3([0,1]). We claim that A is m-accretive. Let A > 0 and let g € LE([0,1]). By
(M) there exists § € LE([0.1]) such that & : t — (Jg + AA()) " '5(t) belongs to
LE([0.1]). Since (Ig + AA(t)) ™! is nonexpansive, we deduce that the function
t— (g + AA(8) " "g(t) s Lebesgue-measurable and belongs to LL([0,1]). It
follows that, for k(t) :== (Ig + AA(0) " 1g(t), for every t € [0,1], we have h €
LE([0,1]), and furthermore,

g(t) € h(t) + AA(t)R(t), ¥ie [0,1]
=+ g € h+ AAL

<= he (I +AA4) "y

= R(I13 + M) = LE.

Thus A is m-accretive in the Hilbert space L%([0,1]). Consequently, its graph
is strongly-weakly sequentially closed. As, v, — v weakly in L3(]0,1]), and
Uy — u strongly, we conclude that v € Au, that is v(t) € A(t)u(t) a.e. The
proof is therefore complete, [ |

REMARK. Lemma 3 is borrowed {rom a forthcoming paper, “Functional evo-
lution equation governed Ly m-accretive operators”, by Castaing and Ibrahim.
Actually, this lemma holds when E is a separable reflexive Banach space such
that its strong dual is uniforly convex.

CoMMENTS. Proposition 4 is new since here we deal with a convex compact
perturbation for a second order differential inclusion governed by a class of m-
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most existence results for evolution equations involving accretive operators A{t)
depending on t, the domain D{A(1)) is constant. In the context of Proposition
4, it is worth to observe that, if D({A(t)) contains a closed ball Bg(0,r) of
center 0 and of radius r for all ¢ € [0, 1] and if A(t)x € Bg(0,r) for all (t,z) €
[0.1] x Bg(0,r), then the problem

—ii(t) € A(t)u(t) ae te[0,1],
(0) =0, u(@) = u(1),

has at least one W_E__‘l-sulut.iﬂn. Compare with Attouch et. al. (2001), Az-
zan and Bounkhel (2001), Moreau (1977), Tolstonogov (2002), for related re-
sults. We refer to Benabdellah et al. (1996), Benabdellah (2000), Colombo and
Goncharov (1999), Mouteire Marques (1993), Moreau (1977), Thibault (1999)
for resulls on sweeping process by closed convex sets, on elosed p-prox-regular
sels — to Poliquin et al. {2000) and on g-convex sets — to Colombo and Gon-
charov {1999).

5. Existence results in W} ([0, 1]) for differential inclusions
in Banach spaces

In this section we provide some unusual applications of Peitis integration to
dilferential inclusions in Banach spaces with three boundary conditions. We
need lirst some Pettis analogs of the results developed in the preceding section.

LEMMA 4 Lel f € P!I_'{[E} I]}I and lel us constder the funclion

1
urit) = f“ Gt s)f(s)ds, ¥ie[0,1],

where G, 8) is the function defined in Lemme 1. Then the following assertions

hold:

(1) t — ug(t) is o continuous mapping from [0,1] inte E (shortly uy €
Ce([0,1]))

(2) up(0) =0, ug(f) = us(1)

(3) The function uy is scalarly devivable, thal is, for every 2’ € E', the scalar
funetion (x' uyp(.)) is derivable, and its weak derivative iy satisfies

Eiu:] <.1"+ up(t+ h,'_: - u_,*{t}> _ {;F".tlj{l:l}

= .f — (L, s)z', ffsﬂn’s—(m —fi s'{l”shfs\)
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for all i € [0,1] and for wil ' € E'. Consequently

1
iy (t) = j; St f()ds, Vi€ 0,1,

and iy is a continuous mapping from [0, 1] inte E.

(4) The function iy is sealarly dertvable, that is, for every ' e E', the scalar
Junction {z',i5(.)) is derivable, and its weak derivative iy is equal to f
e,

Proof. (1) As (8, 5) — G{t,)(z’, f(s)} is a Carathéodory function on [0,1] x [0, 1]
with |G(t, s){=', [(s)}] < |(z', f(s)}] and

| |
{:i:’.u;{!}}=(:i:’. f.:. Gu.su{s}mﬁ}: [] G(t, s)(z’, f(s)) ds,

from Lebesgue’s theorem, it is easily seen that ¢ — {z',uy(t)} is continuous on
[0,1] for every z' € E'. So, uy is a continuous mapping from [0,1] into the
weak space E,, shortly uy € Cg, ([0,1]). In order to prove that uy belongs to
Cg([0,1]), we need a delicate argument. First, since f is Pettis integrable, the
set {hg (L) o= !, SO 12l € 1} is uniformly integrable in Li([0,1]). Let
{ta) be a sequence in [0, 1] converging to ¢ € [0,1]. We have

ler(ta) —us(B)ll = sup [{=',ug(ta) — up(t))
FEBp

1
< sup f |Gty . s) — Gt s)|fepr(5) ds. (5.1}
u"'gﬁb..- 1]

As the sequence (vo(.)) := (|Gtn..) = G(L,.)]) is uniformly bounded and con-
verges pointwise to 0 and the set {hy(.) : ' € Bg} is uniformly integrable in
LL([0,1]), (va(.)) converges uniformly to 0 on this set in the duality (L3, LL)
in view of a lemuna due to Grothendieck (1964), see also Castaing (1980) for a
more general result concerning the Mackey topology for bounded sequences in
LE. Hence the second member of (5.1) converges to 0. This proves the strong
continuity of uy. This fact can be deduced from a general compactness result
given below. We prove the continuity of 4y by using the same arguments and
by taking the property of %{} given in (3) of Lemma 1 into account.

(2)=(4) follow [rom the same computations used for (3.7), (3.8) and (3.9) in
Lemma 1 by observing that the functions s — G(t, s} f(s) and s — %{t.u}j{s}
are Pettis integrable and equality “= a.e.” is equivalent to “=" scalarly a.c. B

The following is an analogous version of Theorem 5 providing the existence
of solution in WP:}:;{[I}. 1]) for differential inclusion of second order of the form

{ﬁ{t} € F(t,uft),a(t)) a.e tel0,1],
u(0) = 0; u(f#) = u(l).

e 1 - 1 1
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norim compact valued, measurable and scalarly Pettis uniformly integrable mul-
tifunction mentioned in Step 1. We claim that At is compact in Ce([0.1]). Let
(fa) be a sequence in S, As S8 is sequentially compact for the topology of
pointwise convergence on L™ @ E' and the sequence (uj, ) is relatively compact
in Cg([0,1]), by Ascoli's theorem, we extract from (f,) a sequence (f,,) such
that (f) converges a(PL, L™ & E') to a function f € ST and such that the
sequence (uy, ) converges uniformly to a continuous function ¢ € Cg([0, 1]). So,
for every ' € E' and for every { € [0,1], we have

limn ﬁl{ﬂ{t,s]aJ.f..,[s}}ds = |1|1| f G, 8) funls) )ds (5.3)

n— g
= /ﬂ Gt ) f() ds = (2, fn G(t, )/ (3) ds). (54)

As the multivalued integral _[DL (:' t, a}l‘fa}ds (t € [0,1]) is norm compact, (5.4)
shows that the sequence (ug, (.) fﬂ Gl %) fonl#) dg) converges pointwise
to ug(.), for £ endowed with LIu: norm topology. As (uy, ) converges uni-
formly to ¢ € Ce([0,1]), we get uy = (. This shows the compactness of A} in
Ce([0,1]). At this point, it is worth mentioning that the sequence (i (.)) =
{fﬂl S5(-r8) finls) ds) miwerh:m pointwise to (.}, for E endowed with the norm
tﬂl!{*ll)ﬁ}’ by using the o PL. L™ & E') convergence of (f,,) and the norm com-
pactness of the multivalued integral Jﬂl %{E,s}l*{s] ds. The last points of the
lemma follow from the arguments above and the sequential o PL, L™= @ E')
compactness of SI*. [ |

Now we proceed to the existence of solutions in {-’f.},_-[[i} 1]) for the differ-
ential inclusion

{"(r.} € F(t,u(t), &(t)) a.e t € [0,1],
(0) = 0; wu(8)=u(l).

THEOREM G Let F' : [0,1] x E x E = E be a conver compact valued mulfi-
Junction, Lebesyur-meu.sumﬁrfr on [0,1], and upper semicontinuous on £ x E,
and let T' 2 [0,1] = E be ¢ conver compact valued, measurable and scalarly
Petlis uniformly inlegrable mufh_.l’unctwn such that Ft,z,y) C T(t) for all
(t,e,u) € [0,1] x E x E. Then the H",L“l] 1])-solutions set of the above differ-
ential inclusion is nenempty and compact in Ce([0.1]).

Proof. Step 1. By virtue of Lemma 4, 2 mapping u: [0,1] = Eisa Wﬁ'ﬁ([l} 1])
solution of the preceding inclusion, iff there exists f € S’ such that u(t) :=
ug(t) = ful G(t,s)f(s)ds, for all t € [0,1] and such that f(t) € F(t,ug(t), us(t))
for a.e. t € [0,1]. Let us observe that, for any Lebesgue-measurable mappings
v:[0,1] = E and w: [0.1] = E, there is a Pettis integrable selection s €
SEe such that s(t) € F(t,v(t), w(t)) ae. Indeed, there exist two sequences
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to v and (w,,) converges pointwise to w respectively, for E endowed with the
norm topology. As the multifunction F{I, v, (1), w, (1)) is Lebesgue-measurable,
there is a Lebesgue-measurable selection s, of F(. v, (), w,(.)). As s,(t) €
F(t, v (), wa(t)) € I(2), for all t € [0,1] and SL° is sequentially o(Pg, L™ ®
E")-compact, we may extract from (s,) a subsequence (s),) which converges
a(PL, L™ ® E') to a function s € 8. Let (&} )xen be a dense sequence for the
Mackey topology 7(E', E). Let k € M be fixed. Applying the Mazur's trick to
({en. %0 ()))n provides a sequence (2, ) with z,, € co{{e},si,(.)) : m = n} such
that (z,) converges pointwise a.e. to (e}, s(.})}. Using the upper semicontinuity
of F(L,.,.), it is not difficult to check that (e}, s(1)} < 6" (e}, F(t, v(1), w(f))) a.e.
From Castaing and Valadier (1977, Prop. 111-33), we get the above inclusion.
Step 2. For any u € A%, let us consider the multifunction

¥(u) = {v e Ar: #(t) € F(i,u(t), u(t)), ael}.

By Step 1 and Lewma 4, ¥{u) is a nonempty convex subset of Ap. It is easy
to check that ¥ : At = Ay has a closed graph. Let (u,,v,) € graph{¥) such
that (v, ) converges to (u,v) in AT x Ar. By Lemma 5, (u,, vn) converges
uniformly to {u,v), i, (respectively ¢,) converges pointwise to 4 (), for K
endowed with the norn topology, and 4i,, (respectively 4, ) converges o PL, L™ ®
E') to i (#). As we have

tglt) € Flt, u.(t), 2.t} a.e.,

by applying a closure-type theorem from Castaing and Valadier (1968, 1977) or
the arguments given in Step 1, we get

v(t) € F(t, u(t), all)) ae.

So, the sets ¥{u) are closed and hence compact in Xp and the multifunction W
i5 upper semicontinuous. Hence W admits a fixed point, that is a solution of

ii(t) € F(t,u(t),u(t)) a.c. t € [0,1],
u(0) =0; u(f) =u(l).

The compactness of the set of solutions follows. [ ]

ComMmENTS. 1) There are several alternative proofs for the weak compactness
of &) Amrani et al., 1992; Amrani and Castaing, 1997; Castaing, 1996; Castaing
and Valadier, 1977; Castaing and Saadoune, 2000) while the strong compactness
of the set-valued integral _{“' () adt was first initiated by the second author (Cas-
taing, 1969, 1972} via the Banach-Diendonné theorem (see c.g. Grothendieck,
1964). This fact appearcd in several places (E] Amri and Hess, 2000; Castaing,
1984; Castaing and Valadier, 1977; Castaing el al, 2002). Actually, both weak
compactness of S and strong compactness of fﬂ] I'it)dt can be obtained by
new Lools of Young measures {Castaing ot al., 2002). Other contributions for

1 L L LR T ] fAmme™ SR Aot 8™ 1 LRI T Lt



G0 D. L. AZZAM, C. CASTAING, L. THIBAULT

Piccinini and Valadier (1995), Roubi¢ek (1997), Valadier (1990a, 1990, 1994).
Sequential weak compactness of §{'° was demonstrated in Amrani and Cas-
taing (1997), Castaing (1996), via Komlds convergence (Komlds, 1967). For
the Bochner case we refer to Castaing (1996), Castaing and Saadoune (2000),
Colombo and Goncharov (1999), Ulger (1991). The strong compactness of the
set-valued Pettis integral fﬂl I'(t) dt can be proved by using Banach-Diendonné’s
theorem or a typical convergence result for Young measures (Castaing et al.,
2002, Theorem 6.3.6).

2) The lower semicontinuity for functional integrals can be found in Balder
(1986, 1995, 2000a, 2000b), Castaing and Clauzure (1982), Castaing and Val-
adier (1977), Castaing et al. {2002), Jalby (1992), Valadier (1990a).

3) Theorem 6 provides a new type of second order differential inclusion
dealing with unusual Wf,ls solutions. When I' iz a convex compact valued,

mesurable and integrably bounded multifunction, it is obvious that Wf,‘}_;.. solu-

tions coincide with Wf,.lb solutions, and so Theorem 6 is reduced to Theorem 3.
These results extend to infinite dimensional spaces the ones obtained in Gomaa
(2000}, Gupta (1992), Ibrahim and Gomaa (2000), Marano (1992, 1994), Rieceri
and Ricceri (1990). In this context, we refer to Castaing and Valadier {1968),
Maruyama (2001) dealing with first order differential inclusions in locally convex
spaces.

4) By assuming that the multifunction T" in the above results are weakly
compact valued and the multifunciion F is upper semicontinuous on E, x E,.
we get the existence of weak solulions, see e.g, Castaing and Valadier (1969},
Maruyama (2001). Details are left to the readers.
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