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Abstract: In this paper we prove weak and strong duality re-
sults for optimal control problems with multiple integrals, first—order
partial differential equations and state constraints. We formulate
conditions under which the sequence of canonical variables ¢ in
the e-maxinum principle, proved in Pickenhain and Wagner (2000,
form a maximizing sequence in the dual problem.
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1. Introduction
1.1. Problem Formulation

We consider the following optimal control problem () with first-order partial
differential equations and state constraints:

J{z.u}-—-Lfn{i,z{i},ul:ﬂ]di+§Lﬁl{11z{i]}duk{!] —Min! (1)

subject to = € W;'”{HL u € L,(Q2) (p > m), satisfying a.e. on

state equations

Tig, (t) = gis(t,ult)), i=1l....mji=1...,m (2)
contrel restrictions
u(t) e U, Ue Comp(R")\ {0}, (3)

boundury conditions
z(t)=pl(t) forallt e ' C O; T’ compact, I" £ @, (4)

and stale constraints
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The formulation of (P) includes state-constrained problems of Dieudonné-Ra-
shewvsky type if fi, = 0 for all k = 0, see Cesari (1969), as well as stale-constrammed
deposit problems for fo = 0, filt,z(t)) = o {t), see Kloteler and Pickenhain
(1993). Convexily assumptions are needed for the derivation of existence results
as well as necessary and sufficient optimality conditions. If these assumplions
do not hold, we construct the standard relaxation {P) (or convexification) of
{P) using the Young measures, namely: Minimize

J(z, ) ffjutr{t v) dpe u}dt+2fm: z(t)) dee (t) (6)

subject to & € W;'“{ﬂ], i € My, satislying a.e. on (&
state equations

I.--r:_,{l}=j;g;j{i,v}{fu.[f.?]. $am Ty el o )
generalized control restriclions

suppy C U, U € Comp(R") \ {0} for all ¢ € 0 (8)
boundary conditions

z(ty=p(t) forall te T C O T compact, ' # @, (9
and stale constraints

x(t) € X(t) & hy(t,z(t)) <Oforallte, I=1,...,w. (10)

Our basic assumptions for (P) and (P) are the following:

(V1) Wehavem > 2and m < p < oo. It € B™ is a compact Lipschitz domain
(in the strong sense, see Morrey, 1966). Then, functions x € W:,‘"{ﬂ}
are continuously representable, and functions = € I’I-"L‘:'{ﬂ} have Lipschitz
representatives on 2, Alt (1992) (p. 185, Theorem 5.5).

{(V2} The functions fo, f, gij, fu and  are continuous w.r.t. all their ar-
guments; folt,-, ), felt,-), gi;(t, ) and ky(t, ) are continuously differen-
tiable w.r.t. £ resp. (£,v) for all £ & 12.

(V3) o € rea () are signed regular measures on the g-algebra of the Borel
sets on 1.

{V4) The set of feasible solutions (x, u) of (P) is denoted by Z, and Z is non-
empty.

We emphasize two special types of boundary conditions:
x(ty) = xg for fixed 4y € 0, i.e. I‘"{En} (11)

da favom T 0 o WS BTel A
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1.2. Outline and main result of the paper

The main topic of this paper is to prove duality results for the problem (F). We
do this in two essential steps. First we introduce class-qualified problems as in
Pickenhain and Wagner (1999, 2000):

DEFINITION 1.1 For (P) as well as (P) and k € Ny we obtain the class-qualified
problem

(P)ae  (1)(5) and xyy, possesses one representative from B* (1) {13)
and the cluss-qualified relazed problem
(P)gs  (6){10) and Tiy, possesses one representative from BE(Q). (14)

In Pickenhain and Wagner (2000) we derived Poutryagin's maximum prin-
ciple for problems (P) and (P). It was pointed out that, in the general case,
the multipliers corresponding to the state equations (2), respectively (7), can-
not be taken from (L™)*, 1 < p < oo, but from the space (L"), To avoid
this situation and to obtain more regular multipliers, it was proposed to restrict
the feasible domain on elements {x,u), respectively {x, u), having representa-
tives of first Baire cluss for (i, )i; as well as for (gi;(-, ul:-)))i;, respectively
(fy; 95, v) dpe.(v))i;. In this way the maximum principle for (P)ge was shown
in Pickenhain and Wagner (1999) [Theorem 3.4.] wherein the multipliers corre-
sponding to (7) are Radon measures. Furthermore, in Pickenhain and Wagner
(2001 A,B) sufficient conditions were proved under which the minimal value of
(P) and (P) remains unchanged if a Baire class qualification is added to the
problem. This was done for problems without state contraints. In the present
paper this result is extended to the case of state-constrained problems.

In the second step we formulate a dual problem with dual variables as Radon
measures. We use the ¢-maximum principle for (P) Lo prove strong duality
results for (P) and (P)gs, k=0,1,2.

1.3. Notations

We abbreviate the m-dimensional Lebesgue measure of A by |A[, the closure

of A by A and the actual zero element by 0. C**(Q2), L () and W” ()
{1 € p < oo) denote the spaces of n-dimensional vector fum:tmus on £, whuﬁe
components are k-times continuously differentiable, respectively belong to L#[ﬂ]

or to the Sobolev space of L ({)-functions having weak derivatives up to k =
order in L (). The subspace of C*(Q)-functions with compact support is
denoted by {f‘*‘“{ﬂ}; instead of C%1(02) we write shortly C°(02). For the classical
and weak partial derivatives of x; w.r.t. {; we use the same notation: =z, e
T]m Banach space of Radnu measures [blgu&d regular measures wlth the tuta]

e ie AN
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set of nonnegative Radon measures is rea 4. (11, B). Due to the compactness of (1,
rea (€2, B) is isomorphical to the dual space (C%(2))*, see Dunford and Schwarz
(1988) (p. 265, Theorem 3), so that each linear, continuous functional on C°((2)
can be represented by an integral w.r.t. a Radon measure v € rea ({3, B).

DeFINITION 1.2 (Generalized controls) A fomidy p = { | ¢ € 02} of probubility
measures yuy € rea(f, By) acting on the o-algebra By of the Borel sels of U
is called a generalized control on U if for any continuous function f € CO(0 x
U) the function hy:Q2 — R with hy(t) = [, f(t,v) dps(v) is measurable, see
Gambkrelidze (1978) (p. 23). Two families y', p" can be identified iff p, = p!
for w.e. t € 81,

The set of all generalized controls on U is denoted by My, We equip My
with the following topology:

{u™} = p*
3 N =2 i &
& lm LL““”“’" {u}dt_LLI{Lv}dp,w]m (15)

N—no

for all f € CYQ x U). By compactness of 2 and U, each family {j} is finite
in the sense of Gamkrelidze (1978, p. 21 fI.), and each function hiy generated
by some p € My is bounded and, consequently, integrable on 2. The set
My is convex, see Gamkrelidze (1978, p. 25), and sequentially compact in the
topology introduced above, see Kraut and Pickenhain (1990, p. 391, Theorem 4).
Upon the definition of the set-valued maps E;I:L]:R — P(R"™ )} and My(t): 2 —
Plrea (U, By)) as

DEFINITION 1.3

&(t} e= {z 3 L:ml[ﬂ] l2i = Lgu{t.v}du;[ﬂ] a.e. on £l (16)
pne Mu{t]}

and
Muy(t) = {m € rea (U, By) | = 0, pe(U) = 1} (17)

The state equations (7) can be reformulated as differential inclusions:
() & (zig,(1)i; € G(t) forae.teQ. (18)

DerFmviTION 1.4 (Baire classification) We call ¢ conlinuous function ¢ defined
on the compuct set @ C R™ from 0" Baire class and write € B(§Y). The limit
functions of everywhere pointwise convergent sequences {Y*}, ¢ € BYQ),
form the first Baire class BY(1); the limil functions of everywhere pointwise
convergent sequences {Y* }, ¢% € BYQ), form the second Baire class B*(Q),
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Obviously, B%(Q) ¢ B'(2) ¢ B*(Q) C ... holds. Note that each finite
function contained in any Baire class is measurable, see Carathéodory (1968,
p. 404, Theorem 4); conversely, any measurable, essentially bounded function
on {1 agrees a.e. with some function of second Baire class, see Carathéodory
(p. 406, Theorem 5). Each Baire class is closed under (pointwise) addition and
multiplication of finite functions, see Carathéodory (p. 397, Theorems 6 and 7).

Defining functionals H;: C%"((1) — R by

Hi(x) = Maxieq Mt z(t)), 1< <w,
the state constraints (5) can be expressed as follows:

hi(t,z(t) <OVLER & Hi(z)<0, I=1,...,w. (19)

2. Comparison of minimal values

We prove now the following conditions for the coincidence of the infima of (F)

and (Pgu:

THEOREM 2.1 Let (P) be given under assumptions (V1)-(V4). We assume

Jurther that: -

(V3) There exists a ball K(0,u) which is o subse! of G(t) for all ¢ € 11,

(V6) (P) admits a feasible solution (x,4) € (C'"(2) N W2 (Q)) x My with
(i, (1))i; € G(2), 0 < wo < Dist ((zy, {!]],-_,-,3&(!}] Jor e t € 10 and
z(t) € X(t), 0 < wy < Dist (z(t),0X(t)) for all t € Q, the set X(t) is
assumed Lo be conver W € {1,

(VT) The functions g;; satisfy (independently of v € U) Lipschilz conditions
of the type

|gii (' v) — gis (8", 0)] € Lj - ' = "] ¥, 1" € D with L;; > 0.

Then, (ﬁi admits u minimizing sequence {(=™, 4™} with representatives of 0"
Baire class for :uf':",;, and the minimal values of (P) and (P)gs, k=10,
1,... coincide. Moreover, the (™, ™) can be determined in such a way
that the relaxed state equations (7) are salisfied everywhere on £,

Proof. We consider the sequence of problems (P,.), m € N, where the state
constraints (10) are replaced by

x(t) € Xon(t), (20)
with the open set X, (t) and

E€Xm(t) & £€X(t) and Dist(£,dX(t)) > ﬁ (21)

Assumption {‘-'_ﬁ} guarantees that X, (£) # 0 ¥ e @ and m > myg. It follows
now that

S TR < R, T S S N Vi N ) (R faa
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for all m > mg. Let (z*, ") be an existing optimal solution of (P}, see Pick-
enhain and Wagner (2000), Theorem 2.2. Then the sequence {(z™, p™)}55_,

with
1 1Y 4 1 1Y .
e gt (1 g7 )2 o= gt (157 )

and (z, 1) from assumption (V6) is admissible to (P), since X (£) is convex and
it easily follows

lim J(zM, ™) = J(z*, u*). (24)

M —* 00
From assumption (V6) and (V7) we obtain for the ball K, (x(t)) around =(t):

K., (z(1)) C X(t) VieQ (25)
and

conv { K., (z(8)), {z* (t)}} € X(D). (26)
Therefore

K (M) C X(t) forr= %wl (27)
and we obtain that (z™, M) is admissible for (P,,) with m > 2. Together
with (22) we find

k= lim J(z™ uM)> hm BmiM) = & (28)

M —oo ]

and

lim Km =K. (29)

=00

__ Now we apply Theorem 1.3 from Pickenhain and Wagner (2001B). Then
{FPy) has an optimal solution (x},, ph ), see Pickenhain and Wagner (2000),
and admits a sequence {(z, uN)}3e_, with the following properties:

A) zfl € CV™(Q), lim ||zh — x5 |lcom iy =0,
N —oa

B) lim ||z ay ~ Emea, ey =0 Vi, j

o=
C) {{=X, X )}55_, satisfies the conditions (7), (8), (9) of (P)
D) |J(zN, u¥) = k| < L for all N = Ny(m)
E) For {(zX,u)} the m]am:! state equations (7) are satisfied everywhere on {).
From A) it follows that =¥ & X(£) for all t € 2 and N > Ny(m).
Let N*(m) := max{Nn(m].,f'v (m)). Then the diagonal sequence {{:1:,,1 ol

™)} is admissible for (P) and together with D) and (20) we obtain that it
is a minimizing sequence. [ |
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3. Duality theorems
3.1. Weak duality results

We consider the problem (P) under the assumptions (V1) - (V4) and the ad-
ditional assumptions of Theorem 2.1. Then, the infima of the problems (P),
(P)go and (P)g: coincide. Therefore we can restrict us to formulate a dual
problem to (P)y, with regular Borel measures as dual variables.

We define the following sets:

DEFINITION 3.1
¥o = {I:.‘!:, H) € w:::" (2) x My i'.:"i": £ *Bn{ﬂ}j’i‘ﬂ i € 'BDI:!-TL
o s fuﬂe;'(f.-v]dmiv}l. (30)
x(t) = plt) VteT,
l=ll < p, p sufficiently Iur'_qlg:}1

Xo = (@) € W) x Mo i, (0 = [ 00.0) dua(o)

Vi, j, Yie (31)
m&mﬂnEDVL¥tERL
Yo = (rea (R, B)™™, rea + (2, B)™). (32)

The Lagrange functional $: Xy x Yo — R is defined by

&(x, p,v.0) = J(z, 1) +¥fn [ﬂﬂe-.r,-[t',l—Lyr';[hﬂd#:{"i:[ diij(t)

- Eth{t.;c[t}}dm{t} (33)

The duality construction in the sense of Fenchel-Rockafellar, see Pickenhain
and Wagner (2001A), is used for the construction of a dual problem.

LEMMA 3.1 Let (P) be given under the assumptions of this chapter. Then the
Junctional & fulfilles the equivalence requiremendt

II:Il-f j T, )= i“r a1 ql & v, ). 34
() EXaNXy ll: j} [wa)EXa {'-"n'?'}'!EJY.u { o } ': :|

Proof. We first remark that due to the compactness of U the infimum of (P)
is unchanged if = is restricted to the ball ||z]| € p with p sufficiently large, see
Pickenhain and Wagner (1999, p. 222, Lemma 2.1.(2)). Let (z, u) € Xg with

#i . (fn) = fﬂ.' s ta. oV die (VS Dor hu (f . 2tV >0
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for at least on g or £, € 0 and indices iy, fg, lo. Then we construct the sequence
of measures v € (rca (2, B))"™ with v ; = N - &, and u.-’;' =0fori#igor
i # Jo, o™ € (rea (2, B))* with oY = N - &, and of¥ =0 for | # lo. Then we
obtain
lim ®(z,pv",o") = +o0 (35)
N i

and

J(z, 1) |(z,p) € Xo satisfies (7), (10) Vi € 2,

(+oc) | else. (36)

sup ®(z, g, v, o) = {
Yo

By applying Theorem 2.1 we find a minimizing sequence {{=N, pV)}%., in
(P)go satisfying (7) everywhere on £. We finally get that along this sequence

inf  J(z,p) = lim JzV,u™)
N—oa

(e XonXy
= lim sup @z, 4", v0)= inf sup Pz, pu, v, o) (37)
N—oo (peo)EYn (z)€Xa (p0)E Y
holds and the proof is complete. ]

THEOREM 3.1 Under the assumplions of Elw!'_ejrl 2.1 the Jufiuuriny problem
(D) is weakly dual to each of the problems (P), (P)ge und (P)g,

Lyo)= i &(zpw0)

= (r.;I:I:llEXq [j{:!:.i-‘] + Zj; [Ii;i,[i} - Lyﬁ[h v) duy {u}] dvi;(t)

+ h(t, dey(t)] — Maz! 38
5 [ mltsate)dov] = Moz (39)
(1,0) € Yo = (rea (0, B)™™, roa (€2, BI™). (39)
Proof. By Theorem 2.1 we have
inf(P) = inf(P)ge = inf(P)g1, (40)
and by Lemma 3.1. we get
nf(P)ge = inf  Jz,p), (41)
{I.Jl]IEI;EuI"IK1. A= I{I.:I]:E Xa {p:l;!;\"u Hlmpite) 42)

and finally from the well-known inequality

inf sup Pz, p10) > sup inf Oz, p, e o) (43)
(=,1)EXa (0,0)EYS (o lEYy (T HIEXs
we obtain

LN T = | 5y == P
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Mereover, the measures af salisfy
(€),: suppaf C {t €|tz (L)) =0}
= f hi(t,z*(t)) def(t) =0, 1<I<w. (47)
n

Taking in the e-Maximum principle ¢ = 1/N, N € N, we obtain multipliers
¥ =y" € L") (1/p+1/g=1) and ¢ = ¢". If y" is assumed to be a
density of an absolutely continuous measure ¢, then (¢",o") is admissible to
(D). From (V8) and (V9) we get the following inequalities ¥t € 2, V¢ € R",
Yeel,

So(t.&,v) = folt, =" (£),v) + VF fo(t, 2" (£), v)(€ - z*()), (48)

fe(t,€) 2 fult.2 (1) + V¢ fult, 2" (1))(€ - 2°(t)

Yi € co(suppag ), (49)

Je(t,€) < fultyz™ () + VT filt, " (8))(€ — 2" (1))

Wi € co(suppay ), (50)

hi(t,€) = hu(t, 2" (1)) + Vi hlt, z* () (€ = =°(1)). (51)
Therefore,

[ [ ez 0)ditoy e+ 3, [ ft.a@)aia - a0
2 -/;fuuo(t,z'{t],u}+‘:-"'{rf¢|[t,:::‘{£},tr]{z—z"]{t]]d;;,{u]dt
+ 2 [ (@) + VI O0)a - 2)OMlaf - a7)0.  (52)

Now we estimate the value of the dual objective for (v, a™):

qu”,a”} = [IIEHEM [fﬂj; Jalt,z(t), v) dpe(v) ot
+ Zj Fi(t, z(t))|def () — deg (1]
T I
+ E;’f:[ .-;;,I[t]l-fug:,-{w}dm{u‘l]y:‘}(t}d!
+ E f ha(t, z{t}}da{*’u}]

{: inf | f f (ol =" (8),0)

" - i
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HE f“{m:.z'tm

+ VT filt, 2 () (1) = 2*(t))[da (t) = dag (t)]

+%jﬂ [r.-;;,(t}l"j;y.-j{t,v}d,u.[u}]y;'}m di

+ Z: f“{m{t,g.-sl[:)} + VEhy(t,z*(t))(z - 3,.-:,“”‘&,?1”}
By rearranging the sum on the right hand side of the last inequality we obtain

e g | [
+Efme,: 5}}dﬁk{!}+51+52+53+54] (53)
k il

with

Sy =I.EJ./:‘:(I:#’“}_ j;Hij{fsﬂ}dﬂ:{"))y,’:{{!](ﬂ,, (54)
S, = ZL(::.;;,{:] —r.fir,{t}}yﬁ[g}dg

+ [ VI [ s 000 - @) @
T | VEAr ) - o ) dant

+Lv}'mu.z'{m{zm*z'undu,”m, (55)
- [ [ ottt 0,00 () - dpto)
it JU
Y fﬁ fu i3 (1, 0) g (v) — e (o) (¢) it (56)
and
- z* a i),
=% fﬂ ha(t,2*(8)) dof¥ 2) (57)

S vanishes since (z*,4*) is admissible for (P). It follows from the perturbed
canonical inequality (46) that

E‘-L“:-_Iﬂ"._l“:-_illn-_an'll eay
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and from the eMaximum condition (45) we get

5y > _%. (59)

&, vanishes since the complementary condition (47) is fulfilled. The estimations
in (53), (58) and (59) yield together
Lv™, eV 2 I, u°) -

sup_[lz =] (60)

|
N N izuexs

and

J(z*,p*) = min(P) = inf(P)ge = inf(P)m: > sup(D)
1 2

N Fio.® - -
2 L") 2 J(a"p) = 5 = 5P (61)
¥ N & M. This finally gives with (61) for N — oo
inf(P) = inf(P)go = inf(P)a = sup(D) {62)
and the proof is complete. ]
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