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1. Introduction

In this paper, we consider the finite-element discretization of the optimal control
problem

(P) minJ{u) = lj {(y(x) = yalx))* + vu(z)®} d,
2 I
subject to (y,u) € (C(T) N HY(O)) x L= (£2),
Ay + fly)=uinfl, y=0on T, (1.1}
velU={uel=(N)|a<u(z)<P foraa xe),

where {} € RB" is a convex bounded domain, I' is the boundary of £, and A
denotes a second-order elliptic operator of the form

Aylz) == S Djilag(z)Daulz)).
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Here, D; denotes the partial derivative with respect to x;, u is the control, and
y = y(u) is said to be the associaled stale. The function yg is given in L*(11),
and o < 3, v > 0 are real constants.

Based on a standard Anite-element approximation, we set up an approximate
optimal control problem (P, ). Our main aim is to estimate the error |- in
the maximum norm, where T stands for a fixed locally optimal control of (P) and
iy, is an associated one of (Py). Error estimates for optimal controls certainly
cannot improve those known for the solutions of elliptic equations. However, one
should expect that they reflect the order of the associated estimates {or equa-
tions. Due to the non-convexity of (7) and the presence of control-constrainis,
this is not an easy task. Optimal L*-estimates are known since long time for
linear-quadratic elliptic control problems, see Falk (1973) or Geveci (1979). Re-
cently, L™ -error estimates being optimal in that sense have been derived for the
case of nonlinear equations in Arada, Casas and Troltzsch (2002).

Moreover, we mention two further papers related to the semilinear elliptic
case. Hecently, Arnautu and Neittaanmiki (1998) contributed error estimates
to this class of problems. Their technicque, however, slightly overestimates the
order of the error. We also mention the paper by Casas and Mateos (2001), who
carefully study error estimates for semilinear elliptic equations, In contrast to
the elliplic case, quite a pumber of papers was devoted to parabolic problems,
although the associated theory is far from being complete. We refer to the
references in Arada el al. (2002).

Our paper complements the theory presented in Arada et al. (2002), where
error estimates have been derived for a subsequence (T, )y, of globally oplimal
controls for (Fy,) that converges to an optimal control T of (P) as h | 0. The
existence of this sequence has been obtained by weak compactness argunents.

The main difference of our paper with respect the one cited concerns the
existence part. Here, we concentrate on locally optimal controls, since they are
the natural result of numerical optimization algorithms. Suppose that a locally
optimal control @ of () is given. Then we expect to have a sequence (T, )y, of
locally optimal controls for (Fy) converging to . This should be true for each
fixed local solution @ We prove that each locally optimal control of () can
be approximated by locally optimal controls of (Fy), while Arada et al. (2002)
only guarantee that the computed global solutions contain a subsequence that
converges Lo a certain globally optimal control.

Therefore, we start from a fixed reference control T being locally optimal for
(). Next we prove the existence of a sequence (T, )5 of locally optimal controls
for (Py) converging to %. We do not use compactness arguments. Finally, the
order of convergence is quantified by estimating the error @y, — T The crror
analysis is similar to that of our paper Arada et al. (2002).

However, our problem (P) is simplified to shorten the presentation. In our
former paper, the objective functional and the nonlinearity f are more general.
Following the lines of Arada et al. (2002), the vesults of this paper can be
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Here, A® is the formal adjoint operator of A. The solution ¢ = ¢(u) is the
adjoint stale associated with u,

THEOREM 3.1 If % is a local solution of (P), then there exists an adjoinl slale
7 = w(W) € HY ()N W2P(Q) such that

AP+ (@F=F-ya in, (3.2)
j;{awm{u—mdz;u Yu € U9, (3.3)

The classical proof is omitted. By a further discussion, the variational in-
equality (3.3) is seen to be equivalent to the following known relation:

(z) = Proj, 4 (—éw[ﬁ]{z}), (3.4)

where Proj, g denotes the projection from R onto lev. ). Since (P) is non-
convex, the optimality conditions above are not sufficient for (local) optimality,
To have this, in addition the following second-order sufficiend oplimality condi-
tion is assumed:

(SSC) There are § > 0 and 7 > 0 such that
J"(@p? 2 6 |lvllz (3.5)
holds for all v e L™(0) salisfying
20 ifHx) =a,
vlz)4 <0 if®x) =0, {3.6)
=0 o |@z)+ri(z)| =7 >0

All functions v satisfying the conditions of (3.6) form a cone that we shall
call the r-eritical cone. The set

Ar = {z € Q| [@(x) +vulz)| = 7}

is the set of all points where the control constraints are strongly active. This
notion was introduced by Dountchev, Hager, Poore and Yang (1995).

MNotice that J is defined as a functional on L™(£2). It is this space, where
the derivatives J' and J" are defined. The concrete expression for the second
derivative can be formulated by the Lagrange function

L) = 5 [ {(0(a) = wa@)) + vule)} da

HH Irf._..l"l-lr ks Flaa IR A
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which is here only formally defined (in our setling, Ay is not a function; by
selecting a slightly different state space for y, this can be made precise). Then,
see Casas and Tréltesch (2000),

J”{u}{uhui} = DUHL[yrus‘P}[yh yﬂ} + DuuL[y:-“"- ‘P}{uhuﬂ
= [(-r@ew)nnds+v [ v,
b1

1]
where y; € H} () solve the linearized equation —Ay; + f'(y)w: = u;. Therefore,
(S5C) requires the coercivity of L™ on the cone defined by the controls u of the
r-critical cone and the associated solutions y(u) of the linearized eguation.

4. Finite-element approximation of (P): Basic results
4.1. The approximate problem (F,)

Here we define a finite-element based approximation of the optimal control prob-
lem (P). To this aim, we consider a family of triangulations (7 )aso of 1. With
each element T' € Ty, we associate two parameters p(T') and o(T'), where p(T')
denotes the diameter of the set T' and o(T') is the diameter of the largest ball
coutained in T'. Define the mesh size of the grid by h = maxrer, p(T'). We
suppose that the following regularity assumptions arve satisfied.

(A2) There exist two positive constants p and & such that
plT) I
o) =7 o =*
hold for all T € T, and all i > 0.
Let us take {3, = Urer, T, and let 2, and Ty denote its interior and its
boundary, respeciively. We assume ithat €1, is couvex and that the vertices of
Ty placed on the boundary of 'y, are points of T, It is known that

|\ | < CH2. (4.1)

Now, for n = 2, to every boundary triangle T' of 7, , we associate another triangle
T ¢ T with curved boundary as follows: The edge between the two boundary
nodes of T is substituted by the part of I' connecting these nodes and forming
a triangle with the remaining interior sides of 7", We denote by T, the union of
l_llmc l:'llﬂ-’ibd boundary triangles with the interior triangles to £ of T, so that
P=Uz. 2 T. For n = 3, tetrahedra are analogously. Let us set

Un = {u€ L®(Q) | ugz is constant on all T € T}, Up? = Uy n U™,

={yn € C(Q) | yny7- € Py, forall T € T, and yy =0 on 0\ O},

where P; is the space of polynomials of degree less or equal than 1. For each
uy € Uy, we denote by yy, = g (us) the unique element of Vj, that satisfies

e ml = fl"fr. — e Vi e o = W a4 ah
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where a : V¥, % V, — B iz the bilinear form defined by

ay,m) = fn (3 es(@Day@)Dn()) da.

1,3=1

In other words, ys(us) is the approximate stale associated with us. In the two
integrals above, the test function ny, vanishes outside £} so that there is no
difference between integration on @ and £,. Existence and uniqueness of this
solution gy () can be shown under our assumption (A1), see Casas and Mateos
{2001) and Mateos (2000). The finite-dimensional apprezimate optimel control
problem (Fy) is defined by

5 1 y
(Py)  minJyiuy) = Ef {(yn(un) = va)? + vud Y dae, uy, € UP.
i,

The existence of at least oune global solution for (F,) follows from the continuity
of Jy, and the compactness of U4, However, this global solution need not be
unique. Morveover, it can be far from the reference solution @, Therefore, we
do not concentrate on global solutions of (F, ). Again, we consider cerlain local
solutions.

REMARK: We tacilly assume thet we are able to evaluate the inlegrals in
(4.2) and (Py) eractly. In general, numerical integration hus to be vsed, which
generates another sort of ervors. We do not include them in our anilysis.

4.2. Characterization of local solutions of ()

Local solutions of the approximate problem (P, ) are defined analogously to (P):
A control Ty, € UP? is a local solution of (Py), if

Julup) = Ja(@) Vun € UM with JJup =0 < 7

holds for a certain r > 0. Associated necessary optimality conditions are similar
to those for () in Section 3.: With the solution T, we associate the diserele
adjoint equation for gy € Vj,

J

¥ ﬂ-‘;”ﬁﬂ::ﬂermdr+_/; Sy (@n ) on mn da
{ ¥

i,3=1
= f{!.rr.l{ﬁr.} = ya) mn dz ¥ € V. (4.3)
1

THEOREM 4.1 Suppose that assumplion (A1) is satisfied. If Ty is a local solu-
tion of (P), then there exists a unigue solution B, = @ (%) € H()NC™ ()
of the discrete adjoint eguation (§.3) such that the variational inequality

] (B + vin)(u—T)dz >0 Yue U o
N
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The standard prool of this result is omitted. Throughout the sequel, for v
fixed in L>=(1), we denote by ys(v) and yx(v) the solutions of (4.2) and (4.3),
respectively, associated with v. The next result is the discrete counterpart of
{3.4). The discrete local solution ), satisfies

1
& b= ijlmﬂ](-m ]; ;:hl{i'f;.}{;u:}rf;r) VT T (4.5)

In this paper, we frequently use an interpolation operator IIy, : L*(f1) — Uy,
that assigns piecewise constant functions on  to functions of L*(Q). To define
I15. we first introduce the interpolation aperator m, : L3(0Q) — L2(f4,) by

1
{mp vl = ,—f v(x) d.
7| Jr
We extend 7, to [Ty, by

(mpu)(z) ifzeT

(Mav)(x) = { (mav)(z) ifzeT\T.

Here, x, is the projection of z onto the boundary of the triangle {or tetrahedron)

T that is covered by 7. Let us mention an important property of Il : I v is a
Lipschitz function, then

e = Myl < ch.

T'his is seen as follows: On triangles T' € Ty, we have max e [v{z) = ([lyv)(z)| =
max.er [v(z) — (muv){z)] < ch by the known properties of the interpolation
operator 7y, and the Lipschitz property of v. If z € T\ T, then

jlx) = (Hyv)(z)] £ [vlz) = v(zs)| + [v(xa) = (Mav)(=)|

<eh+ |o(z.) = (mpv)z.)| < el
Here, we have used the fact that dist(x,,T) < ch. The same estimate follows

for the L:-norm using (4.1). With this interpolation operator, (4.5) admits the
[orm

. 1 =
Wy = Frﬂ][n.ﬂ}(_;nh?h{“h})~ (4.6)

since the extension of (4.5) from boundary triangles (or tetrahedra) T to T is
the same on the left and right hand sides of (4.6).
4.3. Error-estimates for the state and the adjoint state

Here we provide some known results on the finite element approximation of
the state equation (1.1) and its adjoint equation (3.1). They are basic for
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Recall that y(v) and yx(v,) are the solutions of (1.1) and (4.2) corresponding
to v and vy. Analogously, ¢(v) and ¢s(vy) are the solutions of (3.1) and (4.3)
corresponding to v and vy,

In all what follows we tacitly assume that (A1) and (A2) are satisfied. More-
over, we fix once and for all a local reference solution T for (P) that satisfies
(85C). Therefore, we do not mention (A1), {A2), and (55C) in further state-
ments.

All controls u, v, us, vs etc. used below are contained in U%?, Therefore,
they are uniformly bounded, and the same holds true for all associated states
and adjoint states so that all y, , vk, v are bounded by the same constant M.

THEOREM 4.2 Let v and vy, belong to U™, Then the estimutes

llw(r) — vnlvn)l gy + llelv) — onlvn)llmgy < C(h+ llv—vallz), (4.7)
lw(v) = yulva)llz + lelv) = enlvn)llz € C (1 + |lv = vall2), (1.8)
Ny(v) = yn(wndllee + () = wn(vn)llee < C (B + [lv = vy [l2), (4.9)

hold, where C = C{fhn) is a posilive constanl independent of I, and A =
2 — nf2. Moreover, if the triangulation is of nonnegative type, then

l(v) = unlwn)llee + () — wn(vallloc < C (h+ v = vall2). (4.10)

holds independently of h.

For the proof of this theorem the reader is referred to Arada et al. (2002).
In all what follows, let us fix

2—=nf2 for requlor triangulations
A= : ; .
1 Jor triangulations of nonnegative type.
4.4. Convergence results

Aiming to derive error estimates, we have to find a sequence (T;)s of local
solutions of (F,) tending to T as h | 0. To solve this nontrivial problem, we
proceed as follows: For € > 0 we consider the auxiliary control problem

(Pf)  minJy(uy) = %f {(yn(un) — va)* + vui b dz, uy € URS,
178
where
U}fi = {ue U | (4T)(z) — £ < u(z) £ (IT)(x) + € in 02}

The interpolate TTxW belongs Lo U::_. and so the admissible set of (Fy) is not
empty. This problem has a global solution uf, hence it is also a local solution
for (F;). We show that this solution is even a local solution of (Fy) and tends
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It is known that the second-order condition (S5C) implies the existence of
positive constants k and r such that the quadratic growth condition

J(u) 2 J(T@) + & [Ju - 73 (4.11)

is satisfied for all u € U*? with ||u — %/ < r, see Casas, Troltzsch and Unger
(2000). Now take £ := v /2. Then for all ¢ € ¥ and all sufficiently small h, say
0<h<h,

uw€ Ul = lu-1llx <1, (4.12)

because [|u = Tl|ec < |Ju = MiT|o + ||TIaT = W|ac, the first term is not greater
than r/2 by the definition of U,‘:‘I‘i, and the second term tends to zero as i | 0.
Notice that (4.11) and (4.12) imply

Ju) 2 )@ +wllu-T; Yue Uit (4.13)
LEMMA 4.1 For all ¢ €, the olgective values Jy(uf) converge Lo J(T), 1.e

; PO v

lim Ja(up) = J(®).
Proof. We have

Ju(ug ) = J{ug) + (Faluf) = Hup)) 2 J(@) = ch,

since [|uf |l is uniformly bounded, hence |Jy(uf) = J(uj )| < ch. Moreover,
J(uf) = J(%) follows from (4.13). On the other hand, we know that 11,7 € Upd,
and the optimality of uf for (Pf) gives

Tn(uf) € Ja(TAT) = J(E) + (JOILT) — J@) + (Jull167) - J(1,7))
< J(@) +ch,

since ||l T—1|| < eh and |Jy(v)=J(v)| € chforallw € U"Y, Both inequalities
imply the statement of the Lemma. |

LEMMA 4.2 There are 0 < e, < F and 0 < hy < & such that

lon(uf) (@) + vuf (z)] 2 7/4 (4.14)
f(z) = () (4.15)

hold foralle < e, allh < e, and all z € T, if T has a non-emply intersecltion
with Ar.

Proof. We know that on A, either @(7)(x) + v@(xz) > 7, where TW(z) = a or
wlmh(x) + vii(x) £ =7, where T(z) = J. Now take an arbitrary but fixed T'
having a non-empty intersection with A,. If & is sufficiently small, then we can
assume that one of these two cases holds for all z € A: N7T, since the function
w(T@) + v is Lipschitz continuous. We consider the case
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where T(z) = a on A, NT. The arguments for @(x) = J are analogous. There-
fore, if h is sufficiently small, then

@(@)(x) + vi(z) 2 3r/4 VreT,

thus also %(z) = a on T. If £ is sufficiently small, say & < &,, then ||uf — 0|
is s0 small that

wn(uf) + vuf, = (@) + 3 + (p(uf) = () + v(uf, = T)
+(on(uf) — e(uf)) = 2r/d—ch* > /4

holds on T for all sufficiently small i < k.. On T, the variational inequality for
uj, reads

fr{tﬁ’h[uﬂ + uuf,”-]{u - uf,IT]Irfx >0

for all u € R such that u € [a, 8] N[y = &, Iy + €]. We know that on T',
#(x) = a, hence 1Ty = o, and therefore u varies in [, a + €]. The positivity
of g (uf )+ vuf, I in the variational inequality abowve implies that «f must admit
the left end of [, a +¢], i.e. uf ;. = a =T(z). [ ]

By our construction, this Lemma is also true for boundary triangles (or
tetrahedra) T

LEmMMma 4.3 If e <E, then limg o |uf — Tl = 0.

Proof. By uf, € Up%, e <%, h | 0, and (1.12) we know [juf, = Tl < r, hence
(4.11) applies,

J(u) 2 J(@) + & luf - T3,
thus

Ju(uf) = J(uf) + (In(uf) = J(uf)) 2 J(T) + s fluf, — T3 - ch?
and therefore

Ju(utf) = J(@) + ek > w fluf, —TE.

Lemma 4.1 yields Ju(uf) — J(@) as i | 0 and the assertion of Lemma 4.3
follows immediately. [ ]

THEOREM 4.3 Ife <F, then

lim ||uf, =%l = 0. (4.16)
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Proof. We start with the result of Lemma 4.3. From Theorem 4.2, (4.9), we
deduce that wf — T in L2(02) implies |Jon(uf) — #(T)]|c — 0. We have the
projection formulas

() = Proji, g (- 17(2)) (4.17)
uj () = Pl’“h:.;:;],ﬂ;{z]]{"J‘:“Mﬂh{“ﬂﬂ}}s (4.18)
where

o, (x) = max(a, y@(z) — ), G (x) = min(3, ,T(x) + £).
Notice that af and G are step functions on Q. Define analogously
a(z) = max(e, W(z) — £), f(x) = min(B,7(x) + ).
It is quite obwvious that & also satisfies the projection formula

() = Projpe () ey (— 29(2))- (4.19)

Indeed, @ solves () with the additional restriclions u(x) < %(x) + €, ulx) =
U(x) — £, and both of these inequalities are not aclive at T Therefore the
equations (4.17) and {4.19) are equivalent. Of course, (4.19) can also be directly
derived from (4.17). We leave this to the reader. With these prerequisites, the
proof can be easily completed. In view of {4.18) and (4.19)

() = wj, ()]
= [P0 (a) e o) (= 2 2(T())) = Projiae oy e o) (= £ Tlaipn (i (2)))]
< |ij[¢.=[m],.i:|;r}][_%‘F‘m{f}]‘} = P"‘ﬂ'.H.-.;'[m],;i;m]{_%?{ﬁ(rn“
+|P1Uj1“:{rj1lﬂi|::]]{ - %fﬁ{ﬁ{{}}} -— ]'}|-{}jI“: I;:].LF," [:“{- II-:[I,I‘JF'I{“":; [.f]”l.
The first difference tends uniformly to zero, as
Plﬂj[n; M”-_;ﬁ.[_,.-,]rlli;r] = min( G5 (x), max(af (x), v(x)))
is a composition based on continuous functions, if v € C(01). Therefore
ij[n;t_z],ﬂ; (::]"{I] =+ ij[n‘{z],_u‘i-‘i;]]v{i:}

in C(T2), since af(r) — of(x) and Ff(x) — #(x) in C(N). The second differ-
ence tends uniformly to zero, as the projection operator is Lipschitz continuous
with constant 1 and Iyes{ug(x)) tends uniformly to ¢(@(x)) by Lemma 4.3
and (4.9). ]

Finally, we show that «f is a local solution of (Fy,). Intuitively, this follows
from uf, — W Therefore uf cannol be located at the boundary of the ball
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LEMMA 4.4 Suppose that ¢ < E. Then, uf, is a local selutien of (Py) for all
sufficiently small k.

Proof. We have to show that

Julun) = Jn(uy) (4.20)

holds for all u, € UP? such that |juy — uf ||« < £/2. By the definition of uf we
know (4.20) only for all us € Up? with [up = I1,T|o < €. Let uy, € U satisfy

llun = uf |loe < £/2. Then, if k is sufficiently small,

llun = MyTilloe < llun = willos + lluf, = Wloo + [[7 = TaTloc

<ef2+efd+efd=c¢,

since wj, tends to T by Theorem 4.3 and 1% — T as & | 0. Therefore, uj,
belongs to U,‘:i, where (4.20) is satisfied. The optimality of u§ is proved in
the intersection of Ug? with a ball of radius £/2 around ujf. This is local opti-
mality. [ ]

Oue can also show that uj is the unique local solution of {F),) in a certain
neighborhood of 7. However, we do not discuss this here. In what follows, let
us fix (P;) by e = min(Z,¢,) and put ¥, := uj. In this way, a sequence of
local approximate solutions (%), )y is found that tends to T as & | 0. In the next
section we estimate the ervor @, — %]

5. FEM-approximation of (P): Error-estimates for local
solutions

Iu this section, we prove Llie crror estimates for local approximate solutions in
the norms of L2 and L™. As outlined in the preceding subsection, we start
our investigations by the sequence (T )a-o of local solutions for (Py), h > 0,
converging to the fixed local referenee solution @ of (P) that satishes (55C).

To perform our analysis, we need an element #y, admissible for (P,) so that
it can serve as a test function in the variational inequalily and has an optimal
distance O(k) to T The idea is to take wy, = F‘l'ﬂjle][—%ll;, @(%)). This element
is admissible and close to T, but we cannot expect that W, — wp be in the r-
critical cone where our second-order sufficient condition holds. To overcome this
difficulty, we apply a splitting W, — uy, = e, + dy,, where

0 om 4 §2,
ep =14 uy—uy on{A. UA )N
-7 on il \ (A UAY,

['ﬁ'}. —u, on Y0y

dy=40 o (A, UA') N 8,
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Proof. This is a direct consequence of Lemma 5.1 and Lemma 5.2. &
Moreover, Jy'(w) is in some sense Lipschitz with respect to w:
LEMMA 5.4 Let wy and wy belong to U, Then
i (wy)o? = Iy (w2)v®| < Cllwy = welloo + 4)lvl13 (5.1)
is satisfied for all v € L*(Q) with a constant C = C(Q,n) independent of v

and fi.

The term h* in (5.1) can be avoided, if the so-called discrete maximum
principle holds for the finite-element approximation of (1.1).
By (4.4) the approximate local solution T, satisfies

f (sen (T} + viin) (v — Tn)(x) de 2 0 ¥ v € UR"

i,

The auxiliary control u, will not fulfill the analogous inequality
(enlun) + vug)(v —up)(2)de > 0 ¥ v e UM,

1

Iustead of this, we are able to show that w; satislies an associated perturbed
variational inequality with perturbation (. namely

] {on(un) + vup + G )v —wp)(z)de >0 Vv e U (5.2

To this aim, we introduce §, € Uy by

1 L
{-m [J"{'i?h{ﬁh}+1’1_lij}‘f-":} if uyr = o,

+
ChT = —{i,f{;:-,.{m.]l +umdx} if wpyr = 4,
IT| Jr

—% (oon () + vy ) de otherwise,
iT| Jx
for all T € T;,. We extend £, up to the boundary of 1 analogously to the
definition of the controls in Uy, As we shall verify below, the function ¢, is
constructed such that the auxiliary function uy satisfies the first-order necessary
optimality condition of the problem

|1|1'.:|Jh|[v}+f Cvdr, ve U, (5.3)
1179

which is a perturbation of (P, ) by the linear functional ({. v). We have adopted
the idea to work with this type of perturbation from Malanowski, Biiskens and
Maurer (1997). It was introduced there for the optimal control of ODEs and
can be transferred to our case. 'We shall not exactly follow that method, but
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LEMMmaA 5.5 The ausiliary control uy satisfies the varialional inequality (5.2).

Proof. How can we define {;, to fulfill {5.2)7 Select an arbitrary T € Ty,. First,
observe that (5.2) can be equivalently written as

(.[r'[lﬁ‘h'[“h} + vup) dz + |T1{h1'r) (v—unr) 20 {5.4)

for all T € Ty and all v € [a, ).

(i} I wgyr = o then v=uyp > 0 holds in (5.4) for all v € [a, §]. Therefore, (y
must be chosen such that [.(wn(us) + vup)dz + [T Gy = 0 holds. Obviously,

(116 = ( [ (onton) + v de) ™= (= [ (entia) + v o)
meets that requirement.

(ii) If uyr = B, then v — uyr €0, and le:w;.{uﬁ] +vup)de+ |T| Gur 0
must hold. This is accomplished by

1T} n = ("’ fT{m{u.«.} . u1¢,,}:£r)+.

4+

(iti) If ex < wpyr < G, then v — uyjr can be positive or negative, hence
must be taken such that J.-r[\'i?h[“h} + vuy ) dz + |T| {upp = 0. We have found
the function ¢, as defined above. ]

LEMMA 5.6 There exists a posilive constant C, independent of h, such that
llgullz < Ch. (5.5)
For the proof, the reader is referred to Arada et al, (2002),

THeOREM 5.1 For all sufficiently small b > 0
I —Enll2 £ Ch,
holds with o positive constant C independend of .

Froaf, From the optimality conditions for the problem (P ), and since uy, sal-
isfies the optimality conditions of (3.3), we deduce that

Ju () (up = 0,) 20 and Jf (us) (T — us) +f G (Tn —up) dx > 0.
it
Therefore,

(3 (T@n) = Jp(un)) (T -ur-}Efﬂ Cn (Tg — up) da
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On the other hand, we have

(Jh(Tn) = Jj (un)) (@ — un) = JE((1 = 8V + Bup ) (Th — ua)?
= JU (@)@ = un)?® + (JA (1 = ) + Bun) = T/ (@) (@ = un)’®
-— Jl + Iz!
with some § € (0,1). Now we estimate Iy and [ separately and apply the

splitting @ L up = ep + dy, introduced at the beginning of this section. In view
of Lemuma 5.3 and the Young inequality we obtain for sufficiently small &

Iy = Ji (@) (e + dn)* = T (@)ed + 205 (W) en, dn) + Jp () d

& .
> :||¢n||§ — clleallzlldnllz = ¢ lldall3

& 8

> llenllz ~ clldall? = 3llen + dn — dall3 — clldal:
b .

2 5"“* - iz - “&'"“ﬁ = unlalldnl2 = c|ldn||3
é :

z ﬁllﬁh = ua||§ = cildﬁlig.

For I3 we obtain by Lemma 5.4

]
2] = |JR((1 = )Ty + bun) — Jy (W) (Fn — un)?| < gl = unll3

for all sufficiently small kr, since @y, — @ and uy = T — T as i | 0. Summa-
rizing up, we have

i i B

L+lL= E"’-‘-h —upl3 - clldull3 > gllun - uplld - ch?,

hence (5.6) yields
= o

NCallzllun —Bnllz = EHHJ& —upll - ch®.
By the Young inequality

G llzllun — allz < 8/16||lun — Tall + I llz
is obtained. Now from the estimate (5.5),

8 &
ch? > Telu - w3,

follows, hence ||up =% ||2 < ch. This, together with ||uy =%z = I T =] <
ch, gives the desired estimate |0, — %ls < ch. m

Now it is an easy task to improve this L%-estimate by the one in L. Here,
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THEOREM 3.2 The eslimaie
17~ Talew < O

holds for wll sufficiently small k. Here, C is a positive conslant independent of
hy A=1ifn=2o0rifn=23 and the iriangulation is of nonnegative type, and
A= 1/2 otherwise.

Proof. Tnvoking Theorem 4.2 and the projection formmulas (3.4), (4.6) we get

1% = Tulloc = [[Projjq,g(—5#(®) = Proji g~ Musen (@)l
< C(h+lle(® = en(Tn)llec) € C(k + [T =Tz + 1Y)

Therefore we obtain
1T = Thlloe < CA* + [T = Talla).

The conclusion follows fromn Theorem 5.1. ]
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