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Abstract : This paper develops the theory of solution tubes to 
differential inclusions (uncertain systems) within a prescribed collec
tion of sets. The notion is defined as a minimal invariant tube with 
values in the collection. Under certain requirements for the collec
tion we prove existence and Lipschitz-like stability of the solution 
tubes. The theory is relevant to problems of systems estimation in 
the context of control or differential games. 
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1. Introduction 

The reachable set of a differential inclusion (the latter interpreted as an uncer
tain system) is the minimal guaranteed estimation of the current state. There
fore, to calculate reachable sets is a cornerstone of the deterministic estimation 
and control of uncertain systems (see e.g. Kurzhanski and Filippova, 1993) . 
A lot of work has been done for developing numerical approximation meth
ods, see the surveys of Dontchev and Lernpio (1992), and Lernpio and Veliov 
(1998). Since the geometry of the reachable sets can be quite complex, specific 
subclasses of sets are usually used as approximation tools: boxes, polyhedral 

T his work was started during a visit of t he second author in the Departement de 
Mathematiques of the Universite de Bretagne Occidentale. T he work was partially supported 
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sets, ellipsoids (see Chernousko, 1988, Kurzhanski and Valyi, 1997, Chernousko 
and Rokityanskii, 2000, Kurzhanski and Varaiya, 2000) , box or polyhedral 
complexes (Saint-Pierre, 1994, Hackl, 1992-93, Ushakov and Khripunov, 1994, 
Cardaliaguet, Quincampoix and Saint-Pierre, 1999), etc. In some cases conver
gence results are obtained, but usually to achieve a good approximation one has 
to use rather complex approximating sets. On the other hand, in problems of 
control of uncertain systems and differential games, where the systems estima
tion is just an auxiliary tool , one has to employ only fairly simple sets1

. In such 
cases the issue of approximation is not that relevant. A different problem arises: 
to obtain inclusions of the reachable sets in sets from a prescribed collection £. 
That is, to replace the solution tube X(t) of the differential inclusion by a tube 
E(t) with values in£. In doing this, one has to ensure at least X(t) C E(t), but 
two more properties a re also desired: (i) the Markov property of the evolution 
of E(-), which, together with X(t) C E(t), requires invariance of the tube E(t) 
with respect to the differential inclusion , and (ii) rninimality. 

The present paper inv stigates the existence, uniqueness, and the depen
dence on the data, of tubes E(-) with the above properties (we call such tubes 
solution t·ubes of the differential inclusion in the collection £). Existence of 
ellipsoidal-valued solution tubes was previously proven in Chernousko (1988) 
and, in a more elaborate form , in Kurzhanski and Valyi (1997), but the proofs 
substantially utilize the linearity of the systems considered there. To our knowl
edge, Lipschitz dependence of the solution t ubes in a given collection has not 
been previously investigated2

, being in the same time of critical importance for 
some applications, in particular in the context of the differential games with 
incomplete/ imperfect information. 

We stress the fact that the notion of solution tube in a given collection 
of sets does not have a counterpart in the theory of quasi-differential equations 
(Panasyuk, 1990) , or in the theory of mutational equations (Aubin, 1993, 1999) . 
In general, the notion of solution tube in a given collection £ coincides with the 
notions of solution in the above publications only in the case of the collection 
£ consisting of all compact set . For the same reason the Filippov-type theorem 
obtained in Doyen (1993) cannot be used for obtaining Lipschitz stauility of the 
solution tubes in a more general collection £. 

The existence and Lipschitz stability results that we obtain in Sections 2 
and 3, respectively, provide the basis for extending (also in the direction of al
gorithms) a number of existing control theoretic considerations in presence of 
unobservable uncertainties3 . The complementary set-analytic tools are de vel-

1The associated Hamilton-J acobi-Bellman-Isaacs equation, for example, has the dimen
sion of the state est imators, therefore it should not be too large. 

2 The results in Chernousko (1988) and in Kurzhanski and Valyi (1997) may have some 
implicat ions in this direction, but for linear systems only. 

3 that is, uncertainties that remain unknown, in contrast to other uncertainties whose 
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oped in Quincampoix and Veliov (1999). These extensions, however , are beyond 
the scope of the present paper. 

The results are obtained under a number of conditions for the collection £ 
that are discussed in Section 4 together with some examples. 

2. Solution tubes in a collection of sets 

We shall use the following standard notations: B is the Euclidean unit ball in 
R", comp(R") is the set of all compact subsets ofR11

, H(X, Y) is the Hausdorff 

distance between two sets X, Y E cornp(R11
), e(X, Y) ~f supyEY infxEX lx- Yl· 

Multiplication of a set with a scalar, and summation of sets are unJerstood in 
the usual (Minkowski) sense. With the HausJorff Jistance and the Minkowski 
operations, cornp(Rn) becomes a complete metric cone. For a set X, j(X) stays 
for {f(x): x EX}. 

Below, [0, T] will be a fixed time interval. 

DEFINITION. A set-valued map E(·) : [0, T] =? R" is called a t·ube if it is 
nonempty compact valued and has closed graph. A tube is L·i7Jschdz continuow; 
if there is a constant L such that 

H(E(s), E(t)) ::; Lit- sl for every s, t E [0, T] . 

We consider a differential inclusion 

x E F(x ,t), x E R", t E [O,Tj, (1) 

supposing the following: 

Condition A. F: R" X [0, T] =? Rn is a set-valued mapping with nonernpty 
convex, compact values, measurable in t for every fixed x, and locally Lipschitz 
continuous in x uniformly with respect to t. Moreover, F satisfies the linear 
growth condition 

IF(x,t) l :S a(1 + lxl), Vx E R 11
, t E [O,T]. 

As usual, a solution to (1) is any absolutely continuous function that satisfies 
(1) for a.e. t. Given a set of initial states Eo C Rn the solution tube of (1) on 
[0 , T] is defined as 

X(t) ~r x [O, Eo](s) ~r {x(s): x(-)-solution of (1) on [0 , s], with x(O) E Eo}. 

This is the unique minimal tube that starts from Eo at t = 0 and is invariant 
with respect to (1), the latter meaning that 

Vs E [0 , T), V x(·)- solution of (1) on [s , T], with x(s) E X(s) 

==? x(t) E X(t) Vt E [s, T]. 

Here and below, "minimal", when applied to sets, means 'minimal with respect 
-- __ j_ - . !J. L -- - - -- .L. J.. -. J..\.. ..-. 
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partial ordering iu which E 1 (-) -< Ez ( ·) if and only if E 1 ( t) C E2 ( t) for every 
t E [O,T]. 

In general, it is difficult to calculate the solution tube numerically, unless 
the values X(t) belong to a class of simple fi nitely parametrized family of sets. 
However, this happens only in rather exceptional cases. For this reason we 
reverse the issue: we fix i advance a collection of sets [ and want to find a 
solution tube of (1) that takes values from [ only. To make this concept precise, 
we give the following definition. 

DEFINITION. The tube E(-) : [0 , T] r-> comp (Rn) is called sol-ution t'Ube of 
(1) ·in the collection[, starting from Eo E E, if and only if E(·) is a minimal 
invariant tube with values in[ , for which Eo C E(O). 

Clearly, x[O, Eo](-) is the unique solution tube in the collection [ = 
cornp (R n), starting from E0 . To ensure existence of a solution tube in a. more 
general collection [ we introduce the followi ng conditions for[ . 

Condition B.l.a. The collection [ consists of nonernpty compact sets and 
is closed in the Hausdorff metric. For every compact Z there is some E E [ 

containing Z. 

Obviously B.l.a, together with the Zorn lemma, implies that for every Z E 

cornp(R n) there exists a minimal element of [ containing Z . We denote by 
M ( Z) the set of all such minimal elements. 

Condition B.l.b. There exist real t > 0 and L£ such that for each c E (0, t] 
and each E E [ there exists E' E [ for which E + cB C E' C E + cL£8. 

The above condition is equivalent to the following one: 

Condition B.l.b'. There exist real t > 0 and L£ such that for each 
Z E comp(Rn.) and each E E [for which H(Z, E)::; t there exists E' E M(Z) 
satisfying e(Z , E')::; L£H(Z, E). 

Indeed, ifB.l.b' holds then one can apply it for Z = E+cB to obtain B.l.b 
with the constant L£ + 1. On the other hand, if B.l.b is fulfilled, then for Z 
and E such that c ~r H(Z, E) ::; { there is E E [ for which Z C E + cB C E 
and E C E + cL£8. From the latter we have 

e(Z, E)::; e(Z, E)+ e(E, E)::; e(Z, E)+ cL£ ::; (1 + LE)H(Z, E). 

Then, the Zorn lemma., together with B.l.a, implies existence of E' E M(Z) 
for which the above inequality still holds. Thus, B.l.b' is fulfilled with the 
constant L£ + 1. 

It will be convenient to suppose that the constant L£ is fixed so large that 
both B.l.b and B.l.b' hold with the same { > 0. 

THEOREM 2.1 S1tppose that cond-itions A and B .1 ar·e fu lfilled. Then for eve·1·y 
Eo E [ incl-usion (1) has a sol'Ution i'Ube ·in [ star·ting form E0 , which satisfies 
the gmwth est·imation: 

'(:;'(+) ,- r:;' , ' (1 , I D l\1 . 2a(L,+l)t 
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MoTeoveT, if M(Z) ·is a singleton for· ever·y Z E cornp(Rn), then the sol'Ution 
t·ube in £ is ·uniq·ue and Lipschitz cont·in·uo'Us wdh L·ipschitz constant 2a(L£ + 
1)(1 + IEo l)e2a(LE+l)T . 

Pmof. 1. For every s 2: 0 which is so small that eas S 2, and for every E E £ , 
t he growth condition implies in a standard way that 

H( x [t, E ](s), E) S 2as(1 + lE I). (3) 

As before, x [t, E ](-) denotes the solution tube of (1) in comp(Rn ), starting from 
the set E at t. 

2 . ConsiT'Uciion of a disc·rete-tirne t·ube. We fix N so large that 

eaT/N S 2 and 2ah(1 + IEol)e-'T S t , (4) 

where h = T/N and A= 2a(L£ + 1). We shall define a sequence of elements 
Ef: E £ , k = 0, 1, ... ,N, such tha t the following relations are fulfilled for 
k = 0, ... , N- 1: 

x[kh, Ef:J(h) c Ef:+ 1 c x [kh, Ef:](h) + 2ahL£(1 + IEn) B, 

E{;"+I CEo+ (1 + IEol)(e-'(k+I)h- 1)B, 

Obviously (7) is a consequence of (6). 
Set E{;' = Eo . Since, according to (3) and (4), 

H (a:[O , Et']( h), E6') S 2ah(1 + lEal) S t, 

(5) 

(6) 

(7) 

one can apply B.l.b' with Z = :r[O, E{;' ](h) and E = E{;' to chose Ef' = E' E 

M(x[O, E{;' ](h)) such tha t (5) is satisfied fork= 0. From (5) and (3) we have 
also 

Ef' C x [O , E6' J(h) + 2ahL£(1 + IEoi)B 

C Eo + 2ah(l + IEo i)B + 2ahL£(1 + IEoi)B 

C Eo+ h>-(1 + IEoi)B cEo+ (1 + IEol )(e-'h- l )B. 

Suppose inductively tha t Ef: , k < N is already defi ned so that (6) and (7) 
hold for k- 1. We proceed similarly as a t the first step. Since, according to (3) , 
(7) and (4), 

H(x[kh , Ef: ](h), Ef:) S 2ah(l + IEfl) S 2ah(1 + IEol)e-'k" S t, 

one can apply B.l.b' with Z = :c[kh, Ekv](h ) and E = Ef: to chose Ef:+l 
vt- A At _ r l. L vN 1tL\\ ---- 1~ LL - J. tr:: \ .: ___ .t.. .: _.c _ ..J T." _____ t r.::\ /0\ tc\ --~ ..1 ! '7 \ ___ _ 
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have also 

E/:+ 1 C x [kh , Efj(h) + 2ahL£( 1 + IE/:I)B 

C Ef: + 2ah(1 + IEfi)B + 2ahLt;(1 + IEfi)B C Ef + h..\(1 + IEfi)B 

C Eo+ (1 + IEol)(e>-kh- 1)B + h..\(1 + IEol) e'\khB 

C Eo+ (1 + IEol)( e>-kh- 1 + h..\e>-kh)B cEo+ (1 + IEol)(e>-(k+l)h - 1)B. 

This completes the rec rsive definition of the sequence {Ef E £}r=o· 
3. Passing to a lirnd. In order to obtain an £-solution of (1) we have 

to pass to a limit with respect to N, first embedding the discrete-time tubes 
{ Ef E £}f=o into continuous-time ones. To do the latter we use the following 
lemma proven in Artstein (1989) . 

LEMMA 2.1 Let to< ... < tN be real nmnber·s. Let F: {to, ... , tN} => Rn be a 
cornpact-val·ued Lipschitz cont·in'Uo'Us mapping, with Lipschdz constant L. Then, 
there exists an extension ofF to [to, tN], which is Lipschitz contin·uo·us with the 
same constant L. 

For all N sufficiently large (as specified in ( 4)) the mapping EN(-), defined 

for tf = kTjN, k = O, ... ,N, as EN(tf) ~f Ef, is Lipschitz continuous with 
a constant L (independeut of N ), say 

L = 2a(1 + LE)(1 + IEol)e>-r, (8) 

due to (5), (3), and (7). According to Lemma 2.1 it can be extended to a Lip
schitz continuous mapping EN ( ·) on [0 , T], with the same Lipschitz constant L. 
The mappings EN(-) are uniformly bounded (due to (7) ), therefore the Arzela
Ascoli theorem (applied to the space cornp(R11

) with the Hausdorff metric) 
implies that there exists a subsequence N' C Nand E(-) : [0 , T] => comp(Rn) 
such that 

uniformly in the Hausdorff metric. Moreover, E(-) is Lipschitz continuous and 
satisfies (2), as {EN(-) h does for every N. 

Clearly, E(O) = Eo. From B.l.a it easily follows that E(t) E £ for every 
t E [0, T] . 

The proof of the invariance of E(-) with respect to (1) uses a standard 
argument, but we provide it for completeness. Let s < t be two numbers in 
[0, T]. We have to prove that 

x[s, E(s)](t- s) C E(t). (9) 

Take an arbitrary c E (0, 0.3(t- s)] and then an N E N' so large that (4) is 
fulfilled, and also 

r l ., f 
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Let k, rn E {0, ... , N}, k < m, be chosen in such a way that lkh - sl :S c: and 
ITnh-tl::; c:. From the first inclusion in (5) applied successively fork, k+1, ... , 1n 

we obtain that 

x[kh, E{;']((rn- k)h) C E:/,. (10) 

Let Z be a compact set containing E(t) + B, t E [0 , T]. Condition A and 
Filippov's theorem (see Clarke, 1983 or Aubin and Frankowska, 1990) imply in 
a standard way that there exists a constant C such that 

H(x[r, X](B), x[r', X'](B')) :S C[lr- r'l + IB- B'l + H(X, X')], 

provided that r, T + (;1, r' , r' +(;I' E [0, T], X, X' C Z, and the quantity in the 
right-hand side does not exceed one. Then, utilizing (10) we obtain 

x[s, E(s)](t- s) C x [kh , E{;']((rn- k)h) + C(4c: + Lc:)B 

c E:/, + C(4 + L)c:B c E(t) + [C(4 + L) + L + 1]c:B. 

Since c: > 0 was arbitrarily chosen, this implies (9). 
Thus, we proved that an invariant tube in [ starting from Eo exists. Notice 

that the invariant tube E(·), that we constructed, satisfies inclusion (2). 
4. To prove existence of a solution tube, that is, of a minimal invariant tube 

in E, we apply the Zorn lemma with respect to the partial ordering -< , defined 
above, in the set of all invariant tubes with values in [ and starting from E0 . A 
pointwise intersection of a linearly ordered family of invariant tubes with values 
in [is also an invariant tube. Condition B.l.a implies that the latter has values 
in [. Therefore, the Zorn lemma implies existence of a minimal invariant tube 
in E. Clearly, (2) is also fulfilled. 

5. Now, suppose that M(Z) is a singleton for every Z E comp(Rn). Let 
E(-) be an arbitrary solution tube in E. We shall prove that E(-) = E( ·) 
(the latter defined iu part 3 of the above prove) , which implies the last claim 
of the theorem since E(-) is Lipschitz with the constant L defined in (8). 

To do this we first notice that E(O) = E(O) = Ef: = Eo. Suppose that 
Ef: C E( kh) for some k < N. Then from the invariauce of E(-) we have 

:c [kh ,Ef: ](h) C E((k + 1)h) . Since E{;'+ 1 E M(x[lch ,E{;'](h)) , from the unique

ness assumption we get Ef:+ 1 C E((k + 1)h). Thus the last inclusion holds for 

all k. Since E(-) has closed graph, one easily obtains that E(t) C E(t) for all 
t E [0 , T]. From the minimality of E(-) we conclude that E(-) = E(-) and the 
proof is complete. • 

In general, neither uniqueness of the solution tube in a given collection of 
sets nor Lipschitz continuity hold in the case of rnultivalued M(Z). 

3. Lipschitz stability of the solution tubes 

The usefulness of the concept of solution tubes in a collection of sets critically 
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the so-called quasi-Lipschitz stability (or Aubin property) of the solution tubes 
with respect to the initial state and the right-hand side. 

It might be guessed that (at least in the case of a single-valued M ( Z)) 
Lipschtz dependence of M(Z) on Z may imply Lipschitz dependence of the 
solution tube on the initial data. In general, however, this can be proven only 
if the Lipschitz constant of M(-) is not greater than one, which is a too strong 
requirement. It does not hold, for example, for the collection of all boxes £4 = 
{[a, b] X [c, d]} in R 2, if the Euclidean norm is taken. If the Hausdorff distance 
is taken with respect to the max-norm, however, the Lipschitz constant of M(·) 
turns out to be equal to one. That is, the max-norm is in a sense adapted to 
the collection £4. In the next theorem we extend this observation using adapted 
'pseudo-norms'. Collections with non-single valued M(-) are included, but we 
restrict the consideration to collections of convex sets. 

Let us denote I = {1, 2, ... , u }, where u can be also + oo, in which case I 
consists of all natural numbers. Let P be a subset of (8B) 17 x R 17 consisting 
of elements (l; q) = (h, ... , la; q1, ... , (/ 17 ), li E Rn, lli l = 1. With every p = 
(l; q) E P we associate the set 

E(p) = {x E R" : sup(l;, :r:) ::; q;}. 
iE l 

Further in this section we consider only collections that have the parametric 
representation 

E = {E(p) : pEP}. 

The following conditions will be supposed. 
B.2.a. The set Pis nonempty and closed, E(p) is uonempty and compact 

for every p = (l; q) E P, and 

sup (l;,e)=q; V ·iEI. 
cEE(p) 

B.2.b. For every p = (l; q) E P and for every£ > 0, it holds that (l; q1 + 
£, . .. ,q17 +c)EP. 

Let us introduce the following notation for p = ( l; q) E P and x E R" \ E(p): 

p(E,x) = sup{(li,x)- qi}. 
·iEI 

B.2.c. There is a number (3 with the following property: for every E = 
E( l; q) E E, for every x E R" \ E and for every -i E I there exists ei E E such 
that 

(li,X- ei)::; p(E,x) & lx- eil::; (Jp(E,x). 

Notice that the above conditions do not imply single-valuedness of M(Z). 
Moreover, the mapping p ---+ E(p) need not be one- to-one: E(pl) = E(p2 ) does 
not imply Pl = P2. This is essential for some of the particular cases considered 
! .. Jl.-
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LEMMA 3.1 Conditions B.2 imply B .l (with Lr. = (3) . 

PTooj. Condition B.l.a easily follows frow B .2.a and B.2.b. Now take E = 
E(l; q) E £ and c > 0. Define E' = E(l; q +c) (cis added to each cornpo11 ent 
of q). According to B .2.b we have (p; q + c) E P. Obviously E + cB C E'. 
Moreover, for every x E E' we have p(E, x) :S c. Then, from B.2 .c, we have, in 
particular, clist(x, E) :S (Jp(E, :r:) :S (Jc. • 

Along with (1) we consider a secoud differential inclusiou 

:i: E F(:r, t), :r(O) E Eo E £. (11) 

THEOREM 3.1 Let t -+ E(t) = E(l(t); q(t)) be a solution tube ·in£ of (1) 
st.a·,·ting front the set Eo. Let Z be a cmnpact set s·uch that for wme "( > 0 the 
set E(t) + "( B is conta·ined 1n Z fur· every t E [0, T] . SuJiJ!OS e that F and F 
satisfy cond'itions A with a Lipschitz constant L , and that£ iiatisfies condit ions 
B .2 . Suppose also that the mapping t -+ l(t) is L-ipschitz contin·uo·us w-ith a 
L-ipsch:itz constant L E. 

Denote C = (J(LE + L) , bo = e(Eo, Eo), and 

b(t) =sup e(F(x, t)}"(x, t)). 
xEZ 

S·uppose, ·in addit·ion that 

t::..(T) c~f f3 [eCTbo +iT eC(T- s)b(s) ds ] < T (12) 

Then, th eTe exists a solution t·ube E(-) in £ of the incl-usion ( 11) snch that 

e(E(t), E(t)) :S t::..(t) \:It E [0, T]. (13) 

Pmof. ln what follows, notation x[s, E](t) has the same meauing as :r [s, E](t), 
but for the differential inclusion (ll). 

Take a na tural number Nand denote h = T/N, tk = kh, p~,; = (lk ;qk) = 
p(tk), Ek = E(tk) = E(pk)· 

For the given Eo we shall define a sequence {Edr=o as follows . Suppose 

that the parameter Pk is already defined, and that Ek c~f E(pk) C Z . Denote 

For arbitrary ·i E I and X E x [tk, Ek](h) we shall estimate the value (z~+l) x) 
q7+ 1

. By a standard argument, for any X E x [tk , Ek](h) there exist e E Ek and 
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such that 

1

- - -~ LM/2 X - e - hy ~ -
2
- I , 

where M is a bound ofF and F on Z x [0, T]. 
According to B.2.c for the given ·i E I there is e E Ek such that 

(l~ , e- e) ~ Pk and le- el ~ f3 Pk 

(if e E Ek we take e =e) . Moreover, t here exists 

1 ltk+ l 
y E h F ( s, e) ds 

tk 

such that 

where 

Then, there exists x E x[t k, Ek](h) such that 

LM lx- e - hyl ~ -
2
-h2

. 

From the above relations we obtain 

(zk+l ;-:) _ k+l < (l"+l --,- I ;;-;~ _ k+l LM f 2 
i ' X qi - i ' e + ~y I qi + 

2 
L 

< (t7+ 1
, e + hy ) - q7+1 + (t7+1

, e- e + h(y- y)) + L~ h2 

< (zk+l ·) k+l (zk + l - I(- )) LMf 2 i , x - qi + ·i , e - e + t y - y + L 

(l~, e- e) + (l~+l- l~, e- e) + h(t7+1
, y- y) + LMh2 

~ Pk + f3LEhPk + h(8k + (3Lpk ) + LMh2 

= (1 + Ch)pk + 8kh + LMh2
. 

In the above equalities we use (14) and the inequality (since x E Ek+ I) 

(lk+ l x) - qk+l < 0 
1. ' t - • 

Now we define Ek+ 1 = E(/; (j) with 

T = lk+l , g; = q7+l + (1 + Ch)pk + h8k + L M h2 . 

(14) 

Clearly, (/; (j) E P, according to B.2.b. Moreover , Ek+l contains x[t k, Ek](h), 
and 
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From this recurrent relation we estimate in a standard way 

m 

Prn :::; eCt'"bo + h L eCt'b; + LM eCtm h, rn = 1, ... , k + 1. 
i=l 

Then, applying Lemma 3.1 we obtain 

m 

857 

e(Em,Em):::;,B [eCtmbo +hL eCt;b;]+O(h), m=1, . . . , k+l. (15) 
i=l 

From (12) (supposing in addition that O(h) is smaller than the difference be

tween 1 and D.(T)) we conclude that the condition Ek+ 1 c Z is still fulfilled 
and we rnay continue the same procedure till k = N. In such a way we have 
constructed a discrete tube Eo, ... , EN, which is invariant (in the sense that 

x[tk, Ek](h) c Ek+I) and (15) holds for s = 0, ... ' N . Then we apply part 3 
from the proof of Theorem 2.1 , utilizing (15) instead of (5)- (7) to ensure uni

form bouudedness. For the limit tube E'(-) we obtain from (15) that (13) holds. 
Then we repeat part 4 of the proof of Theorem 2.1 to obtain a solution tube 
E(-) of (11), for which (13) still holds, since E(t) C E'(t). • 

COROLLARY 3.1 Let the condit·ions of TheoTem 3.1 be fulfilled and let, ·in ad
dition, M ( Z) be a singleton for e·very Z E comp (R11

). Suppose, nwTeoveT, 
that the l-part of the inverse mapping E _, E- 1(£) has a Lipschitz selection 
E _, l(E). Then the ('uniq·ue) sol'Ution t'Ube in E of (1) depends L-ipschdz con
tin'UO'Usly on the initial set and on the Tight-hand side of the ·indus·ion. 

Proof. It is enough to notice that the solution tube E(-) is Lipschitz contin
uous, according to Theorem 2.1. Then one can select a Lipschitz continuous 
parametrization l(t) and apply Theorem 3.1. • 

4. Particular cases and examples 

Every collection of sets E can be represented as consisting of sub-level sets of a 
parametric family of Lipschitz functions. Namely, if we define 

<p(E,x) = dist(x,E), E E £, x ERn, 

and denote P = E, then obviously 

EEE <=> ::lpEP: E=E(p)~f{xER11 : <p(p,x):::;O}. (16) 

For practical reasons, however, we are mainly interested in collections E that 
admit a parameterization as in (16) with a set P being a subset of a finite 
dimensional space. Conditions B.2 restrict the considerations to such collections 
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The following particular case is especially convenient and easy for calcula
tion. Let us fix a finit e or countable subset L = { l1, l2, ... } of the unit sphere 
8B C Rn, such that the convex cone spanned by L coincides with R n. With 
every Z E cornp(Rn) we associate the sequence of numbers q( Z) = (q 1 , q2, . . . ), 

where qi = maxzEz( l;,z) . Denote Q d~f {q (Z) : Z E cornp(R" )}. Then we 
define P ={(It, l2, ... ; q): q E Q}. 

It is easy to check that the corresponding collection £ L c~t {E(p) : p E P} 
satisfies conditions B.24 . Moreover, the set of minimal elements M(Z) is a 
singleton for every Z E comp(R n), and the assumptions of Corollary 3.1 are 
fulfilled since the l-part of E- 1 (E) is the constant (1 1 , . ... la). The collection 
£L may consist of all convex compact subsets of R" (if L is dense in 8B), 
of all "boxes" (if L = {±e;}~ 1 with {e;}; -an orthogonal bas is in R") , or 
of other classes of polyhedral sets. The set Q can be described by a systern 
of linear inequalities, which are finit ely many if L is finite. For exarnple, in 
the case of boxes, if q~ and q~1 correspond to e.; and - ei, respectively, then 
Q _ {( I II I II ) , I+ II > 0} - ql' ql ' · · · ' qn2' qn2 · q.; !J; - · 

We illustrate the solution tubes in the collections £ k c~f £ L with the set 
L consisting of k vectors uniformly sit uated on 8B. The numerical solution is 
obtained by implementing the construction in the proof of Theorem 2.1 , with the 
only difference that a high order discrete (local) approximation is used instead 
of the exact :c [t , E](h). T he convergence to a solution t ube is implied by the 
proof of the theorem, since for the collections £k the minimal set M(Z) is a 
singleton for every Z. 

Fig. 1 present two solution tubes in £1G of the Ba2ykin prey-predator model 
(Bazykin, 1985) 

Xl(O) = 1, 

Here the predator's com peti t iou ra te 8 (t) is taken as a uncertain function of 

time which can devia te up to 10% from some base value 8. It is known that 
8 = 0.228 is a Hopf point of the system. For fixed values of 8 close to, but smaller 
than 0.228 the system has a s table limit cycle bifurcating from an equilibrium 
point which becomes unstab le. The qualita tive difference can be seen also for 
the system with uncertain 8 = 5(t) E [0.98, 1.18]. Fig. 1 (left) corresponds to 

value 8 = 0.228 and the solu tion t ube in £1G has a periodic selectiou. In F ig. 1 
(right) we have taken 8 = 0. 3. Even if the uncertain system has a periodic 
solution, the period must be much bigger than that of the unperturbed system 

4 Notice that in this case the mapping p __, E(p) is one-to-one, which is not req uired , in 
general. This , however, a llows in some cases to pass from evolution equations for sets to Lhose 
in the parametric space P (see Quincampoix and Yeliov, 2002 , for a discrete-Lime considerat ion 
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with 8 = 0.228. 
Fig. 2 (left) shows sections of the solution tubes in £4, £6, £12 aud £24 of a 

nonlinear pendulum, where the mass can devia te in a uncertain way up to 10% 
from its base value. Notice that the solution in £6 is not alwa.ys coutaincd in 
that in £4 . 

Fig. 2 (right) presents several sections of four different ball-valued solution 
tubes (that is, solutions in the collection consisting of all balls iu R 2 ). The 
intersection ot the four tubes is an invariant tulle in the collection consisting 
of all intersections of up to four balls , but it is not a solution in this collection 
since it is not minimal. The solution tube in £20 is plotted for comparisou. 

'2 

4.5 

35 

25 

15 

05 

OL_--~--~--~--~--~--~--
0 

x, 

45 

'2 

3.5 

lnil1al 

Figure 1. Solution tubes in £1 6 of the Ba:oykin system with uncertainty. 

As another example we consider the compact polygons in R 2 with not more 
than rn vertices (inc! uding degenerate ones, in order to ensure closed ness) . For 
m = 3 this collection does not satisfy conditions B .2 (neither B.l.b). Indeed , 
the closer is a triangular to a uuit segrneut, t he bigger would be the constant 
L£ in B.l.b. The Lipschitz stability may fail, as in the following example: 
take F(:r) = {(0, 0)}, F(:r) = {0} x [-8, 8], Eo = Eo = [- 1, 1] x {0}, T = 1. 
Here E(t) = Eo is a solution tube in £ of the nouperturbed equation. On the 
other hand it is fairly easy to estimate that for every solutiou tube E( ·) of the 
8-perturbed inclusion in the collection £ there is 

e(E(1), E(1)) 2: Vb, 

tha.t is, t he Lipschit L~ stability does not take place. 
If we exclude from the above co llection £ the polygous, which are close 

to degenerate, however, conditions B. 2 would be satisfied. More precisely, we 
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Figure 2. Solution tubes in different collections of the nonlinear pendulum with 
uncertain mass. 

generated by h, h, l3, coincides with R 2 and, in addition, (li , lj) 2: -a > -1, 
where a is a constant. Then, condition B.2 is fulfilled with (3 = )21(1 - a). 

The existence conditions B.l are satisfied also for the collection of all (not 
necessarily convex) box complexes or simplicial complexes. 

Finally we give an example where a solution tube E( ·) starting from a set 
Eo E E exists, for which Eo is a proper subset of E(O). This happens for the 
collections of all triangles in R 2 with fixed angles 1r 12, 1r I 4, 1r I 4 (this collection 
satisfying even conditions B.2). Take as E0 the triangle ((0, -1) , (0, 1), (1, 0)). 
Let the right-hand side of the differential inclusion be just the unit ball. Then 
it is clear that a minimal solution tube can be obtained from the initial triangle 
by translating the vertical side to the left with speed 1 and moving the opposite 
vertex to the right with speed ,;2. Formally, E(t) = (( -t, - c(t)), ( -t, c(t)), (1 + 
V'it,O)) , where c(t) = 1 + t +,.fit. There is, however, another solution tube, 
which informally speaking, jumps at the very beginning from Eo toE = (( -1, 0), 
(1, -2), (1, 2)). Then E develops similarly as E(·), but the vertical side trans
lates to the right with speed 1, while the opposite vertex moves to the left with 
speed ,;2. Formally, E(t) = (( -(1 +,.fit), 0), (1 + t, -d(t)), (1 + t, d(t))), where 
d(t) = 2 + t +,.fit . Obviously this is an invariant tube, but it is also a minimal 
one containing Eo at t = 0. Indeed, this tube solves the minimization problem 

min max x1, 
E(·) (x1,x2)EE(l) 

among all invariant tubes starting from Eo in the sense of Definition 1, therefore 
it must be also minimal, that is, a solution tube. 
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