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Abstract: This paper develops the theory of solution tubes to
differential inclusions (uncertain systems) within a prescribed collec-
tion of sets. The notion is defined as a minimal invariant tube with
values in the collection. Under certain requirements for the collec-
tion we prove existence and Lipschitz-like stability of the solution
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the context of control or differential games.

Keywords: differential inclusions, control systems, uncertain
systems, reachable seis, deterministic estimation.

1. Introduction

The reachable set of a differential inclusion (the latter interpreted as an uncer-
tain systemn) is the minimal guaranteed estimation of the current state. There-
fore, to calculate reachable sets is a cornerstone of the deterministic estimation
and control of uncertain systems (see e.g. Kurzhanski and Filippova, 1993).
A lot of work has been dome for developing numerical approximation meth-
ods, see the surveys of Dontchev and Lempio (1992), and Lempio and Veliov
(1998). Since the geometry of the reachable sets can be quite complex, specific
subclasses of sets are usually used as approximation tools: boxes, polyhedral
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sets, ellipsoids (see Chernousko, 1988, Kurzhanski and Valyi, 1997, Chernousko
and Rokityanskii, 2000, Kurzhanski and Varaiya, 2000), box or polyhedral
complexes (Saint-Pierre, 1994, Hackl, 1992-93, Ushakov and Khripunov, 1994,
Cardaliaguet, Quincampoix and Saint-Pierre, 1999), ete. In some cases conver-
gence results are obtained, but usually to achieve a good approximation one has
to use rather complex approximating sets. On the other hand, in problems of
control of uncertain systems and differential games, where the systems estima-
tion is just an auxiliary tool, one has to employ only fairly simple sets'. In such
cases the issue of approzimation is not that relevant. A different problem arises:
to obtain inclusions of the reachable sets in sets from a prescribed collection £,
That is, to replace the solution tube X () of the differential inclusion by a tube
E(t) with values in £. In doing this, one has to ensure at least X (1) C E(t), but
two more properties are also desired: (i) the Markov property of the evolution
of E(-), which, together with X(t) C E(t), requires invariance of the tube E(t)
with respect to the differential inclusion, and (i) minimality.

The present paper investigates the existence, uniqueness, and the depen-
dence on the data, of tubes E(-) with the above properties (we call such tubes
solution tubes of the differential inclusion in the collection £). Existence of
ellipsoidal-valued solution tubes was previously proven in Chernousko {1988)
and, in a more elaborate form, in Kurzhanski and Valyi (1997), but the proofs
substantially utilize the linearity of the systems considered there. To our knowl-
edge, Lipschitz dependence of the solution tubes in a given collection has not
been previously investigated®, being in the same time of critical importance for
some applications, in particular in the context of the differential games with
incomplete /imperfect information.

We stress the fact that the notion of solution tube in a given collection
of sets does not have a counterpart in the theory of quasi-differential equations
{Panasyuk, 1990), or in the theory of mutational equations {Aubin, 1993, 1999).
In general, the notion of solution tube in a given collection £ coincides with the
notions of solution in the above publications only in the case of the collection
£ consisting of all compact sel. For the same reason the Filippov-type theorem
obtained in Doyen (1993) cannot be used for obtaining Lipschitz stability of the
solution tubes in a more general collection £.

The existence and Lipschitz stability results that we obtain in Sections 2
and 3, respectively, provide the basis for extending (also in the direction of al-

gorithms) a number of existing control theoretic considerations in presence of
unobservable uncertainties®. The complementary set-analytic tools are devel-

IThe associated Hamilton-Jacobi-Bellman-lsaacs equation, for example, has the dimen-
sion of the state estimators, thereflore it should not be too large.

*The results in Chernousko (1988) and in Kurzhanski and Valyl (1997) may have some
implications in this direction, but for linear systems cnly.

Mthat is, uncertaintics that remain unknown, in contrast to other uncertainties whose
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oped in Quincampoix and Veliov (1999). These extensions, however, are beyond
the scope of the present paper.

The results are obtained under a number of conditions for the collection £
that are discussed in Section 4 together with some examples,

2. Solution tubes in a collection of sets
We shall use the following standard notations: B is the Euclidean unit ball in
R", comp(R") is the set of all compact subsets of ", H{X .Y is the Hausdorff
distance between two sets X, Y € comp(R"), e(X,¥) &' sup, ey infzex |z =yl
Multiplication of a set with a scalar, and summation of sets are understood in
the usual {Minkowski) sense. With the Hausdorlf distance and the Minkowski
operations, comp{R") becomes a complete metric cone. For a set X, f{X) stays
for {f{z):z € X}

Below, [0,T] will be a fixed time interval.
DEFINITION. A set-valued map E(-) : [0,T] = R" is called a tube if it is
nonempty compact valued and has closed graph. A tube is Lipschitz continuous
if there is a constant L such that

H(E(s), E(t)) € L|t — s| for every s.t € [0,T].
We consider a differential inclusion
z € Flz,t), zeR", te[0,7)] (1)
supposing the following:

Condition A. F : R" %[0, T] = R" is a set-valued mapping with nonempty
convex, compact values, measurable in ¢ for every fixed x, and locally Lipschitz
continuous in @ uniformly with respect to t. Moreover, F' satisfies the linear
growth condition

|F(z,t)] <all +|z]), ¥YzeR", tel0,T).

As usual, a solution to (1) is any absolutely continuous function that satisfies
(1) for a.e. . Given a set of initial states Ep C R" the solution tube of (1) on
[0,T] is defined as
X(t) = z[0, Eo)(s) e {z(s) : z(-)-solution of (1) on [0, 5], with =(0) € Eg}.
This is the unique minimal tube that starts from Ey at £ = 0 and is invariant
with respect to (1), the latter meaning that

¥s € [0,7), ¥Yz(-)-solution of (1) on [s,T], with z(s) € X(s)
= z(t) € X(t) ¥telsT].

Here and below, “minimal”, when applied to sets, means 'minimal with respect

¥ LN | = I | i1l
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partial ordering in which Ey(-) < Fa(:) if and only if Eq(t) C Eq(t) for every
te[0,7].

In general, it is difficult to calculate the solution tube numerically, unless
the values X () belong to a class of simple fnitely parametrized family of sets.
However, this happens ouly in rather exceptional cases. For this reason we
reverse the issue: we fix in advance a collection of sets £ and want to find a
solution tube of (1) that takes values from € only. To make this concept precise,
we give the following definition.

DeFiiTION. The tube E(-) : [0,T] — comp(R") is called solution tube of
(1) in the collection £, starting from Ey € £, if and only if E(-) is a minimal
invariant tube with values in £, for which Ey € E(0).

Clearly, z[0, Eg](-) is the unique solution tube in the collection £ =
comp (R"), starting from Ey. To ensure existence of a solution tube in a more
general collection £ we introduce the following conditions for £.

Condition B.1.a. The collection £ consists of nonemply compact sets and
is closed in the Hausdorff metric. For every compact £ there is some E € £
containing Z.

Obviously B.1.a, together with the Zorn lemma, implies that for every Z €

comp(R™) there exists a minimal element of £ containing Z. We denote by
M(Z) the set of all such minimal elements.

Condition B.1.b. There exist real £ > 0 and Lg¢ such that for each ¢ € (0, £]
and each E € £ there exists E' € £ for which E+eBC E' C E+elLgB.

The above condition is equivalent to the following one:

Condition B.1.b'. There exist real £ > 0 and Lg such that for each
Z € comp(R") and each E € £ for which H(Z, E) < € there exists E' € M(Z)
satisfying e(Z, E') € L¢ H(Z, E).

Indeed, if B.1.b' holds then one can apply it for Z = E+¢8 to obtain B.1.b

with the constant Lg + 1. On the other hand, if B.1.b is fulfilled, then for 2

and E such that ¢ ' H(Z,E) < & there is E € € for which Z ¢ E+¢Bc E

and EC E+ eLeB. From the latter we have
e(Z,E) < e(Z,E) +e(E,E) < e(Z,E) + ¢Ls < (1+ Le)H(Z, E).

Then, the Zorn lemma, together with B.1.a, implies existence of E' € M(Z)
for which the above inequality still holds. Thus, B.1.b' is fulfilled with the
constant Lg 4+ 1.

It will be convenient to suppose that the constant Lg is fixed so large that
both B.1.b and B.1.b' hold with the same £ > 0,

THEOREM 2.1 Suppose that conditions A and B.1 are fulfilled. Then for every
FEg € € inclusion {1) has a solution tube in £ starting form Ey, which satisfies
the growth estimation:

it = o F1 s 1 ind 2al el T
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Moreover, if M(Z) is a singleton for every Z € comp(R"), then the solution
tube in £ is unigue and Lipschitz continwous with Lipschitz constant 2a({Le +
1)(1 + |Eu|}t2ﬂ{L:+IJT .

Proof. 1. For every s = 0 which is so small that e** < 2, and for every ¥ € £,
the growth condition implies in a standard way that

H(zt, E](s), E) < 2as(1 + | E]). (3)

As before, x[t, E](-) denotes the solution tube of (1) in eomp{R"), starting from
the set I at ¢,

2. Construction of o discrefe-time tube. We fix N so large that

TN <2 and 2ah(1+ |Eq|)e*T <&, (4)
where t = T/N and A = 2a(Lg + 1). We shall define a sequence of elements
ENf g & k = (],..., N, such that the following relations are fulfilled for
k=0,.... N-1:

xlkh, EF (k) € BY,, C z[kh, EF|(h) 4+ 2ahLe(1 + |EY|)B, (5)

Efy C Eo+ (1 + | Egl) (X D" — 1B, (6)

L+ | B S (L4 [Bol)etHDR, (7)

Obviously J{Tj is & consequence of (6).
Set Eé"' = FEp. Since, according to (3) and (4),

H(x[0, EF](h), EY) < 2ah(1 + |Ey|) < &,

one can apply B.1.b" with Z = z[0, Ef'|(h) and E = EJ to chose EY = E' €
M(z[0, EJ] (k) such that (5) is satisfied for k = 0. From (5) and (3) we have
also

EY © 20, EY|(h) + 2ahLe(1 + | Eg|)B

C Eo +2ah(1 + | Eg)B + 2ahLe(1 + | Eo|)B

C Eg+ "1+ |Eg|)B € Eg+ (1 + |Eg|)(e™ = 1)B.

Suppose inductively that EY, k < N is already defined so that (6) and (7)

hold for k- 1. We proceed similarly as at the first step. Since, according to (3),
{7) and (4),

H(z[kh, EY](h), EY) < 2ah(1 + |EF]) € 2ah(1 + |Eg|)e*™ < &,

one can apply B.1.b? mth = zjkh, E])( h} and E = E{ to chose E}%,, =

™ = ddf fEe PN e N dh.a fEh o ey Fa Fey O iemy
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have also
Eis1 C alkh, EF)(h) + 2ahLe(1 + |E|)B
C ER +2ah(1+|E{'|)B + 2ahLe(1 + |EY|)B C EYY + hA(1 + |EY|)B
C Eg+(1+ |Eu|){¢"kr. = 1B+ kM1 + lEu”EM‘"H
C Eo+ (1+ |Eo)(e™" = 1+ hAeM™)B C By + (1 + | Eol) (X D" — 1)B.

This completes the recursive definition of the sequence {EJY € £},

3. Passing to a limit. In order to obtain an £-solution of (1) we have
to pass to a limit with respect to N, first embedding the discrete-time tubes
{EY € £}, into continuous-time ones. To do the latter we use the following
lemma proven in Artstein (1989).

LEMMA 2.1 Letty < ... < iy be real numbers. Let F: {tg,....ix}=R" be a
compact-valued Lipschitz continuous mapping, with Lipschitz constant L. Then,
there exists an extension of F' 1o [to, 1], which is Lipschitz continuous with the
same constant L.

For all N sufficiently large (as specified in (4)) the mapping E™(-), defined
for t) = kT/N, k=0,...,N, as EN(t)) e E{Y, is Lipschitz continuous with
a constant L (independent of V), say

L = 2a(1 + L¢)(1 + | Eo|)eT, (8)

due to (3), (3), and (7). According to Lemma 2.1 it can be extended to a Lip-
schitz continuous mapping E¥(-) on [0, T), with the same Lipschitz constant L.
The mappings E¥(-) are uniformly bounded (due to (7)), therefore the Arzela-
Ascoli theorem [applied to the space comp(R") with the Hausdorfl metric)
implies that there exists a subsequence N' C N and E(-) : [0,T] = comp(R")
such that

Jim E¥() = (),

uniformly in the Hausdorff metric. Moreover, E(.) is Lipschitz continuous and
satisfies (2), as {E™(-)}x does for every N.

Clearly, E{0) = Ey. From B.1.a it casily follows that E(t) € £ for every
t€[0,7).

The proof of the invariance of E(-) with respect to (1) uses a standard
argument, but we provide it for completeness. Let s < t be two numbers in
[0,T7]. We have to prove that

z|s, E(s)](t - ) C E(t). (9)

Take an arbitrary £ € (0,0.3(t — s)] and then an N € N’ so large that (4) is
fulfilled, and also

amrumBl s = === = - s And
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Let k,m € {0,... . N}, k < m, be chosen in such a way that [kh — 3| < £ and
|mh—t| < . From the first inclusion in (5) applied successively for k, k+1, ... ,m
we obtain that

zlkh, EX)((m = k)h) € EY. (10)

Let Z be a compact set containing E(t) + B, t € [0,7]. Condition A and
Filippov's theorem (see Clarke, 1983 or Aubin and Frankowska, 1990) imply in
a standard way that there exists a constant C' such that

H(z[r, X)(8), [, X|(#') < C[|lr = 7'| + |6 = &'| + H(X, X)),

provided that =, 7+ 8, 7', ' + 8 € [0,T], X, X' C Z, and the quantity in the
right-hand side does not exceed one. Then, utilizing (10) we obtain

z[s, E(s)](t = 5) € z[kh, EX]((m = k)h) + C(4e + Le)B
C EN +C(4+ L)eB C E(t) +[C(4 + L) + L+ 1)eB.

Since £ > [ was arbitrarily chosen, this implies (9).

Thus, we proved that an invariant tube in £ starting from Ey exists. Notice
that the invariant tube E{-), that we constructed, satishies inclusion (2).

4. To prove existence of a solution tube, that is, of & minimal invariant tube
in £, we apply the Zorn lemma with respect to the partial ordering =, defined
above, in the set of all invariant tubes with values in £ and starting from Ep. A
pointwise intersection of a linearly ordered family of invariant tubes with values
in £ is also an invariant tube. Condition B.1.a implies that the latter has values
in £. Therefore, the Zorn lemma implies existence of a minimal invariant tube
in £. Clearly, (2) is also fulfilled.

5. Now, suppose that M(Z) is a singleton for every Z € comp(R"). Let
EI[‘J be an arbitrary solution tube in £ We shall prove that EI[} = E{-)
(the latter defined in part 3 of the above prove), which implies the last claim
of the theorem since E{.) is Lipschitz with the constant L defined in (8).
To do this we first notice that E[D} = E0) = Ef = FEy. Suppose that
E¥ ¢ E(kh) for some k < N. Then from the invariance of E(-) we have
a[kh, EX)(h) € E((k + 1)h). Since EF . € M{z[kh, EX](h)), from the unique-
ness assumption we get E,':_l c E{{L + 1)), Thus the last inclusion holds for
all k. Since E() has closed graph, one easily obtains that E(f) ¢ E(t) for all
t € [0,T]. From the minimality of E[] we conclude that E(.) = E'I[} and the
proof is complete. ol

In general, neither unigqueness of the solution tube in a given collection of
sets nor Lipschitz continuity hold in the case of multivalued AM(Z).
3. Lipschitz stability of the solution tubes

The usefulness of the concept of solution tubes in a collection of sets critically

L] 1 H mw . I Voo bl mmmbimsm ssom akdatw a aesarawebys sormilas Fa
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the so-called quasi-Lipschitz stability (or Aubin property) of the solution tubes
with respect to the initial state and the right-hand side.

It might be guessed that (at least in the case of a single-valued M(Z))
Lipschtz dependence of M({Z) on £ may lmply Lipschitz dependence of the
solution tube on the initial data. In general, however, this can be proven only
if the Lipschitz constant of M(-) is not greater than one, which is a too strong
requirement. It does not hold, for example, for the collection of all boxes £, =
{|a,b] x [e,d]} in R2, if the Euclidean norm is taken. If the Hausdorff distance
is taken with respect to the max-norm, however, the Lipschitz constant of M(-)
turns out to be equal to one. That is, the max-norm is in a sense adapted to
the collection £4. In the next theorem we extend this observation using adapted
‘peeudo-norms’. Collections with non-single valued M(-) are included, but we
restrict the consideration to collections of convex sets.

Let us denote I = {1,2,...,0}, where o can be also +oc, in which case [
consists of all natural numbers. Let P be a subset of (95)7 x R” consisting
of elements (I;¢) = (h,.... la;q1.... .80 ), i € R™, ;] = 1. With every p =
{l:g) € P we associate the set

E(p)={zx e R": sup{l;,z) < ¢:}.
el

Further in this section we consider only collections that have the parametric
representation

£={E(p): pe P}

The following conditions will be supposed.

B.2.a. The set P is nonempty and closed, E(p) is nonempty and compact
for every p= (l;¢) € P, and

sup {li,e)=¢; ¥Yiel
=€E(p)

B.2.b. For every p = (l;¢) € P and for every £ > 0, it holds that (I;q; +
Ey.ooylle +£) E P

Let us introduce the following notation for p = (l:g) € P and z € R"\ E(p):

ME, z) = sup{(li,z) - ¢}
il

B.2.c. There is a number # with the following property: for every E =
E(l;q) € £, for every = € R" \ F and for every i € I there exists &; € E such
that

(ic—e)) <plE,x) & |r-el<BplE, ).

Notice that the above conditions do not imply single-valuedness of M(Z).
Moreover, the mapping p — E(p) need not be one-to-one: E(p,) = E(p2) does
not imply gy = pa. This is essential for some of the particular cases considered

el . 1 -9
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LEmma 3.1 Conditions B.2 imply B.1 (with Le = 3}.

Proof, Condition B.1.a easily follows from B.2.a and B.2.b. Now take E =
E(l:gq) € £ and € > 0. Define £E' = E(l;q + ¢) (¢ is added to each component
of ¢). According lo B.2.b we have (p;g +¢) € P. Obviously E + B C E'.
Moreover, for every z € E' we have p{E,z) < e. Then, from B.2.c, we have, in
particular, dist{x, F) € fp(E.x) < Be, | ]

Along with (1) we consider a second differential inclusion
i€ Fle 1), x(0)€ Eyek. (11)

THEOREM 3.1 Let t — E(t) = E{l(t);q(t)) be a solution tube in £ of (1)
starling from the sel Ey. Let Z be a compact sel such thal for some v > 0 the
set E(t) + B is contained in % for every t € [0,T]. Suppose that F and F
sabisfy conditions A with o Lipschilz constant L, and thal & satisfies condilions
B.2. Suppose also that the mapping ¢ — I(t) is Lipschitz conlinuous with o
Lapschilz constant Lg. "

Denote C = M Lg + L), by = e Fp, Fg), and

8(t) = sup e( Flz, 1), F(x,1)).
TEZ

Suppose, in addition that

.
A(T) = ﬁ[e‘“’-ﬁn + f eC‘T“”é{HJdS] <7 (12)

1]

Then, there eaisls a solution fube E{] in £ of the inclusion (11) such that
e(E(t), E(t)) € Alt) Vte [0.7). (13)

Proof. In what follows, notation Z[s, E](f) has the same meaning as x[s, E](#)
but for the differential inclusion (11).

Take a natural number N and denote h = T/N, tgp = kh, pp = (5:¢%) =
plte), Ex = E(te) = E(p).

For the given Ey we shall define a SeQUence '[Ek}k.u as follows. Suppose

that the parameter gy is already defined, and that E « E{H} € Z. Denote

px = p(Ex, By) & sup p(Ej,€).
zcE,

For arbitrary 1 € Iand = € z[ly, Ek]{h} we shall estimate the value (IF*!, 7)—
q¥*1. By a siandard argument, for any % € i, Ex)(h) there exist £ € E and

t
1 3 .

WE = Fls,&) ds
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such that
|z -e-hyl = %h“,

where M is a bound of F and F on Z x [0, 7).
According to B.2.c for the given i € [ there is e € E; such that

(F€—e)<px and [€—¢| < P (14)
(if € € E; we take e = €). Moreover, there exists
1 LT
yE - F(s,e)ds
b Jo,

such that

¥ = ¥l < 6k + Ll = ¢| < & + BLpx,

where

Then, there exists x € x|, Eﬁ:l{l‘l‘-} such that
lt—e-hy| < %hz.
From the above relations we obtain
(I, 5) - g < U4+ 0g) - b 4 EL2
< (B4 e+ hg) — g4 4 (1,5 - e 4 B(G - 9) + o2

< (W*h2) - gt T E - ek (T - y)) + LMW
(FE—e) + (I =15 F—e) + h{IFY 5 —9) + LMA?
px + BLEhpr + k(e + fLpi) + LMK

(14 Ch)pi + bih + LM,

n

i

In the above equalities we use {14) and the mequality (since = € Eyqq)
=) -gt <o
Now we define E;.“ = Efr-‘"ﬂl with

T=1*1 Gi= g™ 4 (1 4+ Ch)pp + héy + LMK2.

Clearly, (I;§) € P, according to B.2.b. Moreover, Ey, contains [ty, Ex|(h),
and

— - - w au
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From this recurrent relation we estimate in a standard way

i
P < €9 8 +hz:rc"'ﬁ.- + LMeC'™=h, m=1,....k+1.

=]

Then, applying Lemma 3.1 we obtain

& Ems B} < ﬁ[eﬁ*maﬂ & hi eﬂ'us,-] +O(h), m=1,.. k+1. (13)

=]

From (12) (supposing in addition that O(L) is smaller than the difference be-
tween ¢ and A(T)) we conclude that the condition Eyyy € Z is still fulfilled
and we may continue the same procedure till £ = N. In such a way we have
LDI]::LE_LILtEﬂ a d_l_:acrt.l.e tulse Lu.., Ew which is invariant (in the sense that
Tlte, Exl(h) C Epyq) and (15) h(}ldﬁ for s =0,...,N. Then we apply part 3
from the proof of Theorem 2.1, utilizing (15) instead of (5)-(7) to ensure uni-
form boundedness. For the limit tube E'(-) we obtain from (15) that (13) holds.
Then we repeat part 4 of the proof of Theorem 2.1 to obtain a solution tube
E{(-) of (11), for which (13) still holds, since E(t) C E'(f). [ |

COROLLARY 3.1 Let the conditions of Theorem 3.1 be fulfilled and let, in ad-
dition, M(Z) be a singleton for every & € comp(R"). Suppose, moreover,
that the l-part of the inverse mapping E — E~Y(E) has a Lipschitz selection
E — I(E). Then the {unigue) solution tube in £ of (1) depends Lipschitz con-
tinuously on the initinl set and on the righi-hand side of the inclusion.

Proof. 1t iz enough to notice that the solution tube F{-) is Lipschitz contin-
uous, according to Theorem 2.1. Then one can select a Lipschite continuous
parametrization I(t) and apply Theorem 3.1. B

4. Particular cases and examples

Every collection of sets £ can be represented as consisting of sub-level sets of a
parametric family of Lipschitz functions. Namely, if we define

o(E,x) =dist(z,E), E€E, ze&R"

and denote P = £, then obviously

dzf

Ee€€f & IpeP: E=E(p) £ {zeR": olp,x) <0} (16)

For practical reasons, however, we are mainly interested in collections £ that
admit a parameterization as in (16) with a set P being a subset of a finite
dimensional space. Conditions B.2 restrict the considerations to such collections
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The following particular case is especially convenient and easy for calcula-
tion. Let us fix a finite or countable subset L = {l.1z,...} of the unit sphere
dB c R", such that the convex cone spanned by L coincides with R". With
every 4 € comp(R") we associate the sequence of numbers () = (g1.q2,...),
where q; = max.ez([l;, z). Denote ) &f {g(Z): Z € comp(R")}. Then we
define P ={{li,la,...:q9): g€ Q}.

It is easy to check that the corresponding collection t.[, { E(p): p € P}
satisfies conditions B.2%. Moreover, the set of minimal elements M(Z) is a
singleton for every £ € comp(R"), and the assumptions of Corollary 3.1 are
fulfilled since the l-part of E-'(E) is the constant {I;..... lz). The collection
&, may consist of all convex compact subsets of R" (if L is dense in dB),
of all “boxes” (if L = {£e;}j, with {e;}; - an orthogonal basis in R™), or
of other classes of polyhedral sets. The set @ can be described by a system
of linear inequalities, which are finitely many if L is finite. For example, in
the case of boxes, if ¢ and ¢! correspond 1o ¢; and —e;, respectively, then
Q= {(g, a1 thyo ) : i+ 4l 20}

We illustrate the solution tubes in the collections & % Ep with the set
L consisting of & vectors uniformly situated on 38, The numerical solution is
obtained by implementing the construction in the proof of Theorem 2.1, with the
only difference that a high order discrete (local) approximation is used instead
of the exact zt, E](h). The convergence to a solution tube is implied by the
proof of the theorem. since for the collections &£ the minimal set M(Z) is a
singleton for every 2.

Fig. 1 present two solution tubes in £1¢ of the Bazykin prey-predator model
{Bazykin, 1953)

.. .. S . )2 -

Iy = Iy 1+ 0.3z, ﬂ.“l{ll} . I|{ﬂ} 1,
T = = ﬂ = s }2 e T
Z3= -3+ 503, §(t)z2), x2(0)=2

Here the predator’s competition rate §(1) is taken as a uncertain function of
time which can deviate up to 10% from some base value §. It is known that
§ = 0.228 is a Hopl point of the system. For lixed values of § close to, but sialler
than 0.228 the system has a stable limit cycle bifurcating from an equilibrivin
point which becomes unstable. The qualitative difference can be seen also for
the system with uncertain & = §(t) € [0. 98, 1. 16] Fig. 1 (left) corresponds to
value 3 = 0.228 and I,|1L solution Lulu.. in £15 has a periodic selection. In Fig. 1
(right} we have taken § = 0.3. Even if the uncertain system has a periodic
solution, the period must be much bigger than that of the unperturbed system

#Notice that in this case the mapping p — E{p) is ene-to-one, which is not required, in
general. This, however, allows in some cases Lo pass from evolution equations for 26t Lo those
in the parametric space P {see Quincampoix and Veliov, 2002, for a discrete-time consideration
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with & = 0.228,

Fig. 2 (left) shows sections of the solution tubes in &, &, &2 and 4 of a
nonlinear pendulum, where the mass can deviate in a uncertain way up to 10%
from its base value. Notice that the solution in & is not always contained in
that in £,.

Fig. 2 {right) presents several sections of four different ball-valued solution
tubes (that is, solutions in the collection cousisting of all balls in R?). The
intersection ot the four tubes is an invariant tube in the collection consisting
of all intersections of up to four balls, bul it is not a solution in this collection
since it is not minimal. The solution tube in £2p is plotted for comparison.

a
1,
i
13}
3
5
b
18l Tubg socion
allima =10
1
ay
-] L ] ¥ Hl @ N & ] [ 1 ‘I 1 (] ; T [1 [l
Y 5

Figure 1. Solution tubes in &g of the Bazykin system with uncertainty.

As another example we consider the compact polygons in R? with not more
than m vertices (including degenerate ones, in order to ensure closedness). For
mr = 3 this collection does not satisly conditions B.2 (neither B.1.b). Indeed,
the closer is a triangular to a unit segment, the bigger would be the constant
Le in B.1.b. The Lipschitz stability may fail, as_in the following example:
take F(x) = {(0,0)}, F(z) = {0} x [-4,8], Fo = Fp = [-1,1] x {0}, T'= L.
Here E(f) = Fy is a solution tube in £ of the nonperturbed muatiu_t_l. On the
other hand it is fairly easy to estimate that for every solution tube E(-) of the
d-perturbed inclusion in the collection £ there is

e(E(1), B(1)) 2 V3,

that is, the Lipschitz stability does not take place.
Il we exclude from the above collection £ the polygons, which are close
to degenerate. however, conditions B.2 would be satisfied. More precisely, we
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Figure 2. Solution tubes in different collections of the nonlinear pendulum with
uncertain mass.

generated by [, s, 3, coincides with R? and, in addition, {li, ;) 2 —a > -1,
where o is a constant. Then, condition B.2 is fulfilled with = /2/(1 — ).

The existence conditions B.1 are satisfied also for the collection of all (not
necessarily convex) box complexes or simplicial complexes.

Finally we give an example where a solution tube E(-) starting from a set
Ey € € exists, for which Ey is a proper subset of E(0). This happens for the
collections of all triangles in R? with fixed angles 7/2, 7 /4, 7 /4 (this collection
satisfying even conditions B.2). Take as Ey the triangle ((0,—1),(0,1),(1,0)).
Let the right-hand side of the differential inclusion be just the unit ball. Then
it is clear that a minimal solution tube can be obtained from the initial triangle
by translating the vertical side to the left with speed 1 and moving the opposite
vertex to the right with speed v/2. Formally, E(t) = ((=t, —c(t)), (=, ¢(t)), (1 +
V2t,0)), where ¢(t) = 1+t + v/2t. There is, however, another solution tube,
which informally speaking, jumps at the very beginning from Ej to E = ((—1,0),
(1,-2),(1,2)). Then E develops similarly as E(-), but the vertical side trans-
lates to the right with speed 1, while the opposite vertex moves to the left with
speed /2. Formally, E(t) = ((—=(1 4+ v/2t),0), (1 +t,—d(t)), (1 +t,d(t))), where
d(t) = 2+t + v/2t. Obviously this is an invariant tube, but it is also a minimal
one containing Ey at ¢ = 0. Indeed, this tube solves the minimization problem

min  max i,
E(-) (z1,22)€E(1)

among all invariant tubes starting from Ej in the sense of Definition 1, therefore
it must be also minimal, that is, a solution tube.
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