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1. Introduction 

1.1. Problem Formulation 

We consider the following optimal control problem (P) with first-order parLial 
differential equations and state constraints: 

J(:c, 'U) = f fo(t, x(t), 'U(t)) dt + t f fk(t, x(t)) do:k(t)--> Min! (1) 
ln k=lJo 

subject to x E W!'n(O), 'U E L;(o) (p > m), satisfying a.e. on 0: 

state equations 

Xi;ti(t)=gij(t,·u(t)), ·i =l , ... ,n; j=l, ... ,m, 

contml r·estr.,ictions 

·u(t) E U, U E Comp (!Rr) \ {0} , 

bo·undaTy cond·itions 

x(t) = <p(t) for all t E f C 0; f compact, f =j 0, 

and state constr·aints 

(2) 

(3) 

(4) 
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The formulation of (P) includes state-constm·ined vroblerns of Dicudonne-Ra­
shevsky type if .fk = 0 for all k > 0, see Cesari (1969), as well as state-constmined 
depos-it problems for fo = 0, fk(t,:r(t)) = xk(t ), see Klobler and Pickenhain 
(1993) . Convexity assumptions are needed for the derivation of existence results 
as well as necessary and sufficient optimality conditions. If these assumptions 
do not hold, we construct the standard relaxation (P) (or convexification) of 
(P) using the Young measures, namely: Minimize 

J(x, M) = { { fo(t, x (t) , v) dJ1t(v) dt + t { fk(t , x(t)) duk(t) (6) 
Jo. lu k=)o. 

subject to x E W!'n(D), 11 EMu, satisfying a.e. on D: 

state eq·uations 

Xi;t1(t) = lYi)(t,v)dMt(v ), i = 1, ... ,n; j = 1, ... ,Tn, 

geneml-ized contTOl r-estr-ictions 

supp Mt s;; U, U E Cornp (!Rr) \ {0} for all t E D 

boundar-y conditions 

x(t) = cp(t) for all t E f CD; f compact, f #- 0, 

and state constr-aints 

x(t) E X(t) {} h1(t, x(t)) S 0 for all tED, l = 1, . .. , w. 

Our basic assumptions for (P) and (P) are the following: 

(7) 

(8) 

(9) 

(10) 

(V1) We have rn 2 2 and rn < p < oo. n C !Rm is a compact Lipschitz domain 
(in the strong sense, see Money, 1966). Then, functions x E W!'n(D) 

are continuously representable, and functions X E w~n(D) have Lipschitz 
representatives on D, Alt (1992) (p. 185 , Theorem 5.5). 

(V2) The functions fo, fk, Yij, lq and cp are continuous w.r.t. all t heir ar­
guments; fo(t, ·, ·), fk(t, ·), Yi)(t, ·)and h1(t, ·)are continuously differen­
tiable w.r.t. ~ resp. (~,v) for all tEl!. 

(V3) ak E rca (D) are signed regular measures on the CT-algebra of the Borel 
sets on n. 

(V4) The set of feasible solutions (x,u) of (P) is denoted by Z, and Z is non­
empty. 

We emphasize two special types of boundary conditions: 

x(to) = Xo for fixed toE D, i.e. f = {to}; (11) 
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1.2. Outline and main result of the paper 

The main topic of this paper is to prove duality results for the problem (P). We 
do this in two essential steps. First we introduce class-<..J.ualified problems as in 
Pickenhain and Wagner (1999, 2000): 

DEFINITION 1.1 For (P) as well as (P) and k E No we obtain the class-q·ual·ified 
pmblern 

(Phk (1) - (5) and Xi;tj possesses one Tepresentative from 'Bk(O) (13) 

and the class-q'Ualified n;laxed problem 

(P)'Bk (6)-(10) and Xi ;tj possesses one representative from 'Bk(O). (14) 

In Pickenhain and Wagner (2000) we derived Poutryagin's maximum prin­
ciple for problems (P) and (P). It was pointed out that, in the general case, 
the multipliers corresponding to the state equations (2), respectively (7), can­
not be taken from (L;m)*, 1 ::; p < oo, but from the space (L:C,m)*. To avoid 
this situation and to obtain more regular multipliers, it was proposed to restrict 
the feasible domain on elements (x, 'U), respectively (x, J..L), having representa­
tives of fir-st Baire class for (xi;tj )·ij as well as for (g;j (-, ·u(-)) );j, respectively 

Uu g;j(-, v) dtL.(v))ij· In this way the maximum principle for (Phk was shown 
in Pickenhain and Wagner (1999) [Theorem 3.4.] wherein the multipliers corre­
sponding to (7) are Radon measures. Furthermore, in Pickenhain and Wagner 
(2001A,B) sufficient conditions were proved under which the minimal value of 
(P) and (P) remains unchanged if a Baire class qualification is added to the 
problem. This was done for problems without state contraints. In the present 
paper this result is extended to the case of state-constrained problems. 

In the second step we formulate a dual problem with dual variables as Radon 
measures. We use the E-maxirnurn principle for (P) to prove strong duality 
results for (P) and (Phk, k = 0, 1, 2. 

1.3. Notations 

We abbreviate the ·m-dimensional Lebesgue measure of A by IAI, the closure 
of A by A and the actual zero element by 0. Ck,n(n), L;(n) and w;·n(O) 
(1 ::; p ::; 00) denote the spaces of n-dirnensional vector functions on n, whose 
components are k-tirnes continuously differentiable, respectively belong to LP(O) 
or to the Sobolev space of LP(O)-functions having weak derivatives up to k th 

order in LP(O). The subspace of Ck,n(n)-functions with compact support is 

denoted by Ck,n(O); instead of C0
•
1 (0) we write shortly C 0 (0). For the classical 

and weak partial derivatives of x; w .r.t. tj we use the same notation: Xi;tj. 
The Banach space of Radon measures (signed regular measures with the total 

, , I r'\ \ \ , 1 ,_ - ' ......... ~ 
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set of nonnegative Radon measures is Tea +(0 , '13). Due to the compactness of 0, 
rca (0, '13) is isomorphical to the dual space (C0 (0))*, see Dunford and Schwarz 
(1988) (p. 265, Theorem 3), so that each linear, continuous funct ional on C0(0) 
can be represented by an integral w.r.t. a Radon measure v E rca (0, '13). 

DEFINITION 1.2 (Generalized controls) A fam-ily J.L = {J.Lt It E 0} of pr'Obabdity 
meas·ures J.Lt E Tea (0, 'Bu) act·ing on the <J-algebm 'Bu of the Borel sets of U 
is called a gener·alized contTol on U if for any contin·uo·us function f E C0(0 x 
U) the function ht=O--+ lR with ht(t) = J0 f (t,v)dJ.L1(v) is measumble, see 
Garnkrdidze {1978} {p . 23). T-wo families 1/ , 1/' can be ident·ified iff J.L~ = J.L~1 
joT a.e. t E 0. 

The set of all generalized controls on U is denoted by Mu. We equip Mu 
with the following topology: 

{J.LN}--+ J.L* 

{:> lim r r f(t, v) dJ,L~ (v) dt = r r f(t, v) dJ.L;(v) dt 
N->oo Jn Ju Jn Ju (15) 

for all f E C0(n X U). By compactness of 0 and u, each family {ILt} is finite 
in the sense of Garnkrelidze ( 1978, p. 21 ff.) , and each function h f generated 
by some J.L E Mu is bounde and, consequently, integrable on 0. The set 
Mu is convex, see Garnkrelidze (1978, p. 25), and sequentially compact in the 
topology introduced above, see Kraut and Pickenhain (1990, p. 391, Theorem 4) . 
Upon the definition of the set-valued maps G(t): 0--+ :P(!Rnm) and Mu(t): 0--+ 
:P( rca (U, 'Bu)) as 

DEFINITION 1.3 

and 

G(t) = { z E L;m(n) lzij = l 9ij(t, v) dJ,Lt (v) a. e. on n; 

J,LEMu(t)} 

Mu(t) = {J.Lt E rca(U, 'Bu) I J.Lt ~ 0, J.Lt (U) = 1} 

The state equations (7) ca be reformulated as differential inclusions: 

(7) {:> (Xi;t)t))ij E G(t) for a.e. t E 0. 

(16) 

(17) 

(18) 

DEFINITION 1.4 (Baire classification) We call a contin·uo·us function ·¢ defined 
on the compact set 0 C !Rm jTOm oth Bair·e class and w-rite ·¢ E '13°(0). The l-imit 
functions of everywher·e pointwise convergent sequences { 1/JK}, ·tjJK E '13 ° ( 0), 
form the first Haire class '13 1 (0); the limit functions of eveTywhere pointwise 
conveTgent seq·uences {·q/<}, ·¢]( E '13 1 (0), form the second BaiTe class '13 2 (0), 
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Obviously, '13°(D) c '13 1 (D) c '13 2 (D) c ... holds. Note that each finite 
function contained in any Baire class is measurable, see Caratheodory (1968, 
p. 404, Theorem 4); conversely, any measurable, essentially bounded function 
on n agrees a.e. with some function of second Baire class, see Caratheodory 
(p. 406, Theorem 5). Each Baire class is closed under (pointwise) addition and 
multiplication of finite functions, see Caratheodory (p. 397, Theorems 6 and 7). 

Defining functionals H( C0 ·"(D) ---+ 1R by 

Ht(x) = MaxtEO ht(t,x(t)), 1 :S l :S w, 

the state constraints (5) can be expressed as follows: 

ht(t, x(t)) :S 0 Yt ED {::} Ht(x) :S 0, l = 1, ... , w. (19) 

2. Comparison of minimal values 

We prove now the following conditions for the coincidence of the infima of (P) 
and (Ph•: 

THEOREM 2.1 Let (J5) be given ·under ass·urnpt·ions (V1)-(V4). We ass·ume 
further that: 
(V5) TheTe exists a ball K(O, wl) which is a S'Ubset of G(t) for all tEn. 
(V6) (P) adrnds a feasible sol·ution (x, J..L) E (C1·"(D) n w!:,"(D)) X Mu with 

(xi;tj (t))ij E G(t) , 0 < Wo :::; Dist ((Xi;tj (t))ij, aG(t)) for· a. e. t E n and 

x(t) E X(t), 0 < WI :::; Dist (x(t), aX(t)) for all t E n, the set X(t) is 
USS'Urned to be convex Yt E n. 

(V7) The functions g;j sat-isfy (independently of v E U) Lipschitz condit·ions 
of the type 
IYij ( t', v) - .IJi.i ( t", 'U) I :::; L;j . It' - t"l y t'' t" E n with L;j > 0. 

Then, (P) admits a minimizing seq'Uence {(:eN, J..LN)} w-ith representatives of oth 

Baire class for xf.t ., und the minimal val-ues of (P) and (Ph•, k = 0, 
' J 

1, . .. coincide. MoreoveT, the (xN,J..LN) can be determined in s·uch a way 
that the relaxed state eq·uations (7) are satisfied eveTywheTe on n. 

Proof. We consider the sequence of problems (Pm), rn E N, where the state 
constraints (10) are replaced by 

x(t) E Xm(t), (20) 

with the open set Xm(t) and 

~ E Xm(t) {::} ~ E X(t) and Dist (~, aX(t)) > ~-
rn 

(21) 

Assumption (V6) guarantees that Xm(t) =/:- 0 Yt E n and rn ~ m 0 . It follows 
now that 

(')')\ 
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for all m ~ m 0 . Let (x*,p,*) be an existing optimal solution of (P), see Pick­
enhain and Wagner (2000), Theorem 2.2. Then the sequence { (xM , f,L111 )}M=l 
with 

XM = ~:c+ (1- ~)x* , f.LM = ~f.L+ (1- ~)f.L* (23) 

and (x,f.L) from assumption (V6) is admissible to (It since X(t) is convex and 
it easily follows 

lim J(x111 ,f.LM) = J(x*,f.L*). (24) 
M->oo 

From assumption (V6) and (V7) we obtain for the ball Kw, (x(t)) around x(t): 

Kw 1 (x(t)) ~ X(t) Vt E f2 

and 

conv {Kw 1 (x(t)), {x* (t)}} ~ X( t). 

Therefore 
1 

forT= -w1 
M 

and we obtain that (x111 , f.LM) is admissible for (P m) with m > 
with (22) we find 

K = lim J(xM, f.LM) ~ lim Km(M) ~ K 
M->oo l\1->oo 

and 

lim Km = K. 
m->oo 

(25) 

(26) 

(27) 

M Together 
Wt 

(28) 

(29) 

Now we apply Theorem 1.3 from Pickenhain and Wagner (2001B). Then 
(Pm) has an optimal solution (x;,, f.L;,), see Pickenhain and Wagner (2000), 
and admits a sequence {(x;;:, f.L;;:)}N=l with the followi ng properties: 

A) x;;: E C 1·n(f2), lim ll x;;:- x:nllco .n((O) = 0, 
N->oo 

B) lim llx;;; . -x:n . . IIL(o)=OV ·i,j 
N~oo ·t. ,t1 t,tJ 1 

C) {(x;;:,f.L~)}N=l satisfies t he conditions (7), (8), (9) of (P) 

D) iJ(:r;;:,f.L;;:)- Kml <~for all N ~ No(rn) 

E) For {(x;;:, f.L;;:)} the relaxed state equations (7) are satisfied everywhere on n. 
From A) it follows that x;;: E X(t) for all t E f2 and N ~ N1(rn). 

N"( ) Let N*(m) := max(No(rn), N1(m)). Then the diagonal sequence {(xm m , 

f.L~"(m))} is admissible for (P) and together with D) and (29) we obtain that it 
is a minimizing sequence. • 
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3. Duality theorems 

3.1. Weak duality results 
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We consider the problem (P) under the assumptions (V1) - (V4) anJ the ad­
ditional assumptions of Theorem 2.1. Then, the infima of the problems (P), 
(P)'Bo and (Ph, coincide. Therefore we can restrict us to formulate a dual 
problem to (Pho with regular Borel measures as dual variables. 

We define the following sets: 

DEFINITION 3.1 

Xo = { (x, f.L) E W~71 (!1) X Mu lxi;tj E 13°(!1) , V ·i, j, Zij E 13°(!1), 

Zij = fu Yij ( t, V) df.Lt (v), (30) 

x(t) = cp(t) \It E f, 

llxll :::; p, (J s·ufficiently large} , 

X1 = ( (x, f.L) E W~n(!l) X Mu lxi;tj (t) = fu Yij(t, v) df.Lt(v); 

V·i,j, VtED; (31) 

h1(t, x(t)) :::; 0 V l, \It E !1 }, 

Yo = (rca (!1, 13tm, rca+ (D, 13)w). (32) 

The Lagrange functional <I>: X0 x Yo -> lR is defined by 

<I>(x, fJ,, v, (J) = J(x, !L) +I: r [xi;tj (t)- r Yij(t, v) df.Lt(v)] dvi1(t) 
i,j Jn Ju 

+ t L h1(t,x(t))d(Jl(t). (33) 

The duality construction in the sense of Fenc!tel-Rockafellar, see Pickenhain 
and Wagner (2001A), is used for the construction of a dual problem. 

LEMMA 3.1 Let (J5) be given ·under· the ass'Umptions of this chapter. Then the 
functional <I> fulfilles the eq·uivalence req·u·ir·ement 

inf J(x, J.t)= inf sup <I>(x,f.L,V,(J). 
(x,J.L)EXonX, (x,J.L)EXo (v,<T)EYo 

(34) 

Pmof. We first remark that due to the compactness of U the infimum of (P) 
is unchanged if x is restricted to the ball llxll :::; p with p sufficiently large, see 
Pickenhain and Wagner (1999 , p. 222, Lemma 2.1.(2)). Let (x, !L) E X0 with 

:r:, .• (t (\ I - f n:_ ,_ (t(\ . vi du,,_ (v) > 0 or h,_ (t, . x (t, )) > 0 
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for at least on to or t1 En and indices io, Jo, lo. Then we construct the sequence 
of measures liN E (rca (D, 'B))"m with ll.{"

1
. = N · Dt0 and ll.{"

1
. = 0 for ·i =1- ·io or 

0 ' 0 

j =1- Jo, O'N E (rca+(n, 'B))w with O'f: = N · Dt, and 0'{" = 0 for l f-lo. Then we 
obtain 

lim ip(x, J.L, liN, O'N) = +oo (35) 
N->oo 

and 

;r,( ) { J(x , J.1,) 
sup"' x, J.L, ll, 0' = ( ) 
Yo + oo 

i(x,J.L) E Xo satisfies (7) , (10) 't/t ED, (
36

) 
I else. 

By applying Theorem 2.1 we fi nd a minimizing sequence {(xN, J.LN)}N=l in 
(Pho satisfying (7) everywhere on n. We finally get that along this sequence 

inf J(x, J.L) = lim J(xN, J.LN) 
(x,!l)EXonX, N-> oo 

= lim sup ip(xN,J.LN , li,O') = inf sup ip(x,J.L,li,O') (37) 
N-> oo (v,rr)EYo (x,/l)EXo (v ,rr)EYo 

holds and the proof is complete. • 

THEOREM 3.1 Under the ass·urnptions of Theor-em 2.1 the following pr-oblem 
(D) is weakly d'Ual to each of the pmblerns (J5), (Ph a and (P)'B,, 

L(li,O') = inf tp(x,J.L , li,O') 
(x,!l)EXo 

inf. [l(x, J.L) + 2.: r [xi; tj (t)- r Yij(t, v) dJ.Lt(v)] dll;j(t) 
(x,!l)EXo .. Jn Ju 

t,J 

+ L f h1(t, x(x) dO'z(t)] -t Max! 
1 Jn 

(li , O') E Yo= (r-ca(D ,'Btm , Tca+(D ,'B)w). 

Proof. By Theorem 2.1 we have 

inf(P) = inf(P)'Bo = inf(P)'B,, 

and by Lemma 3.1. we get 

inf(P)'Bo = inf J(x, J.L), 
(x,/l)EXonX, 

inf J(x,J.L)= inf sup ip(x,J.L,li,O') 
(x,!l)EXonX, (J:,/l)EXo (v,rr)EYo 

and finally from the well-known inequality 

inf sup ip(x,J.L,li,O')?:. sup inf ip(x,J.L,li,O') 
(x,!l)EXo (v,rr)EYo (v,rr)EYo (x,!l)EXo 

we obtain 

(38) 

(39) 

(40) 

( 41) 

( 42) 

( 43) 

(A A\ 
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3.2. Strong duality results 

By strong duality we understand the coincidence of the supremum of (D) with 
the infimum of (P). 

THEOREM 3.2 We cons·ider· (P) ·under· the assumptions of Theorem 2.1. MoTe­
over·: 
(VB) Let fo(t , ·, v), h1(t , ·) be convex for all t E !1 and v E U. 
{V9) By ext and o:J: we denote the posdive and negat·ive part in the loTdan 
decomposition of the meas'uTes O:k· Let fk(t, ·) be convex for· all t E co(suppo:t) 
and concave joT all t E co (supp o:J:) . 
{Vl 0) For the exist·ing global rninirnizeT (x*, Jl,*) of (P) we have: PoT each 
active index l (i.e. H1 (x *) = 0) theTe exists a feasible pmcess (x 1, f..L 1) with 
H[(x* ,x1- x*) < 0 (i.e. "(x* , f..L*) can be stmngly var·ied"). 

Then the pmblern (D) is stmngly dual to each of the pToblems (P) , (P)'Bo and 
(P)'Bt. 

Pmoj. As an essential ingredient of the proof we use the c-maxirnurn principle for 
(P), with multipliers from L;m(D) which was shown in Pickenhain and Wagner 
(2000): 

Let (x*, f..L*) be a global rninimizeT of the pmblem (J5) ·under- the assumption!:! 
of the Theorem. Then for ar-bitmTy c > 0 theTe ex·ist multipliers yo E L;m(D) 
(1/p + 1/q = 1) and O'f E rca +(!1, '13) , 1 S l S w, satisfying the c-maxirn'UTn 
condd·ion (in integmted form) 

(M)e: c- k fu fo(t, x*(t), v)[df..L;(v) - df..Lt(v)]dt 

+ 2: r r 9ij(t, v)[df..L;(v)- df..Lt(v)Jyfj(t) dt 2 o 
; ,

1 
Jn lu 

for all f..L EMu a!:! well as the ineq·uality {"peTtur·bed canon·ical inequaldy") 

(X)c: : I I.: in yfj(t)(i ;tj(t) dt 
1,) 

+ r vJ[ r fo(t,~,v)dp,;(v)] . ((t)dt Jn Ju €=x•(t) 

+ L 1 VJ[]k(t, 0]€=x•(t)((t) do:k(t) 
k n 

+Lin VJ[h1(t, Ol€=x•(t)((t) dO'f(t)l S c ll(llw~·n(n) 
I 

( 45) 

( 46) 

joT all test functions ( E W~'n(!1) wdh (!r = 0. If the boundary conditions 
I ' I J I I _ .L £-.-- .L -' --- r r ~n , (X) {{)' 
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MoTeoveT, the meas'UTes af sat·isfy 

(e)£: suppaf ~{tEn I hl(t , x*(t)) = 0} 

:::} l h1(t, x*(t)) daf (t) = 0, 1 S l S w. ( 47) 

Taking in the E-Maximurn principle c = 1/N, N E N, we obtain multipliers 
yE = yN E L;m(D) (1/p + 1/q = 1) and a' =aN. If yN is assumed to be a 

density of an absolutely continuous measure vN, then (v N, aN) is admissible to 
(D). From (V8) and (V9) we get the following inequalities Vt E D, \:/ ~ E JRn, 
\:fv E U, 

fo(t, ~~ v) ~ fo(t, x*(t), v) + "Vl fo(t, x*(t), v)(~- x*(t)) , 

]k(t,~) ~ ]k(t,x*(t)) + "Vl fk(t,x*(t))(~- x*(t)) 

\:It E co(suppat), 

]k(t, 0 S ]k(t, x*(t)) + "Vl ]k(t, x*(t))(~- x*(t)) 

\:It E co(suppa;), 

h1(t,O ~ h1(t,x*(t)) + "Vlh1(t,x*(t))(~ - x*(t)) . 

Therefore, 

r r Jo(t , x(t),v)dJ-Lt(v)dt+ I: r ik(t , x(t))dlat - a; J(t) 
lnlu k ln 

2ll (io(t , x*(t), v ) + "Vl fo(t,x*(t), v)(x - x*)(t)) dJ-Lt(v) dt 

( 48) 

( 49) 

(50) 

(51) 

+I: r (]k(t,x*(t)) + "Vl fk(t , x*(t))(x - x*)(t))dlat- a; J(t) . (52) 
k ln 

Now we estimate the value of the dual objective for (vN, aN) : 

L(vN,aN)= inf [ r r fo(t,x(t),v)dJ-Lt(v)dt 
(x ,J.L)EXo Jn Ju 
+I: r fk( t ,x(t))[dat(t)- da;(t)J 

k ln 

+I: r [xi;t1 (t) - r Yij(t,v)dJ-Lt(v)]y~(t)dt 
i,i ln lu 

+ ~ l h1(t , x(t))da{" (t)] 

~ inf [ f f Uo(t,x*(t),v) 
(x ,J.L)EXo Jn Ju 
......,rr ,. .. . ,. r., ... , , . , 
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+ L 1 (fk(t, :c*(t)) 
k n 

+ \1[ fk(t,x* (t))(x(t)- x*(t)))[dat(t) - dc~k"(t)] 

+ L r [xi;tj(t)- l Yij(t,v) dfLt(v)]yi)'(t) dt .. ln lu 
'·1 

+ 'L r (h1(t, x*(t)) + \lfhl(t, x*(t))(x- x*)(t)) d(Jt (t)]. 
1 ln 

By rearranging the surn on the right hand side of the last inequality we obtain 

with 

and 

L(vN' (J N)?: inf [ r 1 fo(t, x*(t ), v) dfL; (v) dt 
(x,J.1)EXo Jn u 

+ I: r !k(t, x*(t)) dctk(t) + sl + s2 + s3 + s4] (53) 
k ln 

sl =I: r ( xi;tj (t) -1 Yij(t, v) dfL;(v) )YD' (t) dt , .. ln u 
'·1 

s2 = :2::: l (xi;tj(t)- xi; tj( t))yi)'(t)dt 
<,1 

+ l \l![fu fo(t,x*(t),v)(x(t)- x*(t)) ) dt 

+ L 1 \1[ h(t, :c*(t))(:c(t) :- x*(t)) dak(t) 
k n 

+ l \l[hl(t ,x*(t))(x(t)- x*( t))d(J{"(t), 

s3 = -ll fo(t ,x*(t) ,v) [dtL;(v)- dtLt(v)] dt 

+ L {1 Yi)(t, v)[dfL;(v)- dtLt(v)]yi)' (t) dt .. Jn u 
'·1 

s4 =I: r h1(t , x*( t)) d(J{"(t) . 
1 ln 

(54) 

(55) 

(56) 

(57) 

S1 vanishes since (x*, !L* ) is admissible for (P). It follows from the perturbed 
canonical inequality ( 46) that 

C:~ '> _ I C:~ l '> _ _!_ II , . _ .,.* II 
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and from the ~::-Maximum condition ( 45) we get 

1 
53>--. - N 

S. PICKENHAIN 

(59) 

54 vanishes since the complementary condition ( 4 7) is fulfilled. The estimations 
in (53), (58) and (59) yield together 

and 

L(zf, CJN)) 2: J(x*, f-L*)- ~- ~ sup llx- x* ll 
N N (x,J')EXo 

J(:c*, f-L*) = min(P) = inf(P)'Bo = inf(P)'Bt 2: sup(D) 

2: L(vN) 2: J(x*, f-L*)- ~ - ~p 

V N EN. This finally gives with (61) for N---+ oo 

inf(P) = inf(P)'Bo = inf(P)'Bt = sup(D) 

and the proof is complete. 
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