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Abstract: The paper considers some control problems for the 
systems described by the evolution, as well as the stationary hemi
variational inequalities (HVIs for short). First, basing on surjec
tivity theorems for pseudo-monotone operators we formulate some 
existence results for the solutions of the HVIs and investigate some 
properties of the solution set (like sensitivity; i.e. its dependence on 
data and operators). Next we quote some existence theorems for op
timal solutions for various classes of optimal control like distributed 
control (e.g. Bolza problem), identification of parameters, or opti
mal shape design for systems described by HVIs. Finally, we discuss 
some common features in getting the existence of optimal solutions 
as well as some "well-posed ness" problems. 
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1. Introduction 

Hemivariational inequalities are used to model such physical and engineering 
problems, in which nonconvex, nonmonotone, possibly multivalued laws appear; 
e.g. relation linking stress and strain or reactions and displacements in elastic
ity theory, flux and temperature in thermic problems, generalized forces and 
velocities in dynamic problems, and so on. The HVIs introduced in the 1980s 
by Panagiotopoulos can be considered as generalizations of partial differential 
equations (PDE's) and variational inequalities (VIs) (see e.g. Panagiotopoulos, 
1993, Naniewicz and Panagiotopoulos, 1995). 

Thus, similarly as in the case of PDE's and VIs (see e.g. Lions 1971, Tiba, 
1990) , it is quite natural to consider various types of control problems for sys
tems described also by HVIs (see papers by Haslinger and Panagiotopoulos, 
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1989, Miettinen and Haslinger, 1992, Haslinger and Panagiotopoulos, 1995, 
Denkowski and Mig6rski , 1998 A, B, Gasinski, 1998, Mig6rski and Ochal , 2000 
a ,b, Gasinski, 2000, Ochal, 2000, . .. ). 

The aim of this paper is to give a perspective for the existence results con
cerning the solutions (the nonernptyness of solution sets) of HVIs as well as 
the optimal solutions to various control problems for such systems. We fi nd 
some common features as well as differences in the theory of stationary (let's 
say "elliptic" ) and evolution of first and second order (let's say "parabolic" and 
"hyperbolic", respectively) HVIs. For instance, the approach to t he existence 
theory for HVIs (we consider) is based on surjectivity theorems for pseudornono
tone operators, while in all considered optimal control problems the existence 
of optimal solutions is obtained by applying the direct method of calculus of 
variations. In the latter case the crucial problem (see llernark 5.1 ) is to fiud 
such topologies in the set of controls and in the space of solutions as to imple
ment simultaneously two needed properties: the upper sernicontinuity property 
(usc- for short) in the I< uratowski sense of the solution set as the funct ion of 
control , and the lower semicontinuity of the cost functio11al (lsc- -for short ). 

We also discuss some aspects of well-posedness for such killd of prol.Jiellls 
indicat ing some possibili t ies of getting resul ts concerning the "upper semi
continuity" - dependence of t he solut ion set or of optimal pairs (state - con
trol) on the data or even on state relations (i.e. when the HVIs themselves are 
perturbed) . In this part we use notions of G and P C convergence defined and de
veloped for linear operator:> by Spagnolo (1967) , De Giorgi and Spagnolo (1 973 ), 
Colombini and Spagnolo (1977) , and then generalized for monotone operators 
by Dal Maso, Defranceschi, .. . (see e.g. Chiado 'Piat et al. , 1990). 

The paper is organized as follows. Before preli rninaries of Section 3 we give 
in Section 2 a motivation (an example of cont rolled elas tic beam with adhesive 
support and figures representi ng nonsrnooth, nonmonotone, rnultivalued laws) . 
Next , in Section 4 we for mulate three types (elliptic, parabolic and hyperbolic) 
of HVIs and quote theorems assuring nonernptyness of their solu t ion sets. In 
Section 5 we present some existence t heorems for various kinds of optimal con
t rol for systems governed by HVIs mainly of hyperbolic type (similar results 
can be obtained for elliptic and parabolic cases) . Finally, in Section 6 we for
mulate the concluding remarks concerning some well-posedness problems (e.g. 
the dependence on data or other perturbations of HVIs; i.e. we mention some 
results on asymptotic behaviour of the solution sets to parametrized HVIs as the 
parameter changes). The precise theorems on sensitivity of optimal solutions 
will be proven in the forthcoming paper. 

2. A motivation 
2.1. Beam in adhesive contact 

Assume an elastic ( obeing linear Hooke's law) beam, fixed at the ends x 
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position and velocity at the initial timet= 0 be given functions y0 (x) and y1(x), 
respectively. 

Then, for small displacements y(t ,x ) the beam can be modeled (see e.g. 
Banks et al. , 1996, Panagiotopoulos and Pop, 1999) by the following mixed 
(in itial-boundary value) problem for the hyperbolic PDE 

(1) 

(} 8t2 + EI 8x4 +CD! ot 8x4 = h + h for (t, x) E (0, T) X (0, l) , 
8y l 

o2y o4y a 84y 

y(O.,x)=yo(x), ot(O,x) = y1(x) forall x E(O,l), 
82y 82y 

y(t, 0) = y(t , l) = 0, ox2 (t, 0) = ox2 (t, l) = 0 for all t E (0, T) , 

coupled with the additional condition 

-fl(t, :c) E 8j(y(t ,x) ) for (t,x) E (O,T) x (O,l), (2) 

which describes the action of a gluing material on the bearn , h beiug the re
action force per unit length and 8j denoting the Clarke subdifferential, see 
Section 3, of a locally Lipschitz function j : lR ----; IR); (} denotes linear mass 
density, while E, I , CD stand , respectively, for the modulus of elasticity, the 
moment of inertia and the damping coefficient of the beam. The function h is 
supposed to be more regular and completely known (e.g. gravity forces or forces 
generated by a controller) . 

Thus, relation (2) represents a physical law (here a link between reactions 
and displacements), which in general may have a nonrnonotone, nondifferen
tiable, possibly multivalued character. It generaliz;es the case where j is dif
ferentiable (8j = \lj ; i.e. j is a potential for the force field -h) , or convex 
(for superpo tent ial j its subdifferential oj is understood in the sense of convex 
analysis - see Moreau, 1968, Rockafellar , 1970). 

By introducing t he space V = H2(0 , l) n HJ (O,l) with the inner product 

1
1 82w ()2z 

(w, z) = ~2 -;:;-2 dx. 
0 ux u:z: 

and defining the operators A, B : V ----; V* (V* being the topological dual of 
V) as 

CD I 
(Aw , z) = --(w, z) and 

(} 

EI 
(Bw, z) = - (w, z), 

(} 

we can reformulate the problem (1)(2) as the following differential inclusion 
(generali z; ing (PDE) as well as (VI)) , a lso called hemivariational inequality: 

(HVI) 

{ 
o2y(t) oy(t) 1 1 
~+A~+ By(t) +- oj(y(t)) 3- h(t) 

ut ut (} (} 
/A\ 8y In\ 

for a.e. t E (0, T) 
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The function fz appearing in (1) and in (HVI) represents the prescribed 
loading and it can have the form fz = Cu, the operator C being a controller 
acting on the control functions from an admissible set (·u E Uad C U). 

So the solution set for (HVI) depends on ·u and will be denoted S(Hvi)(u). 

Thus, we can formulate the control problem: 

(CP)HVI 
{ 

Given a cost functional F : U x Y ----> IR, 
find u• E Uad and y• E S(u*) such that 
F(u*,y*) ~ F(u,y ) for all ·u E Uad, y E S('u), 

when specifying the cost functional we can cover significant problems from en
gineering like e.g. the least deviation from a desired state at final time T, or 
the minimal energy of the control, and so on. 

2.2. Examples of som e nondifferentiable, nonmonotone, multivalued 
laws 

We will now present three figures (see e.g. Naniewic2 and Panagiotopoulos, 1995, 
Duvaut and Lions, 1976). The first two represent some adhesive laws, where the 
force f depends on the displacement y. The third figure represents the flux of 

heat ( ~~) as a function of the temperature y in the problem of regulating the 

temperature in some region n ('ii = ii(x) being the outward normal at point x 
of its boundary) to deviate as little as possible from the given interval [h1, h2]. 

Fig. 1 -! Fig. 2 -! 

y y 
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Fig. 3 -* 

3. Preliminaries 

3.1. The Clarke subdifferential 

Given a locally Lipschitz function J : Z ---. JR, where Z is a Banach space , we 
admit definitions (see Clarke, 1983): 

(i) The generalized (in the sense of Clarke) directional derivative of J at point 
·u E Z in the direction v E Z , is defined by 

Jo( ) l. J(y + >.v)- J(y) 
u;v = nnsup , . 

y-->-u >. '\.0 1\ 

(ii) The generalized gradient of J at ·u is the subset of the dual space Z* given 
by 

8J(u) = {( E Z*: ((,v)z•xz ~ J0 (u;v) for all v E Z}. 

An important class of functionals is provided by the example below. 

EXAMPLE 3.1 Let n c JRN be a bounded domain with a Lipschitz boundary and 
set Z = LP(il; lRm) (2 ~ p < +oo, m being a fixed natural number). 

We consider a function j : (0, T) x n x lRm ---. lR which satisfies the following 
hypothesis 

H(j): j : (0, T) x it X lRm ---. lR is a function such that for all t E (0, T) we 
have: 

(i) j(t, ·, v): n ~---+ lR is measurable for all v E lRm and j(t, ·, 0) E L1(i1); 

(ii) j(t,x, ·): ]Rm ~---+lR is locally Lipschitz for all X En; 

(iii) for eachx En andv E ]Rm if( E Ovj(t,x,v), then IICIIIR= ~ c(1+ 
2 

ll •. llq \ • -- ··-· _ , (\ 
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Now we define the funct ·ional J : (0, T) x LP(O; lRm) -+ lR as 

J ( t, 'V) = r j ( t, X, 'V (X)) dx. ln 
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(3) 

From the theorem by Aubin and Clarke (1979), it follows that for every t the 
functional J(t, ·)is well defined, Lipschitz continuous on every bounded subset 
of Z and for every v E Z = LP (O; lRm) we have: 

( E [)J(t, v) ===> ((:r:) E ovj(t, :r:, v(x)) for a .e. x E 0. 

The inverse implication also holds provided j is regular (i.e. it has all the direc
tional derivatives equal to the Clarke directional derivatives, see Naniewicz and 
Panagiotopoulos, 1995). 

Hence and from the Holder inequality we easily obtain that J, given by (3) 
with j such that H(j) holds , satisfies the following hypothesis: 

H(J): J: (0, T) x Z -+ lR is a function such that 

(i) for each v E Z, the rnap t f------t J(t, v) is measurable on (0, T); 

(ii) for each t E (0, T ) the func t ion v f------t J(t, v) is locally Lipschitz on Z; 

(iii) the following growth condition holds: 
there exists a constant c > 0 such that for any v E Z and t E (0, T) 
we have 

3.2. Multivalued operators 

We start with basic definitions for rnultivalued operators and then we quote two 
main surjectivity results for the operator classes under consideration (see e.g. 
Browder and Hess, 1972 1 Naniewicz and Panagiotopoulos, 1995, Papageorgiou 
et al. 1 1999). 

Let Y be a real reflexive Banach space and Y* be its dual space and let 

T : Y -+ 2Y" be a multivalued operator. By R(T) = U Ty we denote the 
yEY 

range ofT. 
We say that T is: 

(1) bounded if the set T( C) is bounded in Y* for any bounded subset C ~ Y 1 

(2) coercive if there exists a function c : 1!4 -+ lR with lim c(T) = +oo 
r-++oo 

such that for ally E Y andy* E Ty, we have (y, y*) 2: c( IIYIIliiYII, 
(3) upper semi continuous if for any closed subset C ~ Y* the set r - (C) = 

{y E Y : Ty n C -:f. 0} is closed in Y 1 

( 4) monotone if for every Y1 z E T 1 y* E Ty 1 z* E Tz 1 we have 
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( 5) maximal monotone if 
a) T is monotone, 
b) for any y E Y, y* E Y * such that (y*- z*, y- z) ~ 0 for all z E Y, z* E 

T z , we have y* E Ty , 
(6) pseudomonotone if the following conditions hold: 

a) the set Ty is nonempty, bounded , closed and convex for each y E Y , 
b) T is upper sernicontinuous from each finite-dimensional subspace of Y 
to Y * furn ished with the weak topology, 
c) if {Yn} ~ Y,yn ____, y weakly in Y, y~ E Tyn, and limsup(y~,y71 -y) :S 0, 

n ->+ oo 

then for each element v E Y the1·e exists y* (v) E Ty such that 
lirni nf(y,~ , Yn- y) ~ (y*(v) ,y- v) , 
n --++oo 

(7) generalized pseudomonotone if the conditions {Yn} ~ Y, Yn _, y 
weakly in Y, y~ E Ty11 , y~ _, y* weakly in Y * and lim sup(y~,Yn ) < 

n--++oo 

(y* , y) imply y* E Ty and lim (y~ , Yn) = (y* , y). 
n--+ +oo 

Now, let L : Y ;:2 D(L) ____, Y * be linear, densely defined, maximal mono
tone operator. 

(8) Tis L-generalized pseudomonotone if the following conditions hold: 
a) for every y E Y , Ty is a nonempty, convex and weakly compact subset 
of Y *, 
b) T is upper sernicoutinuous from each finite-dimensional subspace of Y 
into Y * equipped with the weak topology, 
c) if {Yn} ~ D(L), Yn _, y weakly in Y , y E D(L), Lyn _, Ly weakly 
in Y*, y~ E Tyn, y;, _, y* weakly in Y * and lirn sup(y;,,yn -y) :S (y*,y) , 

n--++ oo 

then y* E Ty and (y~, Yn) _, (y*, y). 
The crucial point in the proofs of the existence of a solution to the hemi

variatioua.l inequalities considered below are the following surjectivity results. 

PROPOSITION 3.1 If Y is a ·refl exive Banach space, and T : Y _, 2y• \ {0} ·is 
a pse·udomonotone coe1·cive O]Jemtor, then R(T) = Y *. 

PROPOSITIO N 3.2 If Y is a reflexive, st·rictly convex Banach space, L : Y ;:2 
D(L) ____, Y * is a lin em·, densely defined, ·maximal monotone opemtor and T : 
Y _, 2y · \ {0} is a bo·unded, coeTcive and L-genemlized pse·udomonotone op
emtoT, then R (L + T) = Y*. 

The proof of Proposition 3.1 can be found in Browder and Hess (1972), Theo
rem 3, p. 269 while the proof of Proposition 3.2 can be found in Papageorgiou 
et al. (1999), Theorem 2.1, p. 345. 

3.3. Functional spaces 

For the stationary HVIs we consider an evolution fivefold of spaces 
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where V and Z are two reflexive , separable Banach spaces, H is a Hilbert space 
and H*, Z* and V* denote dual spaces to H, X and V, respectively. 

Assume that all embeddings are dense and continuous, and V embeds com
pactly in Z. As usual, we identify H with its dual. 

We denote by (-, ·) the duality of V and V* and the pairing between Z and 
z· as well, by II· liE the norm in the space E being respectively v, z, z· or v·' 
and by I · I H the norm in H . Moreover, the symbol w-E stands for the space 
E equipped with the weak topology. 

EXAMPLE 3.2 To have an example of such a situation, let n ~ ]RN be a bo'unded 
domain with Lipschitz bounda.r·y. We admit v = W1,P(S1;1Rm) (for the Ne'U
'rnann type bo'undary pro blems) or V = W~'P(f!; !Rm) (for- the Dirichlet type 
pTOblerns), Z = LP(S1;1Rm) and H = L2 (S1;1Rm) with some 2:::; p < oo. FTOrn 
the Sobolev etnbedd,ing theor·em (see, e.g. Zeidler·, 1990, p. 1 026), we get that 
(V, Z, H, Z*, V*) is an evolut'ion fivefold . 

For the case of evolution HVIs we need spaces of functions which depend 
also on time variable. Thus, given a' fixed number 0 < T < +oo for some p , 
2 :::; p < oo, 1/p + 1/ q = 1, we introduce t he following function spaces: 

v = LP(O, T ; V), 

Z = LP(O, T; Z) , 

H.= L2 (0, T; H) , 

Z* = Lq(O, T; Z*), 

V* = £9(0, T ; V*), 

W = { w E V : w' E V*}, 

(where the time derivative is understood in the sense of vector valued distri
butions). The latter is a separable, reflexive Banach space with the norm 
llwllw = llwllv + llw'llv· (see Zeidler, 1990, Proposition 23.7(c), p.411 and 
Proposition 23.23(i), pp. 422- 423). 

Clearly we have 

w c v c z c n. c z• c v· 
with dense and continuous embeddiugs. 

Since we assumed that V C Z compactly, we have also that W C Z 
compactly (see Lions, 1969, Theorem 5.1 , p. 58). Moreover, the embedding 
W C C(O, T; H) is continuous (see Zeidler , 1990, Proposition 23.23(ii ), p. 422). 
So every equivalence class in W has a unique representative in C(O, T; H). 

The pairing of V and V* and also the d uality between Z and Z* are denoted 

by ((!,g)) = .r: (J(t), g(t)) dt. 
As the spaces of solutions for the parabolic and hyperbolic HVIs below we 

admit, respectively: 
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The latter is also a separable, reflexive Banach space with the norm defined by 

llw ii Yh = ll wllv + llw'llw· 
Moreover, each function w E y, is an absolutely continuous function from 
[0, T] to V and its distributional derivative w' possesses a representant which 
is continuous function from [0, T] to H . Similarly, each element of Yr after a 
change of values ou a set of measure zero can be considered as an element of 
C(O, T; H) (see e.g. Lions, 1971). 

4. Hemivariational inequalities 

4.1. Stationary (ellipt ic) hemivariat ional inequalities 

Let V, Z, H, Z*, V* be as in Subsection 3.3 and assume we are given a (nonlinear) 
operator A : V ~ V* , a locally Lipschitz functional J : Z ~ R and an 
element f E V*. 

We consider the differential inclusion 

{ 
Find y E V such that 
Ay + EJ J(y) 3 f 

which, when explicited into the weak form , is equi valent to the following elliptic 
hemivariational inequality 

(HV Ic) 

{ 
Find y E V such that 
(Ay ,v- y)v ·xv + J0 (y ;v - y) 2 (f ,v - y)v · xv for all v E V, 

This, in turn, can be written down as 

(HV I~ ) { 
Find y E V such that there is ( E EJJ (y) <:::; Z* and 
(Ay ,v)v·xv + ((,v)v·xv = (f,v)v•xv for all v E V , 

In the case J is given by the integral formula 

J(y) = L j(y(x)) dx 

with j satisfying hypothesis H(j) (omitting the dependence on t) the last HVI 
is equivalent to the following 

(HV I;) 

{ 
Find y E V such that there is ((x) E aj(y(x)) a.e. in D 
(Ay, v)v• xv + J0 (((x), v(x))IR"' dx = (!, v)v· xv for all v E V, 
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THEOREM 4.1 If A is pseudomonotone, coer·cive and bounded, J satisfies hy
pothes·is H(J) (omitting the dependence on t) , then the solution set s(HVI.)(J) 
conta·ins at least one element. 

Proof. For the proof one has to show that the operator T = A + f}J is pseu
domonotone and coercive and next apply the surjectivity result of Proposi
tion 3.1. • 

REMARK 4.1 In the case A is a maximal monotone opemtor of the fonn Ay = 

-d·iv a(x,Dy(x)), wher-e a E Mo(JRN) we can obtain a sensitivity result for· 
solution set (depending also on A) s(HV I.) (A , f) basing on the G-conver-gence 
for· maximal monotone opemtoTs defined in Chiado'Piat et al. (1990) . 

THEOREM 4.2 Ass·urne an, a E Mo(JRN), Any= - d·iva,(x,Dy(x)) and 
An f-----> A G-converges; (or K(w ,s) -limGr-A, = Gr-A) 
8J, is usc; i.e. K(s , w) -lim sup GToJn ~ GToJ 
fn f----t f in s- v· ' 
then K(w) -lim sup s(HVJ.)(An, fn) ~ s(HVI.) (A, f) 

In the above, K - lim sup Zn (of a sequence of sets) is understood in the 
sense of Kuratowski (i .e. it is the set of all cluster points of all subsequences of 
points taken from Zn), and Gr- stands for graph. For the definitions of the class 
Mo(JRN) and the G-convergence see Chiado'Piat et al. (1990). The proof of 
the theorem follows directly from the definitions, see forthcoming paper. 

4.2 . First order evolution (parabolic) hemivariational inequalities 

Suppose we are in the functional framework of spaces as in Subsection 3.3 and 
assume we are given an operator A : (0, T) X v f----t v·' the elements f E v· ) 
Yo E H, and a functional J : (0, T) X Z f-----> JR., which is locally Lipschitz with 
respect to the second variable for almost all t E (0, T). 

Let us consider the following initial value problem for the parabolic differ
ential inclusion: 

{ 

Find y E YP such that 
y'(t) + A(t)y(t) + 8J(t, y(t) ) 3 f(t) for a.e. t E (0, T) 
y(O) =yo, 

which, due to the definition of generalized directional derivative, can also be 
written down (in the weak form) as 

( Find y E YP such that: for all v E V and a.e. t E (0, T) 
~ (y'(t) + A(t)y(t)- f(t), v)v· xv + J0 (t , y(t) ; v) 2 0 
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With the use of a selection of the subdifferential fJJ the last HVI is often 
written Jown in the equivalent form: 

(HV I~) 

{ 

FiuJ y E YP and ( E z• such that: ((t) E fJJ(t, y(t)) for a.e. t E (0, T), 
(y'(t) + A(t)y(t) + ((t)- f(t),v)v•xv = 0, for all v E V and a.e. 

t E (0, T) 
y(O) =YO· 

For an existence result we admit that J fulfils H(J) as in Preliminaries and 
the operator A satisfies the hypothesis: 

H (A ): A: (0, T) x V f-----7 V* is au operator such that 

(i) for each v E V, the map t f-----7 A(t, v) E V* is measurable on (0, T); 

(ii) for each t E (0, T), the operator v f-----7 A(t,v) E V* is pseudomono
tone; 

(iii ) for almost every t E (0, T), the operator A(t, ·) is bounded, i.e. 
there exist a nonnegative function a 1 E Lq (0, T) and a constant b1 > 0 
such that 

IIA(t, v) llv· S a1(t) + hllv l l ~-l for all v E V and a.e. t E (0, T); 

(iv ) for almost every t E (0, T), the operator A(t, ·)is coercive, i.e. 
there are constats {31 > 0 anJ fJ2 ~ 0 a!ld a function a E L 1(0, T) 

such that for some T < p we have 
(A(t, v), v)v• xv ~ fJII I v ll~- fJ2I Ivll\>- a(t) 
for all v E V and a.e. t E (0, T). 

THEOREM 4.3 Under- hypothes·is H(A), H(J) , for- ever-y j E V* and Yo E H 
the sol'Ut·ion set S(HVIp)(f,yo) conta·ins at least one element. 

Pmof, A detailed proof can be found in Migorski (2000). Here we indicate only 
an outline of the proof which is based on the surjectivity result of Proposition 3.2. 

Consider the Nemyckii operator A corresponding to A (i.e. (Av)(t) = 
A ( t )v( t)), and the operator N defined for all v E V by 

N v = {wE Z* : w(t) E fJJ(t, v(t)) a.e . t E (0, T)}. 

Let modify them (by translating their domain by the initial condition), so that 
y E W is the solution of (HV Ip) if and only if w = y - Yo E W solves the 
inclusion 

{ 
fEw'+ A1w + N1w 
w(O) = 0, 

where for all v E V we have put A 1v = A(v +Yo) and 

A.( ~ - A.(f ~ . I ~· \ ( _ .• ,.... ...,..* .- .f.L\,.... '.:) T/ _,_ I \ ( "\ ' - In rn\) 



724 Z. DE:'\IWWSKI 

Here v + y1 is understood as (v + Yl) ( ·) = v( ·) + Yl· 
Now observe that operator L : V 2 D(L) ----+ V* Jefi ned by Lv = v' with 

D(L) = {v E W : v(O) = 0} is liuear, J enscly J efined anJ maximal monotoue 
(see, e.g. ZeiJler, 1990, Proposition 32 .10, p. 855). 

Next one can show that the operator T : V ----+ 2 v· defined by the for
mula Tv= A1 v +N1v is coercive, bounded aud 1-generali~ed pseudomonotone. 
Hence, due to Proposition 3.2 the operator L +Tis surjective, which completes 
the proof. • 

REMARK 4.2 A sensitiv·ily Tes·ult {l-ike that of Them·em 4.2) fo ·r (HV 11,) with 
operators Ay = -d·iv a( t , x , Dy( t , ·)) , ·where functions a belong to a spec·ial class 
of single val'tLed nwximal monotone opemlors was obtained by Mig6·rski {see 
M·ig6Tsk-i, 2000) on the bas·is of PC conveTgence, which ·was ear-lier defined joT 
l-in eaT O]Jemto·rs by Colombini and Spagnolo ( 1977). 

4.3. Second order evolution (hyperbolic) hemivariational inequali
ties 

Similarly as in the parabolic case we aJrni t the function al setting of Subsec
tion 3.3 and assume that apart from A and J as before we are given in addition 
an operator B satisfying the hypothesis: 

H (B): B: V----+ V* is a bouuded, linear, monotone anJ symrneLric operator, 
i.e. 

B E .C(V, V*), (Bv, v) 2: 0 for all v E V, 

(Bv, w) = (Bw , v) for all v, wE V. 

We admit also: 

(Ho): /EV* , yoEV, Y1EH. 

~I 2 f (H1 ): If p = 2 then - > c~ T , where ~ is an embedding constant o V 
2 

into Z. 

Let us consider the followiug initial value problem for the hyperbolic differ
ential inclusion: 

(DJ,) 
{ 

Find y E Yh such that: for a.e. t E (0, T) 
y" (t) + A(t , y' (t)) + By(t) + fJJ(t, y(t)) 3 j(t) 
y(O) =yo, y'(O) = Yr, 

which is eqivalent to the following hyperbolic hernivariational inequali ty 
(J0 ( t, 'U; v) denoting the generalized directional derivative of J(t, ·) at a point 
n E Z in the direction v E Z): 

(HVJ,) 
f Find y E Yh such that: for all v E V and a.e. t E (0, T) 
~ (y"(t) + A(t, y' (t)) + By(t)- j(t) , v)v· x v + J0 (t, y(t); v) 2:0 
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The la tter is often writteu down as 

{ 

Find y E Yi, and ( E Z* such that: 
1 ((t) E aJ(t, y(t)) for a.e . t E (0, T) 

(HV I,,) y"(t) + .A(t, y'(t)) + By(t) + ((t) = f(t) for a .e. t E (0, T) 
y(O) =yo, y'(O) = Yl· 

Let us notice that the initial conditions in the problems above have a sense siuce 
tl1e e111becldiugs y,. C C(O, T ; V) and W C C(O, T ; H) are continuous. 

With the help of the following lemma giving "a priori estimates" one can 
obta in Lite existence result below. 

LEMMA 1.1 S·appose llwt hypotheses H(A), H(B) , H(J) uu.d (Ho) hold andy 
is a solution to ( H V h). If p > 2, then ther·e exists a constant C > 0 s·uch that 

2 '2 :2 

[[y[ [c(O,T;I' ) + [[y'[[w::; C( l +[ [ yo[ [~+ [Yl [~ + I Il l i~ · ). (1) 

MoTeoveT, the esliuwte (4) st·ill holds .faT p = 2 pmvided (H1 ) is sal'i:;fied. J.f 
Z = H , then the estimate (4) holds .foT p 2: 2 witlw-u.t the ass·umyJI.ion (Hl). 

T!lEOREM 4.4 Zf hypotheses H(A), H{B) , H{J), (Ho) u.nd (H 1) hold, then the 
JJToblem (H V J,) has ut least one solution (i.e. S(H v h) (f, Yo, yt) '# 0). 

Pmof. For the complete proof of the theorem we refer to Gasii1ski (2000) aud 
to Ochal (2001). We ouly 111ention here that (HV !,) can be reduced to (HV Ip ) 
by II!Ca!ls of the operator I( : V ---> C(O, T ; V) defined by 

t Ku(t) =Yo+ Jo v(s) ds for all v E V. 

Na JJJely, let us notice that the problem (HV h) can be writteu as follows 

{ 

Fiud z E W such that: for a .e. t E (0 , T) 
.f(t) E z'(t) + A(t , z(t)) + B(K z(t)) + aJ(t, K z(t)) 
z(O) = Yl· 

H can be observed that z is a solution to (HV I;;) if and only if y := f{ z 
satisfi es (HV !,). Therefore it suffices apply to the reduced problem (HV I;,) 
the surjectivity result of Proposition 3.2 similarly as in Lite parabolic case. • 

Of course the solution set s(HVh)(.f,yo,yl) depends also on A,B,J and 
souJetirn es we have to identi fy some of them iu Lhe appropri ate classes of oper-
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4.4. An example of A satisfying hypothesis of the existence theorem 

EXAMPLE 4.1 (see Ochal, 2001). Let f2 C JRN be a bounded open set, Q = 
(0, T) x nand V = W~'P(f2) (2 :S p < +oo). We consider a family of functions 

a; : Q x lR x IRN --.. lR for 'i = 1, . .. , N, 

ao : Q x lR --.. lR 

satisfying the following hypothesis: 

H(a): funct ions a;= a;(t ,x,rt,O, (i = 1, ... ,N), and ao = ao(t,X,'IJ), are of 
--the Caratheodory type (i.e. a;, a0 are measurable with respect to ( t, x) E Q 

and continuous in other variables) and for a.e. ( t, x) E Q, for all rt E lR 
and for all ~ E JRN we have 

(i) there exist c1 > 0 and bE Lq(Q) (q = ~) such that 

N 

lai(t , :c, 7], ~)I :S c1 ( b(t, x) + lrt lp - l + 'L l~.i lp-l ) for 'i = 1, ... , N, 
j=l 

lao(t,x,r;)l :S c1(b(t,x) + lttlp - l), 

(ii) ~;:1 (a;(t,x,ry,0- a;(t,x,rt,e))(~;- f:} 2::0 for all e E JRN, 

(iii) there exist c2 > 0 and k E L1(Q) such that 

N N 

'L a;(t, x , '!], 0(; + ao(t, x, ry)rt 2:: cz (lrtiP + 'L I~;IP) - k(t, x ). 
i=l i=l 

Now we define the operator A : (0, T) x V --.. V* by the formula: 

N 

(A(t,v),w)v·xv = 1 'La;(t, :c,v,D'u)Dtwdx+ 1 ao(t,x,v)wdx. 
n i=l n 

The operator A can be treated as the sum of two operators 

and 

AI: (O,T) X v--.. V*, 
N 

(Al(t,v),w)v·xv = r I>;(t,x,v,Dv)Di'wdx 
Jo i=l 

Az: (O,T) x V--.. V*, (Az(t,v),w)v•x v = k ao(t,x,v)wdx. 

According to Proposition 26.12 in Zeidler (1990, p. 572) the operator A1 ( t, ·) is 
monotone, coercive, continuous and bounded. From Corollary 26.14 in Zeidler 
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the operator A(t, ·) : V-----> V* is continuous. By Proposition 27.6(f) in Zeidler 
(1990 , p. 586), the operator A(t, ·)is pseudomonotone as a strongly continuous 
perturbation of the continuous monotone operator. 

Let us notice that applying the hypotesis H(a)(i) and the Holder inequality, 
we get 

N 

I(A(t, v), v)v· xvl ~ 1 ( L ia;(t ,x , v, Dv) IID;-vl + lao(t, :c, v)l lvl) dx 
0 -i=1 

r N N 
~ }( c1 (u(t,:r) +lvlr -1+ LIDi'ulr-1)(LID;vl+lvl)dx 

0 j=l t=l 

~ c( llb(t) II L•(n) + l l vll~;~\ (n)l l l v ll v, 

which implies that IIA(t,v)l lv· ~ a1(t) + b ii ivll~- 1 
with a1(t) = cllb(t)IILq(o) , 

aml b1 = c > 0. 
It follows from the assumption H(a)(iii) that 

N 

(A(t,v),v)v·xv = 1 L(a;(l,x,v ,Dv)D;v+ao(t, :c,v)v)dx 
n i=I 

. N 

2: I c2 (1v iP + L ID;vl7' ) dx- r k(t , :c)vdx 
Jn i=1 Jo 

2: c2 ll vll~ -lli.:(t)IIL•(nJ II viiLP(rl) 2: ,81 llvll~- ,82l lvllv , 
with ,81 = c2 > 0,,82 = llk(t)IILq(fl) 2: 0. Hence A is coercive (i.e. H(A) (iv) holds 
with a= 0 aud T = 1 < p) and finally the hypothesis H(A) is satisfied. 

REMARK 4.3 Other· examples of oper-ators sat·is.fying H(A) are g·iven by maxi
rnal rnonotone (also rmdt·ival·ued) opem.toTs ·in divergence joTTn for the functions 
belong·iny to the class Mo(IRN) defined in Chiado 'Pial ei al. ( 1990) (see also 
Denkowski et al., 2001 ). 

5. Optimal control problems for systems governed by he
mivariational inequalities 

In this section we quote three classes of optimal control problems for the hyper
bolic hernivariational inequalities (the case of elliptic as well as parabolic one 
c:au be treated similarly - see e.g. Mig6rski, 2000, Gasiitski, 1998, Mig6rski and 
Oc:hal, 2000 a, Denkowski and Mig6rski ( 1998 a, b)). 

1. The opt imal control problem of distributed parameter system (here we 
consider only Bolz;a type problem, but the time optimal problem and max
imum stay problem were considered as well by Ochal (2001 ) ), 

2. The opt imal control in the superpotential (it may be treated as the iden-
, . r 
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3. The optimal shape design (OSD for short) problems (in contrary to the 
previous classes where controls were functions, the coutrols are geometrical 
domains changing iu some admissible families of sets). 

5.1. General remarks and a lower semicontinuity result 

REM ARK 5.1 In all the op timal contm l ca.ses mentioned a/JOve the main tool in 
gett:iny w ·me ex·istence ·res·ults ·is the direct method. It is based on t·wo JnopeTti es: 

(i) the closed graph (o r· ·asc in Kumtowski sense} pmperty of the solution map 
s : u 3 '(L f----7 S('U ) ~ Y, 

whe·re S('U) = S(Hl!JJ('u ) i.s the set of state!! y( 'U ) of the contmlled liystem 
(HV I) under considemlion, 

(i'i) the lsc yn·ope'f'ly of the cur"''eliponthng cost fnu.ct·ionu.l. 

In all the problems considered below the property (i) should be established 
separately in each case, while for the first two classes the property (ii ) is based on 
the general theorem (quoLed below) , due to Balder , am! for OSD it is based Oll 
the Senin type theorem where the cost funct ional depends also ou tlte doruaia 
of integration (see, e.g., Denkowski , 2001 , 2000). 

Let X be a separable Banach space and Y be a separable reflexive Ballach 
space. Let F: [0, T] x X x Y --+ ( - oo , + oo ) be a given .C (O, T) x B(X x Y)
rneasurable function (here .C(O, T) denotes the family of all suusets of [0 , T] 
measurable in Leuesgue sense, and B(X x Y) is the family of all Borel suusets 
of X x Y) . We define the fun ctional :F:L1 (0 ,T:X) x L1(0, T;Y) --+ [- oo ,+oc] 
as 

j
·T 

F (x , y) = 
0 

F(t, x(t ), y(t)) dt:. 

We equip L 1(0, T: X ) wi th L 1-uonn , a lld U (O, T; Y) with the weak Lopology. 
The following theorelll (see Balder, 1987) presents sufficiellt coudi tions for 

stroug- weak lower semicoutiuuity of Lhe integral fuuctional F on L1 (0 , T; X) x 
tl (O, T ; Y ). 

THEOREM 5.1 f{ the following three condit·ions hold: 

(i) F (t , ·, ·) is sequent·ially lowe·r sernicontinuous on X x Y for· a. e. t E (0, T ), 
('i i} F (t ,x, ·)is convex on Y fo r eveTy :c EX and for· a.e. t E (O ,T) , 

(iii) there exist M > 0 and '¢1 E L 1 (0, T; IR) s·nch that 

F(t, :c, y)2: 1/'(t)- M( II x llx +IIYIIY ) fo r· all x EX, yEY and a.e. tE(O,T ), 

then the fun ctional F is seq·uent·ially lower seTwicontinuo·us ·in s-L 1( 0, T;X ) 
x (w - L1(0, T ; Y) )-topology. 

M on::over·, the condit·ions ('i) -(iii) ar·e also necessaTy provided that F(x, y) < + oo 
" 1 - - · 
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It should be poiuted out that, in ge11eral, optimal control problems for hemi
variational inequalities are formulated as double minimization, maximization or 
minimax problems since usually the hernivariational inequality does not possess 
a unique solution . 

5.2. Distributed controls- Bolza problem 

We begin with a system described by the following controlled second order 
evolution inclusion 

{ 

y"(t) + A(t,y'(t)) + By(t) + oJ(t,y(t)) 3 f(t) + C(t)n(t) 
(CHVh) for a.e. t E (O,T) 

y(O) =Yo, y'(O) = Yl· 

Here A, B, J, f, yo, y1 are as in Section 4, y = y(n) denotes the solution state 
corresponding to a control u. E U = L"(O. T· U). 2 < ''J < +oo l. + l = 1 U is 

' l ' - J ~ ' p q ' 

a space of control variables and C represents a controller . 
We need the following hypothesis concerning the operator C(-) and the space 

U of controls. 

H(C): C E L00 (0, T; £(U, Z*)) and U is a separable reflexive Banach space. 

Now the closed graph (or usc in Kuratowski sense) property of the solution 
map 

S: U 3 ·u f----> S(n) s;; y,, 

where S (n) = S( CH v h) (f + C·u, Yo, yl) is the set of states y(u) of the controlled 
system ( C H V!,) (f, yo, y1 being fixed), follows from the lernma below. 

The solution set is a subset of the space y, = {y E V : y' E W}. We say 
that { y, Yn} s;; Yh, Yn --> y weakly in Yh if and only if y, --> y weakly in V 
and y;, _____, y' weakly in W. 

LEMMA 5.1 Assume the hypotheses H(A), H(B), H(J), (H0 ), (Hl) and H(C) 
hold. Then the solution map S: U 3 ·u f----> S(u) E 2Y" \ {0} has a closed ymph 
in (w -U) x (w- y,)-topoloyy (so alc;o in (tv -U) x s- L1(0,T;H)). 

Next, let us consider the control problem: 

(CP)l 

{ j·T 

if>(y, n) = l(y(T), y'(T)) + 
0 

F(t, y(t), y'(t), n(t)) dl __, inf =: m 

where y E S(n) and u(t) E U(t) a.e. in (0, T), u(-) is measurable. 

We admit the following hypotheses: 

H(if>): l: H x H-+ IRis weakly lower semicontinuous; F: [0, T] x H x H xU-+ 
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(i) F (t, ·, ·, ·) is sequentially lower sernicontinuous 011 H x H xU for a .e. 
t E (O,T), 

(ii) F (t, y, v, ·)is convex on U, for ally E H, v E Hand a .e. t E (0, T), 

(iii) there exist M > 0 and ·1/J E L1(0 , T) such that for ally E H , v E H , 
·u E U and a.e. t E (0, T) , we have 

F (t, y, v, u) 2 ·1/J (t)- M (IYIH + lv iH + ll ·ullu) · 

H(U): U : [0, T] --> 2u \ {0} is a multifunction such tha t for all t E [0, T], U(t) 
is a closed convex subset of U and t ~----> IU(t) l := sup{ll ·ull u : ·u E U(t)} 
belongs to L+. 

We recall that S'(; = {·u E U = U(O, T ; U) : 'IL(t ) E U(t) a .e. i11 [0 , T]} is 
the set of all selectors of the multifunction U ( ·). It is known tha t under the 
hypothesis H(U) the set S'(; is nouempty. 

By an admissible state-control pair (y, 'IL) for (CP)l we understand a pair 
consisting of a state function y E S(u) (which solves (CHV h)) and a control 
function ·u E S'(;. An admissible pair (y, ·u) is called au optimal solution to 
(CP)t if and only if <I>(y , u) = m . We have the following 

THEOREM 5.2 If the hypotheses H(A) , H(B ), H(J) , (H0 ) , (HI) , H(C), H(<I>) 
and H(U) hold, then the pmblern (CP)t admits an optimal sol'Ution. 

Proof. It follows from the direct method due to Lemma 5.1 and Theorem 5.1. 
For the details see Ochal (2001). 

We quote an example of a cost funct ional which satisfies H( <I>). 

EXAMPLE 5.1 

<I>(y , 'U) = QIIY(T)- Ydl1 + Qzly' (T)- Ydl1 + l!31T ICJ1y(t)- zd(t)11 dt 

T T 

+Q4110zy'(t)- zd (t)I I1 dt + Qs 1 (Ru(t), u(t ))u· xu dt , 

wheTe CJ1, Oz E £(H) aTe obseTvation opemtor·s, R E C(U, U*) is a positive 
defined and symmetr-ic opemtor on U , Yd, Yd E H, Zd, Zd E H are given elements 
(desir-ed O'Utp·uts) and l!i 2 0 (i = 1, . . . , 5) ar·e some constants (weights). 

5.3. Problem with control in superpotential 

The framework is quite general and covers, in particular, the parameter identi
fication (inverse) problems for systems governed by hernivariational inequalities 
(see Panagiotopoulos and Haslinger, 1995). 

The main theorem of this section generalizes the result of the paper of Mietti
nen and Haslinger (1992) who considered the stationary hemivariational inequal-
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(1993), Naniewicz and Panagiotopoulos (1995) for some applications of there
sults for engineering structures. 

The formulation of the problem is as follows 

(CP)z 
{ 

Given a cost functional F : U x Y ----+ JR., 
find u• E Uad and y• E S(u*) such that 
F(u*,y*) ~ F(u , y) for all ·u E Uad, y E S(u), 

where S(u) t;;;; Y = {y E V : y' E W} denotes the set of solutious to the 
hernivariational inequality 

{ 
y" ( t) + A ( t, y' ( t)) + By ( t) + 8 lu ( t, y ( t)) 3 f ( t) 
y(O) =Yo , y'(O) = Yl· 

for a. c. t E (0, T) 

Here Uad denotes a class of admissible controls (parametrized superpotentials) 
in the control space U (while the cost fmtctional may represent for instance a 
distance between the observed-measured and the calculated solution). 

In order to formulate a theorem on the existence of solutions to (CP)2 we 
need the following hypotheses: 

H (U)I: Uad is a compact subset of a metric space of controls U. 
H (J)I: for any ·u E U , lu : (0 , T) x Z ----+ JR. satisfies H(J) uniformly with 

respect to ·u and the following condition holds 

{ 

if 'Un ----+ ·u in U , theu for a.e. t E (0, T) 
K(Z x (w - Z*)) - lim sup GTolun (t, ·) C GTolu(t,-). 

n-++oo 

(5) 

REM ARK 5. 2 We ·rnent·ion that the s·u.fficient condit·ions joT the above conve·r
gen.ce of Cla1'ke 's genemlized gm.riients have been found by Zolezzi (1994). Nam.e
ly, 'if the sequence {Jtt}uEUad is r- (De G·ioTgi) OT in other- te'f'TnS evi-(Atto·uch) 
conve.,.genl, locally equi-bounded and eq·u'i-loweT semidiffe·rentiable, then the Te
lation (5) in H(J )I holds (s ee TheoTem 1 in Zolezz·i, 1994, p. 384) . 

Similarly as in the Bolza problem the crucial point in the proof of the exis
tence result for (CP)2 is to establish the closedness (in suitable topologies) of 
the graph of the solution map S : U 3 ·u ~------> S(u) t;;;; y, . Here we quote: 

LEMMA 5.2 If the hypotheses H(A) , H(B) , H(J)t, (Ho), (Hl) and H(U)t 
hold, then the solut·ion map S : U 3 ·u ~------> S(u) E 2Yh \ {0} has a closed gmph 
·ins- U x (w- Y,)-topology (so also ins - U x s - L 1 (0, T; H)). 

Basing on this lemma and on Theorem 5.1 due to the direct method we 
obtain (for the details see Ochal, 2001): 

THEOREM 5.3 If the hypotheses H(A) , H(B), H(J)l, (H0 ), (HI), H(U)J hold 
and the cost functional F ·is lower semicontinuo·us in U x (w - Y~t)-topology, 
,, .. . . 
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5.4. Optimal shape design problems (OSDs) 

In distinction from the previously considered control problems where the state 
relatioiL was considered on a fixed domain ll C JRN and the controls were func
tious ('U E Uad), in this special class (OSD) of optimal control the cout rols are 
geometrical domains ('U = rl) , so the state relat ion should be considered on the 
changing set. 

Let Oad denote a class of admissible shapes (e.g. open and bounded subsets 
of JRN). For a given ll E Oacl consider a state relation E on ll (E stands for a 
PDE or VI or HVI). By setti11g SE(n) = the solut ion set of E, we define 

v 'fl U ({n} x s E(n) ) 
!1E0a.d 

Then , given a cost functional F:V 3 (rl,y) ~--------+ 'i we formulate the (OSD ) 
problem as follows : 

(OSD)E 
{

Find n• E Oacl andy* E SE(n*) such that 
F (n*,y*) = min min F(r1 ,'U) . 

nEOad yESt;(O) 

The problem (OSD)E was solved (using the so called "mapping method") 
m the case E = HV Ie by Denkowski and Migorski (2000 A, B) in the case 
E = HV Ip and E = HVh by Gasiriski (1998, 2000). 

For the convenience of the reader we quote here some basic facts from the 
mapping method. This method (originated by Micheletti , and then developed 
by Murat and Simon) provides us wi th both: 

1. The set of admissible controls 0 ad (they are images of a fixed regular 
domain G by transformations belonging to an appropriately defined family 
of applications in JRN ), 

2. The topology in Oad permitting to get the usc property for the solution 
map n 1--------+ SE(n) ' as well as the lsc property of the cost functional F. 

Thus, let G be an open bounded subset of JRN with the boundary ac of 
class w~.: ,oo (k 2:: 1) such that int G =G. 

For k 2:: 1 we introduce spaces of applications in JRN (here I : JRN ~--------+ JRN 
denotes the identity mapping) 

wk,oc(JRN;JRN) '!1, {v: DO'v E L00 (1RN;JRN) Va.: 0:::::: la.l :::::: k} , 

vk ,oo 'fl { T: T-IE wk,oo (JRN; }RN )} , 

Fk ,oo 'fl {T: Tis bijective and T,T-l E Vk ·= }. 

The derivative Da in the definition of Wk ,oo is understood in the distributional 
sense. So, the space Fk,= consists of "essentialy bounded perturbations" (with 
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The class of all considered shapes will be denoted by 

0"'00 '!1 {n: n = T(G) , T E .r"·= }. 
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It can be proved (see Murat and Sinton, 1976) that the sets n E O" ·= are 
bounded and their boundaries an belong to the class wk,=. 

In the space wk,co(JRN; wv) we define the nonu setting 

df ( . 2 ) ~ llv llk,oo = ess SUP:~:EJRN L ID0 v(:c)IIR"' . 
O~l c>l::;i.: 

Let us observe that the funct ion D!.:, oc : 0 1
'' •00 X 0"·00 

f-----+ JR, defined as 

ok ,co (nl: Dz) '!1 inf (l iT - l l l ~.: .oo + IIT - l - I lk co ) ' vnl ' n2 E ok,oo . 
rE:Fk,oo 

r(Ot)=02 

is not a metric as it does not satisfy the triangle inequality (see Murat and 
Simon , 1976). However, after a modification we cau get a metric according to: 

THEOREM 5.11 Let /;: 2 1. Then: 
(a) The·l"e ex·ists a conslanl J..Lk > 0 s·uch that the appl-ication dk ,oc : Ok,oo X 

OJ.:·= f-----+ JR, y·iven uy 

d~.: ,oo( DJ , Dz) = Jnmx{ Dk,oc(Dl, !12) , Pk}, fod21, !12 E Ok ,oo, 

is a '1/J.et·ric ·in Ok ,oc . 
(b) The m.elric space ( Ok ,oo , dk, oc ) is complete. 
(c) FoT /,; 2 2 the ern!Jeddiny (')k, co ~ ok-l ,co ·is cmnpacl; i.e . for every uo·unded 
(in the Tnetric dk ,co) seq·uence {Dn}n2:1 ~ O"··JO Lhe·,.e exists a suusequence 
{D11 Jk2:l wh·ich is conveTyent ·in the rneLTic dk - l, co · 

Pmof. See Murat and Simon (1976) , Proposition 2.3, Theorcme 2.2 and T heo
reme 2.4. • 

A characteri zation of tl te convergence in Ok ,oc is given by the remark below. 

REMARK 5.3 Alis·urne {Dn}n>l ~ (')k ,co, n E ok:,oc and {Tn}n>l ~ _rk ,co, 
T E _rk ,oc aTe such that Tn(G)-= n, and T( G) = n. Then nn - : n ·iu. Qk ,cxo if 
and only 'ijT11 ------> T anaT,:;:- 1 ------> T-l in Wk,oc(JRN;JRN). 

Now, passing to HVJs we quote an existence result for (OSD)HVh obtained 
by L. Gasi!tski (see Gasinski, 2000). In the particular case (p = q = 2) we 
consider the spaces and operators: 

H(D) = L2 (D), 

V(D) = H 1 (D) = {v: v E L2 (D), Dav E L2 (D) ella 0 :S lcx l :S 1}, 

H (D) = L2 (0, T ; H(D)), 

V(D) = L 2 (0 , T; V(D)) , 

W(D) = {y : y E V(D), y' E V* (D))}, 
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First we solve the problem 

(HVh) 

l 
Find y E Yh(n), such that there is ( E H(r2) satisfying 
(y"(t), v)v•(O)xV(O) + ao(y'(t), v) + bo(y(t), v) + (((t), v)H(!l) 

= (f(t),v)v•(n)xv(n) Vv E V(r2) and for a.e. t E (0, T), 
y(O) =Yo, y'(O) = Yr inn, 
((t,x) E aj(g(y(t,x),y'(t,x))) for a.e. (t,x) E (O ,T) X r2, 

where f, y0 , y1 are given functions , j and g fulfill, respectively, hypothesis H(j) 
of Section 3 and the following one 

H(g) g : IR x IR f------7 IR is continuous and satisfies the condition 
-- lg(~,()I:Sarl~ l + a2 1(1, forevery~,(EIR, 

with some constants ur, c.~ 2 2: 0. 

We assume the bilinear fuuctions an, bo : V x V f------7 IR satisfy the hypothesis 
below. 

H(a) 11 an: V(r2) x V(r2) f------7 IRis a bilinear fu nct ion given for v,w E V(r2) by 

-- an(v , w) '!!: h [(A(x)'Vv(x) , 'Vw(:c))IR N + a(:c)v(x)w(x)] dx , 

where 

( i) A E [ C (IRN) n L 00 (IRN)] N
2 

denotes a coercive matrix with a coer
civity constant (31 > (3; (see hypothesis H(A) and (H1 ) in Section 
4); 

(ii) a E C(li~N) n L 00 (IRN) is a functiou such that for a constant ZI > (3, 
we have a( X) 2: a a.e. in JRN . 

H(b) 11 bn: V(r2) x V(r2) f------7 IR is a bilinear function giveu by 

bo(v, w) '!!: l [(B (:r: )'Vv(x), 'Vw(x)) IRN + b(x )v(x)w(x) ] dx , 

where 

(i) B E [ C(IRN) n L 00 (IRN)] N
2 

denotes a symmetric and nonnega tive ma
trix 

(ii) bE C(JRN) n L 00 (IRN) is a function such that b(x) 2: 0 a.e. in IRN. 

H'(f,yo,Yr) f E H(IRN), Yo E V(!RN), Yr E H (IRN). 
We have the following existence result: 

THEOREM 5.5 Let p = q = 2 and let n be an open and bounded s·ubset ofiRN. rr 
the hypotheses H(j), H(g) , H(a) 0 , H(b)n and H'(f, yo , Yr) ar·e fulfilled, then 
S(HV h)(r2) "=J 0, (i.e. the problem (HV I) h) has at least one sol-ut-ion. 

Pmof. For the proof it suffices to define operators 
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respectively by the formulae (for every v,w E V(D)), 

~ ~ 
(A(t,v),w)v•(n)xV(n) = an(v,w), (Bv,w)v•(n)xV(n) = bn(v,w) 

and observe that they satisfy hypotheses H(A) and H(B), so the existence 
Theorem 4.4 can be applied. • 

Next, we admit hypothesis: 

H( G,Oad ) (i) G is an open and bounded subset of JRN with the boundary of 

the class W 1
•
00 and such that -tnt c = G; 

(ii) Oad is a closed and bounded subset of O"' ·oo , whore iL 2: 3. 
H (.:F) The cost functional .:F : V ~-------> lR is sequentially lsc with respect to the 
--following convergence in V: 

( Dn, Yn) ___, (Do, Yo) iff Dn ___, Do in Ok -l ,oo and Yn ___, Yo, 

I I · 'l..J(ITJJN) Yn ___, Yo Ill I • m. . 

Above, by'}!_ we denoted the funct ion y E Y(D) extended by zero outside D ; i.e . 

(t ) df { y(t,x), 
'}!_ ,:c = 0 

) 

F inally, we can formulate 

if XED, 
if X E JRN \D. 

THEOREM 5.6 Assu·rne p = q = 2 and the hypothe:; r;:; H(j), H(g), H'(f, yo, Yl), 
H(G,Oad), H(.:F) hold. Th en, ·if thr; ass·urnptions H(a)n and H (b) 12 are satisfir;d 
fo.,. ever-y DE Oad, the pmblem (OSD)HVh adrnds at least one sol·ut·ion. 

Pmof It goes by the direct method, for detai ls see Gasi1'tski (2000). 

6. Concluding remarks 

• The problems with HVIs as the state equations (e.g. (CP) ) are not well 
posed in the sense of Hadamard, since in general the solution set (if not 
empty) contains more than one element. 

• For the unicity of solut ions some additional hypothesis are needed like, for 
instance, strict convexity of superpotentials and maximal monotonicity of 
the involved operators (see, e.g., Miettinen and Haslinger , 1992). 
As far as it concerns sensitivity and robustness of such systems some iu
forrnation on the asymptotic behaviour of the solu tion set can be obtained 
from the Kuratowski-usc property of the solution map but only for HVIs 
with operators belonging to special classes fo r which we can assure G or 
PG convergence (see Remark 4.1, Theorern 4.2, Rernark 4.2 , ... ). Namely, 
we can infer that any accumul at ion point of a sequence of solu tions to HVI 
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• Similarly, for the set of optimal solutions one can expect (in analogy with 
control problems for PDE's or differential inclusions, see e.g. Denkowski 
and Mortola, 1993) that the convergence (in Kuratowski sense) of solu
tion sets of perturbed systems and some complementary r convergence 
of cost functionals will imply the convergence of optimal solutions of the 
perturbed systems to an optimal solution of the li mit problem (see forth
coming paper). 

• There are many open problems of the above mentioned type for HVIs 
with rnultivalued operators A. For instance, under what conditions PG 
(see Mig6rski, 2000) or even G convergence (see e.g. Denkowski et al., 
2001) will imply a sensitivity result for hyperbolic HVIs. Open problems 
of another type concern the relaxation of HVIs in a similar way as of 
PDE's (see e.g. Smolka, 2000, Denkowski, 2000). 

References 

AumN, J.P. and CLARKE, F.H. (1979) Shadow Prices and Duality for a Class 
of Optimal Control Problems. SIAM Jo·umal on Control and Optinriza
hon, 17, 567-586. 

BALDER, E.J. (1987) Necessary and Sufficient Conditions for £ 1-strong-weak 
Lower Sernicontinuity of Integra l Functionals. Nonl·inear Analys·is. Theo·ry 
Methods and Applications, 11, 1399- 1404. 

BANKS, H.T., SMITH, R.C. and WANG Y. (1996) Srna'f't Mate·rial. Str·actur·es , 
Modeling, Estimation and Control. Masson, Paris. 

BROWDER, F.E. and HESS, P. (1972) Nonlinear Mappings of Monotone Type 
in Banach Spaces. Journal of Functional Analys·is, 11, 251- 294. 

CHIADO'PIAT, V., DAL MASO, G. and DEFRANCESCHI, A. (1990) G-conver
gence of Monotone Operators. A nnales de l 'Inslilul Henri Po·incar·e, 7, 
124- 160. 

CLARKE, F.H. (1983) Optimization and Nonsrnooth Analysis, John Wiley & 
Sons, New York. 

COLOMIHNI, F. and SPAGNOLO, S. (1977) Sur la Convergence de Solutions 
d'Equations Paraboliques. Jo'U1·rwl de Mathf:rnal'iques P.u·res et Appliq·uees, 
56, 263- 306. 

DE GIORGI, E. and SPAGNOLO, S. (1973) Sulla Convergenza degli Integrali 
dell'Energia per operatori ellitici del Secondo Ordine. Bolletino del Unione 
d·i Matematici Itaz.iani, 8, 391- 411. 

DENKOWSKI, Z. (2001) A survey on optimal shape design problems for systems 
described by PDE's and hemivariational inequalities. Fmm Convexity to 
Nonconvexity, Nonconvex Optimization and its Appl·ications, 55. Kluwer 
Academic, N. York-Boston. 

DENKOWSKI, Z. (2000) Existence and Relaxation Problems in Optimal Shape 
Design. Topological Methods in NonlineaT Analysis, 16, 161-180. 

DENKOWSKI, Z. and MIGORSKI, S. (1998 a) Optimal Shape Design Problems 
for a Class of Systems Described by Hernivariational Inequalities. Jo ·uT"rwl 



Control problen1s for hetnivariational inequalities 737 

DENKOWSKI, Z. and MIGORSKI, S. (1998 b) Opti1nal shape design for elliptic 
hemivariational inequalities in nonlinear elasticity. Proceedings of Twelfth 
ConfeTence on Variational Calc·ui'us, Opt·irnal Control and Appl-ications, 
Trassenheide, 23-27 IX 1996, ISNM 124. Birkhauser Verlag, Basel, 31-40. 

DENKOWSKI, Z. and MORTOLA, S. (1993) Asymptotic behaviour of optimal so
lutions to control problems for systems described by differential inclusions 
corresponding to partial differential equations . Jov:rnal of 07Jlintizat·ion 
Theory and Applications, 78, 365-391. 

DENKOWSKI, Z., MIGORSKI, S. and PAPAGEORGIU, N.S. (2001) On the con
vergence of solutions of rnultivalued parabolic equations and applications . 
NonlineaT Analys·is (submitted). 

DUVAUT, G. and LIONS, J.L. (1976) Ineq'Uu.lit·ies ·in Mechanics and Physics. 
Springer-Verlag, Berlin. 

GASINSKI, L. (2000) Hiperboliczne nierownosci hemiwariacyjne i ich zastoso
wanie w teorii optyrnalizacji ksztaltu. PhD Thesis (in Polish), Krakow. 

G ASINSKI, L. ( 1998) Optimal shape design problems for a class of systems 
described by parabolic hernivariational inequalities . Jom·nu.l of Global Op
t·irnizat·ion, 12, 2999- 317. 

HASLINGER, J. and PANAGIOTOPOULOS, P.D. (1995) Optimal Control of Sys
tems Governed by Hemivariational Inequalities. Existence allCl Approxi
mation Result. Nonlinea·r Anal. TheoTy Methods A7Jpl. , 24, 105- 119. 

HASLINGER, J. and PANAGIOTOPOULOS, P.D. (1989) Optimal Control ofHe
rnivariational Inequalities. Lect'UTe Notes in Control and /njo'l"fn.u.tion Sci
ences, 125. Springer, 128- 139. 

LIONS, J .L. ( 1969) Q'Uelq'Ues Methodes de Resoi'ubon des Problemes a'U:r Lim
ites Non Lineu.ires. Dunod, Paris. 

LIONS, J .L. (1971) Optimal Contml of Systems Gove-rned by Par·tial Differen
i'ial Eq'Uations. Springer-Verlag, Berlin. 

MIETTINEN, M. and HASLINGER, J. (1992) Approximation of Optimal Con
trol Problems of Hemivariational Inequalities. NurneT. Fun ct. A nul. mul 
Optimiz., 13, 43- 68. 

MIGORSKI, S. (2000) Existence and convergence results for evolu t ion hemi
variational inequalities. Topolog·ical Mr;thods in Nonlinear Analysis, 16, 
125-144. 

MIGORSKI, S. and Ocr·IAL, A. (2000a) Inverse Coefficient Problem for Ellip
tic Hemivariational Inequality. Nonsnwoth/Nonconvex Mechamcs: Model
ing, Analysis u.nd Nume·ricu.l Methods. Kluwer Academic Publishers, Dor
drecht, Boston, London, 247-262. 

MIGORSKI, S. and OCIIAL, A . (2000b) Optimal Control of Parabolic Hemivari
ational Inequalities. J. Global Optirn·izution, 17, 285- 300. 

MOREAU, J.J. (1968) La notion de sur-potentiel et Jes liaisons unilaterales en 
elastostatique. C. R. Acari. Sc., Paris 267 A , 954- 957. 

MURAT, F. and SIMON, J. (1976) Sv.T le Contmle ]JUT ·un Domuine Geornet·ri
qv.e. PreprinL no. 76015 , University of Paris 6. 



738 Z. DENKOWSKI 

NANIEWICZ, Z. and PANAGIOTOPOULOS, P.D. (1995) Mathematical Theor·y 
of Hemivariationallnequalities and Applications. Dekker, New York. 

OCHAL, A. (2000) Domain Identification Problem for Elliptic Hemivariational 
Inequality. Topological Methods in Nonlinear A nalys·is, 16. 

OCHAL, A. (2001) Optimal Control Problems for Evolution Hemivariational 
Inequalities of Second Order. PhD Thesis, Krakow 2001. 

PANAGIOTOPOULOS, P.D. (1993) HernivaTiational Ineq·ualities, Appl·ications in 
Mechanics and EngineeTing. Springer-Verlag, Berlin. 

PANAGIOTOPOULOS, P.D. and PoP, G. (1999) On a Type of Hyperbolic 
Variational- Hernivariational Inequalities. J. Appl. Anal. , 5, 95-112. 

PANAGIOTOPOULOS, P.D. and HAS LINGER, J. (1992) Optimal Control and 
Identification of Structures Involving Multivalued Nonrnonotonicities . Ex
istence and Approximation Results. E·uT. J. Mech. A/Solids., 11, 425- 445. 

PAPAGEORGIOU, N.S. , PAPALINI, F. and RENZACCI, F. (1999) Existence of 
Solutions and Periodic Solutions for Nonlinear Evolution Inclusions. Rend. 
Circolo Maternatico di Pale·r"rno, 48, 341- 364. 

RocKAFELLAR, R.T. (1970) Convex Analys·is. Princeton University Press. 
SMOLKA, M. (2000) Relaxed parabolic problems. Rendiconti htd. Mat. Univ. 

Tr·ieste, XXXII, 148- 171. 
SPAGNOLO, S. (1967) Sui Limite delle Soluzioni di Problemi di Cauchy Relativi 

all'Equazione del Calore. Annuli della Scuola No ·r·rnale S·uper·iore d·i Pisa, 
21. 657-699. 

TmA, D. (1990) Optimal Control of Nonsmooth Distributed Parameter Sys
tems. LectuTe Notes in Mathematics, 1459. Springer-Verlag, Berlin. 

ZEIDLER, E. (1990) Nonl·inear Functional Analycris and Appl·ications, 11 A/B. 
Springer-Verlag, New York. 

ZOLEZZI, T. (1994) Convergence of Generaliz;ed Gradients. Set- Val·ued Arwly
s·is, 2, 381- 393. 


