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1. Introduction 

The pioneering work concerning second order ordinary differential equat ious 
with two boundary conditions seems to go back to Hartman (1964). Later 
several authors (see Gornaa, 2000; Gupta, 1992; Marano, 1992, 1994) studied 
second order differential equations and inclusions with three boundary condi
tions. All those results deal with finite dimensional spaces. The aim of our 
paper is to provide new existence results for problems of three boundary coudi
tions associated with differential inclusions or ordinary differential equatious in 
the general context of Banach spaces. Properties of the set of solutions are also 
investigated . The results are achieved in several new settings involving some 
Sobolev-like spaces and the use of weak compactness results in Lk([O, 1]) and 
P1([0, 1]) (the space of Pettis integrable functions with values in E). The narrow 
convergence for Young measures is also used in the application to a relaxation of 
some optimal control problems governed by a second order differential equation 
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After the Introduction, and the Preliminaries, in Section 3 we present exis
tence and uniqueness of W~' 1 ( [0 , 1])-solution for ordinary differential equation 
with three boundary conditions. We suppose that E is a finite dimensional 
space. Let f: [0, 1] x Ex E---. E be a mapping such that f is Lebesgue measur
able on [0 , 1] and continuous onE x E satisfying a Lipschit:t:ean-type condition, 
that is, there are Lipschitz constants )11 , -\2 satisfying >. 1 + -\2 < ~ such that 

llf (t,x1,yl)- f(t,x2, Y2)11 :S >-11ix1- x2 ll + >-2IIY1- Y2ll 

for all t E [0 , 1] and for all ( x 1, yl), ( x2, y2 ) E Ex E , and a growth- type condition 

llf(t ,x,y) ll :S c(1 + llx ll + II YII) ,V(t,x,y) E [0,1] X E X E 

for some c > 0. Then the differential equation 

{ 
·u(t) = f(t, 'U(t), ·u(t)), a.e. t E [0 , 1], 
·u(O) = 0; 'U(B) = 'U(1), 

has a unique solution ·u E W~· 1 ( [0 , 1]). As an application we present a new Bolza 
type problem and a new relaxation property in Optimal Control for a second 
order differential equation where the controls are Young weasures. 

In Section 4 we study the differential inclusion of the form 

{ 
·u(t) E F(t, 'U(t) , ·ti.(t)) c r(t), a.e. t E [0, 1], 
·u(O) = 0; ·u(B) = u(1), 

where F : [0, 1] x E x E ---. E is a convex compact valued multifunction, 
Lebesgue-measurable on [0, 1] and upper sernicontinuous on E x E, and r : 
[0, 1] =l E is a convex compact valued, Lebesgue-measurable and integrably 
bo·unded rnultifunctiou, that is, the scalar function t r--+ lf(t)l := sup{llxll : 
x E f(t)} is Lebesgue-integrable on [0, 1]. In particular, we show a relaxation 
property for a second order differential inclusion. Namely, we show that the 
w~· 1 ([0, 1 ])-solutious set of the differeut ial inclusion 

{ 
·ii(t) E ext(f(t)) , a.e. t E [0, 1] , 
'U(O) = 0; ·u(B) = u(1) , 

where ext(f(t)) is the set of extreme points of f(t), is a G0-dense subset for the 
topology of uniform convergence of the W~' 1 ([0, 1 ])-solutions set of the differen
tial inc! usion 

{ 
·u(t) E f(t), a .e. t E [0, 1], 
u(O) = 0; u(B) = ·u(1), 

via a lower semicontinuity result for integral functionals. 
We end this section by giving a new existence result of W~' 1 ([0, 1])-solutions 

for a second order evolution inclusion governed by a class of m-accretive oper
ator (see e.g. Vrabie, 1987) A(t) : E ---. 2£ depending on t E [0 , 1] in a finite 
dimensional space E with convex compact valued perturbation 

f - ·u(t) E A(t)'U(t) + F(t, ·u(t), u(t)), a.e. t E [0 , 1], 
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F : [0, 1] x E x E ---+ E is a convex compact valued multifunction, Lebesgue
measurable on [0, 1] and upper sernicontinuous onE x E, under the assumption 
that, for every t E [0, 1], D(A(t)) contains a closed ball of center 0 with radius 
/, for some 1 > 0. Here D(A(t)) = {x E E: A(t)x -::J. 0}. 

A new variant for the second order differential inclusion given above is ob
tained in Section 5 when f(.) is convex compact valued, Lebesgue-measurable, 
and scalaTly Pettis uniformly integrable, that is, 

{8*(x',r(.)): ll x'll ~ 1} is uniformly integrable in L~([O, 1],dt), 

here 8* (x', f(t)) denotes the support function of the convex compact set r(t) (t E 

[0, 1]). In this new setting the solutions set is in wJ,·k([O, 1]). It is easy to check 
that if r(.) is a convex compact valued, measurab'le, and integrably bounded 
mutifunction, then r(.) is scalarly Pettis integrable, because in this particular 
case, 8*(x',f(t)) ~ lf(t) l for all x' E BE' and for all t E [0 , 1]. 

2. Preliminaries and notations 

Throughout, E is a separable Banach space and E' is its topological dual, 
£([0, 1]) is the O"-algebra of Lebesgue-measurable sets of [0, 1], >. = dt is the 
Lebesgue measure on [0 , 1] and e is a given number in ]0, 1[. By Lb([O, 1], dt) we 
denote the space of all Lebesgue-Boclmer integrable E-valued functions defined 
on [0, 1]. We recall some prelimiuary results. Let .f : [0, 1] ---+ E be a scalarly 
integrable function, that is, for every :c' E E', the scalar function t r--+ (:c', j(t)) 
is Lebesgue-iutegrablc 011 [0, 1]. A scalarly iutegrable function .f : [0 , 1] ---+ E is 
Pettis-integrable if, for every Lebesgue-measurable set A in [0 , 1], the weak inte
gral JA .f ( t)dt defined by (:c', .fA .f (I )dt) = .fA (x' , f( L)) dt for all :c' E E' , belougs 
to E. We deuote by Pl([O, 1], dt) the space of all Pettis integrable E -valued 
functio11s defined on [0, 1]. The Pettis norm of any element f E P1( [0 , 1], dt) is 

defined by ll.fii Pc = supx'EBE' .f[o,l] l(x', .f(t))lrlt, where BE' is the closed unit 

ball of E' (Geitz, 1981; Huff, 1986; Musial, 1987, 1991). The space P1([0, 1], dt) 
endowed with 11-II Pc is a norrned space. A subset H C P1([0, 1], dt) is Pettis 
·uni.fonnly integrable (PUI for short) if, for every c > 0, there exists 8 > 0 such 
that 

>.(A) ~ 8 ===> sup II1A.f ii Pe ~c. 
fE'H 

If .f E P1( [0,1]),dt), the singleton{!} is PUI since the set {(x',J): ll x' ll ~ 1} 
is uniformly integrable (Geitz, 1981; Huff, 1986). More generally, a subset 
H C P1( [0, 1], dt ), is scalaTly Pettis ·un·iformly ·integrable if the set { (x' , f) : .f E 

H, ll x' ll ~ 1} is uniformly integrable in the space L~([O, 1], dt) . If H is scalarly 
Pettis uniformly integrable, then it is PUI. Indeed, we have 

}2_:~~~Y sup { . ... l(:c', .f)lrlt=O. 
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For any x' E BE' , one has 

(*) r l(x',f) ldt= r l(x',f) ldt+ r l(x',f) ldt. 
JA J An [[ (x',j) [:::;a] JAn[[(x',f)[>a] 

Let a be large enough in order to ensure 

Vx'EBE',VjEH, { l(x',f)ldt 'Sc/2. 
J An[[(x' ,/)[>a] 

Thus, the last term of(*) isS c/2. Now, if 8 is small enough in order to ensure 
a8 S c/2, we obtain 

f l(x',J)ldt s a.\(A) S c/2 
JAn[[ (x' ,j) I ::;a] 

as soon as .\(A) S 8. In the following, only the scalarly Pettis uniformly inte
grable notion is used. 

Let CE([O, 1]) be the Banach space of all coutinuous functions 'U from [0, 1] 
into E equipped with the sup-norm. By W~·~([O, 1]) (resp. WJ,·k([O, 1])) we 
denote the space of all continuous functions in CE([O, 1]) such th'at their first 
derivatives (resp. weak derivatives) are continuous and their second weak deriva
tives belong to Lk([O, 1]) (resp. Pl{[O, 1])). It is obvious that W~·~([O, 1]) c 
wJ,·k([o, 1]). When E is fi nite dimensional, Lk([O, 1]) = P1([0, 1]),· and hence 

we ;)ut W~' 1 ([0, 1]) := W~·.~([O, 1]) = WJ,:k([O, 1]). 

3. Existence results in W~·.~([O, 1]) for ordinary differential 
equation 

We begin with a lemma which surnmariz;es some properties of some Hartman
type function (see Gornaa, 2000; Ibrahim and Gornaa, 2000; Hartman, 1964; 
Marano, 1992, 1994). Such a function was first introduced by Hartman (1964) to 
study two boundary problems for ordinary differential equations. The following 
Hartman-type function seems to be introduced by Marano (1992, 1994). It is 
useful in the study of three boundary problems for differential equations. We 
include a complete proof for the convenience of the reader 

LEMMA 1 Let E be a sepamble Banach space and let G : [0, 1] x [0 , 1] ___, ][{ be 
the funct·ion defined by 

if o s t < e, 
( -s 

G(t,s) =) --:,t 
ifO S sSt, 
ift < s-:::; e, (3.1) 
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{

- s ifOS.s<B, 
G(t, s) = (B(s- t) + s(t- 1))/(1- B) if B S. s S. t, 

t(s-1)/(1-B) ift<s'S_l. 
(3.2) 

Then the following asseTtions hold: 

1} Jf ·u E W~',~([O , 1]) wdh ·u(O) = 0 and u(B) = u(1) , then 

u(t) = 11 

G(t , s)u(s) ds, Vt E [0, 1] , (3.3) 

2) G(., s) is der·ivable on [0, 1], joT ever-y s E [0, 1], that is, G(., s) is Tight 
de1·hmble on [0, 1 [ and left deTivable on ]0, 1]. Its deTivative is given by 

'dOS.t<B, 

~~(t ,s) = -1 ·ift<s'S_B , 
{ 

0 ·if 0 s. s s. t ' 

(s -1)/(1 - B) ·ifB S. s S. 1, 

if B s. t s. 1, 

ac { o if o s. s s. B, 
Dt(t, s) = (s- B)/(1- B) if B s_ s S. t, 

(s-1)/(1-B) ift<s'S_l. 

3} G(., .) and ~~ (., .) satisfies 

sup IG(t. s)! S. 1, 
t ,sE [O ,lj 

ac 
sup !Dt(t , s)! S. 1. 

t ,sE [O ,l j 

4) Let J E Lk([O, 1]) and let UJ: [0 , 1]--+ E be the fun ction defined by 

'LLJ(t) = 11 
G(t, s).f(s) ds, 'Vt E [0, 1], 

then, 

Furthe·r, the funct-ion ·u f ·is de·rivable, and 'its de·r·ivat·ive ·u I sat·isfies 

I. UJ(t +h)- ui(I;) . () ;·l DC( )!( ) ./ nn = tL I t = - t, s . s us 
h ->0 h 0 ()/; 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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5) The fun ction u 1 is scalarly der-ivable, that is, joT eve'r'y x' E E', the scalar
function (x',ut(-)) is der-ivable, and its weak der-ivative 'UJ is equal to f a.e. 

Pmof 1) Let x' E E' . Let 0 ~ t <B. We have 

(x', lo1 

G(t, s)ii.(s) ds) =lot - (x', sii.(s)) ds 

+ jo -(x', tu(s)) ds + 
1 
~ B 11 

(x' , (s - 1)·ii.(s)) ds 

= [(x', -su(s))]~ +lot (x' , u(s)) ds- (x', t('iL(B)- ·u(t))) 

+~[(x', (s- 1)u(s))]~- ~ t (x', ·u(s)) ds 
1- u 1- u } 8 

= (x' , -tu(t) + u(t)- ·u(O)- tu(B) + t·u(t) + tu(B) - ~(u(1) - ·u(B))) 
1-u 

= (x', u(t) - u(O)). 

Thus, (x',u(t)) = (x',J0
1 G(t,s )ii.(s)ds). Let B ~ t ~ 1. We have 

( '11G( )"()d) le (' "()) d 1t(,B(s-t)+s(t-1) .. ())d X ) t, s 'U s s = - X ) S'U s s + X ) B 'U s s 
o o e 1-

+ {
1 
(x', t(s- :) ·u(s)) ds 

lt 1-

= [(x', - s·u(s)) ]g + { e (:c' , u(s)) ds + ~[(x' , (B(s- t) + s(t- 1))u(s)m lo 1- u 

-
1 
~ 

8 
it (x', (B + t- 1)·u(s)) ds + 

1 
~ 

8 
[(x', (s - 1)·u(s))]i 

-~ {

1 

(x' , u(s)) ds = (x' , u(t)- u(O) + ~(·u( l)- u(B))) 
1- u lt 1- u 

= (x', u(t)- u(O)). 

Therefore (x', u(t)) = (x', J0
1 G(t, s)·u(s) ds) for all t E [0 , 1]. Since the preceding 

equalities hold for every x' E E' , we get u( t) = J0
1 G( t , s )ii.( s) ds for all t E [0, 1]. 

2) Let t E [0, B[. For every fixed s E [0 , 1] and for every small h > 0 with 
t < t + h < B, we have 

G(t + h, s)- G(t, s) 
h 

= f f-t -h + t]/h 
if 0 ~ s ~ t < t + h, 
if t + h ~ s ~ B, 
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Hence 

lim G(t + h, s)- G(t, s) = aG (t, s) = -1 if t :S s :S B, 
{ 

0 if 0 :s s :s t, 

h-.o h at (s-1)/(1-B) ifB:Ss:Sl. 

Let t E [B, 1]. For every fixed s E [0, 1] and for every small h > 0 with B :S t < 
t + h < 1, we have 

G(t+h,s;-G(t,s) = (-Bh+sh)/h(1-B) ifB:Ss:St<t+h, 
{ 

0 if 0 :s s :s B' 

t [h(s-1)]/h(1-B) ift+h:S s:S l. 

Hence 

lim G(t + h, s)- G(t, s) = aG (t, s) = (s- B)/(1- B) if B :S s :S t, 
. { 0 if 0 :s s :s B' 

h-.o h at (s-1)/(1-B) ift<s:Sl. 

Thus G(. , s) is right derivable on [0 , 1[ and its value is given by (3.4) and (3.5) , 
accordingly. Similarly, by analogous computations , it is not difficult to check 
that G(. , s) is left derivable on ]0, 1] and its value is given by (3.4) and (3.5). 

3) From the definition of G, for 0 :S t < B < s :S 1 

IG(t, s)l = lt(s- 1)/(1- B) I 

= t(1- s)/(1- B) :S t(1- B)/(1- B)= t :S 1, 

for B :S s :S t :S 1 

IG(t , s)l = IB(s- t) + s(t- 1)1/(1- B) 

:S B(t- s)/(1- B)+ s(1- t)/(1- B) 

:S (t- s)/(1- B)+ (1- t)/(1- B) :S (1- s)/(1- B) :S 1, 

and for B :S t < s :S 1 

IG(t, s)l = tl(s- 1)1/(1- B) :S (1- s)/(1- B) :S 1. 

From (3.4) and (3.5) it is easy to check that 

aG 
sup l&(t, s)l :S 1. 

t ,s E[O,l) 

4) Let 'tLJ(t) = J0
1 

G(t, s) f( s) ds for every t E [0 , 1] with f E Lk([O, 1]). Then 
uJ(O) = 0 and by the definition of G 

re [lB(s-1) 
'1/,,(l)= - sf(s)rls+ f(slrls = ·n ,UII 
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From 3) and Lebesgue's theorem, 'U J is continuous on [0 , 1]. We claim that 
'Uf is derivable. Indeed, from 2), the function G(.,s) is derivable for every 
fixed s E [0, 1], so is the function G(. , s)f(s). As IIG(t, s)f(s)ll :S llf(s)ll for all 
( t, s) E [0, 1]x[O, 1], it follows that 'U f is derivable and its derivative ·u f is given by 

(
1 8G 

'UJ(t) = Jo fit(t, s)f(s) ds, ViE [0 , 1]. (3.9) 

5) It remains to check t hat u f is scalarly derivable a.e on [0, 1] and its weak 
derivative 'Ltf is equal to f a.e. Indeed by (3.4) we have 

'UJ(t) = t f(s) ds + ~() (
1 

(s- 1)f(s) ds Je 1- Je 
for 0 :S t <B. Hence for each x' E E', (x',·uf(t)) = (x',f(t)) for almost every 
t E [0, B[. Let (e~) be a sequence in E' which separates the points of E. Then 
we have (e~, iiJ(t)) = (e~, f(t)) for all n E N and for almost every t E [0, B[. So 
we conclude that 'Uf = f on [0, B[. By (3.5) 

uf(t) = ~() t (s- B)f(s) ds + ~() j\s- 1)f(s) ds 
1- le 1- t 

for () :::; t :::; 1. So, for each x' E E' we have 

(x', iiJ(t)) = (x', ~ = ~ f( t ) + ~ = ~.f(t)) = (:r', .f(t) ) 

for almost every t E [B, 1] and hence, as above, ·ui(t) = f(t) a.e t E [B, 1]. • 

Let us mention a useful cousequeuce of Lemma 1. 

PROPOSITION 1 Let E /;e a sepaml!le Banach ~JHlCe and let .f : [0 , 1] ---+ E l!e a 
contin·uo'Us rnapving (respect-ively a uwpp'ing ·in Lk([O, 1])). Then the funct·ion 

'UJ(t) = 11 
G(t, s)f(s) ds, \It E [0, 1] 

'is the ·un'iq'Ue C1([0, 1])-sol'Ut·ion (respectively the W~'~ ( [O , 1])-sol'Ution) to the 
differential eq'Uat·ion 

{ 
'Lt(t) = f(t), t E [0, 1], 
u(O) = 0; 'u(B) = u(1). 

The following is a three boundary version of a result clue to Hartman (1964). 
For the sake of completeness we give the proof in full details since several nota
tions and results in the proof are necessary in further applications. 

PROPOSITION 2 Let E l!e a sepaml!le Banach space and let f : [0, 1] x EX E ---+ E 
l!e a mapping satisfy·ing: (i) there ex·ist Lipschitz constants >.1, >-2 satisfying 
A1 + >.2 < ~ S'Uch that 

ll.f(t, x1,yl)- .f(t,x2,Y2lll :S >-1llx1- x2ll + A2IIY1- Y2ll (3.10) 



Boundary val ue proble1ns for second o rd e r differential inclusions 

(ii) f(.,x,y) ·is contin·uuus on [0, 1].fo·,. eve1·y Ji:red (x , y) E EX E. 

Then the differential eq·uat·ion 

{ 
·u(t) = f(t, u(t), ·u(t)), t E [0, 1], 
u(O) = 0; u(B) = u(1), 

has a ·uniq·ue soi'uf'ion ·u E C1([0, 1]) . 

667 

Proof. We will follow the argumeuts of the proof giveu in Hartlll au (1961, 
pp. 423- 424) . Fix /3 E ]0 , 1 [ such that )q + >.2 < (1 - /3)/2. Let 'tn .

maxtE [0,1l llf (t, 0, 0)11 and.,.> 0 satisfy 

T/1. < T[1- 2(>.1 + A2)/(1- ;3)]. 

Let us denote by C1([0 , 1]) the Banach space of all continuous mappings h 
[0 , 1] --> E with continuous <lerivative, equippe<l with the nonn 

llh llc'.([o 1]) =max{ max llh(t) ll, max lli• (t) ll}. 
0 ' tE [0,1l tE[O,ll 

Let h E C1( [0 , 1]) with llhll cb([o,1n ::=; .,., By Proposition 1, there is a uuique 
solu t ion 'Uh in C1([0, 1]) of the differential equation 

{ 
·it(t) = f(t , h(t), h(t)), t E [0, 1], 
·u(O) = 0; ·u(B) = u(1). 

' 1 . 
Since u, has the form uh(t) = }0 G(t, s).f(s, h(s), h(s)) ds for all L E [0 , 1] ami 
since IG(t , s)l ::=; 1 for all L, s E [0 , 1], we have the estimate 

ll ·uh (t) ll ::=; max llf (s , h(s), h(s)) ll , Vt E [0, 1]. 
sE [O,ll 

In particular , if h(t) = 0, for all t E [0 , 1], we have 

ll ·uo(t)ll ::=; rn, Vt E [0, 1]. 

Using the equality ·u1t(t) = J~1 ~~ (t, s)f(s, h.(s), h(s)) ds for all t E [0, 1], an<l the 
inequality ~ ~~(t,s) l ::=; 1 for all t,s E [0, 1], we also have the estimate 

ll ·uo(t)l l :::; m, Vt E [0, 1] . 

Let BcL( [O ,l])(O , T) = {h E C1([0, 1]) : llhllc b([o,1]) :::; T} be the closed ball of 
center 0 an<l ra<lius Tin the Banach space C1( [0 , 1]) equipped with the corre
sponding norm. For the mapping A from Bc1([o ,1])(0, T) into C1([0, 1]) given by 
A(h) = uh, we can write 
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with 0 <a: := 2(>.1 + >.2)/(1 - /3 ) < 1. Fixing h; E Bcb([O,l])(O, T) fori= 1, 2, 
we have 

'Uh 1 (t)- 'Uh 2 (t) 

= 11 
G(t, s)f(s , h1(s) , h1(s)) ds -11 

G(t , 8)f(s, h2(s) , h2(s)) ds 

= 11 
G(t , s)[f(s , h1 (s), i1.1(8))- f(s, h2(s) , h2(8))] d8 

and hence 

ii ·uh1 (t)- 'Uh 2 (t)11 :S max IIJ (8, h1(s), iL1 (s))- f (s , h2 (s), h2(s))ll 
sE[0, 1] 

:S >.1 max llh1(s)- h2(s)ll + >.2 max llh1 (s)- h2(s) ll sE E[O,l] sE [0 ,1] 
2 

:S (>.1 + >.2) llh1- hzllc b([O,l]) < 1 _ /3 (>.1 + >- zl llh1- fdc b( [O ,l]) 

= a: llh1 - h2llcb([o,1])· (3.12) 

In the same way, the equality 

t 8G · · 
·ith1 (t)- 'Uh2 (t ) = Jo Bt(t , s) [f (s , h1(s), h1(s))- f(s, h2(8) , h2(s))] ds 

eusures 

ll ·u,l (t) - ·uh2 (t)ll :S ct llh1 - h2l lc1([o,1]) 

for a ll t E [0, 1], which gives, together with (3.12) 

IIA (h1) - A(h2lllcu[o,1)) :S a: llh1- h2 llc}([o,1]) · 

So, by T heorem 0.1 in Hartman (1964), the mapping A admits a unique fixed 
poiut, that is, the unique C1([0, 1 ])-solution of the differential equation under 
consideration. • 

Using Proposition 2 we are able to produce the following variant . 

THEOREM 1 S·uppuse thut E is u fi nite dimensional space. Let f : [0 , 1] x E x 
E --> E be u mapp-ing sat-isfying the following conditions: 

(i) fo ·r uny fi xed (x,y ) E E x E, f(. ,x, y) is Lebesgue meus'Umble on [0 , 1], 

(ii ) the·re is u constant c > 0 s·uch that lif (t , :c, y)l l :S c(1 + llxl l + IIYII) for- all 
(t,x , y) E [0 , 1] X EX E , 

(iii) f sut·isfie8 cond-ition (3.1 0) of PTOposition 2, that ·is , the·re exist L-ipsch-itz 
constants >. 1 , >.2 satisfying >.1 + >.2 < ~ s·uch !hut 
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Then the different·ial equat·ion 

{ 
·u(t) = f(t, u(t), u(t)), a. e. t E [0 , 1], 
u(O) = 0; u(B) = u( 1), 
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has a ·uniq·ue sol·ution u E W~' 1 ([0, 1]) . Further-, for· some constant rn > 0 which 
depends only on c, AJ , A2 , one has ll ·u(t)l\ S m for· almost all t E [0, 1] . 

Pmof. Fix f3 E]O, 1[ such that A1 + A2 < (1- !3)/2. 
a) Existence . Step 1. By Scorza-Dragoni theorem, for every c > 0 there 

is a compact set J€ c [0, 1] such that the Lebesgue measure of [0, 1] \ J€ is 
less than c and the restriction file x E x E is continuous. So, there exists an 
increasing sequence of compact sets (Jn) in [0, 1] such that the Lebesgue measure 
of [0, 1] \ ln tends to 0 when n --> oo and the restriction off to ln x E x E is 

continuous. Let fn be the Dugundji continuous extension of flln X E x E to 

[0, 1] x EX E. Note that fn satisfies (ii) and (iii), namely 

llh, (t, :c, y) ll S c(1 + ll x ll + IIYII) , V(t, x, y) E [0, 1] x Ex E, (3.13) 

am! 

ll .~,(t , :cl,:tJl) - };,(t , xz, Y2)11 S >-1llx1- xzll + A2IIY1- Yzll, (3.14) 

for a ll (t ,:c1, y1),(t ,:r:2 ,Y2) E [0 ,1] x Ex E. By (3.13) we have 

ll h,(t, 0, 0)11 S c, ViE [0, 1]. 

So rnn := rnaxt E[O,l] llh,(t,O,O)II S c for a ll n EN. (Note that the res~lts in this 

step hold when E is a sepa rable Banach space). It is obvious that f, satisfies 
the hypotheses of Proposition 2. Choosing T > 0 with 

we apply the arguments of the proof of Proposition 2 to each fn in order to 
obtain an estimate for the C1( [0, 1])-solution 'Un to 

{ 
·it11 (t) = _{,,(f;, ·un(t), 'Un(t)), t E [0, 1], 
·u,(O) = 0; Un(B) = 'Un(1), 

so that 

max llun(t) ll S T and max llun(t) ll Sr. 
tE [O ,ll tE[O,l] 

Step 2. Coming back to the preceding equation, we see that 

ll·un(t) ll = llfn(t,un(t), ·un(t)) ll S c(1 + llun(t)ll + ll·un(t)ll) S c(1 + 2T) 

for all n E N and for all t E [0, 1]. So, by extracting a subsequence, we may 
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('un (.)) converges to a continuous func tion 'U(.) having absolutely continuous first 
derivative ·u with ·u = w and satisfying ·u(O) = 0 and 'U(B) = 'U(1). It remains to 
check that 

u(t) = f(t, ·u(t), ·u(t) ) a.e. t E [0 , 1] . 

By construction, there is a Lebesgue null set Nn such that 

'Un(t) = J(t, 'Un(t), Un(t)) 

for all t E I n \Nn. Let No: = ([0, 1]\Unln)U(UnNn) which is Lebesgue-negligible. 
If t t/:. No, there is an integer p := p(t) such that 

·iin(t) = .f(t, 'Un(t), 'Un(t)) 

for all n :;::: p, which entails 

liw sup(:c' , ·u,(t)) = lirn sup(x' , f(t, 'Un(t) , ·u,(t))) :::; (x' , f( t, 'U(t), ·ti.(t))) 
11 n 

for all x' E E' and for II n :;::: p. It follows that, for every measurable set 
A C [0 , 1] and for every x' E E', 

lim j (x', ·u,.(t)) dt = j (x', u(t)) dt:::; j (x', f(t , 'U(t), u(t))) dt , 
" A A A 

using Fatou's lernrna. Consequently ·u(t) = f(t ,·u(t) , ·u(t )) for a .e. t E [0, 1]. 

u) Un'iq'Ueness. Let 'Ul aml 'U2 be two w~· 1 ([0 , 1 ])-solutious to the differential 
equation 

{ 
·u(t) = j (t, ·u(t) , ·it(t)) , a.e . t E [0, 1], 
'U(O) = 0; ·u(B) = 'U(1) . 

For each t E [0, 1], we have 

11 ·u1 ( t) - u2( t) 11 = II ! ( t , ·u1 ( t) , ·u1 ( t)) - J( t , ·u2( t ), ·1i.2(t)) II 
:::; .\1ll ·u1 (t)- 'U2(t)ll + .\21iu1 (t)- ·u2(t) ll 

rl rl ac 
= .\1ll Jo G(t, s)('u1 (s) - ·uz(s)) dsll + .\2ll Jo at(t' s)('ii1 (s)- ·ii2(s)) dsll 

:::; (.\1 + .\2)11 ·u1- 'U211L b( [O,l])· 

Thus 

which ensures u1 = u2 , and hence by (3.3) , we get ·u1 = ·u2. • 
Now we present a Bolza-type example of an optilllal cont rol problem. Let 
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r: [0, 1] -; k(Z) be a compact valued Lebesgue measurable multifunction from 
[0, 1] to Z and M+(Z) be the set of all probability Radon measures on Z. It is 
well-known that M+(Z) is a compact rnetrizable space for the a(C(Z)',C(Z))
topology. 

Let E be a finite dimensional space. Consider a mapping f: [0, 1] x Ex Ex 
Z-; E satisfying: 

(i) for every fixed t E [0 , 1], f (t, ., ., .) is continuous onE x Ex Z ; 

(ii) for every (x, y, z) E Ex Ex Z, f( ., x , y , z ) is Lebesgue-measurable on [0, 1] ; 

(iii) there is a constant c > 0 such that f(t , x, y , Z) C c(1 + llxll + IIYII)BE(O, 1) 
for all (t,x,y) E [0,1] x Ex E; 

(iv) there exist Lipschitz constants .\ 1 , A2 satisfying .\1 + Az < ~ such tltat 

for all (t,xl,Yl,z) ,(t,xz , yz ,z) E [0 , 1] x Ex Ex Z . 

We consider the W~· 1 ([0, 1])-solutions set of the two following second order 
Jifferential equation 

(Do) { 
'uc. (t) = f(t, uc(t), 'uc(t) , ((t)) a. e. t E [0, 1], 
'uc(O) = 0, 'uc(B) = 'uc(1), 

where ( belongs to the set Sr of all original controls, which means that ( is 
a Lebesgue-measurable mapping from [0 , 1] into Z with ((t) E r(t) for a.e . 
t E [0, 1], and 

(Vn) { 
'Uv(t) = fr(t) f(t, 1iv(t), 'Uv(t) , z) llt(dz ) a.e. t E [0 , 1], 

nv(O) = 0, 'Uv(B) = 'tLv(1), 

where v belongs to the set R of all relaxed controls, which means that v is a 
Lebesgue-measurable selection of the multifunction ~ defined by 

~(t) :={a E M~(Z): a(f(t)) = 1} 

for all t E [0, 1]. Note that the existence of W~· 1 ([0, 1 ])-solutions for the preceding 
equations follows from Theorem 1, because the function 

g: (t, :c, y, v) 1--7 hf(t, :r:, y, z) v(dz ), 

(t, :z:, y, v) E [0, 1] x Ex Ex M+(Z), inherits the proverties of the function J, 
namely, the following hold 
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(i i)' for every (x, y,v) E Ex Ex M~(Z), g(.,x,y,v) is Lebesgue-measurable 
on [0 , 1] ; 

(iii)' there is a constant c > 0 such that g(t, x, y, M~(Z)) C c(1 + ll xll + 
IIYII)B£(0, 1) for all (t, x, y) E [0 , 1] x Ex E; 

(iv)' there exist Lipschitz constants >.1, >.2 with >-1 + >-2 < ~such that 

for all (t,xl,YI,v),(t,x2,Y2,v) E [0 , 1] x Ex Ex M~(Z). 

For the sake of completeness, let us mention a general result of convergence 
for Young measures that we need in the proof of next theorems. 

PROPOSITION 3 Let (f!, F, P) be a complete probab·il'ity space, S be a Pol'ish 
space and E be a separable Banach space. Let ('u") be a sequence ofF -meas·ur
able mappings fmm f! to E which converges pointwise on f! to a F -rneasur·able 
mapping u00 and ( (n) a seq·uence ofF -·meas·umble mappings fmm f! to S which 
converges narrowly to a Young meas·u·1·e A00 E Y(f!, F, P ; M~(S)). Let J: f! x 
Ex S -+ ~ be a CaratheodoTy integmnd (that is, J ( w, . , . ) is continuous on Ex S 
for every w E f! and J (. , x , ·u) ·is F -Tneasumble on f! , for every ( x, u) E E x S) 
such that the seq·uence ( J( ., ·u"( . ), ( 11 

(.) )n is unifor·rnly integmble. Then we have 

lim f J(w, ·u11 (w), ("(w))P(dw) = f [ f J(w , ·u"" (w), s)>.~ (ds)]P(dw). n-oo Jo JoJs 
Proof See, Castaing eta! (2002), Proposition 8.1.5. 

Now comes a Bolza-type optimal control problem associated with a second 
order-type differential equation where the controls are Young measures. 

THEOREM 2 Ass·ume thut E ·is a fini te d·irnensional space, I : [0 , 1] xE xE x Z -+ 

~ is a Caratheod01·y integmnd (that ·is, I(t , ., ., .) is continuous onE x E x Z 
for every t E [0 , 1] and I (.,x, y, z ) ·is Lebesg·ue-meas'U1-able on [o, 1], for every 
( x, y, z ) E E X E x Z) which satisfies the cond-ition: 

(C) For any bounded seqv.ence (un) and (v 11
) in C£([0, 1]) and for any seq·uence 

((
11

) in Sr, the sequence(!(. , ·u11
(.) , v 11

(.), ( "(.)))n ·is uniformly integrable. 

Let us consider· the control problems 

and 

(Po): inf ( I(t,u<(t), ·uc(t ), ((t))dt 
(E5r Jo 
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where ·uc (respectively 'Uv) is the unique sol-ution associated with ( ( respec
tively v) to the differential equation (Do) (respectively (Dn)). Then one has 
inf(Po) = inf(PR)· 

Proof Let ((n) be a minimizing sequence for (Po), that is, 

11 ;·1 
lim I(t , 'U(n (t), 'U(n (t), (n(t)) dt = . inf I(i, uc:(t), ·uc:(t), ((t)) dt 

n-->oo 0 ((.)ES'r 0 

where ·uc is the unique W~' 1 ([0, 1])-solution to 

{ 
·uc. (t) = f(t, ·uc(t) , udt), ((t)) a.e. t E [0, 1], 
uc(O) = 0, ·udB) = uc(1), 

and, for each n, ·ucn is the unique Wi-' 1 ([0, 1])-solution to 

{ 
·uc.n (t) = f(t, u.cJt), ucJt), (n(t)) a.e . t E [0,1], 
·ucJO) = 0, uc,.(B) = ·ucJ1). 

As the sequence (·u(J is relatively compact in CE([0,1]) in view of Theorem 1 
alld Lemma 1, we may suppose, by extracting subsequences, that ('u(J con
verges uniformly to a W,i/ ([0, 1]) function u(.), ('ucJ converges pointwise to u 
and ('ucJ O"(L1

, L00 )-converges to ·u with u(O) = 0, ·u(B) = u(1). (See Theorem 4 
and Lemma 5 below for a general compactness result when E is a separable Ba
nach space). Further, the sequence (bcJ of Young measures associated with ((n) 
is relatively narrowly compact in the space Y([O, 1]; M~(Z)) of Young measures, 
and hence by extracting a subsequence, we may suppose that (b(J converges 
narrowly to a Young measure v with vt(f(t)) = 1 a.e. Using the O"(L1,L00

)

convergence of ('ucJ towards ·u and the uarrow convergence of ( bcJ towards v, 
we get, for every Lebesgue measurable set A C [0, 1] 

j ·u(t) dt = lim j ·iic,.(t) dt 
A n-->oo A 

= lim j j(t, 'U(n (t), 'tl(n (t), (n(t)) dt = ; · [ ( f(t, 'U(t), ·u(t), z) Vt(dz)] dt, 
n-->oo A A lz 

the last equality following from Theorem 1 and Proposition 3. So we deduce 
that 

u(t) = ( f(t,'lt(t), ·u(t) ,z) IJt(dz) = / .f(t,'U(t),it(i),z)vt(dz) 
Jz )qt) 

for a.e . t E [0, 1] (because ut(f(t)) = 1 a .e.) with u(O) = 0, ·u(B) = ·u(1). So, 
we have necessarily 'U(.) = ·uv(.), where ·uv is the unique W~' 1 ([0, 1])-solution 
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uniformly iutegrable assumption (C) for the cost functional I and applying again 
Proposition 3 yields 

with 

. inf (
1 

I(t,uc(t),t'tdt),((t))dt = lim (
1 

I(t,·u<Jt),u<Jt),(n(t))dt 
~(.)ESt· lo n->oo lo 

= 11 [l I(t, ·uv(t), ·u,/(t), z) z;t(dz)] dt, 

{ 
·ii.v(t) = fr(t) f(t, 'lLv(t), ·itv(t), z) Vt(dz) a.e. t E [0, 1]. 

'llv(O) = 0, 'Uv(B) = 'llv(1), 

and hence 

inf(Pn) :S 11 

[ l I(t, ·uv(t), tLv(t), z) Vt(dz)J dt = inf(Po). 

As inf(Po) 2 inf(Pn), the proof is therefore complete. • 
REMARK. Theorem 2 and its proof provide new results in relaxed control theory 
because we deal here with a second order type differential equation. 

At this point we are going to show that the W~·\[0, !])-solutions set (Sn) 
of ('Dn) is compact in C£([0, 1]) so tl1at inf(Po) = min(Pn). 

THEOREM 3 Under the hypothelies of TheoTern 2, the W~· 1 ([0, 1])-sol'Utions set 
(Sn) of ('Dn) 'tli co·rnpuct wdh ·respect to lhe topology of ·unijoTm conveTyence 
and lhe W~· 1 

( [0, 1]) -sol·utions set ( S0 ) of (Do) ·i~> dense in ( Sn) with r·espect to 
the same topology. 

Pmof. Theorem 3 follows from the lemma below. 

LEMMA 2 Lel Sr and S E be the set of all Lebesy·ue rneas'Umble select·ions of r 
and ~ Tesprxtively. Then the follow·iny asseTt·ions hold: 

(a) Sr ·is dense ·in SE wdh Tespect to the topology a( L~(Z)', L~(Z)); 

(IJ) Let (v") be a seq'Uence in SE which converges a(L~(Z)', L~(Z)) to 1/
00 E 

SE, and, fo.,· each n E N U { oo}, let Uvn be the ·uniq·ue sol·ution to 

{ 
'Uvn(t) = fr(t) f(t ,u,/n(i), ·uv" (t),z) v;'(dz) a. e. i E [0 , 1], 
'Uv n(O) = 0, '1Lun(B) = 'Uun( 1) , 

then ('uv" (.)) converges unifm-mly to Uv= (.). 

Pmof. (a) follows from Castaing et al. (2002), Lemma 7.1.1. 
(b) Fix (3 E10, 1[ such that )11 + .>- 2 < (1 - (3)/2. Using the estimation in 
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('U,.,n) converges uniformly to a W~· 1 ([0, 1]) function 'U00 
(.) and (·u,.,n (.)) converges 

pointwise to ·u00
(.) . For each t E [0, 1] and for each n EN, let us write 

'Uv= (t)- 'U,.,n(t) = 11 

G(t, s) [ l f(s, 'Uvoo (s), U,., oo (s), z ) v~ (dz ) ] ds 

-11 

G(t, s)[fz f(s , 'Uv= (s), 'U,., oo (s), z) v~(dz)] ds 

+ 11 

G(t , s )[h f(s , 'Uv= (s ), 'Uv= (s ), z) v;·(dz )] ds 

-11 

G(t, s)[h f( s, 'U,.,n(s), ·u,.,n(s ), z) v:'(dz )] ds. 

By assumption, we have 

llf(s, 'Uv= (s), ·u,., oo (s), z)- j(s, 'Uvn(s), U,.,n (s), z) 

:S )qii'Uvoo (s)- 'Uvn(s)ll + A2llu,., oo (s)- 'Uvn(s)ll 

:S (,\ 1 + A2)( 11'Uv=(s)- 'Uvn(s)ll + lluv=(s)- 'Uv n(s)l l) 

< 
1 ~ (3 ( II 'Uv oo (s)- 'Uvn(s) ll + lluv=(s) - 'Uvn(s) ll) 

for all s E [0, 1] and for all z E Z. For simplicity, for each t E [0 , 1] a m! for each 
n E N, let us set 

v 11 (t) = 11 [.lz G(t,s)f( s, 'U,., oo (s), ·u,., = (s),z)v~'(dz ) ] ds 

and 

V
00 (t) = 11 [lz G(t , s) f (s,'Uv oo (s),'Li.v oo (s) ,z )l/~(dz)] ds. 

Note tha t the integrand '-P t. : (s, z) 1-) G(t, s).f(s, 'U'"'"' (s), ·iiv= (s), z ) is Cara theo
dory integrable on [0, 1] x Z because there exists a coustaut Jvf > 0 such that 

sup IIG(t, s)f(s, 'Uv oo (s), 'Uv= (s) , z) ll :S M < + oo 
(t ,s,z )E [O, l ] X [0,1] X Z 

using the estimations obtained in Theorem 1 and Lemma 1. Since (u") converges 
(J(Lc(Z)', L~(z)) to 1/

00
, we have tha t lirn,_,00 v

11 (l) = v00 (t) for every t E [0 , 1] . 
Therefore, for each t E [0 , 1], we have the es timation 

(3.15) 

Since 

r I aG f' \ r /' ,. f f \ • ( \ \ rY!/ I \ l 1 
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and 

using similar computations and Lemma 1, we get the estimation 

(3.16) 

where 

wn(t) = 11 [l ~~ (t , s)j(s, 'Uv = (s), 'Uv= (s), z) v~(dz)] ds, Vt E [0, 1], 

and 

w= (t) = 11 [l ~~ (t, s)f(s, 'Uv= (s), 'Uv= (s), z) v~(dz)] ds, Vt E [0, 1], 

with wn(i) - w= (t) _, 0 for every t E [0, 1]. Adding (3.15) and (3.16) and 
i11tegrating we get the estimation 

(3.17) 

Taking the limits when n _, +oo in (3.17) gives 

The preceding arguments show that for any subsequence of (·uv" ) still denoted 
by (u,/") there is a subsequence which converges uniformly to 'Uv = . T hus ( 'Uv") 

converges uniformly to 'Uv = and the proof is therefore complete. • 

4. Existence results in W~·k([o, 1]) for multivalued differ
ential equations in Ban~ch spaces 

The following result is related to some topological properties of solutions set of a 
special class of multivalued differential equations with three boundary conditions 
in Banach spaces. 

THEOREM 4 Let E be a separable Banach space and let r : [0 , 1] ::::::l E be a 
convex cmnpact valued, measurable and integmbly bo·nnded mult·ifunction. Then 
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1) The W~·~([O, 1])-so(ut'ions set Xr of the d'ifjeTent'iul 'ind·us'ion , 

{ 
u(t) E r(t), a.e.t E [0, 1], 
u(O) = 0; u(B) = u(1), 
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'is convex compact in the Banach space CE([O, 1]) of all coni'in·uo·us nwpvinys 
from [0, 1] into E endowed wdh the topology of ·un'i.foTm conve·tgence . 

2) Let ext(f(t)) be the set of extTeme points of f(t). Then the W~·~([O, l])
solut'ions set Xext(r) of the difjeTential 'incl-usion 

{ 
·u(t) E ext(r(t)), a.e. t E [0, 1], 
u(O) = 0; u(B) = u(1), 

·is a G 0 dense subset of the convex compact set Xr. 

Pmo.f. Step 1. Let us recall that the set Sf, of all measurable selections of r 
is convex and Q'(Lb, L£} )-compact. For the sake of completeness we sketch the 
proof. Let g E L£,([0, 1]). The measurable selection theorem and the Strasseu 
theorem provide a measurable selection f E Sf such that 

( j·1 8*(9 , sf)= lo 8*(g(t), r(t)) dt = 
0 

(g(t), .f(t)) dt. 

It follows from the James theorem that the bounded closed convex set Sf, in 
Lb([O, 1]) is Q'(Lb, L£,) compact. Furthermore, the set-valued integral 

11 

r( t) dt = { 11 

.r ( t) dt : .r E sf,} 

is convex and norm-compact. This follows again from the Strassen formula 

8*(x', 11 

f(t) dt) = 11 

8*(x', f(t)) dt, Vx' E E'. 

It is easily seen from the Banach-Dieudonne theorem (using Lebesgue theorem) 
that the function 

x' r-; 8*(x', 11 

f(t)dt) = 11 

8*(x',f(t))dt 

is continuous on the closed unit ball BE' of E' equipped with the topology 
of compact convergence. Hence J; f(t) dt is norm compact. See Castaing 
(1969,1972); Castaing and Valadier (1977) for a more general result. Again 
by Castaing and Valadier (1977) the multifunction ext(f(.)) is measurable and 
the set S~xt(I') of measurable selections of the multifunction ext(f(.)) is a dense 
_ 1 r f"l r 1 1 1 T 1 ,.- (Y) \ 1 1 
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Step 2. In view of Lemma 1 and Proposition 1, the solutions set Xr and 
Xext(r) are characteriz-;ed by 

Xr = { ·uf: [0, 1]-+ E I 'UJ(t) = lal G(t, s)f(s) ds, 'v't E [0, 1]; f E sf;} 

and 

Xext(r) = { Uf : [0, 1]-+ E I UJ(t) 

= la
1 

G(t,s)f(s)ds, 'v't E [0,1]; f E S~xt(r)} 
respectively. Since 

ll ·uJ(t)- 'UJ(T)ll :::; la
1 

IG(t, s)- G(T, s)[llf(s)[l ds 

:::; la 1

[G(t,s)- G(T,s)llf(s)lds 

for all f E Sf, and for all t,T E [0, 1], Xr is equicoutinuous in C£([0, 1]). Further, 
for each t E [0, 1], the set Xr(t) is relatively compact in E because it is included 

in the nonn compact set .f0
1 

G(t, s)f(s) ds using the obvious property of G (sec 
(3.3)) and the nonn compactness of the multivalued integral of a couvex norm 
compact valued measurable and integrably bounded multifunction mentioned 
above. We claim that Xr is compact in C£([0, 1]). Let (Jn) be a sequence in 
Sf,. As Sf, is weakly compact in Lk([O, 1]) and the sequence ('uf,) is relatively 
c0111pact in C£([0, 1]) by Ascoli's theorem, we extract from (fn) a sequeuce (fm) 
such that Um) converges o-(Lk, LFJ, ) to a fuuction f E S[, and such that the 
sequeuce ('u fm) converges uuifonnly to a continuous function ( E C E([O, l]). Iu 
particular, for every x' E E' aud for every t E [0, 1], we have 

lim {
1 

(G(t , s)x', fm( s )) ds = lim (x', {
1 

G(t , s)fm(s)) ds m-+=h m-+= h 
= la 1 

(G(t, s):r', .f(s)) ds = (x', la 1 

G(t, s)f(s) ds). (4.1) 

As the ruultivalued iutegral .f~ G(t, s)f(s) ds (t E [0, 1]) is norm compact, (4.1) 

shows that the sequence (ufm (.)) = (.{0
1 

G(., s )fm(s) ds) converges pointwise 
to ·u1(.) for E endowed with the strong topology. Since ('utm) converges uni
formly to ( E C£([0, 1]) , we get 'Uf = (. This shows the compactness of Xr in 
C£([0, 1]). At this point, it is worth to mention that the sequence ('ittm(.)) = 

(.[0
1 ~~ ( ., s )fm (s) ds) converges pointwise to ·u !(.)forE endowed with the strong 

topology, using the weak convergence of Urn) and the norm compactness of the 
, r 1 f-Ir. 1, \.,..., r , 1 
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Step 3. Repeating the arguments given in Step 2, it is not difficult to see 
that the mapping .f ~---+ 'UJ from Sf. into Xr is continuous when Sf. is equipped 
with the topology u(Lk, Lf],) and Xr is equipped with the topology of uniform 
convergence. Hence we may concluue that Xext(r) is Jense in Xr with respect 
to the topology of uuiforrn convergence by recalling that the set s;xt (r) of all 

measurable selections of ext(r) is u(Lk, Lf],) Jense in Sf. (see e.g. Castaing and 
Valadier , 1977). It is worth observing that, for every J E Sf., 'UJ and u1 satisfy 
the estimates 

ll 'uJ(t)ll ~ la
1

1f(s)l ds and ll 'uJ(t)ll ~ la
1

1f(.~) l ds, \It E [0 , 1] . (4.2) 

Step 4. This last part follows from a sharp use of parametric Choquet func
tion ini tiated in Castaing anu Valadicr (1977, Theorem IV.3). Let us consider 
the mapping cp : [0, 1] x E _, [0, +oo] 

if :c E r(t ) 

if xtf_f(t) 

where (em ) is a sequence in the dual E' wltich separates the points of E and 
hm(t) := sup{l(em, x) l: x E f(t)}. The associated parametric Choquet function 
is 

cp(t, x) = inf{ (x, y) + (3y(t): y E E'}, 

where 

(3y(t) = sup{rp(t,x)- (:c,y) : x E f(t)}. 

We have cp(t, X) 2: rp( t, X) for all X E r( t) and 

ext(f(t)) = {x E f(t): cp(t,x) = cp(t,x)}. 

So 'UJ E Xext(r) iff UJ E Xr and rp(t , f(t) ) = cp(t , f(t )) a.e. It turns out that 
'UJ E Xext(r) iff for every p E N, UJ E Xr and 

lal cp(t, f(t)) - cp(t, J(t)) dt < 1/p. 

Finally we need to check that the set 

X~:= {'uf E Xr: la1 
cp(t , j(t))- cp(t, j(t)) dt 2: 1/p} 

is compact. Since the integrand 
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is a normal convex lower semicontinuous integrand, the convex integral func
tional 

I,;, (f):= 11 

1/;(t, f( t )) dt 

is weakly sequentially lower sernicontinuous on Lk([O, 1]). So, repeating the 
above arguments involving the sequentially weak compactness of Sf. and the 
compactness of Xr, compactness of x; follows from the lower semicontinuity 
property of I..,. This shows that Xext(r) = npXr \ x;_ • 

COMMENTS. Differential inclusion of the form 

u(t) E ext F(t , u(t) ), ·u(O) = :co 

was initiated by Celliua (1980) and De Blasi-Pianigiani (Pianigiani, 1990) in a 
series of papers. We refer to Gomaa (2000) and the references therein for other 
related results concerning second order differential inclusions. 

Now we proceed to the existence of W~·.~ ([O , 1])-solutions for the differential 
inclusion 

{ 
u(t) E F(t, u(t), ti.(t)) a.e . t E [0, 1], 
u(O) = 0; ·u(B) = u(1 ). 

THEOREM 5 Let F : [0 , 1] x B x B ::::::1 B be a cunve:J: cumzJact val·ued nmltifanc
tion, Lebesg·ue-meas·umble un [0, 1] and ·upzJeT i:i emicont·in·uo·us on E x B and let 
r : [0, 1] ::::::! B be a convex co·rnpuct val-ued, uu,;as·u·ra.ble and integmbly bU'Lmded 
rrmltifancl'ion s·uch that F(t , x , y) C r(t) fu.,. all (t , x , y) E [0, 1] x B x B. Then 
the W~·~ ([O, 1]) -sulutiuns set of the a/Jove d·if]e·rential indui:iion ·is ·rw·nentpiy aud 
compact ·in CE([O, 1]). 

Proof. Step 1. Taking the results obtained in Theorem 4 into account, a map
ping u: [0,1] ~ B is a W~·~([0,1])-solution of the preceding equation, iff there 

exists f E Sf. such that u(,t) := ·uJ(t) = .f0
1 

G(t, s)f(s) ds , 'Vt E [0 , 1] and such 
that j(t) E F(t, ·uJ(t) ,·u1(t)) for a.e. t E [0, 1]. Let us observe that, for any 
Lebesgue-measurable mappings v : [0, 1] -> B and w : [0,1] -> B, there is a 
Lebesgue-measurable selection s E Sf. such that s(t) E F(t, v(t), w(t)) a.e. In
deed , there exist sequences (vn) and (wn) of simple B-valued functions such 
that (vn) converges pointwise to v and (wn) converges pointwise to w respec
tively, for E endowed with the norm topology. Notice that the multifunctions 
F(.,vn(.),wn(.)) are Lebesgue-measurable. Let Sn be a Lebesgue-measurable 
selection of F(.,vn(.),w,(.)). As sn(t) E F(t,vn(t),wn(t)) C f(t), Vt E [0 ,1] 
and Sf. is o-(Lk, L'Ej, )-compact, by Eberlein-Smulian theorem, we may extract 
from (sn) a subsequence (s~) which converges o-(Lk, L'f!,) to a function s E Sf.. 
Here we may invoke the fact that Sf. is a weakly compact metrizable set of 

- - - 1 - ~ - . .. . •• • • 
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to (s~) provides a sequence (zn) with Zn E co{ s:n : m 2: n} such that (zn) 
converges pointwise a.e. to s. Using this fact and the pointwise convergence of 
the sequences (vn) and (wn) and the upper semicontinuity of F(t, ., .), it is not 
difficult to check that s(t) E F(t, v(t), w(t)) a.e. 

Step 2. For each f E Sf., let us set 

<I>(!)= {g E Sf: g(t) E F(t, UJ(t), uf(t)) a.e.} 

where uJ(t) = J0
1 

G(t, s)f(s) ds, for all t E [0, 1] and 'UJ(t) = J; ~~ (t, s)f(s) ds, 
for all t E [0 , 1] (see Lemma 1) . In view of Step 1, iJJ(J) is a nonempty set. 
These considerations lead us to the application of the Kakutani-Ky Fan fixed 
point theorem to the multifunction iJJ(.). It is clear that iJJ(J) is a convex 
weakly compact subset of Sf,. We need to check that ii> : Sf. =i Sf. is upper 
semicontinuous on the convex weakly compact metrisable set Sf,. Equivalently, 
we need to prove that the graph of <I> is sequentially weakly compact in Sf. x Sf.. 
Let Un) be a sequence in Sf,. By extracting a subsequence we may suppose that 
Un) converges weakly to f E Sf,. It follows that the sequences ('uJJ and ('uJJ, 
converge pointwise to 'U 1 and 'U f respectively, for E endowed with the norm 
topology. Let Yn E iJJ(J,) C Sf,. We may suppose that (gn) converges weakly 
to some element g E Sf,. As Yn(t) E F(t, 'UJn(t),uJJt)) a.e., by repeating the 
arguments given in the end of Step 1 we obtain that g( t) E F( t, 'U f ( t), ·u f ( t)) 
a.e. Thus, the graph of <I> is weakly compact in the weakly compact set Sf X Sf,. 
Hence, <I> admits a fixed point. So, we have proved the existence of a solution in 
W~·~([O, 1]). Compactness of solutions set follows easily from the compactness 
in c'e([0,1]) of 

Xr = {·uf: [0 ,1]-> E I 'UJ(t) = fol G(t, s)f(s) ds, Vt E [0 ,1]; f E sf, } 

given in Step 2 of the proof of Theorem 4 and the preceding arguments. • 

REMARK. His worth to mention that Theorem 5 is valid when we only assume 

that, for 1 := .f0
1 1f(t) jdt, F is defined on [0 ,1] x rB£(0,1) x rB£(0,1) and 

satisfies F(t, :r,y) C f(t) for (t,x,y) E [0 , 1] X rB£(0,1) X rB£(0,1) . 

Now we preseut au example of application of Theorem 5 to the existence of 
W~' 1 ([0, 1])-solutions for a class of second order evolution inclusion of the form 

{ 
- ·ii(t) E A(t)u(t) + F(t, u(t), 'u(t)), a.e. t E [0, 1], 
u(O) = 0 E D(A(O)), 'u(1) = u(B), 

where A(t) : E-> 2E , (t E [0 , 1]) is an m-accretive operator in a finite dimen
sional space. Recall that a multivalued operator A(t) : E-> 2E, (t E [0,1]) is 
rn-accr·t:t'iue, if, for each t E [0 ,1] and each A> 0, R(h + >-A(t)) = E, and for 
each :c 1 E D(A(t)),:c2 E D(A(t)) , y1 E J1(t)x1,Y2 E A(t)x2, we have 

!!x1- x2!! :S !!(:c1- :c2) + >-(yl- Y2) )j , (j) 
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If A(t) ism-accretive, then 

1 
>:llh.A(t)x- xll = IIA>.(t)xll 

:S IA(t)xlo := inf llvll, Vx E D(A(t)), 
yEA(t)x 

(jj) 

where h,A(t) = (h + >.A(t))- 1 is the resolvent of A(t), and A>.(t) = t(h
h.A(t)) is the Yosida approximation of A(t). We refer to Vrabie (1987) for the 
theory of accretive operators and evolution equations in Banach spaces. 

PROPOSITION 4 Let E be a fi nde d·irnensional space, A(t) :E---. 2E, (t E [0, 1]) 
be an m-accretive operator and F : [0, 1] x E x E =l E be a convex compact 
valued rn·ultifunction, Lebesgue-rneas·umble on [0, 1] and ·upper sernicontinuous 
on E x E. S·uppose that the following assumptions are satisfied: 

(Hl) For every x E E and joT eveTy >. > 0 the functio n t ~--* (h + >.A(t))- 1x 
is Lebesgue-measurable and theTe exists g E L1([0, 1]) s·uch that t ~--* (h + 
>.A(t))- 1g(t) belongs to L1([0, 1]) joT all>.> 0; 

(H2) TheTe is 1 E L~([O, 1]) such that lhlluBE(O, 1) C D(A(t)) joT all t E [0, 1] 
and such that 

IA(t)xlo + IF(t,x,y) l :S 1(t) 

for all (t, x, y) E [0 , 1] X lhlluBE(O, 1) X lhlluBE(O, 1) . 

Then, theTe is a W~' 1 ( [0, 1])-solution to the pmblem 

{ 
-u(t) E A(t)·u(t) + F(t, ·u(t), ·u(t)), u.e. t E [0, 1], 
·u(O) = 0, u(B) = u(1). 

MoTeoveT, the W~' 1 ([0, 1]) -sol1Ltions set is compact in CE([O, 1]). 

Pmof Let (>.n) be a decreasing sequence in ]0 , 1[ such that An ---. 0. For each 
n E N, let us consider the multifunction 

Mn(t, x , y) = A>.Jt)x + F(t, x, y), 

for every (t,x, y) E [0, 1] x lhlluBE(O, 1) x lhlluB E(O , 1). In view of (jj) and 
(H2) we have 

IMn(t, x, y)l :s r(t), V(t, x, y) E [0,1] X lhlluBE(O, 1) X lhlluBE(O, 1). 

Let f(t) = r(t)BE(O, 1) for all t E [0,1]. Let us consider the set 

( - rr. .,, 



Boundary value problems for second order differential inclusions 683 

Note that (HI) implies that (t,x) ~ A.\Jt)x is a Caratlu§odory mapping. Ap
plication of Theorem 5 and its remark gives a W~' 1 ([0 , 1])-solution 'Un E Xr to 
the inclusion 

{ 
-un(t) E A.\Jt)un(t) + F(t,·un(t), 'un(t)), a.e. t E [0 , 1], (

4
.
3

) 
'Un(O) = 0, Un(B) = 'Un(1). 

By ( 4.3) there is a measurable function Yn (.) such that 

{ 
-u11 (t) = A.\Jt)·u,(t) + !Jn(t), a.e. t E [0 , 1], (4.

4
) 

'Un(O) = 0, Un(B) = u 11 (1) , 

and such that Yn(t) E F(t, un(t), 'Un(t)) for all t E [0, 1]. Using the compact
ness of Xr, we may suppose, by extracting subsequences, that ('un) converges 
uniformly to u, ( un) converges pointwise to ·u, ('i.i.n) converges <5(L2 , L2 ) to ·i.i, 

and (gn) converges <5( L2
, L2

) to a measurable function g with llg( t) II ::; 1( t) a.e. 
Hence g(t) E F(t,u(t), ·u(t)), for almost every t E [0, 1], because of the upper 
sernicontinuity of F(t , ., .). By (4.4) we have 

But 

with 

- 'Un(t)- Yn(t) =A,\, (t) ·un(t) E A(t)J.\, A(t)un(t). 

IIJ.\ ,A(t)·un(t)- u(t)ll ::; llh ,A(t)·un(t)- ·u, (l)l l 

+ll·un(t)- u(t)ll , 

IIJ.\ ,.A(t)·un(t)- 'Un(t)ll = AniiA,\Jt)·un(l)ll ::; Anr(t) 

using (jj) aHd (H2). As Anr(t)---+ 0, from (4.6) and (4.7), we see that 

llh,A(t) ·un(t)- 'tt(t)ll---+ 0. 

By ( 4.6) and ( 4. 7) we have the estirnatiou 

IIJ.\,A(t)u,(t)- u(t)ll ::; r(t) + 211 

r(s) ds 

( 4.5) 

( 4.6) 

(4.7) 

( 4.8) 

for a ll n EN and for a ll t E [0 , 1]. Hence JA , A(.) ·u,(.)---+ u(.) in L~([0 , 1]) by 

Lebesgue's theorem. Now let us consider the opera tor A: L~([O , 1])---+ 2Lt {[O,l]) 

defined by 

z E Ay ~ z(t) E A(t)y(t) for a l!llost every i E [0 , 1]. 

Then A is an m-accretive operator in L~([O, 1]) owiug to (Jh) (see the lemma 
below), and hence its graph is sequentially strongly-weakly closed in L~([O, 1]) x 
L~([O , 1], see e.g. Vrabie (1987). As ·i.i., + Yn converges <5(L2

, L 2 ) to ·ii + g and 
h,A(.)'un(.)---+ u(.) in L~([O, 1]), from (4.5) we get 

-·i.i.(t) E A(t)u(t) + g(i) c A(i)u(t) + F(t, ·u(t), ·u(t) a .e. 

Compactness of the solutions set follows easily from the above arguments and 
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LEMMA 3 S·uppose that E 'is a sepam.ble Hilbert space and A(t) : E -+ 2E(t E 
[0 , 1]), ·is an m-accret·ive opemtor satisfying the follow·ing ass'Umption: 

(H): FaT eveTy x E E and .faT eve1·y A > 0 the fun ction t f---4 (h + .\A(t))- 1x 
is Lebesg'Ue-meas·urable and theTe exists g E Lk([O, 1]) s·uch that t f---4 (h + 
.\A(t))- 1g(t) belongs to Lk( [O, 1]) for· all A> 0. 

Let ('un) and (vn) be seq·uences in Lk([O, 1]) satisjy·ing: 

(i) (un) converyesstTonglytouELk([0 , 1]) and(·vn) conveTgestov ELk( [0 ,1]) 
wdh Tespect to the topology CJ(Lk,Lk); 

(ii) Vn(t) E A(t)·un(t) joT all n. and all t E [0, 1]. 

Then we have v(t) E A(t)u(t) a. e. t E [0 , 1]. 

P·roof. Let h~, ( [O , l]) be the identity operator in Lk([O, 1]) . Let A be the operator 

in Lk([O, 1]) defined by 

v E A-u {:::=:} v(t) E A(t)·u(t) a.e t E [0, 1]. 

As A(t) is accretive for each t E [0 , 1), it is easy to check that A is accretive in 
Lk([O, 1]) . We claim that A is ·m-accretive. Let.\> 0 and let g E Lk([O, 1]). By 
(H) there exists g E Lk([O , 1]) sucb that h: t f---4 (h + .\A(t)) - 1g(t) belongs to 
L1([0, 1]). Since (h + .\A(t)) - 1 is nonexpausive, we deduce tha t the function 
t f---4 (h + .\A(t))- 1g(t) is Lebesgue-measurable and belongs to Lk([O, 1]). It 
follows that , for h(t) := (h + .\A (t))- 1g(t ), for every t E [0, 1], we have h E 
L~([O , 1]) , and furthermore, 

g(l) E h(t) + .\A(t)h(t) , ViE [0 , 1] 

{:::=:} g E h + .\Ah 

{:::=:}hE (Iu + .\A)- 1g 
/;; 

=? R(h~ +.\A)= Lk. 

Thus A is Tn-accretive in the Hilbert space Lk([O, 1]). Consequently, its graph 
is strongly-weakly sequent ially closed. As, Vn -+ v weakly in Lk([O, 1]), and 
'Un -+ u strongly, we conclude that v E Au, that is v(t) E A(t)u(t) a.e. The 
proof is therefore complete. • 

REMARK. Lemma 3 is borrowed from a forthcoming paper, "Functional evo
lution equation govemed by m-accretive operators", by Castaing and Ibrahim. 
Actually, this lenuna holds when E is a separable reflexive Banach space such 
that its strong dual is uniformly convex. 

COMMENTS. Proposition 4 is new since here we deal with a convex compact 
perturbation for a second order differential inclusion governed by a class of m-
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most existence results for evolution equations involving accretive operators A(t) 
depending on t, the domain D(A(t)) is constant. In the context of Proposition 
4, it is worth to observe that, if D(A(t)) contains a closed ball BE(O,r) of 
center 0 and of radius r for all t E [0, 1] and if A( t)x C B E(O, T) for all ( t, x) E 
[0, 1] x BE(O,T), then the problem 

{ 
-·u(t) E A(t)·u(t) a.e. t E [0, 1], 
'U(O) = 0, 1L(B) = 'U(1), 

has at least one W~' 1 -solution. Compare with Attouch et. al. (2001), Az
zam and Bounkhel (2001), Moreau (1977), Tolstonogov (2002), for related re
sults. We refer to Benabdellah et al. (1996), Benabdellah (2000), Colombo and 
Goncharov (1999), Monteiro Marques (1993), Moreau (1977), Thibault (1999) 
for results on sweeping process by closed convex sets, on closed p-prox-regular 
sets - to Poliquin et al. (2000) and on cp-convex sets - to Colombo and Gon
charov (1999) . 

5. Existence results in H!~·b ([O, 1]) for differential inclusions 
in B anach spaces ' 

In this section we provide some unusual applications of Pettis integration to 
differential inclusions in Banach spaces with three boundary conditions. We 
need first some Pettis aualogs of the results developed in the preceding section. 

LEMMA 4 Let .f E Pk([O, 1]) and let 'us consider the funct-ion 

'UJ(t) = 11 

G(t, s).f(s) ds, Vt E [0, 1], 

whe·re G( t, s) ·is the funct-ion defined in Lermna 1. Then the .fulluuring assediuns 
hold: 

(1) t f--) 'uJ(t) is a conlin'UO·us 1napping from [0, 1] into E (shoTlly 'Uf E 
CE([0,1])); 

(2) 'UJ(O) = 0, 'UJ(B) = ·uJ(1); 

(3) The function ·u f is scalarly deTivable, that is, for every x 1 E E 1
, the scalaT 

function (x 1
, 'U f ( .)) ·is derivable, and 'its weak derivative ·u 1 satisfies 

1• ( 1 'U f ( t + h) - 1L j ( t) ) ( 1 • ( ) ) nn x - x 'Uf t 
h-+0 ' h - l 

rl fJG ( (1 fJG \ 
= -;::-:-(t,s)(x1, f(s))ds= x 1

, -~-(t,s)f(s)ds 
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joT all t E [0, 1 J and for all x' E E'. Consequently 

Vt E [0, 1], 

and ·u f ·is a continuo·us mapp·ing from [0, 1 J 'i·ntu E. 

( 4) The function ·u f is scalaTly deTivable, that is, juT eveTy x' E E', the scalaT 
function (x', ·u J(.)) is derivable, and ds 'Weak: de1·ivative ·u f is eq·ual to f 
a. e. 

Pmuf (1) As ( t, s) r--. G( t, s) (x', J( s)) is a Caratheodory function on [0, 1 J x [0, 1 J 

with IG(t,s)(x' ,f(s)) l ~ l(x',J(s))l and 

(x', 'UJ(t)) = ( x', 11 

G(t, s).f(s) ds) = 11 

G(t, s)(x', f(s)) ds, 

from Lebesgue's theorem, it is easily seen that t r--. (:r', u 1( t)) is continuous on 
[0 , 1] for every x' E E'. So, u f is a continuous mapping from [0, 1 J into the 
weak space Ea, shortly 'LLJ E CEa([O, 1]) . In order to prove that 'UJ belongs to 
CE([O, 1]), we need a delicate argument. First, since f is Pettis integrable, the 
set {hx{) := l(x', f(.))l ; ll :r' ll ~ 1} is uniformly integrable in L~([O , 1]). Let 
(tn) be a sequence in [0 , 1] converging totE [0 , 1]. We have 

ll·uJ(tn)- '1LJ(t) ll = Slp l(:r',ui(t,)- 'UJ(t))l 
x ' EBt:' 

~ Slp rl IG(tn, s)- G(t, s)ll~x'(s) ds. 
x'EBE' lo 

( 5.1) 

As the sequence (vn(-)) := (IC(t,, .) - G(t, .)1) is uniformly bounded and coll
verges pointwise to 0 and t he set {hx{) : x ' E BE'} is uniformly integrable i11 
L~([O, 1]), (vn(.)) converges uniformly to 0 ou this set in the duality (LR' , L~) 
in view of a lemma clue to Grotheuclieck (1964), see also Castaing (1980) for a 
more general result concerning the Mackey topology for bounded sequences in 
L£, . Hence the second member of ( 5.1) converges to 0. This proves the strong 
continuity of ·u f. This fact can be deduced from a general compactness result 
given below. We prove the continuity of ·u f by using the same arguments and 
by taking the property of~~( . , .) given in (3) of Lemma 1 into account . 

(2)-(4) follow from the same computations used for (3.7), (3 .8) and (3 .9) in 
Lemma 1 by observing that the funct ions s r--. G(t, s)f(s) and s r--. ~~ (t, s)f(s) 
are Pettis integrable and equali ty "= a.e." is equivalent to "=" scalarly a .e. • 

The following is an analogous version of Theorem 5 providing the existence 
of solution in w~:k([o, 1]) for differential inclusion of second order of the form 

{ 
·i.i.(t) E F(t, u(t), ·u(t)) a .e. t E [0, 1], 
n(O) = 0; u(B) = u(1). 
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LEMMA 5 Let r : [0, 1] =t E be a convex compact valued measumble, and 
scalaTly Pettis uniformly integrable rnult·ifunct·ion. Then the W~'k([O, !])-solu-
tions set Xr of the multivalued differential eq·uation ' 

{ 
·u(t) E r(t), a.e. t E [0, 1], 
u(O) = 0; ·u(B) = u(l), 

·is convex compact in the Banach space CE([O, 1]) of all contin·uous mappings 
from [0 , 1] into E endowed with the topology of uniform convergence. Further, if 
a seq·uence ('un) of Xr converges uniformly to ·u, then ( un) converges pointwise 
to ·u and ( ii.n) converges CJ(P}, L 00 0 E') to ii.. 

Proof Step 1. Let us recall that the set src of all Pettis integrable selections off 
is nonempty and sequentially compact for the topology of pointwise convergence 
on L00 0 E' and the multivalued integral 

is convex and norm compact in E (see Armani and Castaing, 1997; Anuani et 
a!., 1998; Castaing, 1996). 

Step 2. In view of Lemma 4, the solution set Xr in W~·k([O, 1]) is charac-
terized by ' 

Xr = { 'UJ: [0, 1]-+ E I UJ(t) = lal G(t, s)f(s) ds, Vt E [0, 1]; f E sre }· 
Further, we have 

~ x'~jE' fa! IG(r, s)- G(t, s)ll8*(x', f(s))l ds (5.2) 

for all f E sre and for all t, T E [0, 1 J. As r is scalarly Pettis uniformly inte
grable, the set {l8*(x',f(.))l: x' E BE'} is uniformly integrable in L~([O,l]). 
So if (tn) is a sequence in [0, 1], which converges totE [0, 1], taking tn in place 
of r in (5.2) we obtain that 

s:p r! IG(tn , s)- G(t, s) ll8*(x' , f(s))l ds-+ 0 
x'EBs' lo 

by applying again the Grothendieck lemma (Grothendieck, 1964) as in Lemma 4. 
By (5.2) again we see that Xr is equicontinuous in CE([O, 1]). Further, for each 
t E [0, 1], the set Xr(t) is relatively compact in E because it is included in 

the norm compact set J0
1 

G( t, s )f( s) ds because of the obvious property of G 
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norm compact valued, measurable and scalarly Pettis uniformly integrable mul
tifunction mentioned in Step 1. We claim that Xr is compact in CE([O, 1]). Let 
Un) be a sequence in sr:c. As sr:e is sequentially compact for the topology of 
pointwise convergence on L00 0 E' and the sequence ('u 1J is relatively compact 
in CE([O, 1]), by Ascoli's theorem, we extract from (in) a sequence (Jm) such 
that (Jm) converges O'(Pk, L 00 0 E') to a f nction f E S{:e and such that the 
sequence (uJ,J converges uniformly to a continuous function ( E CE([O, 1]). So, 
for every x' E E' and for every t E [0, 1], we have 

lim {
1 

(G(t, ii)x', fm(.~)) ds = lim / x', ;·I G(t, s)fm(s)) ds 
m-++ oo } 0 m-++oo \ 0 

(5.3) 

= fo
1 

(G(t, s)x', f(s)) ds = (:c', 11 

G(t, s)f(s) ds ). (5.4) 

As the rnultivalued integral J~ G(t, s)f(s) dii (t E [0 , 1]) is norm compact, (5.4) 

shows that the sequence (uJ,J)) = (.{0
1 G(., .-;).f,11 (s) ds) converges pointwise 

to 'UJ(.), for E endowed with the norrll topology. As (uim) converges uni
formly to ( E CE([O, 1]), we get ·u1 = ( . Tlris shows the compactness of Xr in 
CE([O, 1]) . At this point , it is worth mentioning that the sequence ('uf"' (.)) = 

(.{0
1 ~~ (., s)fm(s) ds) converges pointwise to 'lLJ(.) , forE endowed with the norm 

topology, by using the O'( Pk, L 00 0 E') convergence of (.fm) aud the norm com

pactness of the rnultivalued integral J~1 ~~ (t, s)l'(s) ds. The last points of the 
lenuna follow from the arguments a bove and the sequential a(Pk, L 00 0 E') 
compactness of sr:e. • 

Now we proceed to t he existence of solut ions in wJ:k([o, 1]) for the differ-
ential inclusion ' 

{ 
·u(t) E F(t , u(t), u(t)) a.e t E [0, 1], 
u(O) = 0; u(B) = u(1) . 

THEOREM 6 Let F : [0, 1] x E x E =:::: E IJ e a convex cmnpact val·ued nwll'i
function, Lebesgue-meas·umble on [0, 1], and uppe·r sem:icontin·uo·us onE x E, 
and let r : [0, 1] =4 E be a convex compact val·ued, meas·uruble and scala'l'ly 
Pettis ·uniformly integmble multifunct·ion s·uch that F( t, X' y) c r( t ) faT all 
(t,x,y) E [0 , 1] x Ex E. Then the wJ,·k ([o , 1])-.sol-utions set of the above diffe7·
ent·ial incl-usion is nonempty and cmnpact ·in C£([0.1]). 

Pmof Step 1. By virtue of Lemma 4, a mappiug ·u: [0, 1] _,E isa wJ,·k([O, 1]) 
solution of the preceding inclusiou , ifF there exists .f E S{:" such tha t n(L) := 

UJ(t) = J0
1 

G(t, s).f(s) ds, for a ll t E [0, 1] and such that .f(t) E F(t, 'lLJ(l), 'ui(t )) 
for a .e. t E [0, 1]. Let us observe that , for auy Lebesgue-1neasurable rnappiugs 
v : [0 , 1 J --+ E and w : [0, 1 J --+ E, there is a Pettis integrable sclectiou .'i E 
Sfc such that s(t) E F(t, v(t), w(t)) a.e. Indeed, there exist two sequences 
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to v and (w,) converges pointwise to w respectively, for E endowed with the 
uonn topology. As the multifunction F(t , v, ( t) , w, ( l )) is Lebesgue-measurable, 
there is a Lebesgue-measurable selection s, of F(., ·u,(.), w,(.)) . As s,(t) E 

F(t, v" (t), w,(t)) c f(t) , for all t E [0, 1] and sr" is sequentially a(P}, uxo ® 
E')-compac t, we may extract from c~n) a subsequeJICe (s~) which converges 
a(P},L00 ® E') to a functions E S{:c. Let (ei:,)k EN be a dense sequence for the 
Mackey topology T(E' , E). Let k E N be fixed. Applying the Mazur 's trick to 
((ei:,,.,~( . ))), provides a sequence (z,) with Zn E co { (er,,s~1 ( .)): rn. ~ n} such 
Lhat (z,) converges pointwise a .e. to (er,, s( .)). Using the upper semicontinuity 
of F(t , ., .), it is not difficult to check tha t (er,, s(t)) ::; 5*(er, , F(t , v(t), w(t))) a .e. 
From Castaing and Valadier (1977, Prop. III-35) , we get the a bove inclusion. 

Step 2. For auy ·u E Xr, let us consider the multifunction 

\It('U) = { v E Xr: ·u (t) E F(t, 'U(t), u(t)), a.e. }. 

By Step 1 and Lemma 4, \II('U) is a nonempty convex subset of Xr. It is easy 
to check that \It : Xr ~ Xr has a closed graph . Let ('u,, vn) E graph( \It) such 
tha t (u," vn) converges to (u, v) in Xr x Xr. By Lemma 5, ('U.,, V 11 ) converges 
uniformly to (·u, v), 'Un (respectively ·u11 ) converges pointwise to u (·u), for E 
endowed with the norm topology, and 'Un (respectively ·u,) converges a(P} , L00 ® 
E') to ·ii (·u). As we have 

·u,(t) E F(t, u,(t), u,.(t)) a.e., 

by applying a closure-type theorem from Castaing and Valadier (1969 , 1977) or 
the arguments given in Step 1, we get 

·u(t) E F(t, ·u(t), ·u(t)) a.e. 

So, the seLs \It( u) a re closed and hence compact in Xr a nd t he multifuuct iou lfJ 

is upper semicontinuous. Hcucc \It atlini ts a fixed point , t hat is a solution of 

{ 
·i.i.(t) E F(t , u(t), ·it(t)) a .c. L E [0, 1], 
u(O) = 0; 'U(B) = u(l). 

The compactness of the set of solutions follows. • 
COMMENTS . 1) There arc several a ltern ative proofs for the weak compactness 
of Sf, Arnrani et al. , 1992; Alll raui a ud Castaing, 1997; Castaing, 1996; Castaing 
and Valadier , 1977; Castaiug ami Saadou ne, 2000) while the strong compactness 

of t he set-valued integral .f~1 f ( t) dl was first initiated by t he second a ut hor (Cas
taiug, 1969, 1972) via the l3aua.ch-Dieudouue theorem (see e.g. Grothendieck , 
1964). This fact appeared iu several places (El Arnri and Hess, 2000; Castaing, 
1984; Castaing and Valad ier, 1977; CasLaing eL a l. , 2002). Actually, both weak 

co mpactness of Sf, and sLrong colllpactness of J~ r(t) cit can be obtained by 
new tools of Young measures (Castaing et al. , 2002). Ot her contributions for 

1 • T) 1 1 /·1 f\f'\ 1"' f'\f\1\f\ ilf'\Af'\ 1 \ 11 1 1 ( 1 ()() ""1 \ 
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Piccinini and Valadier (1995), Roubfcek (1997), Valadier (1990a, 1990b, 1994). 
Sequential weak compactness of Sfe was demonstrated in Arnrani and Cas
taing (1997), Castaing (1996), via Komlos convergence (Komlos, 1967). For 
the Bochner case we refer to Castaing (1996), Castaing and Saadoune (2000), 
Colombo and Goncharov (1999), Ulger (1991). The strong compactness of the 

set-valued Pettis integral J0
1 f( t) dt can be proved by using Banach-Dieudonne's 

theorem or a typical convergence result for Young measures (Castaing et al., 
2002, Theorem 6.3.6). 

2) The lower semicontinuity for functional integrals can be found in Balder 
(1986, 1995, 2000a, 2000b), Castaing and Clauzure (1982), Castaing and Val
adier (1977), Castaing et al. (2002), Jalby (1992), Valadier (1990a). 

3) Theorem 6 provides a new type of second order differential inclusion 
dealing with unusual W~· k solutions. When r is a convex compact valued, 

mesurable and integrably 'bounded multifunction, it is obvious that W~·k solu

tions coincide with W~·.~ solutions, and so Theorem 6 is reduced to The~rem 5. 
These results extend to infinite dimensional spaces the ones obtained in Gomaa 
(2000), Gupta (1992), Ibrahim and Gomaa (2000), Marano (1992, 1994), Ricceri 
and Ricceri (1990). In this context, we refer to Castaing and Valadier (1969), 
Maruyama (2001) dealing with first order differential inclusions in locally convex 
spaces. 

4) By assuming that the multifunct ion r in the above results are weakly 
compact valued and the multifunction F is upper sernicontinuous on Ea x Ea, 
we get the existence of weak solutions, see e.g. Castaing and Valadier (1969), 
Maruyama (2001). Details are left to the readers. 
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