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Abstract: Sufficient quadratic optimality conditions for a weak 
and a strong minimum are stated in an optimal control problem 
on a fixed time interval with mixed state-control constraints, under 
the assumption that the gradients of all active mixed constraints 
with respect to control are linearly indepeudent. The conditions 
are stated for the cases of both continuous and discontinuous con
trols and guarantee in each case a lower bound of the cost fuuction 
increase at the reference point. They are formulated in terms of 
an accessory problem with quadratic form, which must be positive
definite on the so-called critical cone. In the case of discontinuous 
control the quadratic form has some new terms related to the control 
discontinuity. 
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1. Introduction 

The classical sufficient quadratic optimality conditions for a problem with con
straints require that the second variation of Lagrangian is positive definite in 
all critical directions. In this paper, we give sufficient quadratic conditions for 
a strong minimum in an optimal control problem with mixed state-control con
straints and endpoint constraints of both equality aud inequality type, for au 
extremal with at most a finite number of control discontinuities. 

lu the case of continuous control these conditions have an almost classical 
form. We begin with this case in Section 2. However, even in this case, the set A0 

of nonned collections of Lagrange multipliers of the problem does not necessarily 
consist of a single element. Therefore , second-order conditions are formulated 
not in terms of a quadratic form, but of a maximum of quadratic forms over the 
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set A0 . This situation is characteristic for problems with inequality constraints, 
particularly for optimal control problems. 

In Section 3, which is central to the paper , we formulate sufficient quadratic 
conditions for the general case of extremal with a fi ni te number of control dis
continui t ies. In this case the quadra tic form has new terms related to control 
jumps. 

In Section 4, we expla in t he methodology of t he proofs , which are based 
on the abs tract theory of higher order conditions derived by Levitin, Milyutin 
and Osrnolovskii (1974, 1978) , and then developed by Milyutin and Osmolovskii 
(1993). 

T wo important illustra tive examples are presented in Section 5: a fi nite di
mensional example, cl ue t Milyuti u, where the maximum of quadratic forms is 
positive on all critical directions without any single one being so, ami an exam
ple of ext rernals with control jumps, which is investigated using the quadratic 
conditions formulated in Section 3. 

The main results presented in this paper are due to t he author and were 
published in Osrnolovskii (1975 , 1986 , 1988A, 1988B, 1995, 2000), Mily ut in and 
Osmolovskii (1998, P art 2). 

Statement of the problem. The following optimal control problem on a 
fixed time interval ~ = [to , t!] will be considered and referred to as the canonical 
pTUblem: 

J(x, 'U) = J (x(to), x(t l)) ___., rnin , 

F(x(to), :r(tl)) ::; 0, K(:z:(to) , :r:(tl)) = 0, 

i = f(t , x , 'U), g(t , :c, 'U) = 0, cp(t , :r , 'U) ::; 0, 
(1) 

(x(to),x(t l)) E P , (t ,x,'U) E Q, 

where P and Q are open sets, the funct ions J, F , and f{ are defined and twice 
continuously differentiable on P , and the functions .f , y, and cp are defined 
and twice continuously differeutiable on Q. We assume t hat the gradients with 
respect to control g;u(t , x, 'U) , ·i = 1, ... , d(g) and C/)ju(t , :z:, u) , j E I'P (t, :c, 'U) are 
jointly linearly independe t at each point (t, :z:, 'U) E Q such that y(t , x, 'U) = 0, 
cp(t,x,u)::; 0, where 

I'P(t, :c, 'U) = {j E {1, ... , d(cp)} I cpj( t, x, ·u) = 0} 

is the set of indices of the active constraints and d( a) denotes the d imension of 
the vector a. 

The minimum is taken over the pairs of fu nctions w(-) = (x(·) , u(-)) such 
that x(-) E Wd(~ ) and 'U(-) E Ld(u )' where Wd(~) is the space of absolutely 

continuous functions fro m ~ into JRd(x), endowed with the norm 

IJ :c il l,l = lx(to) l + /J i(t) i dt , 
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and L':(u) denotes the space of bounded measurable functions from .0. into ]Rd(u), 

endowed with the norm 

Set 

llulloo = esssup l'u(t) j. 
6 

W Wl,l L= 
= d(x) X d(u)· 

Thus, the problem is considered in W. 
For brevity, we put 

xo = x(to), x1 = :r:(h), p =(:co, :cl), w = (x, u). 

Let w 0 = ( x 0 , 'u0 ) E W be an admissible point of the canonical problem (1) 
satisfying the following condition: there exists a compact set C C Q such that 
(t, x 0 (t), u0 (t)) E C a.e. on .0.. It means that there exists an c > 0 such that 
a.e., on .0., the distance of the point (t, :c0 (t), 'u0 (t)) E Q to the boundary 8Q is 
not less than c. 

Weak ')'-sufficiency. Each sufficient second-order optimality condition is 
related to a local minimum of some specific shape, or some specific order. For 
example, the second-order sufficient condition 

for a local rnininmrn of a smooth function cl>(:r:) at the point :r:0 is equivalent to 
the following condition: there exists C > 0 such that 

for all sufficiently small 5x. We refer to this condition as ')' -rninirn'U'In at a point 
:c0 for I'= j5:r: j2 , and to the function I' as the onleT of the condd'ion, or simply 
the m·der-. 

What is a typical order in optimal control, particularly in problem (1), at 
the given admissible point w0 = (x0 , u 0 ) E W? The answer is not unique. It de
pends on the type of minimum under consideration (weak, strong or some other), 
and on the properties of the control u0(t) (continuous, discontinuous, singular , 
nonsingular, etc.). Second-order sufficient conditions for a weak minimum, ob
tained in the recent three decades by many authors (see, e.g. Dontchcv et a!., 
1995, Levitin, Milyutin, Osrnolovskii, 1978, Maurer, 1981, 1992, Maurer, P ick
enhain, 1995, Osrnolovskii , 1975, 1988, 1995, Pickenhain, Tarnrner , 1991 , Pick
enhain, 1992, Zeidan, 1983, 1989, 1994), guarantee the following lower bound 
of the cost functional increase at the reference point: 
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where 

1(8w) = rr~x l8x(t)1 2 + j l8u(t)i 2 dt . (3) 

!::. 

Inequality (2) holds with some c > 0 for all admissible variations 8w = (8x, 8u) 
in some neighbourhood of zero in W. (A variation 8w E W is called adm,issible 
if w0 + 8w satisfies the constraints of the problem.) We call condition (2) a 
weak min'irrwm of the or-der- 1, or a weak 1-rnin'irnmn. The standard order (3) 
evolved naturally out of the calculus of variations, where minimum of the order 
1 = J l8x(tW dt is equivalent to the Jacobi sufficient condition. 

However , it could be proved tha t the second-order conditions mentioned 
above guarantee not only a weak minimum oft he order 1, but also some stronger 
condition, which we call a weak 1-S'ufficiency at the point w0 and define as 
follows: there exists c > 0 such tha t 

0'(8w) 2: q(8w), 

in some neighbourhood of zero in W , where 

d(F ) 

0'(8w) = L Fi+(p0 + 8p) + IK(p0 + bp) l + j lx0 + 8:i: - f(t , w0 + 8w) l dt 
·i=O t::. 

d(<p) 

+ esssup lg(t, w0 + 8w)l + L esssup <t?j(t, w0 + 8w). 
!::. j=l !::. 

In this definition , we used t he following notations: 

ow= (8x , 8'u) E W , 8p = (8x(to), 8x(h )) , Fo(TJ) = J(p ) - J(p0
) , 

p0 = (:c0 (to) ,:r0 (tl)) , a+ = rnax{a, O} . 

Obviously, 0' 2: 0 and 0'(0) = 0. We call 0' the violation function of the canonical 
problem. 

It is easy to show that , a t the point w0
, a weak 1-S'uffic'iency =? a weak 

1-rninimmn =? a str-ict weak rninirnmn. 

Strong minimum. The commonly used not ion of a strong minimum in the 
calculus of variations corresponds only to the proximity of the st ate components 
of tra jectories. We shall give a new definition of a strong minimum, which is 
even stronger than the one just mentioned. To this end , let us define a notion 
of an unessential component of a vector x. 

DEFI NITION . The state varia ble x; (or the 'tth component Xi of vector x) is said 
to be 'unessential if the functions f, g, <p do not depend on it and J, F, J( are 
affine in Xio and xil, where :cia = xi( to), :r;1 = x;(tl). A st ate variable Xi, which 
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Accordingly, we will speak of essential and unessential components of a vec
tor x. 

For example, consider some optimization problem with the integral func
tional 

l
tl 

3 = G(t, x, ·u) dt. 
to 

We can rewrite it to the canonical form by representing 3 as 

y(tl)- y(to), 

where y is a new state variable satisfying the equation 

y = G(t,x,'U). 

Clearly, y is the unessential component in the new problem, and it must not be 
taken into consideration in the definition of a strong minimum. 

We denote by 1:. a vector composed of all essential components of vector x. 

DEFINITION. We say that w0 is a point of a strict stmng minirrmm if there exists 
an c. > 0 such that 83 > 0 for all admissible nonzero variations 8w = (8x, 8'U) 
satisfying the conditions 

mgx l81:.(t) l <c. , 18x(to)l <c.. (4) 

DEFINITION. We say that w0 is a point of a strong 1-s·ujfic·iency if there exists 
an c > 0 such that 0'( 8w) 2: q( 8·w) for all variations 8w = ( 8x, 8'U) satisfying 
conditions (4) and the inequality 0'(8·w) <c. 

If 8w is an admissible variation such that 83 :S 0, then 0'( 8w) = 0. There
fore, a str-ong !-sufficiency implies a stTict strong minirnmn at the point w0

. 

DEFINITION. We say that w0 is a point of a strict bo·unded-stTong minirn·um 
if for any compact set C C Q, there exists an c > 0 such that 83 > 0 for all 
admissible nonzero variations 8w = (8x, 8'U) satisfying the conditions 

(t,x 0 (t),'U0 (t) + 8·u(t)) E C a.e. on b., 

max 18x(t)l <c., 18x(to) l <c. 
~ - (5) 

DEFINITION. We say that w0 is a point of a bounded-st·rong 1-s·ujficiency if there 
exists an T/ > 0 such that, for any compact set C C Q, there exists an c. > 0 
such that 0'( 8w) 2: rn( 8w) for all variations 8w = ( 8x, b'U) satisfying conditions 
(5) and the inequality 0'(8w) <c. 

Obviously, a bu·unded-stmng 1 -sujfiC'iency implies a stT·ict bo·unded-stTong 
n 



808 N. P. OSMOLOVSKII 

Also, it is clear that the notions of the bounded-strong ')'-sufficiency and 
the bounded-strong minimum are weaker t han the notions of the strong ')'
sufficiency and the strong minimum, respectively. It is easy to give a condition 
which guarantees the equivalence of these notions. Set 

U(t,x) = {'U E ~d(u) I (t,:c,'U) E Q, g(t,x,'U) = 0, cp(t,:c , ·u) :S 0}. 

PROPOSITION 1 Ass·urne that there exists a compact set C C Q s'Uch that the 
condit·ions t E .6. , 'U E U(t,x 0 (t)) ·imply that (t,x0 (t),'U) E C. Then, the 
bo·anded- stmng ')' -S'UjJiciency and the bo'Unded-stmng rn·in·im'lLm aTe eq'Uivalent to 
the stmng ')' -s·ufficiency and the strong mininmm, respect·ively. 

The proposition follows from the definitions. 
We shall formulate sufficient conditions for a weak minimum, which are 

equivalent to a weak ')'-sufficiency, and their strengthening to sufficient condi
tions for a bounded-strong minimum , which are equivalent to a bounded-strong 
')'-sufficiency. We shall do it first for the case of a continuous control ·u0 and the 
order 1' defined by formula (3), and then for the case of a discontinuous control 
tt

0 and a higher order. 

2. Sufficient optimality conditions m the case of continu
ous control 

First order necessary conditions. In this section we assume that the contml 
·u0 is contin'Uo·us, in order to achieve a better understanding of more general 
results of Section 3 for discontinuous controls. 

Let us state the well-known first-order necessary conditions for a weak min
imum and for the so-called Poutryagiu minimum introduced by Milyutin (see 
Milyutin , Osrnolovskii, 1998) . These conditions are often referred to as the local 
and the integral maximum principle, respectively. The local maximum princi
ple, or Euler-Lagrange equation , which we give first , is conveniently identified 
with the nonernptiness of the set Ao defined below. Let 

l = aoJ +(a, F)+ ((3, K) , H = (41, f), fi = H- (v, g)- (J-L, cp), 

where ao is a scalar, ct, (3 , ·V;, v , and J-i are vectors of the same dimension as F , 
K, j , g, and cp, respectively, a d (-,·)is the inner product. The functions l, H, 
and fi depend on the following variables: 

l = l(p ,ao,a,/3), H = H(t,w ,·tj;), fi = fi(t ,w, ·tj; , v,J-L). 

Let >. denote an a rbitrary tuple 

(ao, a, (3, .,P(-), v(-) , Mel) 

with 
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Here, W,7(~ is the space of Lipschitz continuous functions from 6. into JRd(x). 

Denote by Ao the set of all tuples A satisfying the conditions 

ao 2': 0, a 2': 0, (a, F(p0
)) = 0, 

d(F) d(K) 

L C~i + L l/1j I = 1, 
-i=O j =l 

p,(t) ::=: 0, 

·~ = -flx, 

fl.,,= 0, 

(p,(t) , <p(t, w0 (t))) = 0, 

·tjJ(to) = lx01 ·tjJ( tl) = -lx1 , 

(6) 

where a; and /J.i are components of the vectors n a nd /1, respectively. The gra
dients lx0 a nd lx, are taken a t the point (p0 , ao, a, /1) with p0 = (:c0 (to) , x0 ( tl) ), 
and the gradients flx a nd flu are evalu a ted for the point (t , w0(t) , ·tj; (t), v(t), JL(t)) 
with t E 6.. 

It is well-known that ·if w0 ·is a weak rn·in·inmm, then Ao 'is nonernpty (see , 
e.g., Dubovitskii and Milyutin , 1965, 1971, 1981 ). The la tter condition is just 
the local max'im'Um pr-inc'iple. Note t ha t Ao can consist of more tha n one element. 
The following result perta ins to this possibility (see, e.g., Os rnolovskii , 1975 , 
1986, 1995) . 

PROPOSITION 2 The set Ao 'is a fi:nde-d'imens'ional compact set and the pmjec
t·ion A= (no,n,;J,·tjJ,v,JL)-+ (ao,o:,/1) 'is 'inject-ive on Ao . 

Note also the following property of Lagrange multipliers, which is specific to 
the case of continuous control ·u0 . 

PROPOSITION 3 For· any A = (no, a , /1, ·tjJ, v, JL) E Ao , the f'unct'ions v and JL ur·e 
cont'in'Uo'1/.s. 

Similarly, the integral maximuHr principle, which is a first-order necessary 
condition for the so-called Pontryagi u minimum at w 0 (see Section 4 for the 
definition), can be stated ill terms of noneruptiness of the set M 0 defined below. 
Denote by Mo the set of tuples A E Ao such that for all t E 6., the inclusion 
·u E U(t, x 0 (t)) implies the inequality 

(7) 

The requirement that M0 be non-empty is the 'inteyml (or Pontr·yagin) rnaxi
m'Urn pr-inciple (see, e.g., Dubovitskii and Milyutin , 1981). 

Note that, just like Ao , the set M0 can conta in more than one element. 
Since this set is closed , it follows from Proposition 2 that M0 is a lso a finite
dimensional compact set. 

In order to formulate sufficient conditions for a weak minimum at the point 
w0 we must a lso define the notions of the critical cone and the corresponding 
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Critical cone. Denote by Wd(~) the space of absolutely continuous func
tions 

x(-) : D. -t JRd(x) 

with square integrable derivative. Denote by W2 the space of pairs ·w = (x, u) 
such that 

- E wl ,2 
X d(x)' 

- L2 
U E d(u)> 

where L~(u) is the space of square integrable functions 

Let 

h(p0
) = { i E {1, ... , d(F)} I F;(p0

) = 0} 

be the set of indices of active i equality const raints F; (p) :::; 0 at the point p0 , 

where F; are the components of a vector function F. Let K. denote the set of 
w = (x, u) E W2 such that 

(Jp(p0 ),p):::; 0, (Fip(p0 ),p):::; 0 ViE h(p0
), Kp(p0 )p = 0, 

x = fw(t, w0 )·w, (8) 

Yw(t, w0 )w = 0, (VJJw(w0
, t), ·w):::; 0 Vj E I"'(t, w0 (t)), 

where p = (x(to), x(ti)), ·w = (x, 'ii.) . Obviously, K. is a closed convex cone in 
the space w2. 

The following question is of interest: which inequalities in the definition of 
K. can be replaced by equalities without affecting K.? This question is answered 
below. 

PROPOSITION 4 For any >. = (a o, a, {3, '1/J, v, J..L) E A0 and wE K., we have 

ao(Jp(p0 ),p) = 0, u;(F;p(p0 ),p) = 0 V·i E h(p0
) , 

J..Lj(VJjw(t, w0
), ·w) = 0 Vj = 1, ... , d(<p), 

wher-e a .; and J.l.j are the components of the vector-s a and J..L, respectively. 

Hence, each inequality in the definition of K. can be replaced by equality if 
the corresponding Lagrange multiplier is positive for some >. E A0 . 

The following question is also of interest: under what conditions can one of 
the terminal inequalities in the definition of K. be omitted without affecting K.? 
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PROPOSITION 5 Suppose that there exists a A E Ao S'Uch that ao > 0. Then the 
relations 

(Fip(p0 ),p) ::S 0, ai(F;p(p0 ),p) = 0 'hE h(p0
); Kp(p0 )p = 0; 

x = fw(t, w0 )·w, Yw(t, w0 )w = 0, 

(<f!jw(t, w0
), w) :::; 0 J.Li(<f!jw(t, w0

), w) = 0 'ij E I"'(t, w0 (t)) 

represent an equivalent definition of K. 

A similar assertion holds for any other endpoint inequality 

(F;p(p0
) , p) ::S 0, ·i E lp(p0

). 

Obviously, if there exists a A E Ao such that a; > 0 for all ·i E lp(p0 ) 

and, for any t E ~ ' we have J.Lj(t) > 0 for all j E J"'(t, w0(t)), then K is a 
subspace. It means that all Lagrange multipliers of active inequality constraints 
are positive. Certainly, this is a rather strong assumption. To avoid it , most of 
the authors extend K to a subspace by omitting inequalities in the definition of 
K for Lagrange multipliers, which are either zero or even small enough. It clears 
away most of the difficulties in the proofs, but leads to much stronger sufficient 
conditions for a local minimum than that, which we present in this paper. 

Quadratic form. We are now ready to introduce the quadratic form. For 
any A E A0 and ·w = (x, u) E W 2 , we set 

!1'\w) = ~(lppp,p)- ~ j(fiww'w,·w)dt, 
Ll. 

where 

lpp = lpp(p0
, ao, a, (3), fiww = fiww(t, w0 (t),-lj;(t), v(t), J.L(t)), 

p = ( x (to), x ( t I)), ·w = ( x, u) . 

Obviously, n.x(w) is quadratic in wand linear in A. 

The set Leg+(Ao). An element A= (ao,a,(J, ·lj;,v,J.L) E Ao is said to be 
strictly Legendr-ian if the following condition is satisfied: for any t E ~' the 
quadratic form 

-(fiuu(t, w0 (t), ·lj;(t), v(t), J.L(t))u, u) (9) 

of the variable 'li is positive definite on the cone formed by the vectors u E JRd(u) 

such that 

9u(t, w 0 (t))'ii = 0, 

(<f!ju(t, w0 (t)), ·u):::; 0 'ij E I"'(t, w0 (t)), (10) 
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Denote by Leg+ ( Ao) the set of all strictly Legendrian elements A E A0 . 

Basic sufficient cond ition for a weak minimum. Let 

-t('w) = (x(to), x(to)) + /('u(t), ·u(t)) dt. 

ll. 

DEFINITION. We say that a point w0 satisfies condition B0 if there exist a 
nonernpty compact set M C Leg+(Ao) and a constant c: > 0 such that 

maxO'\·w ) 2: c:i (tu) 'rhu E K. 
)..EM 

THEOREM 1 Condd'ion Bo 'is eq·u'ivalent to a weak 'Y -s'Ujficiency a.t the point ·w0 . 

Condition Bo obviously holds if the set Leg+(A0 ) is nonempty and the cone 
K consists only of zero. 

Most of the authors use only one quadratic form in sufficient conditions. In 
condition Bo , it corresponds to the case when M is a singleton. 

How far is condition Bo from sufficient conditions for a strong minimum? 
Remarkably, in the case of continuous control ·u0 , which we are considering 
now , condition Bo is very close to such condit ions. Iu order to obtain them, we 
do not need to change the quadratic form or the critical cone. We only must 
strengthen the maximum principle. 

Basic sufficient condition for a strong minimum. Let MrJ' denote the 
set of A E M0 such that 

(11) 

if t E 6., ·u E U(t,x0 (t)), ·u =f:. ·u0 (t). For a given A E M0 , we call this condition 
the stT'ict rnax'irnmn pr"inc'iple. 

Denote by Leg+ (MrJ') the set of all strictly Legendrian elements A E MrJ'. 

DEFINITIO N. We say that a point w 0 satisfies condition B6 if there exist a 
nonernpty compact set M C Leg+(M0 ) and a constant c: > 0 such that 

maxO;.,('w) 2: c:i('w) V·u1 E K. 
).. EM 

THEOREM 2 Condd·ion sg ·is eq·u'ivalent to a bo'ltnded- stmny 'Y-S'Ujfic'iency at the 
point w0 . 

Thus, condition B6 is sufficient for a strict bounded-strong minimum (see 
Supplement S2 to Chapter 4 due to Osrnolovskii in Levitin , Milyutin and Os
rnolovskii , 1978) , which is equivalent to a strict st rong minimum if the hypothesis 
of Proposition 1 holds. 

Sufficient conditions for a strong minimum which do not require the hypoth-
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3. Sufficient optimality conditions m the case of discon
tinuous control 

The results in this Section are central to the paper and more general than those 
of Section 2. Assume now that the control ·u0 is piecewise continuous, wi th 
nonempty set e = { t 1 ' ... 't5

} of all discontinuity points, where to < t1 < . . . < 
ts < h. Also assume that ·u0 is Lipschitz continuous on each interval of the set 
;::,. \e. 

We shall indicate the changes in the theory of sufficient conditions in this 
case, using the same notations for the new quauratic form , critical cone and 
some other objects as in the case of continuous control. 

Sufficient conditions for a weak minimum of the order (3) do not change. 
But now these conditions coulu not be st rengthened to sufficient conditions of a 
strong minimum. In a sense their local role has now Jecreased. To restore this 
role, we have to change the concepts of critical cone, quadratic fo rm, anu even 
the very concept of a weak minimum. We shall extend the class of L 00 -srnall 
variations of the control - corresponding to a weak minimum - to a broauer 
class which defines the so called B-weak minimum. 

Denote by u0 the closure in JRl+d(u) of the set 

{(t,u) E JRl+d(u) I t E l:,.\8 , 'U = TL0 (t)} . 

D EFINITION. We say that w0 = (x0 , ·u0 ) is a strict B-weak m'inirrmm if t here 
exist an c > 0 and a neighbourhoou V of the compac t set u0 such that, for each 
admissible pair w = (x , u) E W satisfying the conditions 

(t, u(t)) E V a .e. on!:,., 

we have 

What are the sufficient conditions for a 8-weak minimum? What is the or
der of these conditions which corresponds to a typical 8-weak minimum? These 
questions become quite nontrivial. The notion of an order, which will be pre
sented now may seem strange. It is not homogeneous and it is not defineu via 
analytic expressions. However, it suits well the fact that a minimum in optimal 
control , is , 'as a rule', quadratic with respect to the variations of the control 
that retain the jump points unchanged and it is of the first order with respect 
to the shifts of the jump points. 

Denote by 
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the closure in JRl+d(u) of the graph of the restriction of u0 (-) to the interval 
(tk- 1, tk), k = 1, ... , s + 1, where t0 =to, ts+l = t1. Put 

'UOk- = uO(tk _ O), UOk+ = 'UO(tk + O), [uO]k = 'UOk+ _ 'UOk-
1 

k = 1, ... ,s. 

Let V be a fixed neighborhood of the compact set :;!i with V being the union 
of disjoint neighborhoods Vk of the compact sets u0(tk- 1 , tk), k = 1, ... , s + 1. 
Define the function 

f(t , u) : V t--t JR
1 

by the following three conditions: 
(a) r(t, u) = i·u- ·u0(t)IZ if (t, u) E Vk, t E (tk- 1, tk), k = 1, ... , s + 1; 
(b) r( t, 'U) = lu - 'UOk-1 2 + 2lt - tk I if ( u, t) E vk, t > tk, k = 1, ... , s; 
(c) f(t,u) = lu-·u0k+l 2 +21t -tk1 if(t,u) E Vk+l, t < tk, k = 1, ... ,s. 

We call f(t , u) the ordeT funct ·ion. 
Put 

1(bw) =mg-xlbx(t)l 2 + j f(t,u0(t)+bu(t))dt. (12) 

6 

DEFINITION. We say that B-weak 1-sufficiency holds at t he point w0 = ~0 , u 0 ) 

if there exist c > 0 and a neighbourhood V C V of the compact set u0 such 
that, for each admissible variat ion bw = (bx,bu) E W satisfying the conditions 

(t, u0 (t) + bu(t)) E V a.e. on ll , 

we have 

a(bw) ~ q(bw). 

max lbx(t)l < c, 
6 

We shall formulate the results of Osrnolovskii (1988A, 1988B, 1995) , which 
concern 'decoding' of this sufficient condit ion for a strict B-weak minimum. 
Although the order 1 under consideration is not quadratic (and, moreover, not 
even homogeneous of any degree), the results are again obtained in terms of an 
accessory problem, but with a specific quadratic form n which must be positive 
definite on a new "critical cone" K. 

Critical cone. Denote by P11 Wei(;) the space of piecewise continuous func
tions 

which are absolutely continuous on each interval of the et (to, tl) \ B and have 
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functions are contained in B. In what follows, given tk E B and i(-) E Po Wd(,~) ' 
we use the notations 

:ek- = x(tk - o), :ek+ = x(l + 0), [x]k = :ek+ - :Y;k-. 

Denote by Z2 (B) the space of triples z = ((,x,'u) such t hat 

(=((l , . . . ,(s)ER5
, i EPeWd(;)' uEL~(u)· 

Let Xj ( t) be the characteristic function of the set 

{t E 6. 1 'Pi(t,w0 (t)) = 0} 

for j = l , . . . ,d(lfJ) . 
Let K denote the set of z = ((,x, ·u) E Z2 (B) such that 

(Jp(po), fJ) :::; 0, 

x = fw(t , w0 )·w, 
9w(t , w0 )w = 0, 

(F;p(p0 ),p):::; 0 V'i E ]p(p0
), Kp(p0 )p = 0, 

[i ]k = [i:o ]k(k Vtk E B, 

('Pjw(t ,w0 ),w)Xj:::; 0 Vj = l , . .. ,d(lfJ), 

(13) 

where fJ = (x(t0 ), x(tt)), ·w = (x, ·u), and [:i:0]k denotes the jump of the function 
i:0(t) a t tk E B, i.e., 

[i:O]k = i;Ok+ _ i;Ok- = j;O(tk + 0) _ i:O(tk _ 0). 

Let A0 be defined by the same conditions (6) as before, and let M 0 be the 
set of tuples,\ E A0 such that, for all t E 6 \ e, the inclusion u E U(t,x 0 (t)) 
implies the inequality (7). Given any A= (ao,a,(J,'Ij;,v,J.L) E Ao, we denote by 
[H]k the jump of the function H(t ,x0 (t),u0 (t), ·¢(t)) at tk E B. Let A~ be the 
set of all ,\ E Ao such that [H]k = 0 Vtk E B. 

PROPOSITION 6 A~ is a fi:nde-dirnensional compact set such that 

Mo c A~ c Ao. 

If w0 is a point of B-weak minimum, then A~ is not empty. In the new 
definition of critical cone K, Proposition 4 holds if Ao in it is replaced by A~ . 

Proposition 5 has the following analogue: 

PROPOSITION 7 Suppose that there ex·ists an ,\ E A~ s·uch that a0 > 0. Then, 
K ·is chamcie1"'ised by the follow·ing Telat'ions 

(Fip(p0 ),p):::; 0, a;(F;p(p0 ),p) = 0 ViE IF(p0
); Kp(p0 )p = 0; 

x = fw(t , w0 )·w, [x]k = [i0](k Vtk E B; 9w(t, w0 )·w = 0, 

('Pjw(t , w0 ) , ·w)Xj :::; 0, J.Li('Pjw(t , w0 ) , ·w) = 0 Vj = 1, .. . , d(lfJ). 

Quadratic form. The following property of elerneuts of A0 is specific for 
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PROPOSITION 8 For any A = (a0 , a, {3, 'lj;, v, J-L) E A0 the functions v and J-L aTe 
piecew·ise-continuous, and all their· d·iscontin·uity points ar·e contained in e. 

Thus, the quantities 

J-Lk- = J-L(tk- 0), J-Lk+ = J-L(tk + 0), vk- = v(tk - 0), vk+ = v(tk + 0) 

are well defined for any A E Ao and tk E 8. 
Given any A E Ao and tk E (} , we define 

tl k(JJ)(t) = fl(t , x0 (t), ·u0k+, ·tj; (t) , vk+ , J-Lk+) 

H- (t o(t) Ok - ·'·(t) k - k -) - , x ,u , ·<p , v , J-L ' 

where u0k- = u0 (tk - 0) and ·u0k+ = ·u0 (tk + 0) . 

PROPOSITION 9 FaT any A E Ao and tk E (}, the derivative of the function 
tl k ( fl) ( t) exists at tk. Denoting this der"ivative by Dk ( fi), we have 

Dk(JJ) = (fJ: +, JJ~-) - ( fl~+, JJ:-) + [fit]\ 

wher·e fl;+, fi~+, JJ;- , JJ~- an~, Tespectively, the right and left l-imits of the 
functions flx(t, w0 (t), 'ljJ(t) , v(t), J-L(t)) and H,p = f(t , w0 (t)) at tk , wher·eas [fltJ k 
is thejmnp ofthefunctionflt(t ,w0 (t) , ·tj;( t) , v(t) , J-L(t)) attk. 

Note that Dk(fi) is linear in A. 
We have also the following result . 

PROPOSITION 10 Let A E Mo. Then Dk(fi) 2 0 Vtk E 8. 

Furthermore, given any A E A0 and tk E e, we define 

[fl .]k = ffk+- JJk-
x X X ' 

which is the jump of flx(t, w0(t), ·tj;(t ), v(t), J-L(t) ) at tk. 
We are now ready to define the quadratic form we seek. For any A E A0 and 

z E Z2(8), we set 

where 

lpp = lpp(p0 , ao , a ,(J), fl.ww = flww(t,w0 (t) ,·lj;(t) , v(t), J-L(t)) , 

fi = (x(to) , x(ti)), ·w = (x, ·u), 

x~v = ~(xk- + xk+) . 

(14) 
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The set Leg+ ( i\0 ). In the case of a discontinuous control ·u0 under consid
eration, the definition of a strictly Legendrian element includes some additional 
couclitions. Put w 0k- = w 0 (tk- 0) , w0k+ = w 0 (tk + 0). 

DEFINITION. An element A= (o:o,o:,/3,·1/J,v,JL) E Ao is said to be stT'iclly 
LegendT'ian if the following conditions are satisfied: 

(i) [H]k = 0, Dk(fi) > 0 Vtk E B; 
(ii) for any t E !:::.. \ B, the quadratic form (9) is positive definite on the cone 

formed by the vectors ·u E JRd(u) satisfying conditions (10) ; 
(iii) for any tk E 8, the quadratic form 

(H- (tk Ok- ,/ (tk) k- k-)- -) (15) - '"u , W , '•jJ 1 V , JL 'U, U 

of the variable ·u is positive definite on the cone formed by the vectors 
u E JRd(u) such that 

9u(t\ w 0k-) ·u = 0, 

('Pju(tk,wOk-) ,·u):::; 0 Vj E I'P(t\ tu0k-), (16) 

JL~- ('Pju(t\ w0k-), ·u) = 0 Vj E I'P (t\ wok - ); 
(iv) for any tk E 8, the quadratic form 

- (fluu(tk , w0k+ ,¢(tk), vk+, JLk+)·u, ·u) (17) 
of the variable ·u is positive definite on the cone formed by the vectors 
·u E JRd(u) such that 

9u(tk , w0k+) ·u = 0, 

('Pju(t\ w0k+), ·u) :::; 0 Vj E I'P(t\ w0k+), (18) 

JL~+('Pju(tk,wOk+), ·u) = 0 Vj E I'P(tk,w0k+). 

Note that every A E Mo is a nonstrictly LegendTian element in the sense 
that 

and that the quadratic forms (9) , (15), and (17) in conditions (ii) , (iii), and (iv) 
are positive semidefinite on the cones (10), (16) , and (18), respectively. In other 
words, the following result is true. 

PROPOSITION 11 Leg(Mo) = Mo, wheTe Leg(M) denotes the S'llbset of all non
strictly Legendrian elements of a set M C A0 . 

Denote by Leg+ (Ao) the set of all strictly Legendrian elements A E Ao. 

Basic sufficient condition for a B-weak minimum 

DEFINITION. We say that the point w0 satisfies condition Bg if there exist a 
nonempty compact set M C Leg+(Ao) and a constant c > 0 such that 
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where 

i(z) = ((, () + (x(to ), x(to)) + j (·u(t), ·u(t)) dt. (19) 

~ 

THEOREM 3 Condition Bg is equ·ivalent to a weak "'(-sufficiency at the point w0
. 

Remark on necessar y conditions. Each sufficient quadratic condition 
presented in this paper is a natural strengthening of the corresponding neces
sary one, and the gap between them is minimal (see Osrnolovskii , 1986, 1988A, 
1988B, 1995). For example, the necessary quadratic condition for a B-weak 
minimum can be formulated as follows . 

For an admissible point w0 satisfying the assumptions of this Section, we 
set .Co = Leg Ao, where Leg Ao denotes the subset of all nonstrictly Legendrian 
elements >. E Ao. Since .Co is a closed set and Ao is a finite-dimensional compact 
set, .Co is also a finite dimensional compact set. 

THEOREM 4 If w 0 ·is a B-weak minimum, then .Co is nonempty and 

max !l '\z) 2: 0 '<:/z E K. 
.XELo 

(20) 

(see Osmolovskii, 1995 , T eorem 6.1 ). 

Sufficient condition for a strong m1mmum. Now we need to define 
the order "Y in the entire space W. To this end we assume that there exists a 
neighborhood V of the compact set 'U0 and a continuous function 

r(t, 'U) : JRl+d(u) 1----> JRl 

such that the restriction of r to v is an order function satisfying, in addition to 
conditions ( a),(b ),(c) of its definition, the following two conditions: 

(d) f(t,'U) > 0 on JRl+d(u) \ V; 
(e) f(t, 'U) is Lipschitz continous in ·u on each compact set F c JRl+d(u) \ V . 

An extension of such an order function to JRl+d(u) sat isfying these two conditions 
will again be called the order function. 

The following lower bound for the order function r is of interest in applica
tions (see Milyutin and Osmolovskii , 1998, Part 2, Proposition 9.3, p. 273). 

LEMMA 1 Let C C Q be a compact set and let 5·u E £ 00 (.6., JRd(u )) be a variation 
such that (t,x0 (t) , 'U0 (t) + 5'U(t)) E C a.e on .6. . Then 

j f(t, ·u0 (t) +5u(t) )dt 2: const(!!5u!!I) 2
, 

~ 

mhP'I'P 11/i'/1.11, = [ 1/i?i.(f)l rff . fl.71.1 / flue r.flnSffl.nf rfP.'f!P.'fl.(fS fiTI.l'll ()71. C !/.7/.rl r . 
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Now we can easily obtain a sufficient condition for a strong minimum by 
strengthening Condition B8. As in the case of continuous control, we need only 
to strengthen the maximum principle. 

Let Mft denote the set of A E Mo such that 
(a) H(t, x0(t ), ·u, ·tjJ(t), t) < H(t, x0(t), ·u0(t), ·tj;(t)) 

if t E 6.\ 8, u E U(t,x0(t)), u =J ·u0(t); 

(b) H(tk ,x0(tk), u ,·tjJ(tk)) < Hk- = Hk+ 

if tk E e, 'U E U(tk,x0(tk)), 'U ~ {u0k- ,u0k+} , 
where Hk- = H(tk, x0(tk), ·u0k-, 'lj;(tk)), Hk+ = H(tk, :r:0(tk) , u0k+, ·tjJ(tk)). 

Denote by Leg+ ( Mft) the set of all strictly Legendrian elements A E Mft. 

DEFINITION. We say that an admissible point w0 satisfies condition B if there 
exist a nonempty compact set M C Leg+(Mft) and a constant c: > 0 such that 

~~a~D'\z) 2: c:-=t(z) Vz E K. 

THEOREM 5 Condition B is eq·uivalent to the ex·istence of an order function 
r( t, u) : JRl+d(u) 1-t IR1 such that the bounded-stmng "Y-s·ufficiency holds for the 
corresponding oTder 1 defined by ( 12). 

If the hypothesis of Proposition 1 holds, then Condition B~ is sufficient for 
a strict strong minimurn. 

Sufficient conditions for a st rong minimum which do not require the hypoth
esis of Proposition 1 are presented in Osmolovskii (1995). 

Condition B obviously holds if the set Leg+(Mft) is nonempty and the cone 
K consists only of zero. Therefore, Theorem 5 implies the following result. 

COROLLARY 1 If the set Leg+(Mft) is nonempty and K = {0}, then w0 ·is a 
stTict bounded-stmng m·inirnurn. 

The hypotheses of Corollary 1 are first-order sufficient conditions for a 
bounded-strong minimum. 

Remarks. Sufficient conditions for a weak minimum, as well as necessary 
conditions for a weak minimum, do not require any new quadratic forms, they 
are formulated by means of the traditional one. A fairly complete second order 
theory for a weak minimum was developed by a number of researchers (see, e.g. , 
Dontchev, Hager, Poor and Yang, 1995, Malanowski, 1994, Maurer, 1981, Mau
rer and Pickenhain, 1995, Pickenhain, 1992, Osrnolovskii, 1975, Zeidan, 1983, 
1989, 1994). The sufficient second order conditions for a weak minimum can 
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nmnmum only by strengthening the maximum principle to the "strict maxi
mum principle", but this strengthening automatically implies that the control 
is continuo·us. Such a strengthening was formulated in Section 2. 

The new quadratic form (with additional terms) appears when we consider 
the second-order conditions for some type of the "local" minimum which is 
stTOnger than the weak minimum and related to variations of the type of "shifts" 
of the control discontinuity points. These variations are no longer small in 
the £=-norm, but small in the £ 1-nonn (or in any other integral norm) and 
have the character of" needle-shaped" variations, concentrated near the control 
discontinuity points. The notion of B-weak minimum, and hence the notions of 
Pontryagin (see Section 5 for the definition), bounded-strong and strong minima 
include such type of variations. 

The problem of deriving the second-order conditions, which take into account 
the variations of this type appears already for the broken extremals in the 
simplest problem of calculus of variations. The complete solution of this problem 
was given in Milyutin and Osmolovskii (1998, Part 2, Chapters 1 and 2). 

In optimal control, the same results (formulated in Section 3) lead, in partic
ular, to the finite-dimensional second-order sufficient conditions for bang-bang 
control in the problem which is linear in control. This was shown in Milyutin 
and Osrnolovskii (1998, Part 2, Chapter 3). 

A number of reseachers developed the theory of sufficient conditions for bro
ken extremals based on the related notions of field of extremals, Hamilton-Jacobi 
theory and geometrical methods in optimal control (see, e.g., Agrachev, Ste
fani, Zezza, 2002, Noble and Shattler, 1999, 2002, Nowakowski, 1988, Sarychev, 
1997), but this is beyond the scope of our article. 

4. The methodology of the proofs 

Abstract scheme. The concept of second-order conditions for extremum prob
lems with constraints has a long history, which deserves a special paper. Here, 
we shall point out only some important facts concerning investigations of higher 
order conditions in Milyutin's school. 

In 1965, there appeared two papers by Dubovitskii and Milyutin, where the 
concept of the critical variations for problems with constraints was introduced, 
and a theory of second-order conditions, based on this concept, was developed 
for a fairy general abstract model. Later it became clear that, in the infinite
dimensional case, this theory concerns mainly necessary conditions, but it is 
inadequate for the sufficient ones. This situation stimulated the interest of 
Milyutin and his colleagues in the problem of higher order conditions, both 
necessary and sufficient, for an acceptably general abstract model, since it was 
not clear what could replace the concept of critical variation. 

Milyutin, Levitin and Osmolovskii (1974, 1978) developed an abstract the-
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of an arbitrary order. The very concept of an order acquired a new meaning in 
this theory, namely that of a nonnegative functional in the space of variations. 
The choice of the order in a given class of problems and for a given type of 
trajectory is a key point in this approach. As soon as the order is chosen, the 
scheme of obtaining conditions of this order becomes strictly defined, and the 
difficulties of implementing it depend on both the class of the problems and 
the type of the trajectory under consideration. In applications to calculus of 
variations and to finit e-dimensional problems, the theory led to all the classical 
results and also to some new ones, as e.g., in the mathematical programming 
(see Levitin, Mi lyutin, Osrnolovskii , 1974, 1978). In optimal control , the the
ory made it possible to obtain new quadratic conditions for different type of 
minima, both necessary and sufficient for trajectories with nonsingular discon
tinuous controls (Osmolovskii , 1988, 1995) and for trajectories with singular 
controls (Drnitruk, 1987, 1999). 

About the proofs . The complete proofs of the sufficient quadratic con
ditions for discontinuous controls, formulated in Section 3 for optimal control 
problem (1), are presented (together with the proofs of the corresponding neces
sary quadratic conditions) in Osrnolovskii (1996, 1988A). For wider availability, 
the author plans to publish them in a separa te book. For the case of broken 
exterrnals in the problem of calculus of variations the proofs are given in the 
monograph by Milyutin and Osmolovskii (1998, Part 2, Chapter 2). 

Here, for general problem (1), we shall give only some explanations of the 
methodology of the proofs of the results stated in Section 3 (which are more 
general than those in Section 2). 

The central and most nontrivial part of the proofs concerns the conditions for 
the so-called Pontryagiu minimum, or minimum on the set of Pontryagin's se
quences. Below we shall give the definition of Pontryagin minimum, introduced 
by Milyutin in Levitin, Milyutin, and Osmolovskii (1978). 

Let II be the set of sequences of variations ow, = (8:t,, O'U,) in the space 
W, which converge to zer-o in Pontryay·in's sence, i.e. such that the following 
conditions hold : 

(a) max l8xn(t) l--+ 0; 
tELl. 

(b) there exists a compact set C E Q (depending on the sequence) such that 
(t,x0(t) + Dx11 (t), ·u0(t) + O'Un(t)) E C a .e. on 6:. ; 

(c) J ID'Un(t) i dt--+ 0. 

Ll. 

Note that this "convergence" is stronger than L 1-couvergence of varia tions of 
the control defined in item (c), since t here is an important condition (b) which 
guarantees a uniform boundedness in the L00-norm of all terms of the sequence 
{ D'Wn}. This type of " convergence" is not related to any norm or topology (the 
second closure of a set in the sense of this convergence is not identical with the 
.c ___ L. --- - \ -
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a local minimum in the usual sence. But, in spite of this "strange property", 
there is a rich theory of both necessary and sufficient conditions of the first and 
higher orders for the Pontryagin minimum introduced below. 

DEFINITION. We say that w0 is a m-inimum on IT, or a PontTyagin rninirrmm, 
if there is no sequence { Dwn} E II such that all its terms satisfy the conditions 

J(p0 + Dpn) < J(p0
) , F(p0 + Dpn) :S 0, I<(p0 + Dpn) = 0, 

x +Din = j(t , w0 + Dwn), g(t, w0 + Dwn) = 0, cp(t, w0 + Dwn) :S 0, 

(p0 + Dpn) E P, w0 + Dwn E Q, 

where Dpn = (Dxn(to), Dxn(tl)), D'Wn = (Dxn, Dun)· 
Let f( t, u) be an order function and 1( Dw) be the corresponding order (de

fined by (12)). 

DEFINITION. We say that w0 is a point ')'-sufficiency on II, or Pontryagin ')'
sufficiency, if there exists an E: > 0 such that, for any sequence { Dwn} E II, we 
have CJ(Dwn) ~ q(Dwn) for all sufficiently large n. 

Obviously, ')'-sufficiency on II implies minimum on II. 
Similarly, we define minimum and ')'-sufficiency on an arbitrary set of se

quences S, which is closed in the operation of taking subsequences. For example, 
the weak minimum is a minimum on the set ITo of all sequences { Dwn} in W 
such that IIDwnlloo _, 0. Obviously, ITo C II, hence every Pontryagin minirnurn 
is a weak minimum. 

The derivations of both necessary and sufficient quadratic conditions for 
Pontryagin minimum are based on the abst ract theory of higher order condi
tions for nonsrnooth problems with constraints initiated in Levitin, Milyutin, 
and Osrnolovskii (1974, 1978), and then developed in Milyutin and Osmolovskii 
(1993) . For higher order')' , the general theory yields the existence of a constant 
C-y such that C-y ~ 0 an C-y > 0 are a necessary and a sufficient condition, 
respectively, for a minimum in the class of sequences at hand. We will demon
strate the form of the constant C-y in the canonical optimal control problem on 
the set of Pontryagin's sequences. 

We divide the system of constraints of the canonical problem into two sub
systems 

(a) F(p) :S 0, I<(p) = 0, x = f(w, t); 
(b) g(w, t) = 0, cp(w , t ) :S 0. 

In the sequel , constraints of subsys tem (b) are satisfied by the sequences of 
variations, while the functions F and }(are included into the Lagrange function 
together with the cost function J(p). For this reason, subsystems (a) and (b) are 
called free and nonjTee, respectively. All functions and sets asssociated with the 
two subsystems will be identified with the superscript "sb" (for "subsystem" ). 
Set 
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where 871 g = g(t, w0 + 8wn) - g(t, w0 ), 871 <p = <p(t, w0 + 8wn)- <p(t, w0 ), <p0 = 
<p(t, w0 ). Define the Lagrange function for the free subsystem of constraints 

ilisb,-'(8w) = o:a8J + o:8F + (38K + J ·¢(8i- 8!) dt 

= 8l" + J ·¢(8i- 8J)8t, 

where 81 = J(p0 + 8p)- J(p0 ), 8f = f(t,w 0 + 8w)- f(t,w 0 ), etc. Put 

ilisb ( 8w) = max ilisb,-\ ( 8w). 
O -'EAo 

Define the set of sequences 

Let 

. . iliosb ( 8wn) 
csb = inf lnn mf ( 8 ) . 1 {8wn}En~; n "( 'Wn 

The abstract theory, developed in Milyutin and Osmolovskii (1993), can be 
applied to the subsystem of constraints in the problem of minirni~ation on a set 
of the above sequences. It yields the following theorem: 

THEOREM 6 (i) Condition c~b 2:: 0 'i& neceSSUTY joT u Pontr·yug·in rninimmn ut 
the point w0 . 

(ii) Condition c~b > 0 is eq·uivalent to PontTyug·in's "(-S'uffic·iency at the point 
wo. 

Then, we are faced with the problem of "decoding" the constant C~b, which 
turns out to be a very difficult one. (One can get some ideas about this from 
the investigation of the problem of calculus of variations in Milyutin and Os
rnolovskii, 1998.) As a result of decoding C~b for the problem (1), the following 
theorem is established. 

THEOREM 7 Condition B of Section 3 is equivalent to the existence of un order 
function f(t, 'U) such that, for- the corr-esponding ordeT 1 defined by formula {12) 
the ineqMldy C~b > 0 holds. 

The proof of this theorem utilizes, in particular, a generali~ation of Hoffman's 
lemma to the case where the system of linear inequalities is considered on a 
convex cone (see Osrnolovskii, 1977). 

Theorems 6 and 7 imply that Condition B of Section 3 is equivalent to the 
existence of an order function f(t, ·u) such that, for the corresponding order 1 
defined by formula (12), a Pontryagin's "(-sufficiency holds. Since, under Condi
tion B, Pontryagin's "(-sufficiency is equivalent to bounded-strong "(-sufficiency 
{ 1 •• "1/'\J"'\ "' \ 
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Moreover, it is easy to see that a point w0 is a B-weak minimum in the 
canonical problem (1) if a d only if there exists an open set V E JRl+d(u) such 
that w 0 is a Pontryagin minimum for the same problem under the additional 
constraint (t, u) E V. Therefore, conditions for a B-weak minimum can be 
derived from the conditions for a Pontryagin minimum. 

5. Two examples 

An example of the maximum of quadratic forms being positive with
out any single one being so. The following important example belongs 
to A.A. Milyutin (see Levitin, Milyutin, and Osmolovskii, 1985). Define four 
functions in JR3 

2 2 2 IPt(x) = x1 + 2x2x3, IPz(:c) = x2 + 2x1:c3, IP3(x) = x3 + 2x1x2, 

'ljJ(x)=xt + x2+x3, 

where x = (xt,X2,x3). Consider the problem 

IPt(x)---+ min, IPz( x ) ~ 3, IP3(x) ~ 3, ·tj; (x) = 1. 

This problem can be viewed as a special case of problem (1). The Lagrange 
function here takes the form 

3 

L(x, A)= I: a.;ip.; (x) + f}tj;(x), 
i=l 

where A= (a, {3 ), a= (at, az, a3) E lR3, {3 E JR. 

The point x 0 = (1, 1, 1) is admissible in this problem. Let us show that, at 
this point , the set A0 of norrned collections of Lagrange multipliers is nonempty, 
the critical cone K is a subspace, and the maximum of quadratic forms 

1 3 

2(Lxx(x0
, a, {3)x, x) = L a,ip;(x) 

·i=l 

over the compact set Ao is positive for each nonzero element x E K, i.e. that 
the second-order sufficient condition is satisfied. At the same time, none of the 
quadratic forms which correspond to A in A0 is positive-definite on K. Moreover, 
there exists one zero form on K and the rest of the forms have alternating signs 
on K. 

Define the set A0 and the critical cone Kat the point x0 . Since ip;(x0 ) = 3, 
IP~(x0 ) = (2, 2, 2), ·i = 1, 2, 3 and ·tj;'(x0) = (1, 1, 1) , then 

Ao = {A = (a, {3) E 1R4 I n 1 ~ 0, n2 ~ 0, a3 ~ 0, 
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and K is a subspace defined by 

K = {i E R3 I Xl + X2 + X3 = 0}. 

The projection of Ao under the mapping (a, (3) ~ a is the standard simplex in 
R3. Consequently, 

3 

il(x) =max L ai<tli(x) = max <tli(x). 
~EAoi=l l~i~3 

Let us show that!!(-) is positive on K \ {0}. Indeed, if x E K, then, obviously, 

3 3 2 

L<t~i(x) =(I:: xi ) = o. 
i=I ·i=l 

Consequently, if x E K and I:~=l l<t~i(x)l > 0, then !!(x) = rnaxl~i~3 <1/i(:c) > 0. 
Hence, it is sufficient to show that, if x E K \ {0} , then I:~=l l <t~i(x)l > 0. Thus, 
we must show that x 1 = x 2 = x 3 = 0 is the unique solution of the system 

xi + 2X2X3 = 0, X~ + 2:EIX3 = 0, X~ + 2XlX2 = 0, XI + :1:2 + X3 = 0. 

In fact, by substracting the second equation from the first and taking the last 
into account, we obtain xr - x§ = 0. Similarly, x§ -X~ = 0, xr -X~ = 0. Thus, 
lx1 l = lx2l = lx31· But, if x satisfies these conditions and XI+ x2 + X3 = 0, 
then, obviously, x = 0. Hence,!!(-) is positive on K \ {0} . 

Now let us show that none of the elements A E Ao generates a positive
definite quadratic form on K, and, moreover, that each element, except for 
::\ = (t, t, t, -2) , generates the quadratic form with alternating signs on K, 

while::\ generates the zero form. Indeed, if A E Ao , :!: E K, then a 1 + a2 + a3 = 1 
and X3 = -(i1 + i2), whence it easily follows that 

3 

L ai<tli(x) = pxi + qx~ - 2Tx1 iz, 
·i=l 

where p = 1 - 3a1, q = 1 - 3a2, T = 1 - 3a3, and therefore p + q + T = 0. 
The determinant of the matrix of this quadratic form is equal to 6. = pq- r 2 = 
pq- (p +q )2 = -(p2 +q2 + pq), so that 6. < 0 if IPI + lql > 0. And if IPI + lql = 0, 
then p = q = T = 0, i.e. a1 = a2 = a3 = t· In the last case we get zero form 
on K. 

Thus, at the point x 0 , no element A E A0 generates a positive-definite 
quadratic form on K, while the maximum over A0 of the forms is positive on 
K \ {0}. Hence 1 -sufficiency holds with 1 = l8xl 2. 

A simple illustrative example of analyzing extremals with control 
discontinuities. Consider the problem 

1 

:J(x, 'U) = { x 2 dt-+ max, x = ·u, x(O) = x(1) = 0, I'UI = 1. (21) 
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This is a slightly modified problem from the book by Milyutin and Osrnolovskii 
(1998, see part 2, Section 15, p.341), where the constraint l·ul ::=; 1 is replaced by 

I'UI = 1. 
The canonical form of this problem is as follows: 

Y1 -+ min, Yo = 0, 
. 1 2 
y = - 2x , x = ·u, 

Xo = 0, X 1 = 0, 
1 2 2('U -1)=0, 

where Yo= y(O), Yl = y(1), xo = x(O), x1 = x(1). 
The functions l, H and fi are 

where o:o ~ 0, and the adjoint system is 

~x = '1/Jyx, ~Y = 0. 

(22) 

It follows from the maximum principle that 'U = sig1u/Jx, and from the transver
sality condition we obtain 'l/Jy(1) = -o:o. Clearly o:o > 0, so we can put o:o = 1. 
Thus, the extremality conditions become 

~x = -x, x = 'U, 'U = -sign'l/Jx· 

It follows that '1/Jx is continuously differentiable function, whose graph consists 
of parabolas of the form 

1 2 
•
1
• = --t + bt + c o/X 2 l 

1 
'tPx = 2 t 2 + bt + c, 

which have a common tangent line lying on the t-axis; these points correspond 
to the control switching t imes. There are countably many such extrernals. For 
each of them, Ao = Ag = M 0 is a singleton (see Sections 2 and 3 for the 
definitions). 

Let us fix an arbitrary extremal (x, y, 'U, 'tPx, '1/Ju) and write down for it the 
conditions, which determine the critical cone K. By Proposition 7, 

K = {z = (~,x,y,u) 1 ·u = o, x(O) = x(1) = o, fJ = -xx, 
y(O) = 0, [fJ]k = 0 V'k, :t = 0, [x]k = ['U]k~k Vk}. 

Now we write down the quadratic form !1 for this extremal. In this case 
- - - k - k 

Hx = x and Hy = 0, hence [Hx] = [Hy] = 0 for all k. Moreover, lpp = 0, 
and, for the elements of the critica l cone, we have (flww'W, ·w) = Hxxx 2 = 
x2 . Let us calculate Dk(fi). By the definitions, !:::..k fi(t) = ·t/Jx(t)[u]k. Hence 
Dk(fi) = ·fx(tk)['U]k = -x(tk)['U]k. For an extremal with s sv:ritchings the 
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Also, we have l[·u]kl = 2. Consequently, Dk(Ff) = 1/s. Therefore, according to 
(14), 

n = ~ t ~~ -j x2 dt. 
k=l 0 

Since this expression does not involve y, we are to determine the sign of n on 
the subspace 

L = {(~, x) 1 x = o, [x]k = ['U]k~k Vk, x(O) = i(1) = 0}. 

Put 'T/k = [i ]k VIc. Then rJk = ([x]k)2 = 4~~ VIc. Moreover, since tk+ 1 - tk = 
1/ s, k = 1, ... , s- 1, we have for elements of the subspace L 

1 

j i
2 dt = ~('Tii +('Til+ 'T/2) 2 + · · · + (r}l + · · · + T}s-d

2
). 

0 

Here L is specified by the conditions 

T}l + · · · + T}s = 0, 

and n on L has the form 

1 
s 

1 
s - 1 

n =- LTJ~-- LC'Il + ... +rJk) 2. 
4s s k=l k=l 

(23) 

(24) 

We must determine the sign of the quadratic form (24) on the subspace (23). 
If s ~ 2, then by putting TJ1 = - r12 = ( and 'fJi = 0 for ·i ~ 2, we obtain 
n = -2(2 /(4s), i.e., the quadratic form (24) is not nonnegative on the subspace 
(23). Then, according to Theorem 4 an extremal with s ~ 2 switchings does 
not yield a B-weak minimum in the problem. 

For s = 1, the cone K consists only of the origin and the single element of the 
set Ao is strictly Legendrian, hence the set Leg+(Mo) is not empty. (Although 
Ruu is identically zero, the strengthened Legendre condition is trivially satisfied, 
because, at each point t E [0, 1] \ { t1

} the "cone of critical directions" {·u E IE. I 
'U(t)u = 0} is equal to {0}, since 'U(t) =F 0. Fort= t 1 , the same is true for the 
"cones" {·u E !E. I 'U(t1 - O)·u = 0} and {·u(t 1 + O)·u = 0}, since ·u(tl- 0) =F 0 and 
'U(t 1 + 0) =I 0). Therefore, according to Corollary 1, the extremal with a single 
switching yields a strict strong minimum in problem (22). Hence, it yields a 
strict strong maximum in problem (21) (since the component y is unessential, 
see Section 1 for the definition). Actually, this extremal yields the absolute 
maximum in the problem. 

Moreover, according to Theorem 5, we have for some c > 0 the following 
growth estimate for the cost functional in problem (21): -8.1 ~ q(ow) for all 

r ' ~ 
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1(8w) 2': const(l l8ulid , we also have the estimate -8.1 2': c( ll8ulld 2 with some 
c > 0 for all admissible variations 8w = (8x, 8u) with max j8x(t)i <E. 

Some interesting examples of applying the quadrat ic conditions to the anal
ysis of extremals with jumps of the control are presented in Dmitruk and Os
rnolovskii (1992), Osmolovskii (1994, 1998), Milyutin and Osmolovskii (1998, 
Part 2, Chapter 4). 
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