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Abstract: Sufficient quadratic optimality conditions for a weak
and a strong minimum are stated in an optimal control problem
on a fixed time interval with mixed state-control constraints, under
the assumption that the gradients of all active mixed constraints
with respect to control are linearly independent. The conditions
are stated for the cases of both continuous and discontinuous con-
trols and guarantee in each case a lower bound of the cost function
increase at the reference point. They are formulated in terms of
an accessory problem with quadratic form, which must be positive-
definite on the so-called critical cone. In the case of discontinuous
control the quadratic form has some new terms related to the control
discontinuity.
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1. Introduction

The classical sufficient quadratic optimality conditious for a problem with con-
straints require that the second variation of Lagrangian is positive definite in
all eritical directions. In this paper, we give sulficient quadratic conditions for
a strong minimum in an optimal control problem with mixed state-control con-
straints and endpoint constraints of both equality and inequality type, for an
extremal with at most a finite number of control discontinuities.

In the case of continuous control these conditions have an almost classical
form. We begin with this case in Section 2. However, even in this case, the set Ag
of normed collections of Lagrange multipliers of the problem does not necessarily
consist of a single element. Therefore, second-order conditions are formulated
not in terms of a gquadratic form, but of a maximum of guadratic forms over the
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set Ag. This situation is characteristic for problems with inequality constraints,
particularly for optimal control problems.

In Section 3, which is central to the paper, we formulate sufficient quadratic
conditions for the general case of extremal with a finite number of control dis-
continuities. In this case the quadratic form has new terms related to control
jumps.

In Section 4, we explain the methodology of the proofs, which are based
on the absiract theory of higher order conditions derived by Levitin, Milyutin
and Osmolovskii (1974, 1978), and then developed by Milyutin and Osmolovskii
(1993).

Two important illustrative examples are presented in Section 5: a finite di-
mensional example, due to Milyutin, where the maximum of quadratic forms is
positive on all critical directions without any single one being so, and an exam-
ple of extremals with control jumps, which is investigated using the quadratic
conditions formulated in Section 3.

The main results presented in this paper are due to the author and were
published in Osmolovskii (1975, 1986, 1988A, 19888, 1995, 2000), Milyutin and
Osmolovskii (1998, Part 2).

Statement of the problem. The following optimal control problem on a
fixed time interval A = [tq. t;] will be considered and referred to as the canonical
problem:

Tz, u) = Hx(tn), w(81)) — min,
F(x(to), z(t:)) £0, K(z(to).z(t1)) =0,
= f(t,z,u), g(t,z,u)=0, p(tz,u) <0,
(z(to). z(t)) €P, (t,z,u)e Q,
where P and Q are apen sets, the lunctions J, F, and K are defined and twice
cottinuously differentiable on P, and the functions f, g, and ¢ are defined
and twice continuously differentiable on ©. We assume that the gradients with
respect to control g (¢, x,u), i = 1,...,d(g) and (i, x,u), 7 € I.(t, z,u) are

jointly linearly independent at each point (f, z.u) € Q such that gt z,u) =0,
wit, z,u) < 0, where

I(t,z,u) = (5 € {1,....d()} | st z.u) = 0)

is the set of indices of the active constraints and d{a) denotes the dimension of
the vector a.

The minimum is taken over the pairs of functions w(-) = ((-), u(-)) such
that =(-) € Wj{:j and uf-) € L3 ,, where WJ{':} is the space of absolutely

continuous functions from A into BRY*) | endowed with the norm

(1)

il = |=(to)| + f|iu:||.—,u,
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where

y(bw) = i |8=(t)]* + f |Bu(t)]? de. {3)
A

Inequality (2) holds with some £ > 0 for all admissible variations dw = {8z, bu)
in some neighbourhood of zero in W. (A variation dw € W is called admissible
if w" + dw satisfies the constraints of the problem.) We call condition (2) a
weak minimum of the order y, or a weak y-minimum. The standard order (3)
evolved naturally out of the calculus of variations, where minimum of the order
v = [|62(t)* dt is equivalent to the Jacobi sufficient condition.

However, it could be proved that the second-order conditions mentioned
above guarantee not only a weak minimum of the order «, but also some stronger
condition, which we call a weak v-sufficiency at the point w® and define as
follows: there exists £ > 0 such that

ol{fw) > ey(dw),

in some neighbourhood of zero in W, where

d(F)
o(bw) = Y FF(p"+ 6p) + |K(p° + 6p)| +f 110 + &2 = f(t,w® + Sw)|dt
=0 A
i)
+ esssup |g(t, w® + fw)| + Ze.sssup yn?'l[t.w“ + duw).
a e

In this definition, we used the following notations:

b= (bz,8u) €W, b= (Balto), ba(t)),  Folp) = J(p) — J(6°).
p? = (2%to), z%(t1)), a* = max{a,0}.

Obwviously, @ = 0 and #(0) = 0. We call ¢ the vielation function of the canonical
prablem.

It is easy to show that, at the point w°, a weak y-sufficiency = a weak
A-minirnum = a stricl weak manimum.

Strong minimum. The commonly used notion of a strong minimum in the
calculus of variations corresponds only to the proximity of the state components
of trajectories. We shall give a new definition of a strong minimum, which is
even stronger than the one just mentioned. To this end, let us define a notion
of an uneszential component of a vector .

DEFINITION. The state variable x; (or the ith component x; of vector x) is said
to be unessential if the functions f, g,y do not depend on it and J, F, K are
affine in z; and =y, where 0 = xi(tg), i1 = z:(8;). A state variable z;, which
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Also, it is clear that the notions of the bounded-strong y-sufficiency and
the bounded-strong mininmm are weaker than the notions of the strong +-
sufficiency and the strong minimum, respectively. It is easy to give a condition
which guarantees the equivalence of these notions. Set

U(t,z) = {ue R | (t,x,u) € Q, g(t,z,u) =0, ¢(f,z,u) <0}

ProrosiTION 1 Assume that there exisls o compact set C C© Q such that the
conditions t € A, u € U(t,2%t)) imply that (£,2°(t),u) € C. Then, the
bounded-strong y-sufficiency and the bounded-strong minimuwm are equivalent to
the strong y-sufficiency ard the strong minimum, respectively,

The proposition follows from the definitions.

We shall formulate sufficient conditions for a weak minimum, which are
equivalent to a weak ~-sufficiency, and their strengthening to sufficient condi-
tions for a bounded-strong minimum, which are equivalent to a bounded-strong
~-sufficiency. We shall do it first for the case of a continuous control u® and the
order -y defined by formula (3), and then for the case of a discontinuous control

#° and a higher order.

2. Sufficient optimality conditions in the case of continu-
ous control

First order necessary conditions. Iu this section we assume that the control
u” is confinuous, in order to achieve a betier understanding of more general
resulis of Section 3 for discontinuous controls.

Let us state the well-knewn first-order necessary conditions for a weak min-
imum and for the so-called Pontryagin minimum introduced by Milyutin (see
Milyutin, Osmolovskii, 1998). These conditions are often referred to as the local
and the integral maximun principle, respectively, The local maximum pringi-
ple, or Euler-Lagrange equation, which we give first, is conveniently identified
with the nonemptiness of the set Ag defined below. Let

£=‘IﬂJ+{ﬂ1F}+{ﬂ1F{}1 i ={1ir"f}r ﬂ:H—{lf.y}—{j:1 'F}l

where og 15 a scalar, o, @ 4, v, and g are vectors of the same dimension as F,
K, f, g, and ¢, respectively, and (-, -} is the inner product. The functions I, H,
and H depend on the following variables:

l=l(pog,a,8), H=H(t,w), H=Ht w1 v p).
Let A denote an arbitrary tuple
(o, e, B, 9(-), (), 1))

with

-— PR 3] - P | oA weel F YN . T F % = T
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Critical cone. Denote by Wj{':] the space of absolutely continuous func-
tions

£(-): A — RY=

with square integrable derivative. Denote by W the space of pairs @ = (z, 1)
such that

zeWyl, aelyy,,

where Lgt"]' is the space of square integrable functions
i) : A — R,

Let

Ie(®) = {ie {1,....d(F)} | F(»") =0}

be the set of indices of active inequality constraints Fi(p) < 0 at the point p°,
where F; are the components of a vector function F. Let K denote the set of
= (£,4) € W; such that

(Jp(P"),B) €0, (Fp(@®),d) <0 Vielp(d®), K,(")p=0,
&= fult,w)d, (8)
gult,w®)d =0, (pw(w’t),®) <0 Vje L(tw'(1),

where p = (Z(fp), (1)), @ = (E,@). Obviously, X is a closed convex cone in
the space Wj.

The following question is of interest: which inequalities in the definition of
K can be replaced by equalities without affecting X7 This question is answered
below.

PRoOPOSITION 4 For any A = (ag, o, J,9, 1, 1) € Ag and @ € K, we have

“H{JP(FQLT_"} =0, nI{FEF[Fﬂ}\ﬂ} =0 Vie !F'{Pn:'r
wi{@iw(t,w®), @) =0 Vi=1,...,d(y),

where a; and p; are the components of the vectors a and p, respectively.

Hence, each inequality in the definition of K can be replaced by equality if
the corresponding Lagrange multiplier is positive for some A € Ag.

The following question is also of interest: under what conditions can one of
the terminal inequalities in the definition of K be omitted without affecting K7
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ProprosiTION 5 Suppose thal there exists a A € Ag such that ap > 0. Then the
relations

(Fip(r°).3) <0, il Fip(p°), 8} = 0 ¥i € Ie(s°); Kp(p°)ii = 0;
i= fwl:f,wu]ﬁl,. gw{!.wu:llﬁ =0,
{‘ij(fru ‘-UDLTI’} <0 ;.:J'{pjw{i,wu},tﬁ} =0 Yje ‘rﬁﬂ{t! “’u{t”

represent an equivalent definition of K.

A similar assertion holds for any other endpoint inequality
{'Fljl{pa}rﬁ:l' S ﬂ', I [ !F{pﬂ}

Obviously, if there exists a A € Ag such that a; > 0 for all i € Ip(p?)
and, for any ¢t € A, we have p;(t) > 0 for all j € I.(t,w%(t)), then K is a
subspace. It means that all Lagrange multipliers of active inequality constraints
are positive. Certainly, this is a rather strong assumption. To aveid it, most of
the authors extend K to a subspace by omitting inequalities in the definition of
K for Lagrange multipliers, which are either zero or even small enough. It clears
away most of the difficulties in the proofs, but leads to much stronger sufficient
conditions for a local minimum than that, which we present in this paper.

Quadratic form. We are now ready to introduce the quadratic form. For
any A € Ag and w = (I, i) € Wa, we set

M) =

b | =

1 o v
(st = 3 [ (R )
&

where
IPP = I,_yp{ﬂ“,ﬂﬂnﬂ. ﬁ}-,. HI.I.HH = me“ﬁwu{”-ﬂ}“}-u“:.rﬁ“”r
P = (Z(to), 2(t1)), @ = (z,8).
Obviously, Q*(i) is quadratic in @ and linear in A.
The set Leg,(Ag). An element A = (ag,a, f,9,v, 1) € Ag is said to be

strictly Legendrian if the following condition is satisfied: for any ¢t € A, the
quadratic form

—{Houu (b, w®(t), (1), v(t), p(t)) @, a@) (9)

of the variable @ is positive definite on the cone formed by the vectors @ € RYv)
such that

gult, w’(t))a =0,
(ejult,w?(),8) <0 V5 e I(t,uw"(t), (10)
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Denote by Leg, (Ag) the set of all strictly Legendrian elements A € Ag.

Basic sufficient condition for a weak minimum. Lel

5() = (2(to), E(to)) + ] (a(t), (1)) dt.
a

DEFINITION. We say that a point w® satisfies condition By il there exist a
nonemply compact set M C Leg (Ag) and a constant £ > 0 such that

QM) > eq(w) Vi € K.
E:Eal.:nf (@) = e¥(w) Yo ek

ThueorEM 1 Condition By is equivalent to a weak y-sufficiency al the point w?.

Condition By obviously holds if the set Leg, (Ao) is nonempty and the cone
K consists only of zero,

Most of the authors use only one quadratic form in suflicient conditions. In
condition By, it corresponds to the case when M is a singleton.

How far is condition By from sufficient conditions for a strong mininmum?
Remarkably, in the case of continuous control u°, which we are considering
now, condition By is very close to such conditions. In order to obtain them, we
do not need to change the quadratic form or the critical cone. We only must
strengthen the maximum principle.

Basic sufficient condition for a strong minimum. Let My denote the
set of A € My such that

H(t, 2"(2), u,9(t)) < H(t,2"(t), u®(t). ¥(t)) (11)

ifte A, ueU(tz%t), u+# (1), Foragiven A € My, we call this condition
the strict mazimum principle.
Denote by Leg, (M) the set of all strictly Legendrian elements A € M.

DEFINITION. We say that a point w® satisfies condition BS if there exist a
nonempty compact set M C Leg, (M) and a constant € > 0 such that
Af o =
> A
ﬂ;ﬂ.ﬂ (w) > efl@) Yiek
THEOREM 2 Condition B is equivalent lo a bounded-strong y-sufficiency af the
sy )
pount w- .

Thus, condition Bf is sufficient for a strict bounded-strong minimum (see
Supplement 52 to Chapler 4 due to Osmolovskii in Levitin, Milyutin and Os-
molovskii, 1978), which is equivalent to a strict strong winimum if the hypothesis
of Proposition 1 holds,

Sufficient conditions for a strong minimum which do not require the hypoth-
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3. Sufficient optimality conditions in the case of discon-
tinuous control

The results in this Section are central to the paper and more general than those
of Section 2. Assume now that the control u® is piecewise continuous, with
nonempty set # = {t',...,t*} of all discoutinuity points, where t5 < t' < ... <
t* < t;. Also assume that u° is Lipschitz continuous on each interval of the set
448,

We shall indicate the changes in the theory of suflicient conditions in this
case, using the same notations for the new quadratic form, critical cone and
some other objects as in the case of continuous control.

Sufficient conditions for a weak minimum of the order (3) do not change.
But now these conditions could not be strengthened to sulficient conditions of a
strong minimum. In a sense their local role has now decreased. To restore this
role, we have to change the concepts of critical cone, quadratic form, and even
the very concept of a weak minimum. We shall extend the class of L™-small
variations of the control - corresponding to a weak minimum - to a broader
class which defines the so called f-weak minimum.

Denote by u® the closure in R1*40%) of the set

{(t,u) € R |t e A\G, u=u"(t)].

DerFiviTION. We say that w® = (2% u?) is a strict #-weak minimum if there
exist an ¢ > 0 and a neighbourhood V' of the compact set w° such that, for each
admisgible pair w = (x,u) € W satisfying the conditions

(tu@®) €V ae onA, max lz(t) = 2%(t)] <&, w() #w()
we have

T(w) > J(w?).

What are the sufficient conditions for a #-weak minimum? What is the or-
der of these conditions which corresponds 1o a typical f-weak minimum? These
questions become quite nontrivial. The notion of an order, which will be pre-
sented now may seem strange, It is not homogeneous and it is not defined via
analytic expressions. However, it suits well the fact that a minimum in optimal
control, is, ‘as a rule’, quadratic with respect to the variations of the control
that retain the jump points unchanged and it is of the first order with respect
to the shifts of the jump points.

Denote by

e ]
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the closure in R*9%) of the graph of the restriction of u%(:) to the interval
(=t t*), k=1,...,5+1, where {® = {5, t**1 = ¢;. Put

uﬂk— - ﬂl“# o m‘ uﬂk-l- - ﬂ“k + 0-}1 [uﬂ]k - “ﬂk-l- _ u."'"‘
k=1,....8

¥

Let V be a fixed neighborhood of the compact set u with V being the union
of disjoint neighborhoods V. of the compact sets u?(t*=' t*), k=1,...,5+ L
Define the function

I(t,u): Ve~ R

by the following three conditions:
(a) T(t,u) = lu—u()P if (Lu) e Vi, te (tF 1, t5), k=1,...,84 1;
(b) T(t,u) = lu—u® P+ 2t —t*|if (u,t) eV, > 5 k=1,...,8
(c) T(t,u) = Ju = u® ] 4 2t = ¢*| il (t,u) € Vepr, t<t*, k=1,...,s.
We call I'(t, u) the order funclion.
Put

1(6w) = max|6z(0)? + j I (e, 0() + 6u(t)) dt. (12)

DEFINITION. We say that #-weak v-sufficiency holds at the point w® = (2%, 47)
if there exist ¢ > 0 and & neighbourhood V € V of the compact set u® such
that, for each admissible variation dw = (b, fu) € W satisfying the conditions

(t,u”(t) + u(t)) €V a.e. on A, |1|£x|15:{!}| <&,
we have

g{dw) = ey{bw).

We shall formulate the results of Osmolovskii (1988A, 19888, 1995), which
concern ‘decoding’ of this sufficient condition for a strict #-weak minimum.
Although the order v under consideration is not quadratic (and, moreover, not
even homogeneous of any degree), the results are again obtained in terms of an
accessory problem, but with a specific quadratic form @ which must be positive
definite on a new “critical cone™ K.

Critical cone. Denote by Py ij'f} the space of piecewise continuous func-
tions

() : [to, ] = R

which are absolutely continuous on each interval of the set (tg, £;)\ # and have
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ProposiTiON 8§ For any A = (og, o, 3,90, v, g) € Ag the functions v and p are
piecewise-continuous, and all their discontinuily points are conlained in §.

Thus, the quantities
W= p(tt =0), p*=p(tt+0), LF=e(tt-0), S =pt"+0)

are well defined for any A € Ag and t* € 4.
Given any A € Ag and t* € 6, we define

AR () = H(t,2%(), u™* (1), o4, u*t)
— H{t,22(8), ™, 9(1), o5, w5 ),
where u™= = 40(t* — 0) and u™+ = 4O(1* 4 0).
PROPOSITION 9 For any A € Ap and tt €0, the devivative of the function
AY(H)(t) exists at t*. Denoting this derivative by D*(H), we have
DYA) = (A, Ay - (AT A7) + (A,
where HE, ,‘?:"' D o ﬂ:;u are, respectively, the righl and lefl limits of the

Junctions Hy(t,w®(t),(t), v(t), u(t)) and Hy = f(t,w(t)) at t*, whereas [H}]*
is the jump of the function H(t,w"(1), (1), v{t} u(t)) at tk.

Note that D*(H) is linear in A.
We have also the following result.

PROPOSITION 10 Let X € My. Then D¥(H) 2 0 vt* € 4.

Furthermore, given any A € Ag and t* € #, we define
[Hr]k = H::d- = -sz_'.

which is the jump of H.(t, w®(2),¢(t), e(2), u(t)) at t*.
We are now ready to define the quadratic form we seek. For any A € Ag and
3 € Za(0), we set

(2) = 5 S(DHIE - 2Bl 256

k=]
1 L
+5(0ot ) [t ) ), (14)
where

IPP ar pp{p uﬂ!“:ﬁjr ww = _ww{q‘“wu{f],ii?{i],p{t}:pl:f}}:
= (Z(to), E(hh)), w = (I, u),
2y, =434 ¢,

P - " Pl L
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The set Leg, (Ag). In the case of a discontinuous control u” under consid-
eration, the definition of a strictly Legendrian element includes some additional
couditions. Put w™~ = w®(t* - 0), v = «?(* + 0).

DEFINITION. An element A = (og, o, 3,9, 0, ) € Ag is said to be strictly
Legendrian if the following conditions are satisfied:
(i) [H]*=0, DX(H) > 0¥tk e ;
(ii) for any ¢ € A\ #, the quadratic form (9) is positive definite on the cone
formed by the vectors @ € R satisfying conditions (10);
(iii) for any t* € 8, the quadratic form
—(Huult* 0™, 9(t%), 0, u* )i, ) (15)
of the variable @ is positive definite on the cone formed by the vectors
i € RY") guch that
gult*, w™ )i =0,
(il w™),8) <O V) € L(t5,0™"), (16)
;1;"{:;}_1;“{1", w™=), @) =0 vje L(t"w"*);
(iv) for any t* € 8, the quadratic form
—{H (15, w™ ("), o, pf M )a, a) (17)
of the variable & is positive definite on the cone formed by the vectors
it € R guch that
gu(t*, w* )i = 0,
(0iu(t, %), ) S0 V) € L(t, w™H), (18)
w5 Hpjulth, w™),8) =0 V) € L (15, 0").

Note that every A € My is a nonstrictly Legendrian element in the sense
that

[H}F =0, DYH) 20 viFed

and that the quadratic forms (9). (15), and (17) in conditions (i), (iii), and (iv)
are positive semidefinite on the cones (10), (16), and (18), respectively. In other
words, the following result is true.

ProrosiTion 11 Leg(My) = My, where Leg(M) denotes the subsel of all non-
strictly Legendrian elemends of a set M C Ay,

Denote by Leg, (Ag) the set of all strictly Legendrian elements A € Ag.

Basic sufficient condition for a f-weak minimum

DerviTION. We say that the point w® satisfies condition B if there exist a
nonempty compact set M C Leg, (Ao) and a constant & > 0 such that

e CAAF =Y e ==Y W= =
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where

3(2) = (6.6 + alto) 2t + [ (a(0) (0. (19)
Fay

THEOREM 3 Condition BY is equivalent to a week y-sufficiency at the point w".

Remark on necessary conditions. Each sufficient quadratic condition
presented in this paper is a natural strengthening of the corresponding neces-
sary one, and the gap between themn is minimal (see Osmolovskii, 1986, 1988A,
19888, 1995). For example, the necessary quadratic condition for a #-weak
minimum can be formulated as follows.

For an admissible point w” satisfying the assumplions of this Section, we
set Lg = Leg Ag, where Leg Ag denotes the subset of all nonstrictly Legendrian
elements A € Ag. Since Cg is a closed set and Ay is a finite-dimensional compact
set, Lg iz also a finite dimensional compact set.

THEOREM 4 [f w® is a 0-weak minimum, then Ly is nonemply and

max'(2) 20 Vie kK. (20)
AELy
(see Osmolovskii, 1995, Theorem 6.1).

Sufficient condition for a strong minimum. Now we need to define
the order 7 in the entire space W. To this end we assume that there exists a
neighborhood V of the compact set w and a continuous function

L(t,u) : RM R

such that the restriction of I" to V is an order function satisfying, in addition to
conditions (a),(b),(c) of its definition, the following two conditions:

(d) T(t,u) > 0 on R+ Y 1.

(e) T'(t,u) is Lipschitz continous in u on each compact set F ¢ R!404) | p,
An extension of such an order function to R4 satisfying these two conditions
will again be called the order function.

The following lower bound for the order function 1" is of interest in applica-
tions (see Milyutin and Osmolovskii, 1998, Part 2, Proposition 9.3, p. 273).

LEMMA 1 Let C € Q be a compact sel and let §u € L=(A, RY™)) be a variation
such that (t,z%(t), u(t) + du(t)) € C w.e on A. Then

f]‘{t,u"{t} + du(t)) dt > const(||full; ),
iy

shere MSall. = T WBulfildi and the ronstant denends ondy on & and T,
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minimum only by strengthening the maximum principle to the “strict maxi-
mum principle”, but this strengthening automatically implies that the control
is continuwous. Such a strengthening was formulated in Section 2.

The new quadratic form {(with additional terms) appears when we consider
the second-order conditions for some type of the “local” minimum which is
stronger than the weak minimuim and related to variations of the type of “shifts”
of the control discontinuity points. These variations are no longer small in
the L=-norm, but small in the L'-norm (or in any other integral norm) and
have the character of "needle-shaped” variations, concentrated near the control
discontinuity points. The notion of #-weak minimum, and hence the notions of
Pontryagin (see Section 5 for the definition), bounded-strong and strong minima
include such type of variations.

The problem of deriving the second-order conditions, which take into account
the variations of this type appears already for the broken extremals in the
simplest problem of calculus of variations. The complete solution of this problem
was given in Milyutin and Osmolovskii (1998, Part 2, Chapters 1 and 2).

In optimal control, the same results (formulated in Section 3) lead, in partic-
ular, to the finite-dimensional second-order sufficient conditions for bang-bang
control in the problem which is linear in control. This was shown in Milyutin
and Osmolovskii (1998, Part 2, Chapter 3).

A number of reseachers developed the theory of sufficient conditions for bro-
ken extremals based on the related notions of field of extremals, Hamilton-Jacobi
theory and geometrical methods in optimal control (see, e.g., Agrachev, Ste-
fani, Zezza, 2002, Noble and Shattler, 1999, 2002, Nowakowski, 1988, Sarychev,
1997), but this is beyond the scope of our article,

4. The methodology of the proofs

Abstract scheme. The concept of second-order conditions for extremum prob-
lems with constraints has a long history, which deserves a special paper. Here,
we shall point out only some important facts concerning investigations of higher
order conditions in Milyutin's school.

In 1965, there appeared two papers by Dubovitskii and Milyutin, where the
concept of the critical variations for problems with constraints was introduced,
and a theory of second-order conditions, based on this concept, was developed
for a fairy general abstract model. Later it became clear that, in the infinite-
dimensional case, this theory concerns mainly necessary conditions, but it is
inadequate for the sufficient ones. This situation stimulated the interest of
Milyutin and his colleagues in the problem of higher order conditions, both
necessary and sufficient, for an acceptably general abstract model, since it was
not clear what could replace the concept of critical variation.

Milyutin, Levitin and Osmolovskii (1974, 1978) developed an abstract the-
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a local minimum in the usual sence. But, in spite of this "strange property”,
there is a rich theory of both necessary and sufficient conditions of the first and
higher orders for the Pontryagin minimum introduced below.

DEFINITION. We say that w” is a minimum on I, or a Pontryagin minimum,
if there is no sequence {§wy} € I such that all its terms satisfly the conditions

&+ 8ip = f(t,w + bwy), gt w?+6w,) =0, ot w®+bw,) <0,
(0°+ 6pa) € P, w"+bw, € Q,

where ép, = (8zq(ta), znlty)), dwy = (82, buy).
Let I'(t,u) be an order function and «(éw) be the corresponding order (de-
fined by (12)).

DEFINITION. We say that w” is a point y-sufficiency on II, or Pontryagin 4-
sufficiency, if there exists an £ > 0 such that, for any sequence {fw,} € II, we
have o(fwn) > ey(fw,) for all sufficiently large n.

Obwiously, v-sufficiency on IT implies minimum on IT,

Similarly, we define minimum and y-sufficiency on an arbitrary set of se-
quences S, which is closed in the operation of taking subsequences. For example,
the weak minimum is a minimum on the set Tlp of all sequences {fw,} in W
such that ||fwy[|ee — 0. Obviously, Il € I1, hence every Pontryagin minimum
is a weak minimum,.

The derivations of both necessary and sufficient quadratic conditions for
Pontryagin minimum are based on the abstract theory of higher order condi-
tions for nonsmooth problems with constraints initiated in Levitin, Milyutin,
and Osmolovskii (1974, 1978), and then developed in Milyutin and Osmolovskii
{1993). For higher order <, the general theory yields the existence of a constant
., such that € = 0 and Cy > 0 are a necessary and a sufficient condition,
respectively, for a minimum in the class of sequences at hand. We will demon-
strate the form of the constant C in the canonical optimal control problem on
the set of Pontryagin's sequences.

We divide the system of constraints of the canonical problem into two sub-
systems

(@) P(p) <0, K(p)=0, &= f(w,t)

(b) glw,t} =0, @lwt)<0
In the sequel, constraints of subsystem (b) are satisfied by the sequences of
variations, while the functions F and K are included into the Lagrange function
together with the cost function J(p). For this reason, subsystems (a) and (b) are
called free and nonfree, respectively. All functions and sets asssociated with the
two subsystems will be identified with the superscript “sb” (for “subsystem”).
Set
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Moreover, it is easy to see that a point w® is a f-weak minimum in the
canonical problem (1) if and only if there exists an open set V € R\ guch
that w? is a Pontryagin minimum for the same problem under the additional
constraint (t,u«) € V. Therefore, conditions for a #-weak minimum can be
derived from the conditions for a Pontryagin minimum.

5. Two examples

An example of the maximum of quadratic forms being positive with-
out any single one being so. The following important example belongs
to AA. Milyutin (see Levitin, Milyutin, and Osmolovskii, 1985). Define four
functions in R?

wilr) = .:f + 2zaxy, walx) = .1% + 2zyxy, wafz) = .z'§ + 2xyTs,
Y(z) =21 + 23 + 23,

where T = (zy, 2, x3). Consider the problem
wi(z) = min, walz) €3, @alz) €3, Plz)=1

This problem can be viewed as a special case of problem (1). The Lagrange
function here takes the form

3
Lz, A) = Y apile) + Bi(x),

i=1

where A = (o, @), o = (g, 09, 03) € R.feR

The point z° = (1,1,1) is admissible in this problem. Let us show that, at
this point, the set Ag of normed collections of Lagrange multipliers is nonempty,
the critical cone K is a subspace, and the maximum of quadratic forms

3
b e 980) = ot

over the compact set Ag s positive for each nonzero element £ € K, ie. that
the second-order sufficient condition is satisfied. At the same time, none of the
quadratic forms which correspond to A in Ay is positive-definite on K. Moreover,
there exists one zero form on X and the rest of the forms have alternating signs
on K,

Define the set Ag and the critical cone K at the point z%. Since (%) = 3,
ez = (2,2,2), i = 1,2.3 and ¢'(z) = (1,1,1), then

M={A=(,feR |0y 20, a2 >0, a3 > 0,
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and K is a subspace defined by
K={ieR |z +I2+&3=0}.

The projection of Ag under the mapping (o, @) — « is the standard simplex in
R*. Consequently,

3
zE) = 112:3:'; o E) = 1@%& wilE).

Let us show that {}(-) is positive on K\ {0}. Indeed, if € K, then, obviously,

3 3 2
Y wi@=(Xa) =o.
=1 =]
Consequently, if & € K and E?:t liei(E)] > 0, then R{E) = maxi<icapi(Z) > O
Hence, it is sufficient to show that, if € K\ {0}, then E?=1 li(E)] > 0. Thus,
we must show that z; = 22 = x5 = 0 is the unique solution of the system

x? + 2xaxy =10, IE + dryry = 0, :cg + 2w =0, m+Ea+x3=0

In fact, by substracting the second equation from the first and taking the last
into account, we obtain 3 — 3 = (. Similarly, 23 — 23 = 0, 27 — 23 = 0. Thus,
ley| = |e2] = |za]. But, if x satisfies these conditions and z; + x9 + z3 = 0,
then, obviously, & = 0. Hence, f}{-) is positive on K\ {0}.

Now let us show that none of the elements A € Ay generates a positive-
definite quadratic form on K, and, moreover, that each element, except for

3= {% -3'-, %,—2]. generates the quadratic form with alternating signs on K,

while X generates the zero form. Indeed, if A € Ag, € K, then oy + o +a3 =1
and £3 = —(&) + F2), whence it easily follows that
a
Z aipi(E) = pE] + g3 — 2rE, 2,
=]
where p=1-=3m, g = 1=3as, r = 1 = Jay, and therefore p+g+r =0,
The determinant of the matrix of this quadratic form is equal to A = pg—12 =
pi—(p+q)® = =(pP* +¢* +pg), so that A < 0if [p|+]g| = 0. And if [p]+]q| =0,
thenp=g=r=0,ie. oy =02 = g = % In the last case we get zero form
on K.
Thus, at the point z° no element A € Ag generates a positive-definite
quadratic form on K, while the maximum over Ay of the forms is positive on
K\ {0}. Hence y-sufficiency holds with 4 = |6z]2.

A simple illustrative example of analyzing extremals with control
discontinuities. Consider the problem

1
Jlx,u) = [Iz{ﬂi —max, T=u, 2(0)==z(1)=0, |u/=L (21)



226 N. P. OSMOLOVSKII

This is a slightly modified problem from the book by Milyutin and Osmolovskii
(1998, see part 2, Section 15, p.341), where the constraint |u| < 1 is replaced by
Jul = L

The canonical form of this problem is as follows:

yr—min, =0 xzp=0 ;=0

- 1 2 . 1 2 2
= e = - - = 2
y EI ¥ :F 1 2{ 1'] L] { }

where yo = y(0), 1 = y(1), o = =(0), x, = z(1).
The functions [, H and H are

1
l = aoy1 + Byobo + PreTo + fe, 11, H = —Eﬂr,zz + P,
H=H-Z(@-1),
2
where ap = 0, and the adjoint system is
'5';: = "I"yz: 'Et'r'y =0,

It follows from the maximum principle that « = sign ¢, and from the transver-
sality condition we obtain ¢ (1) = —ag. Clearly ag > 0, so we can put ag = 1.
Thus, the extremality conditions become

Yp=—2, f=u, U= = sign ;.

It follows that ¢ is continuously differentiable function, whose graph consists
of parabolas of the forin

P = —%!2 + bt +e, .= %ii + bt +c
which have a common tangent line lying on the f-axis; these points correspomnd
to the control switching times. There are countably many such extremals. For
each of them, Ag = Aj = My is a singleton (see Sections 2 and 3 for the
definitions).
Let us fix an arbitrary extremal (x,y, w9, 1,) and write down for it the
conditions, which determine the critical cone K. By Proposition 7,

K={:=(fz,94)|a=0, 20)=21)=0 j=-
§(0) =0, [§]* = 0Vk, & =0, [2]* = [u]*E, Vk}.

Now we write down the quadratic form £ for this extremal. In this case
H. = z and A, = 0, hence [H.]* = [A,)* = 0 for all k. Moreover, I, = 0,
and, for the elements of the critical cone, we have (H,, %, @) = H, 3 =

2. Let us calculate D*(F). By the definitions, A*H(t) = ¢.()[u]*. Hence
D"[E’} = Pu(t")[u]* = —=(t*)[u]*. For an extremal with s switchings the
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v(6w) = const(||6ul];)?, we also have the estimate —87 > cf||6ul|;)* with some
¢ > 0 for all admissible variations dw = (b, u) with max |6=(t)| < e.

Some interesting examples of applying the quadratic conditions to the anal-
ysis of extremals with jumps of the control are presented in Dmitruk and Os-
molovskii (1992), Osmolovskii {1994, 1998), Milyutin and Osmolovskii (1998,
Part 2, Chapter 4).
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