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Abstract: The paper considers some control problems for the
systems described by the evolution, as well as the stationary hemi-
variational inequalities (HVIs for short). First, basing on surjec-
tivity theorems for pseudo-monotone operators we formulate some
existence results for the solutions of the HVIs and investigate some
properties of the solution set (like sensitivity; i.e. its dependence on
data and operators). Next we quote some existence theorems for op-
timal solutions for various classes of optimal control like distributed
control (e.g. Bolea problem), identification of parameters, or opti-
mal shape design for systems described by HVIs. Finally, we discuss
some common features in getting the existence of optimal solutions
as well as some "well-posedness” problems,
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1. Introduction

Hemivariational inequalities are used to model such physical and engineering
problems, in which nonconvex, nonmonotone, possibly multivalued laws appear;
e.g. relation linking stress and strain or reactions and displacements in elastic-
ity theory, flux and temperature in thermic problems, generalized forces and
velocities in dynamic problems, and so on. The HVIs introduced in the 1980s
by Panagiotopoulos can be considered as generalizations of partial differential
equations (PDE’s) and variational inequalities (VIs) (see e.g. Panagiotopoulos,
1993, Naniewicz and Panagiotopoulos, 1995).

Thus, similarly as in the case of PDE's and Vls (see e.g. Lions 1971, Tiba,
1990}, it is quite natural to consider various types of control problems for sys-
tems deseribed also by HVIs (see papers by Haslinger and Panagiotopoulos,
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1989, Miettinen and Haslinger, 1992, Haslinger and Panagiotopoulos, 1993,
Denkowski and Migdrski, 1998 A, B, Gasinski, 1998, Migorski and Ochal, 2000
a,b, Gasifiski, 2000, Ochal. 2000,...).

The aim of this paper is to give a perspective for the existence results con-
cerning the solutions (the nonemptyness of solution sets) of HVIs as well as
the optimal solutions to various control problems for such systems. We [ind
some common features as well as differences in the theory of stationary (let’s
say “elliptic”) and evolution of first and second order (let's say “parabolic” and
“hyperbolic”, respectively] HVIs. For instance, the approach to the existence
theory for HVIs {we consider) is based on surjectivity theorems for pseudomono-
tone operators, while in all considered optimal control problems the existence
of optimal solutions is obtained by applying the direct method of caleulus of
variations. In the latter case the crucial problem (see Remark 5.1} is to find
such topologies in the set of controls and in the space of solutions as to nple-
ment simultaneously two needed properties: the upper semicontinuity property
(usc—for short) in the Kuratowski sense of the solution set as the function of
control, and the lower semicontinuity of the cost functional (lsc—[or short).

We also discuss some aspects of well-posedness for such kind of problems
indicating some possibilities of getting results concerning the “upper semi-
continuity” - dependence of the solution set or of optimal pairs (state - cou-
trol) on the data or even on state relations (i.e. when the HVIs themselves are
perturbed). In this part we use notions of G and PG convergence defined and de-
veloped for linear operators by Spagnolo (1967), De Giorgi and Spagnolo (1973),
Colombini and Spagnolo (1977), and then generalized for monotone operators
Ly Dal Maso, Defranceschi,. .. (see e.g. Chiado'Piat et al., 1990).

The paper is organized as follows. Before preliminaries of Section 3 we give
in Section 2 a motivation (an example of controlled elastic beam with adhesive
support and figures representing nonsmooth, nonmonotone, multivalued laws).
Next, in Section 4 we formulate three types (elliptic, parabolic and hyperbolic)
of HVIs and quote theorems assuring nonemptyness of their solution sets. In
Section 5 we present some existence theorems for various kinds of optimal con-
trol for systems governed by HVYIs mainly of hyperbolic type (similar results
can be obtained for elliptic and parabolic cases). Finally, in Section 6 we for-
mulate the concluding remarks concerning some well-posedness problems (e.g.
the dependence on data or other perturbations of HVIs; ie. we mention some
results on asymptotic behaviour of the solution sets to parametrized HVIs as the
parameter changes). The precise theorems on sensitivity of optimal solutions
will be proven in the forthcoming paper.

2. A motivation
2.1. Beam in adhesive contact

Assume an elastic (obeing linear Hooke's law) beam, fixed at the ends z =
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The function fs appearing in (1) and in (HVI) represents the prescribed
loading and it can have the form fo = Cu, the operator C being a controller
acting on the control functions from an admissible set (u € W,q C U).

So the solution set for (HVI) depends on u and will be denoted S5y py(u).
Thus, we can formulate the control problem:

Given a cost functional F : U x YV — R,
(CPIxv1 find u* € U, and y* € S(u*) such that
Fiu',v") < Flu,y) forall u € Uyq, y € S{u),

when specifying the cost functional we can cover significant problems from en-
gineering like e.g. the least deviation from a desired state at final time T, or
the minimal energy of the control, and so on.

2.2. Examples of some nondifferentiable, nonmonotone, multivalued
laws

We will now present three figures (see e.g. Naniewice and Panagiotopoulos, 19495,
Duvaut and Lions, 1976). The first two represent some adhesive laws, where the
force f depends on the displacement y. The third figure represents the flux of

heat I::-a—f_h} as a function of the temperature i in the problem of regulating the

temperature in some region {1 (7 = 7i(x) being the outward normal at point x
of its boundary) to deviate as little as possible [rom the given interval [y, ha].

Fig. 1 -1 Fig. 2 41
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3. Preliminaries

3.1. The Clarke subdifferential

Given a locally Lipschitz function J : £ — R, where £ is a Banach space , we
admit definitions (see Clarke, 1983):

(i) The generalized (in the sense of Clarke) directional derivative of J at point
u € £ in the direction v € Z | is defined by
Ju;v) = Limsup SApFar) = J{y]1
y—ru AND A
(ii) The generalized gradient of J at u is the subset of the dual space Z* given
by

Au)={C€ 2" :{¢,v)z-xz < u;v) foralve Z}.
An important class of functionals is provided by the example below.

EXAMPLE 3.1 Let @ C RY be a bounded domain with e Lipschitz boundary and
set Z = LP((; R™) (2 < p < 400, m being ¢ fired natural number).

We consider a function j : (0, T) x QxR™ — R which satisfies the following
hypothesis

H(j): j:(0,T) x 2 x R™ — R is a function such that for all t € (0,T) we
have:

(i) j(t,-,v): @ +— R is measurable for all v € R™ and j(t,-,0) € LY(Q);
(ii) j(t,z,-) : R™ — R is locally Lipschitz for all z € Q;
(iti) for eachz € Q and v € R™ if { € 8,j(t,z,v), then ||{|lg~ < (1 +

el ¥ % Faw mmem Y
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Now we define the functional J: (0,T) x LP({;R™) — R as
Jit,v) = fjl:t,m,ﬂ{:l:}}d:l!. (3)
0

From the theorem by Aubin and Clarke (1979), it follows that for every ¢ the
functional J{¢,-) is well defined, Lipschitz continuous on every bounded subset
of £ and for every v € Z = LP({1;R™) we have:

§ € dJ(t,v) = ((x) € 8,j(t, z,v(z)) for a.e. z € 1.

The inverse implication also holds provided j is regular {i.e. it has all the direc-
tional derivatives equal to the Clarke directional derivatives, see Naniewicz and
Panagiotopoulos, 1995).

Hence and from the Holder inequality we easily obtain that J, given by (3)
with 7 such that H(j) holds, satisfies the following hypot hesis:

H(J): J:(0,T) x £ — R is a function such that
(i) for each v € Z, the map ¢ — J(& v) is measurable on (0, T):
(ii) for each ¢ € (0,7) the function v — J(t,v) is locally Lipschitz on Z;

(iii) the following growth condition holds:
there exists a constant € > 0 such that for any v € £ and ¢ € (0,T)
we have

Cedlit,r) = licllz ST+ vll3)-

3.2, Multivalued operators

We start with basic definitions for multivalued operators and then we quote two
main surjectivity results for the operalor classes under consideration (sec e.g.
Browder and Hess, 1972, Naniewice and Panagiolopoulos, 1995, Papageorgiou
et al., 1999).

Let ¥ be a real reflexive Banach space and Y* be its dual space and let
T:Y — 2¥" be a multivalued operator. By R(T) = U Ty we denote the

yEY
range of T

We say that T is:
(1) bounded if the set T(C') is bounded in ¥* for any bounded subset C C ¥,
{2) coercive if there exists a [unction ¢ : B, — R with I"I-ii]-:lm elr) = +o0
such that for all y € ¥ and y* € Ty, we have (g, »*) = ([lwlDlwll,
(3) upper semicontinuous if for any closed subset C C ¥* the set T (C) =
{yeY : T'ynC# 0} is closed in Y,
(4) monotone if for every y.z € T, y* € Ty, z* € Tz, we have
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where V and Z are two reflexive, separable Banach spaces, H is a Hilbert space
and H*, Z° and V* denote dual spaces to H, X and V, respectively.

Assume that all embeddings are dense and continuous, and V' embeds com-
pactly in £. As usual, we identify H with its dual.

We denote by (-, ) the duality of V and V* and the pairing between £ and
Z* as well, by || - | the norm in the space £ being respectively V, 2, £* or V*,
and by |- |y the norm in H. Moreover, the symbol w—FE stands for the space
E equipped with the weak topology.

ExXAMPLE 3.2 To have an example of such a situation, let @ C RY be a bounded
domain with Lipschitz boundary. We admit V. = W'(Q;R™) (for the Neu-
mann type boundary problems) or V' = W,,;:‘p{ﬂ_:R'“} (for the Dhirichlel type
problems), Z = LP(Q:R™) and H = L3(Q;R™) with some 2 < p < oc. From
the Sebolev embedding theorem (see, e, Zeidler, 1990, p. 1026), we getl thal
(V.2,H, 2%, V*) is an evolution fivefold.

For the case of evolution HVIs we need spaces of functions which depend
also on time variable. Thus, given a fixed number 0 < T < 400 for some p,
2<p <o, lfp+ 1y =1, we introduce the following function spaces:

V=[Lr0,T;V),

Z=00,T,2),

H = L*(0,T; H),

Z* = [%(0,T; 2*),

W= L0, T: V"),

W={weV:vw eV},
{where the time derivative is understood in the sense of vector valued distri-
butions). The latter is a separable, reflexive Banach space with the norm
|lwllw = |lw|ly + lw'|lv- (see Zeidler, 1990, Proposition 23.7(c), p.411 and
Proposition 23.23(i), pp. 422-423).

Clearly we have

WCVCEZECHCZ W™

with dense and continuous embeddings.

Since we assumed that V' C Z compactly, we have also that W C Z
compactly (see Lions, 1969, Theorem 5.1, p. 58). Moreover, the embedding
W C (0, T; H) is continuous (see Zeidler, 1990, Proposition 23.23(ii), p. 422).
So every equivalence class in W has a unique representative in C(0,T; H).

The ]mirinﬁ_of WV and V* and also the duality beiween £ and Z2* are denoted
by {(f. g} = Jo (F(2), g(t)) dt.

As the spaces of solutions for the parabolic and hyperbolic HVIs below we
admit, respectively:
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The latter is also a separable, reflexive Banach space with the norm defined by
iy, = lwlly + [[w'llw-

Moreover, each function w € ¥, is an absolutely continuous function from
[0.7] to V and its distributional derivative w' possesses a representant which
is continuous function from [0,7) to H. Similarly, each element of V, after a

change of values on a set of weasure zero can be considered as an element of
C(0,T; H) (see e.g. Lions, 1971).

4. Hemivariational inequalities
4.1. Stationary (elliptic) hemivariational inequalities

Let V, £, H, Z*,V* be as in Subsection 3.3 and assume we are given a (nonlinear)
operator A : V — V* | a locally Lipschitz functional J : £ ~—— R and an
element [ € V",

We consider the differential inclusion

Find y € V' such that
(DL) { Ay+add(y)s f

which, when explicited into the weak form, is equivalent to the following elliptic
hemivariational inequality

(HVI,)

Find y € V' such that
Ay v =yhvexv + Py -y) 2 (v —ylv-xy forallvelV,

This, in turn, can be writlen down as

(HVIY) Find y € V' such that there is { € 8J(y) € £* and
‘ (Av, v)v-nv + ({)v-xv = {[iv}y-xv forallveV,

In the case J is given by the integral formula
1) = [ itole))de
0
with j satisfying hypothesis H(j) (omitting the dependence on t) the last HVI

is equivalent to the following

(HVI)
{ Find y € V such that there is {(x) € 3j(y(z)) a.e. in 2
(Av.v)vexv + [(C(z), v(z))rm dz = (fiv)yxy forallveV,
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THEOREM 4.1 If A is pseudomonotone, coercive and bounded, J solisfies hy-
pothesis H(J) (omitting the dependence on t), then the solution set Sigvyy(f)
contains al least one element.

Proof. For the proof one has to show that the operator T = A + @J is pscu-
domonotone and coercive and next apply the surjectivity result of Proposi-
tion 3.1. | |

REMARK 4.1 In the case A is o marimal monotone operator of the form Ay =
~div a(z, Dy(z)), where a € Mo(RY) we can obtain a sensitivity result for
solution set (depending also on A) Sygyy (A, f) basing on the G-convergence
Jor marimal monoetone operators defined in Chiado'Piat el al. [1990).

THEOREM 4.2 Assume a,,a € Mq(RY), A,y = —diva,(z, Dy(x)) and
A, — A G-converges; (or K{w,s) = lim GrA, = GrA)

ity is use; ve. K{s,w) = limsup Grdd, C Grdd

for— fims=V",

then K (w) = limsup Sy 1,)(An, Ju) € Seavi, (A, f)

In the above, K — limsup Z, (ol a sequence of sets) is understood in the
sense of Kuratowski (i.e. it is the set of all cluster points of all subsequences of
points taken from £, ), and Gr stands for graph. For the definitions of the class
Mgq(RY) and the G-convergence see Chiado'Piat et al. (1990). The proof of
the theorem follows directly from the definitions, see fortheoming paper.

4.2. First order evolution (parabolic) hemivariational inequalities

Suppose we are in the functional framework of spaces as in Subsection 3.3 and
assume we are given an operator A : (0,T) x V +— V", the elements f € V*,
to € H, and a functional J : (0,T) % £ —— R, which is locally Lipschitz with
respect to the second variable for almost all £ € (0,T).

Let us consider the following initial value problem for the parabolic differ-
ential inclusion:

y'(E) + A{y(e) + aJ(t, w(t)) 3 f{t) forae te(0,T)

Find y € ), such that
(D)
¥(0) = yo,

which, due to the definition of generalized directional derivative, can also be
written down (in the weak form) as

Find y € V, such that: forall v € V and a.e. t € (0,T)
(HV) { (' (t) + A(thu(®) — f(t)vhvexv + %t y(thiv) 2 0
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With the uvse of a selection of the subdifferential 8J the last HVI is often
written down in the equivalent form:

(HVI})
Find y € Y, and { € Z* such that: {{f) € &J(t,y(t)) for a.e. t € (0,T),
(' (1) + A{t)y(t) + C(t) = f(t), v)v-xv =0, for all v € V and a.e
te(0,7T)
¥(0) = wo.
For an existence result we admit that J fulfils H(J) as in Preliminaries and
the operator A salisfies the hypothesis:
H(A): A:(0,T) x V — V* is au operator such that
(i) for each v € V| the map ¢ — A{t,v) € V* is measurable on (0, T');
(ii) for each t € (0,7, the operator v — A(t,v) € V* is pseudomono-
tone;
(iii) for almost every ¢ € (0,T), the operator A{t,) is bounded, i.e.

there exist a nonnegative function a; € L9(0,T) and a constant &, >0
such that

A v)|lv- € ay(t) + B |lollf~" forall v & V and a.e. t € (0,T);

(iv) for almost every ¢t € (0,7, the operator A(L,-) is coercive, j.e.
there are constats 3 > 0 and B > 0 and a funclion o € LY(0,T)
such that for some r < p we have
(AL, v), v)v-xv 2 Billvlly = Bl — alt)
for all v € V and a.e. { € (0, T).

THEOREM 4.3 Under hypothesis H{A), H(J), for every f € V* and yg € H
the solution set Sqgvy,)(f,y0) contains at least one element.

Proof. A detailed proof can be found in Migdrski (2000). Here we indicate only
an outline of the proof which is based on the surjectivity result of Proposition 3.2.

Consider the Nemyckii operator A corresponding to A (ie. (Av)(t) =
A(t)v(t)), and the operator N defined for all v € V by

Nv={we Z* :w(t) € 3J(t,v(t)) ae t € (0,T)}.

Let modify them (by translating their domain by the initial condition), so that
y € W is the solution of (HVI,) if and only if w = y — yo € W solves the
inclusion

few + Ayw+ NMuw

w({l) =0,
where for all v € V we have put Ajv = A{v + yg) and

[N AfF.. n .. % i - e Fiv = &% Téa o ¥ LT LY o F T
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Here v + y; is understood as (v + ) (-) = w(-) + uy.

Now observe that operator L : ¥V 2 D(L) — V* defined by Lv = o' with
DIL) = {v € W : »(0) = 0} is linear, densely defined and maximal monotone
(see, e.g. Zeidler, 1990, Proposition 32.10, p. 855).

Next one can show that the operator T : V — 2¥ defined by the for-
mula Tv = Ayv+Nv is coercive, bounded and L-generalized pseudomonotone.
Hence, due to Proposition 3.2 the operator L+ T is surjective, which completes
the proof. |

REMARK 4.2 A sensitivily vesull (like thal of Theorem {.2) for (HVI,) with
operuators Ay = =diva(t, x, Dy(l, ), where functions a belong to o special cluss
of single valued mozimal monotone operalors was oblaimed by Migdrski [{see
Migdrski, 2000) on the basis of PG comvergence, which was earlier defined for
linear operators by Colombing and Spagnole (1977).

4.3. Second order evolution (hyperbolic) hemivariational inequali-
ties
Similarly as in the parabolic case we admit the funclional setting of Subsec-
tion 3.3 and assume that apart from A and J as before we are given in addition
an operator B satisfying the hypothesis:
H(B): B:V — V" is a bounded, linear, monotone and symnetric operator,
le.
BeclV.V*), (Bu,v)=20 forallvelV,
{Bv,w) = {Bw,v) forall v,weV.
We admit also:
(Ho): [fEV', wo€V, meH.

3
(Hy): If p = 2 then '%1 > £°T, where # is an embedding constant of V
into Z.

Let us consider the following initial value problem for the hyperbolic differ-
ential inclusion:

(D) y'(t) + At o/ (1)) + Bu(t) + 8J(t,y(t)) 3 f(t)

{ Find y € Yy such that: for a.e. ¢t € (0,T)
w0) = yo, ¥'(0)=um,

which is egivalent to the following hyperbolic hemivariational inequality
(J(t. u:v) denoting the generalized directional derivative of J(t,-) at a point
u € Z in the direction v € £):

Find v € Yy such that: for all v € V and ae. t € (0,T)
(HVL)  { ("()+ ALy () + Bult) = F(1), vhv- v +I°(t (t); v) 20
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The latter is often written down as

Find y € Yy, and { € Z* such that:

Cit) e dJ(t, y(t)) forae te(0T)

y"(t) + Alt,o'(1)) + By(t) + {(t) = f(t) forae. t€(0,T)
w(0) = yo, ¥'(0) = m.

(HVI)

Let us notice that the nitial conditions in the problems above have a sense since
the embeddings ¥, C C0,T; V) and W C C(0,T; H) are continuous,

With the help of the following lemma giving “a priori estimates” one can
oblain the existence result below.

LEmma 4.1 Suppose thal hypotheses H(A), H(B), H(J) and (Hg) hold and y
15 a solution to (HV ). If p > 2, then there exists a constant & > 0 such thet

2 2 2
lullcwray + 19w < COU+ lwolly: + lwnlf + 1SS )- (4)

Moreover, the estimale (4) still holds for p = 2 provided (Hy) is satisfied. [f
Z=H. then the estimale (4) holds for p 2 2 withou! the asswmplion (Hy).

THEOREM 4.4 If hypotheses H{A), H(B), Hi1}), (Ho) and (Hy) hold, then the
plnMrriu {H'."rfh] Trs al least one solulion |'r|l,1::. "-:"'IH'I‘J;.}{L yﬂ,yﬂ ?5 '['U

Proof. For the complete proof of the theorem we reler to Gasinski (2000) and
to Ochal (2001). We ouly mention here that (HV 1) can be reduced to (HV 1)
by means of the operator K : V — C(0, T V) defined by

Kuv(t) = yo +f wvls)ds forall ve V.
o

Namely, let us notice that the problem (K V [;,) can be written as follows

Find z € W such that: for a.e. £ € (0,T)
(HVIT) { Jit) € 2'(t) + A(t, z(1)) + B(Kz(t)) + aJ(t, K=(1))
#(0) = m.
It can be observed that z is a solution to (HVIT) if and only if y := Kz
satisfies (V1) Therefore it suffices apply to the reduced problem (HVI)
the surjectivity result of Proposition 3.2 similarly as in the parabolic case. B
OfF course the solution sel Sy, (S, vo. 1) depends also on A, B, J and
sometimes we have to identify some of them in the appropriate classes of oper-
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4.4. An example of A satisfying hypothesis of the existence theorem

EXAMPLE 4.1 (see Ochal, 2001). Let @ € RY be a bounded open set, Q =
(0,7 xNand V = W&"‘{ﬂ] (2 < p < +oc). We consider a family of functions
2, :QxRxRY —R fori=1,...,N,
g @xR—E
satisfying the following hypothesis:

H(a): functions a; = a;(t,z,n,€), (i = 1,..., N}, and ap = ao(t,z,7), are of
the Carathéodory type (i.e. a;, ag are measurable with respect to (¢, z) €
and continuous in other variables) and for ae. (t,z) € Q, forall y e R
and for all £ € RY we have

(i) there exist ¢; > 0 and b€ L%(Q) (g= FE'T} such that

N

., 01 < e (b(t,2) + 1P + T UGPY) fori=1,..,N,
=l

lag(t, z, )| € e (b(t, z) + nfP~1),

(i) TZ(altz,n.6) = ailt,z,m, €))(& = &) 2 0 for all &' € RY,
(iii) there exist ¢z > 0 and k € L'(Q) such that
N

N
Z ai(f,x. 7, § )8 + aolt,x,9)n 2 cz(lrri" - Z I:‘.;l") = k(t, z).
i=1

i=1

Now we define the operator A : (0,7") x V' — V* by the formula:

N
{A(t, v), whv-xv :jZai{i’,x.:r,nt=}[}iur:f;r+fuul:hmru]lwdr.
e 0

The operator A can be treated as the sum of two operators

A (0, T) x V — V*,

(At v} w)y-xv = /“ Zue{t,w,v.M}D,w dx

=1

and
A : [0, T) % V — V", {Aa(t,v), W)y v = j ag(t, z, v)wde.
Lt

According to Proposition 26.12 in Zeidler (1990, p. 572) the operator Aq(t,-) is
monotone, coercive, continuous and bounded. From Corollary 26.14 in Zeidler
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the operator A(t, ) : V — V* is continuous. By Proposition 27.6(f) in Zeidler
(1990, p. 586), the operator A(f,-) 18 pseudomonotone as a strongly continuous
perturbation of the continuous monotone operator.

Let us notice that applying the hypotesis H{a){i) and the Hilder inequality,
we gel,

)
ILA(L, 9), ¥}y -xv] < fn (Z |ai(t, z, v, Dv)| [Div] + Jaolt, =, v)| |'v[) dz
i=1

N

< [ en(bta) + o+ X o) > D+ ) de
=1

i=]
=1
E ‘I{ilb‘.t}" L"{‘.]‘_I + |I“||::I"E'| -J-{n}}l!.“"r'!
which implies that [|A(t.v)flv- < ar(t) + byfloll§" with ay(e) = (&)l sy

and by =e > 0.
It follows frow the assumption Hia)(iii) that

N
(At v), v}vexy = [ Z{u.{f.ﬂr‘ v, De)Dye + ag(l, z, v)v) dx
=)

N
= f cal vl + » |Div|? ) dx - [ k(t, x)vdx
oy ( ,ZE ) 1
= callvllyy = IR escenllell Loy 2= Bullwllyy = Ballvllv,

with §; = ¢2 > 0,02 = ||[F(t)l|£sry = 0. Hence A is coercive (i.e. H{A)(iv) holds
with o = 0 and r =1 < p) and finally the hypothesis H{A) is satisfied.

ReMmank 4.3 Other examples of operalors salisfying H{A) are given by mazi-
mal monotone (also mullivalued) operators in divergence form for the functions
belonging to the class Mo(RY) defined in Cliado'Piat el al. {1990) (see also
Denkowski et al., 2001).

5. Optimal control problems for systems governed by he-
mivariational inequalities

In this section we quote three classes of optimal control problems for the hyper-
bolic hemivariational inequalities (the case of elliptic as well as parabolic one
can be treated similarly - see e, Migdrski, 2000, Gasinski, 1998, Migorski and
Ochal, 2000 a, Denkowski and Migérski (1998 a.b)).

1. The optimal control problem of distributed parameter system (here we
consider only Bolza type problem, but the time optimal problem and max-
i stay problem were considered as well by Ochal (2001})),

2. The optimal control in the superpotential (it may be treated as the iden-
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3. The optimal shape design (OSD for short) problems (in contrary to the
previous classes where controls were functions, the controls are geometrical
domains changing in some admissible families of sets).

5.1. General remarks and a lower semicontinuity result

REMARK 5.1 In all the epltimnal conlrol cuses mentioned above the main tool in
gelting some existence resulls is the direct method. I is based on two properties:
(i) the closed graph (or usc in Kwalowski sense) property of the solution map
S:au— Su)Cy
where S(u) = Sy py(u) s the set of stales y(u) of the controlled system
(HV I under consideralion,
(i) the lse property of the covresponding cost functional,

In all the problems considered below the property (i) should be established
separately in each case, while for the first two classes the property (ii) is based on
the general theorem (quoted below), due to Balder, and for 05D it is based on
the Serrin type theorem where the cost lunctional depends also on the domain
of integration (see, e.g., Denkowski, 2001, 2000).

Let X be a separable Banach space and ¥ be a separable reflexive Banach
space. Let F:[0,7] x X x Y — (—oc,+oc) be a given £(0,T) x B(X x Y)-
measurable function (here £(0,T) denotes the family of all subsets of [0,T]
measurable in Lebesgue sense, and B(X % Y') is the family of all Borel subsets
of X » Y). We define the functional F: L'(0.T: X) x L(0,T:Y) — [—o00. 4]
as

T
F{m,y]:fa F(t, 2(2), y(t)) dt.

We equip LY(0,T: X) with L'-norm. and ! (0, 7:Y) with the weak topology.

The following theoremn (see Balder, 1987) presents safficient conditions for
strong-weak lower semicontinuity of the integral functional F on LY0,7T; X) x
L'(0,T;Y).

THEOREM 5.1 If the followenyg three conditions hold:
(i) F(t.-,-) is sequenticlly lower semicontinuons on X x Y for n.e. t € (0.7,
fii) F(t,x,-) is conver on Y for everyz € X and for we. t € (0.7),

(iii) there exist M > 0 and o € L(0,T;R) such that

Flt,zy) > u(t)=M(||z| x +|lglly) for all ze X, yeY and a.e. t(0,T),

then the functional F is sequentially lower semicontinuous in s— LY(0,T3X)
X (w = LY0,T;Y))-topology.
Moreover, the conditions (1)-(iii] are also necessary provided that F{T.%) < 4+
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[t should be pointed out that, in general, optimal control problems for hemi-
variational inequalities are formulated as double minimization, maximization or
minimax problems since usually the hemivariational inequality does not possess
a unique solution.

5.2. Distributed controls—Bolza problem

We begin with a systemn described by the following controlled second order
evolution inclusion

y'(t) + AL, ' (L)) + Bylt) + aJit,y(t)) 3 F(t) + C(t)u(t)
(CHVI) for ae t € (0,T)
y(0) = yo. ¥'(0) =u:.

Here A, B, J, [, wo. 3 ave as in Section 4, y = y(u) denoles the solution state
corresponding to a control w € i = L30,T:07). 2 < p < 400, :l; + é =11 is
a space of control variables and C represents a controller,

We need the following hypothesis concerning the operator C(-) and the space
U of controls,
H(C): C € L={(0,T: L(U, Z*)) and U is a separable reflexive Banach space.

Now the closed graph (or use in Kuratowski sense) property of the solution
HTHEY

S:U3u— Su)C V.

where S{u) = Siepvi ) (f+Cu.yp. uy) is the set of states y(u) of the controlled
system (CHVIL) (f, wo, 11 being fixed), follows from the lemma below.

The solution set is a subset of the space Vi = {y € V : v € W}. We say
that {y.¥a} € Vi. yu — y weakly in ¥, if and ouly if y, — vy weakly in V
and gy, — ' weakly in W,

LEMMA 5.1 Assume the hypotheses H(A), H(B), H(J), (Ho), (H,) and H(C)
hold. Then the solution map 5 : U4 3 w— S(u) € 2V \ {}} has a closed graph
in (w—U) x (w— Yy)-topology (5o also in (w—UW) x s — LY(0. T, H)).

Next, let us consider the control problem:
(CPh
T
Py, u) = Hu(T), ¥ (T)) + f Flt,y(t), v’ (), w(t)) dt — inl = m
1]
where y € S{u) and u(t) € U(t) ae. in (0, T),u(-) is measurable.

We admit the following liypotheses:
H{®): I: H x H — R is weakly lower semicontinuous; F:[0,T]x Hx Hx U —
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(i) F(t,-,-,-) is sequentially lower semicontinwous on H x H x U for a.e.
te(0,T),

{(ii) F(t,y.v.-)isconvexon U, forallye H.ve H and a.e. t € (0,T),

{iii) there exist M > 0 and v € LY(0,T) such that for all y € H, v € H,
u € U and ae ¢ € (0,T), we have

F(t,y,v,u) 2 9(t) = M (lyle + Ivlm + lullo) -

H(U): U:[0,T] — EU\,I{@} is a multifunction such that for all ¢ € [0, T, U(t)
is a closed convex subset of U and t — |U(t)| := sup{|lully : » € U(L)}
belongs to L5,

We recall that §; = {u € U = L0, T V) : u(t) € U(t) ae. in [0,T]} is
the set of all selectors of the multifunction U{-). It is known that under the
hypothesis H{U) the set 5; is nonempty.

By an admissible state-control pair (y,u) for (CP); we understand a pair
consisting of a state function y € S(u) (which solves (CHVI,}) and & control

function u € 5. An admissible pair (y,u) is called an optimal solution to
(CP)y il and only if ®{y,u) = m. We have the following

THEGREM 5.2 If the hypotheses H(A), H(B), H(J}. (Hy), (H,), H(C), H(¥)
and H{U) hold, then the problem (CP)y admils an oplimal solution.

Proof. 1t follows from the direct method due to Lemma 5.1 and Theorem 5.1
For the details see Ochal (2001).
We quote an example of a cost functional which satisfies H{$).

EXAMPLE 5.1
T
Dy, u) = o1|u(T) - vally + e2ly'(T) - Talyy + Es_[ |Ovw(t) = za(t)[F dt
i
T i
+aa [ 1O/ (t) = FH(O) dt + o5 f (Ru(t), w(t))y- < dt,
(1] L]

where 01,05 € L(H) are observation operators, R € L(U,U*) is a positive
defined and symmetric operator on U, ya, 573 € H, 24,57 € H are given elements
(desired outputs) and g; 20 (i=1,...,5) are some constants (weights).

5.3. Problem with control in superpotential

The framework is quite general and covers, in particular, the parameter identi-
fication (inverse) problems for systems governed by hemivariational inequalities
(see Panagiotopoulos and Haslinger, 1993).

The main theorem of this section generalizes the result of the paper of Mietti-
nen and Haslinger (1992) who considered the stationary hemivariational inequal-
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(1983}, Naniewicz and Panagiotopoulos (1993) for some applications of the re-
sults for engineering structures.
The formulation of the problem is as follows

find u* € U,q and y* € §(u*) such that

Given a cost functional F: U = Y — R,
(CP})a
Flu*,4") < Flu,y) for all u € Uyq, y € S(u),

where S(u) € YV = {y € V : ¢ € W} denotes the set of solutions to the
hemivariational inequality

{ y"(t) + A(t,y'(8)) + By(t) + o, (L,y(t)) 3 f(t) for a.e. t€(0,T)
w(0) = wo. ¥'(0) =um.

Here i,q denotes a class of admissible controls (parametrized superpotentials)
in the control space W (while the cost functional may represent for instance a
distance between the observed-measured and the calculated solution).
In order to formulate a theorem on the existence of solutions to (C'P)s we
need the following hypotheses:
H(U)y: Uyg is a compact subset of a metric space of controls 4.
H(J)y: for any w € U, J, : (0,T) x Z — R satisfies H{J) uniformly with
respect to w and the following condition holds
il wy — win i, then for ae. t € (0,T)
K(Z x (w = Z%)) = limsup Grd,_(t.-) € GraJ.(t, ). (3)

LES D o -]

REMARK 5.2 We mention thal the sufficient condilions for the above conver-
gence of Clarke s generalized gradients have been found by Zolezzi (1994). Name-
by, if the sequence {J, }uev,, 15 - (De Giorgi) or in other terms epi-(Attouch)
convergent, locally equi-bounded and equi-lower semidifferentiable, then the re-
lation (5) in H{J)1 holds {see Theorem 1 in Zolezzi, 1894, p. 384).

Similarly as in the Bolza problemn the crucial point in the proof of the exis-
tence result for (CP); is Lo establish the closedness (in suitable topologies) of
the graph of the solution map S : U 3 u — S(u) C V. Here we quote:

LEMMA 5.2 If the hypotheses H(A), H(B), H(J),, (Ho), (Hy) and H(U),
hold, then the solulion map § : U 3 w— S(u) € 2%\ {0} has a closed graph
in 8= U x (w = Yy)-topology (so also tn s =U x s = L0, T; H)).

Basing on this lemma and on Theorem 5.1 due to the direct method we
obtain (for the details see Ochal, 2001):

THEOREM 5.3 If the hypotheses H(A), H(B), H(J)y, (Ho), (H:), H(U); hold
anid the cost functional F' is lower semicontinuous in W = (w — Vi )-topology,
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5.4. Optimal shape design problems {(05Ds)

In distinction from the previously considered control problems where the state
relation was considered on a fixed domain @ € BY and the controls were func-
tions (u & U,q), in this special class (05D of optimal control the controls are
geometrical domains (v = (1), 20 the state relation should be considered on the
changing set.

Let Oy denote a class of admissible shapes (e.g. open and bounded subsets
of R¥). For a given 2 € gy consider a state relation £ on Q (E stands for a
PDE or VI or HVI). By setting Sg(1) = the solution set of E, we define

p 4 U (92} x Se()
;!Eﬂal

Then, given a cost functional F:D 3 (fl.y) — R we formulate the (0SD)
problem as follows:

(05D g F( .y )= ]”,é:." miu“}.Fl[H,u}.

Find 22° € Oyy and y° € Sg(Q2°) such that
eEOsa HES¢I-|:

The problem (OSD)g was solved (using the so called “mapping method”)
in the case £ = HVI, by Denkowski and Migorski (2000 A, B) in the case
E=HVI, and E= HV I, by Gasinski (1998, 2000).

For the convenience of the reader we quote here some basic facts from the
mapping method. This method (originated by Micheletti, and then developed
by Murat and Simon) provides us with both:

1. The set of admissible controls Quq (they are images of a fixed regular
domain & by transformations belonging to an appropriately defined family
of applications in R"),
2. The topology in Oy permitting to get the usc property for the solution
map £ — Sg(2) . as well as the lsc property of the cost lunctional F,
Thus, let G be an open bounded subset of BY with the boundary 8G of
class W5 (k > 1) such that int G = G.
For k > 1 we introduce spaces of applications in RY (here J : RY — RY
denotes the identity mapping)

wh=(RY . R¥) € {v: Dov € L=(R™;RY) Va:0< |a| < k},
v L r e Whe (RN RY)),
Fhoo X {7 : 7 is bijective and 7,77 € V&™),

The derivative D™ in the definition of W5 is understood in the distributional
sense. So, the space F*° consists of “essentialy bounded perturbations” (with
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The class of all considered shapes will be denoted by
ok d(q:0=1(G), re F*=<}].

It can be proved (see Murat and Simon, 1976) that the sets 2 € O%™ are
bounded and their boundaries 89 belong to the class Wk,
In the space W5 (RY: RV ) we define the norm setting

1K [P L ess SUP, g ( Z |D“'U[I]|§.v ) ' .

0o <k

Let us observe that the function §; o : @5 x O — R, defined as

B me (S, 2a) Lt (I = Hlese + U7 = Mliene) » ¥, Q0 € OF,
B
is not a metric as it does not salisly the triangle incquality (see Murat and
Simon, 1976). However, alter a modification we can gel a metric according to;
TueoreM 5.4 Let k= 1. Then:

(a) There exists a constant pg > 0 such that the application dy, o : O™ %
e — R, given by

i i), 81a) = u/tnilx{:‘il.-,.-,:{ih-.ﬂa}. i}, for 4,0 € OF,

is u melric in Q%=

(b) The metric space (O% di ) 5 complete.

(c) For k = 2 the embedding O%™= € Q%=1 is compuct; i.e. for every bounded
(in the metric dy o) sequence {2, },51 C OF there exists a subsequence
{2, bez1 which is convergent in the metric dy_q o,

Proof. See Murat and Simon (1976). Proposition 2.3, Théoréme 2.2 and Théo-
réme 2.4, B

A characterization of the convergence in % is given by the remark below.
REMARK 5.3 Assume {{1,}n51 C ok 0 e 08 gnd {mjnz € Fleoa

T € F&= ure such that 7,(G) =, and 7(G) = 0. Then @, — § in OF= if
and only if 1, — 7 and 771 — 771 in WhS(RN RY).

Now, passing to HVIs we quote an existence result for (08 D) gy, obtained
by L. Gasinski (see Gasiiski, 2000). In the particular case (p = q = 2) we
consider the spaces and operators:

mm:ﬂm

V)= HY(Q) = {v: ve L}Q), D"ve L}N) dlal<|al <1},
mm=ﬂmmmmL

V() = L*(0.T; V().

W(Q) = {y: ye V@), ¥ €V (@),
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First we solve the problem

(HV i)

Find y € Vi(f1), such that there is { € H() satislying
(¥"(t), v)v-yevimy + anly'(t),v) + baly(t), v) + (C(t), v) 4
= {f(8), o)v-gmxvim Yv € V(Q) and for ae. £ € (0,7,

y(0) = yo, ¥'(0)=m il

¢(t,z) € Dj(g(y(t,z),¥'(t,z))) for ae. (t,z) € (0.T) x Q,
where f, yg, y; are given functions, j and g fulfill, respectively, hypothesis H(j)
of Section 3 and the following one
Hg) y: B x R+ R is continuous and satisfies the condition

lg(€, Ol < enlé| + aqf¢], for every §,(€R,

with some constants oy, cep 2 0,

We assume the bilinear functions ag, by @ V % V —— R satisly the hypothesis
Brelonwe.

H(a)g an: V(§2) x V(2) — R is a bilincar function given for v, w € V(12) by
ag (v, w) 4 j [{E{r}?v[.‘:}, Vw(a))g~ + E{l‘}u{:}w{:ﬂ}} dz,
o

where

(i) 4 € [C(RY)n L=(RY)] M denotes a coercive matrix with a coer-
civity constant 3, > §; (see hypothesis H(A) and (H;) in Section
4);

(ii) @ € C(RY)n L>=(RY) is a function such that for a constant T > .
we have @(x) > i a.e. in RY,

H(b)g bg: V(£2) x V(Q2) — R is a bilinear function given by
by (v, w) A fn [(B(z)Ve(x), Vw(z))gx + b{z)v(z)w(z)] de.

where

(i) Be [CR¥)nL=(R¥)]" denotes a symmetric and nonnegative ma-
trix
(ii) b e C(R¥)n L*(RY) is a function such that b(z) > 0 a.e. in RV,
H'(f,y0.11) f€HERY), yo € V(RY), m € HRY).
We have the following existence result:

THEOREM 5.5 Letp=q =2 and let Q2 be an open and bounded subset of RY . If
the hypotheses H(j), H(g), H(a)g, H(b), and H'(f,y0,3) are fulfilled, then
Siaving (1) #0, (e the problem (HV 1)) has af least one solution.

Froof. For the proof it sulfices to define operators
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respectively by the formulae (for every v, w € V(12)),

(A(t, v), whv -y v 2 ag(v,w), (Bu, Wy ()= V(N 4 bo(v, w)

and observe that they satisfy hypotheses H{A) and H(B), so the existence
Theorem 4.4 can be applied. w

Next, we admit hypothesis:

H(G,0.4) (i) G is an open and bounded subset of B with the boundary of
the class W™ and such that int G = G;

(i) Ouq is a closed and bounded subset of O™, where k > 3.

H(F) The cost functional F : D — R is sequentially lsc with respect to the
following convergence in D:
(Qnr ) — (Do, 1) iff ,, — D in OF 1 and M¥n — Yo,

¥l — yh in H(RY).
Above, by y we denoted the function y € Y(2) extended by zero outside £ ; i.e.

dr [yltz), ifzeq,
ylt2) = {n, if 2 € RY \ 0.

Finally, we can formulate

THEOREM 5.6 Assume p =g =2 and the hypotheses H(G), Hig), H'(f, vo. 1),
H{G,O4a), H{F) hold. Then, if the assumptions H(a);, and Hﬂr]“ are satisfied
Jor every & Oy, the problem (OS50 gy, admits al least one solution.

Proof. It goes by the direct method, for details see Gasinski (2000).

6. Concluding remarks

® The problems with HVIs as the state equations (e.g. (CP) ) are not well
posed in the sense of Hadamard, since in general the solution set (if not
empty) contains more than one element.

s For the unicity of solutions some additional hypothesis are needed like, for
instance, strict convexity of superpotentials and maximal monotonicity of
the involved operators (see, e.g., Miettinen and Haslinger, 1992).

e As far as it concerns sensitivity and robustness of such systems some in-
formation on the asymptotic belaviour of the solution set can be obtained
from the Kuratowski-usc property of the solution map but only for HVIs
with operators belonging to special classes for which we can assure G or
PG convergence (see Remark 4.1, Theovem 4.2, Remark 4.2,. .. ). Namely,
we can infer that any accumulation point of a sequence of solutions to HV1
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o Similarly, for the set of optimal solutions one can expect (in analogy with
control problems for PDE's or differential inclusions, see e.g. Denkowski
and Mortola, 1993) that the convergence (in Kuratowski sense) of solu-
tion sets of perturbed systems and some complementary T' convergence
of cost functionals will imply the convergence of optimal solutions of the
perturbed systems to an optimal solution of the limit problem (see forth-
coming paper).

¢ There are many open problems of the above mentioned type for HVIs
with multivalued operators A, For instance, under what conditions PG
(see Migdiski, 20007 or even G convergence (see e.g, Denkowski el al.,
2001) will iuply a sensitivity result for hyperbolic HVIs. Open problems
of another type concern the relaxation of HVIs in a similar way as of
PDE’s (see e.g. Smolka, 2000, Denkowski, 2000).
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