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Abstract: We propose an approach, which we believe, can be 
pivotal for wider applications of Multiple Criteria Decision Making 
methods in practical problems. The idea is to represent decisions 
by approximate rather than by exact values of criteria. By this it 
is possible to eliminate the need of solving optimization problems 
from decision making processes. This in turn has far reaching con­
sequences for versatility of decision making methods when modified 
accordingly to absorb the proposed approach. 
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1. Introduction 

Multiple Criteria Decision Making (MCDM) problems are nowadays solved most 
often via interactive methods, which consist of man (decision maker) - machine 
(the underlying mathematical computer based model) interactions. During each 
interaction: 

· in the man phase - the decision maker reveals his partial preferences, 
· in the machine phase - the underlying model is solved to derive decisions 

(or a representation of such), which satisfy the partial preferences at best. 
In the course of interactions the decision maker's preferences are revealed 

gradually. This process is amplified by the learning effect: the decision maker 
learns (from the model) the possible relations between values of criteria. 

Interactive MCDM methods draw from a wide spectrum of sciences: from ap­
plied mathematics, artificial intelligence, decision theory, to psychology. In this 
framework it is more and more common to make no or little assumptions about 
decision maker's decisional behavior. If such assumptions are made a priori, 
they have no practical significance for in the field applications there is no oper­
ational OrOC':P.rlllrP t.O VPrifv if thPv ~l'P u!:!lirl '"rho '=" nAc+ar;,...,.; r lrv .. ;n~r.Y'O ......... n l ,.., ... , ..... 
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behavior identification, seldom complete, is also of no practical use unless the 
decision making process is to be repeated under the same circumstances. 

With this in mind, one can view interactive methods as free walks among 
feasible decisions, where the walk map is decided via the decision maker - model 
interactions. 

The purpose of this paper i~; to show how in the context of MCDM deductive 
approximate decision representation can be used instead of exact values. Here, 
the notion of approximation is used to refer to a representation of a value by 
its lower and upper bound, and not to inexact values one gets as a result of 
digital computations and round-off errors. We make this idea operational by 
demonstrating how such bounds can be derived with a t remendous computation 
savings as compared to deriving exact values. Such an approach drastically 
decreases t echnical complexity of MCDM methods. 

The plan of the paper is as follows. The next section brings preliminaries 
and notation. We discuss the motivation behind this paper in detail in Sec­
tion 3. In Section 4 we present the main idea on how decision outcomes can 
be represented by deductive bounds. In t he same section we discuss how t he 
assumed approximate representation accuracy can be ensured. Sect ion 5 brings 
Jiscussion on possible applications of outcome deductive approximate represen­
tation to MCDM methods. To make the argument illust rative we present a 
rough taxonomy of MCDM methods and show how our idea applies to each 
taxonomy class. In this section we discuss also how our idea impacts upon t he 
fundamental issues related to MCDM met hods: the issue of optimization, and 
the issue of method efficiency. Section 6 concludes. 

2. Preliminaries and notation 

The underlying model of MCDM problems we shall refer to in the paper is as 
follows: 

"max" f(.T) s.t. x E Xo S: X, (1) 

where f: X__, Rk , k 2: 2, f = (h , h , . .. , h), is a vector of criteria f;: X__, 
R , X 0 is the set of feasible decisions, and "max" stands for what we without 
loss of generality assume: all the criteria are of the type "the more the better" . 

Below we shall be dealing mostly wit h elements f ( x) of the set f (X o) and for 
the sake of notational simplicity we shallnse not ation y = .f(x ) and f(Xo) = Z . 
Elements of the set Z shall be called 01dcomes. Under this convention, for a 
given feasible decision x, y; == fi (x ) is t he value of the i-th component of the 
outcome y = .f(x). 

We shall use the commonly accepted definitions of efficiency, pmper effi­
ciency, weak efficiency, dominating outcome, and dominated outcom e (see, e.g. 
M;,tt; n ,n 1 QQQ ) A c,pt. o f :1.11 P.ffiriP.nt. elements of Z is called Pareto set. 
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3. Motivation 

The motivation for this work has been a generally shared conviction that what 
we witness over time is a failure of the utility function paradigm. This paradigm, 
which originates from the seminal works of von Neuman and Morgenstern (von 
Neuman, Morgenstern, 1953, see also Edwards, 1992), has it that it is possible 
to elicit a complete decision maker preference structure in a functional form. 
A quest for methods to construct DM's utility function and to reduce decision 
making to utility function maximization over a feasible set shaped research in 
the field of decision theory until around the decade of years 1970- 1980. It is still 
a lively stream of academic research. In this framework many interesting and far 
reaching decision models have been obtained (Keeney, Raiffa, 1976, Fishburn, 
1986). 

However, the utility function paradigm turned out to be non-operational 
and impractical. No work, except a few experiments performed in academic 
settings, reports on successful real application of this paradigm. There has been 
and very probably there will be ever no practical method to elicit from a DM his 
utility function, even if the DM has one, is conscious of, and willing to disclose 
it. To reveal one's utility function amounts to a consent to encapsulate ones 
knowledge and preferences into a model, and by this token to become replaceable 
by the model. Indeed, with a utility function identified the optimal decision is 
identifiable automatically and the DM is "reduced to a formula" . A human 
being will never accept this. 

Another paradigm, namely the interactive framework of decision making, 
which follows the hybrid DM - mathematical model scheme mentioned before, 
is therefore believed to be an appropriate mechanism for DM partial preference 
formulation and, at the same time, DM knowledge acquisition resulting from the 
learning effect. The combined effect of preference formulation and knowledge 
acquisition can be used to support DM in his free walk around the set of feasible 
decicions with the ultimate goal of identifying the decision which he regards as 
best. 

In a more detailed perspective a motivation for this work has been the au­
thor's attempt to eliminate from the MCDM interactive framework the following 
paradox. The paradox is a clear but seemingly generally accepted asymmetry 
between the DM and the model with respect to accuracy of information pro­
vided. Though it is accepted that the DM provides his preferences incomplete 
and in general terms, the existing interactive methods require the model to pro­
vide an exact representation of decisions. With imprecise information (partial 
preferences) being provided by the DM one would rather expect, and be satisfied 
with, some margin of imprecision in representation of decisions provided by the 
model. This, in principle, should neither distort decision making processes nor 
impact the DM ability to arrive at the most preferred decision. Below, we shall 
propose to represent imprecise information in the form of bounds, lower and 
upper, on decision outcome components (in other words. 011 r.rit.P,·il'l "" 1""" \ 
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The paradox we mention has a grave consequence for the practical applica­
bility of the interactive framework paradigm. Namely, the exact representat ion 
of decisions is provided by solving optimization problems. Optimization is not 
a barrier, technical or perceptional, only for those who have acquired at least 
some knowledge in that field, but t hey certainly constit ute a negligible minority 
of all potential decision makers. T hus, opt imization is a barrier for a widespread 
acceptability and popularity of MCDM methods. The main and direct objec­
tive of t his work is to present a method to eliminate the need for optimizat ion 
from interactive decision processes. T his, we believe, is a way to make MCDM 
methods a more versatile tool for both professional and lay applications. 

4. Bounds 

T hroughout the paper we assume that t here exist two vectors L = { L-i} and 
[! = {Ui}, i = 1, . . . , k, such that 

L::::; y ::::; U, y - any efficient outcome of Z. 

The fact t hat a weakly efficient element of Z can be derived by solving 

min max A;(y.7 - y;) for some A > 0, 
yEZ " 

(2) 

where Yi = U; + E, i = 1, . .. , k , E - any positive number, belongs to t he folklore 
of MCDM (see, e.g. Benayoun et al. , 1971, Bowman, 1973). 

4.1. Bounds 

Below we show how to derive deductive approximate represent ation of efficient 
outcomes in the form of pairs of lower an upper bounds. 

4 .1.1. Lower bound 

Let yw(A) denote a weakly effi cient outcome which solves (2) for some A> 0. 
With a subset of weakly efficient outcomes S, S ~ Z , IS ! 2: 1, called shell, 

we have (Kaliszewski 2001, 2002, 2003) 

i =1 , ... , k. (3) 

The idea of deriving a lower bound is illustrated in Fig. 1 ( 0 - location of the 
~~ .. ~h~ n r.;n t r .G E N ( .'i ).). h]a,~k bullets - shell elements). 
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Let S be a shell. Let us take any >. > 0 such that >.; =f. (yi - Yi) -l for at least 
one i = 1, ... , k, for all y E S. An upper bound for yw(>.) can be found by the 
following procedure (Kaliszewski 2001, 2002, 2003) 

t* = maxmaxt 
yES 

>.;(yj- Yi) ?_ t, i = 1, ... ,k, 

(we assume t = 0 if S = 0) which yields y = y*- rt*, where 1 = (11, ... ,/k), 
r·i = 1/>.i, i = 1, .. . ,k, and finally 

UG EN (A) i = f y (A) l i = min Yi, i = 1, ... , k. ( 4) 
{yES, Yi 2.iJ;, Yi 5,!Ji, j=l, ... ,k, #i} 

The idea of deriving a lower bound is illustrated in Fig. 2 ( 0 - location of the 
sought bound uGEN (>.), black bullets - shell elements) . 

[! y* 

I I 

·~- -@; 

I ....• ---
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4.2. Ensuring assumed approximate :representation accuracy 

The simplest "ad hoc" method to decide if a shell provides for appropriate bound 
tightness is as follows. For each element of the shell calculate the lower and 
upper bounds using all other elements of t he shell and compare the calculated 
bounds with the exact values of components of that element. If bounds are not 
sufficient ly tight (sufficient tightness is problem context dependent) the shell 
has to be amended with some additional efficient outcomes. 

A more systematic procedure is as follows. Let R'+ = {y I y; 2: 0, i = 
1, . . . , k}. Each efficient element fi of a shell defines two dead regions: 

( {fi} + Ri) n {y I L::; y::; 0}, 
( {:V} - Ri) n {y I L ::; y ::; D}. 

Clearly, no weakly efficient outcome belongs to the interior of any of the dead 
regions, for otherwise such an outcome would dominate y or would be dominated 
by fi. 

Each efficient element y of a shell defines 2k - 2 live regions: 

( {:Y} + R~J n {y I L::; y::; D}, 

where R~ is any of the sets {y I y; rv y;, i = 1, ... , k} , rv is either 5 or 2: and 
Rk ...~- Rk Rk ...~- - Rk 

± r +' ± r +· 

fi 
~----------------~YNE 

.... 

Figure 3. 

The element y is called the root of the live regions it defines. A live r-estricted 
region is the largest subset of a live region which does not contain in its interior 
any efficient element. F ig. 3 shows a live restricted region for an element fi (the 
··- - L\ _ £ - - 1--11 (1, 1--1, 1~, llofc _ c h t>l l t>l t>n,Pnb::) 
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Live restricted regions in an obvious way control bound tightness (sec Fig. 1 
and Fig. 2). Indeed, for any y(.>..) which is solution of (2) and belongs to a live 
restricted region, 

'i}sw :S L(S, .>..) :S y(.>..) :S U(S, .>..) :S yNE, 

where 'i}sw is the "South-West" vertex and yNE is the "North-East" vertex of 
the considered live restricted region of y. Hence, controlling the size of the max­
imallive restricted region over all elements of the shell controls bound tightness. 

5. Applications of deductive approximate representation 
of efficient outcomes to MCDM 

In this section we would like to demonstrate the general applicability of the 
deductive approximate representation of efficient outcomes to MCDM problems 
and a potential impact such a representation may have on MCDM methods. To 
this aim in Section 5.1 we briefly recall three basic approaches to characterizing 
the Pareto set. Since any interactive MCDM method employs one of these 
characterizations (with an exception for methods in which efficiency is verified 
explicitely, i.e. by definition) we shall use this distinction as a method taxonomy. 
This taxonomy is meant only to be demonstrative and by no means is exhaustive. 
In Section 5.2 we present the most representative method(s) for each taxonomy 
class. In Section 5.3 we discuss how existing methods can be enhanced by 
our approach. We also discuss related issues: the issue of optimization and of 
efficiency in the MCDM framework. 

5.1. Characterizations 

A cornerstone for every interactive MCDM method is the ability to derive ef­
ficient outcomes. Some characterizations of the Pareto set are useful for this 
purpose. Below we present briefly three major characterizations most often 
exploited in MCDM methods, namely: 

· the characterization by weight manipulations, 
· the characterization by reference point manipulations, 
· the characterization by constraint manipulations. 

5.1.1. The characterization by weight manipulations 

The idea of characterization of the Pareto set by weight manipulations is to 
reduce a multiple criteria problem to a scalar one by assigning numerical weights 
to components of outcomes y and to form a surrogate objective function. Solving 
the thus obtained scalar problem yields an element (outcome) of the Pareto set. 
By changing weights one derives different outcomes. 

One possible characterization of the Pareto set is possible by the weight 
parameterized familv of ont.i mi7.:tt.inn nr()hl<>mc: (')) ( rn• ;~~ .. ~ •• ; ~ "~~ ~~~ r-"'1, ~ ~ 
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Atkins, 1983, Wierzbicki, 1986, Kaliszewski, 1993, 1994), another by the weight 
parameterized family of optimization problems 

k 

maxLAiYi 
yEZ . 

1.=1 

(5) 

(Geoffrion, 1968). By solving (2) for all A > 0 one gets all the weakly efficient 
outcomes of Z wheras by solving (5) for all A > 0 one get all the properly 
efficient outcomes of Z whenever Z- Ri is a convex set. 

5.1.2. The characterization by reference point manipulations 

A characterization of the Pareto set based on the reference point notion was 
proposed by Wierzbicki (Wierzbicki, 1980, 1986, 1990, see also Wierzbicki, 1999, 
Wierzbicki , et al., 2000). 

A continuous function of the parameter fj, where fj is an element of the real 
space Rk, (fi - a reference point) is called a . achievement function. In the context 
of Pareto set characterizations it is required that achievement functions possess 
certain properties, namely (for definitions see Wierzbicki, 1980, 1986, 1990) Lhat 
they be strictly increasing or strongly increasing, or f.-strongly increasing order 
representing, or order appTOximating. 

We define the following optimization problem: 

min sg(y). 
yEZ 

Let outcome y be a solution of problem (6), i.e. 

y = argmin sy(y). 
yEZ 

The following statements are valid (Wierzbicki, 1980, 1986, 1990). 

- Necessary conditions for efficiency -

(6) 

· if Sv is order representing and outcome y E Z is weakly efficient, then y is 
a solution of problem (6) with fj = y and Sg = 0, 

· if sg is order approximating and outcome y E Z is properly efficient, then 
y is a solution of problem (6) with fj = y and sg = 0. 

- Sufficient conditions for efficiency -
· if sg is s trictly increasing, then outcome y is weakly efficient , 
· if sg is strongly increasing, then outcome y is efficient, 
· if s.iJ is f.-strongly increasing, then outcome y is properly efficient. 

The function (2) for each A is E-strictly increasing and order representing. 
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5.1.3. The characterization by constraint manipulations 

It is immediate to show (see, e.g. Benayoun et al., 1971) that a solution of the 
following optimization problem 

max . . Yi 
yEZ, Yi -:;,<i, J=l, ... ,k, r/=t 

is weakly efficient. By manipulating values Ej one can generate different weakly 
efficient outcomes y. Moreover, every weakly efficient outcome !} is obviously a 
solution of the problem 

max Yi· 
yEZ, Yi ?.iii , j=l, . .. ,k, j#i 

5.2. Methods 

5.2.1. Weight manipulation methods 

In methods of weights manipulations (Zionts, Wallenius, 1976, 1983, Roy, Walle­
nius, 1991, Dell, Karwan, Hl90) the space of weights is systematically searched 
according to DM preferences formulated in terms of weights. Search can be 
organized in the form of weight cuts or weight zooming. 

Weight cut methods 
In the Zionts-Wallenius method (Zionts, Wallenius, 1976, 1983), which ap­

plies for so called linear MCDM problems (where set Z is polyhedral), one 
assumes existence of an implicit pseudoconvex value (or utility) function. For 
the definition of a value (or utility) function see, e.g., Edwards (1992), Fishburn 
(1986). This function is locally approximated by a linear function 

k 

LAiYi, >.; > 0, i = 1, ... , /,;. 
i = l 

In interaction h, h = 0, ... an outcome y" is generated by solving the optimiza­
tion problem 

k 

max L AiY·i, 
yEZ i = l 

where>. E A" , A0 = {>. E R~'l 0 < >.i < 1, i = 1, . .. ,/.;, L~=1 A; = 1}. 
Outcomes ya are identified next. They are the efficient vertices of the poly­

hedral set Z, adjacent toy". Pairs (y", ya) are compared by the DM. Following 
the DM evaluation, the set of weights A" is reduced by a cut 

k k 

A"H = { >. 1 L >..; vii. > L >.i yf} n A", 
i=l i=l 
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if the DM prefers y" to ya, or 

k k 

A"+
1 

= {A 1 L Ai vi' < L Ai v?} n A" , 
i=l i=l 

if the DM prefers y a to y". 
In t he Dell-Karwan method (Dell, Karwan, 1990) the implicit value function 

is approximated by a function 

max Ai(Y7- Yi) , 
I 

where Ai > 0, i = 1, ... , k . Evaluat ions of pairs y" , y·r, where yr are some 
reference outcomes, result either in 

or in 

A"+l = {A I max Ai(Yi- y~' ) > m axAi (Y7- y;-)} n A". 
' ' 

Roy and Wallenius (Roy, Wallenius, 1991) and also Kaliszewski and Zionts 
(Kaliszewski, Zionts, 2002) proposed a generalization of the Zionts-Wallenius 
method to nonlinear problems. 

The Tchebycheff m ethod 
T he so called Tchebycheff method (Steuer , 1986, Steuer, Choo, 1983) ex­

ploits problem (2) to generate weakly efficient outcomes. 
T he method consists of t he following operations: selecting a nnmber of vec­

tors A E A, and then, iteratively: 

- solving problem (2) for all selected A to derive a number of efficient out­
comes, 

- selecting by the DM the most preferred outcome fj, 
- selecting a number of vectors A in t he "neighborhood" of A, corresponding 

to the most preferred outcome fl. 
The above process has an effect of zooming into the set of weights in a quest 

for weights which yield a sequence of increasingly preferred outcomes. 

5.2.2. Reference point metho d 

In the reference point method (Wierzbicki, 1980, 1986, 1990, 1999) t he DM 
articulates his preferences by pointing t o a reference point . T hen an efficient 
outcome, which corresponds to t he reference point and the achievement function 
used (sec Section 5.1.2.) is generated. The notion of corrcspondance is intuitively 
explained in Fig. 4. By manipulating reference points the DM is able to generate 
a subset of the Pareto set and from this subset select the most preferred outcome. 
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Y2 = h(x) 
reference point 

Yl = /l(x) 

Figure 4. 

Y2 = h(x 

aspiration level 

r servation lev 

Yl = /l(x) 

Figure 5. 
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The reference point method admits also DM pointing to a pair of reference 
points; a point y _ belonging to Z , called a reservation level and a point y- rf: Z, 
such that y- E y_ + R~, called an aspiration level. It is possible then to construct 
an achievement function such that a solution which maximizes that function 
over Z is an efficient outcome most distant from the reservation level and at the 
same time the closest to the aspiration level. This is schematically illustrated 
in Fig. 5. 

5.2.3. Constraint manipulation methods 

For this group of methods perhaps the most representative is the STEP method 
(Benayoun et al., 1971). This method requires that at each interaction the DM 
indicates outcome components (criteria) i, i E I> s;:: I = {1, .. . , k} , whose 
values he wants to be increased at the expense of values of components i, i E 
I< s;:: I. 

Given outcome y" ident ified in interaction h, in interaction h+ 1 the outcome 
yh+l is identified by solving the following optimization problem: 

min max A;(yi - y.;) , 
yEZ t 

y; 2': vi' for ·i E I>, 

Y. > v"- f · t - t t 
for i E I'~, 

where A; > 0 for ·i E I > and A; = 0 for i E I<, a nd E; specifies admissible 
decrease of the value of the component ·i, ·i E I <. 

5.3. Application of deductive approximate representation of efficient 
outcomes to MCDI\1[ 

There are three issues to be considered when discussing potential applications of 
deductive approximate representation of efficient outcomes to MCDM methods. 
They are the issue of optimization, the issue of methods and the issue of method 
efficiency. We discuss these issues below. 

5.3.1. The issue of optimization 

As seen form formulae (3) and ( 4) the parametric lower and upper bounds are a 
simple tool for representing efficient outcomes. The cost of bound calculations 
is negligible as compared to the cost of explicit outcome identification. But 
the most important feature of t he bounds is t hat they become tighter (but not 
necessarily in the strict monotone manner) with increasing number of elements 
in a shell. If a shell consists of a sufficient number of elements (outcomes) to 
provide satisfactory approximate representation of outcomes, there is no need 
to perform optimization computations over the underlying mathematical model 
' - ---- " -''--1•• ; ,J ~.,j-;f"" offir-iPn t nnt.rnmP.S. It is oossible to simplify the matter 
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even further by determining a sufficient number of outcomes "off-line" (e.g. prior 
to the start of interactive decision making). Then, during the "on-line" deci­
sion process, the "machine" phase, i.e. calculation of bounds representing actual 
outcomes, will be technically simple and take only negligible time (see Fig. 6). 

------·················-·········----------------------------------------·-······ ·····--·--------------···--···-·······-········-o.••-----·---········---·-·----· . . . . . . . . : : 
~ l 
i OPTIMIZATION i 
1 i 

l l 
l DECISION MAKING l 
l ~ 

! i ! ! 
!--·-······················-···--·-········-···-··-···············-----······--= 

: ______________________________________________________________________________ ; 

SHELL DM MODEL 

Figure 6. 

The approach we propose here can give a new stimulus to applications of 
MCDM since it radically relocates technicalities related to interactive decision 
making to the background. Now all the optimization issues can be solved with­
out intimidating the decision maker with optimization methods and software de­
tails, and optimization calculations can be left to a computing service provider. 
Such a provider would cope with the original underlying model, do all necessary 
optimization computations, and eventually determine a sufficient number of out­
comes to guarantee ass11med bound tightness. It is left then for the "machine" 
phase of the interactive decision making to cope solely with simple formulas 
which can be implemented even in a spreadsheet1

. 

5.3.2. The issue of methods 

Our taxonomy of interactive MCDM methods (Section 5.1) which follows three 
distinct principles of Pareto set characterizations forms a framework for discus­
sion of potential applications of deductive outcome approximate representation 
proposed in Section 4. As seen from bound formulas (3) and ( 4) and related 
illustrative drawings (Figs. 1 and 2) a pair of bounds is in fact defined by a 
line parallel to a vector from R~ starting at {0} (vectors pointing from "South­
West" to "North-East"). As shown below, in interactive MCDM methods such 
lines are specified as a part of the DM preference revealing process. 

Weight manipulation methods 
In any weight manipulation method, which uses the optimization prob­

lem (2), a point (y*) and a direction (in terms of a vector of weights >.) and 
therefore a line are specified at each iteration. 

1 A simple spreadsheet implementation of the bounding formulas can be obtained from the 
~11thnr nn t·Pnnru~t 
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The characterization of the Pareto set based on optimization problem (5) 
does not provide for an analogous interpretation, for in methods in which this 
problem is exploited only a direction (in terms of a vector of weights >.) but no 
point is specified. Thus, no line can be drawn and therefore bounds (3) and 
( 4) cannot be determined. Moreover, though it is possible to derive bounds on 
outcomes based on optimization problem (5) rather t han (2) such bounds are 
not , in general, satisfactorily tight (Kaliszewski, 2003) . 

Reference point method 
In the reference point method at each iteration a point (a reference point) 

and a direction (the direction of steepest assent of the achievement function) are 
specified. If t he achievement function (2) is used, than a direction is explicitely 
given in terms of a vector of weights >.. 

Constraint manipulation methods 
Constraint manipulation methods can be interpreted as restricted weight 

manipulation methods. Hence, in those methods at each iteration a point and 
a direction are clearly specified. Lines specified in that way provide bounds on 
efficient outcomes as outlined above. 

5.3.3. The issue of method efficiency 

Existence of a tool to assess values of components of efficient outcomes prior to 
explicitely identifying them has a potential impact on efficiency (we purposely 
refrain from using the notion "convergence' ' for convergence considerations usu­
ally call for a rigid mathematical framework) of standard interactive decision 
making methods. Suppose that at a certain point of an interactive decision 
making process a subset of outcomes containing the most preferred outcome is 
known. The standard approach is to determine at least one representative out­
come from that subset , which, as a rule , involves optimization. An alternative 
approach we advocate here is to calculate bounds for that representative out­
come rather than the outcome itself, which is a much easier task. The bounds 
are used then to decide if that representative outcome would be of DM's in­
terest (if explicitely determined). If no, this representative outcome needs not 
to be explicitely determined, which results in saving time and optimization 
computing. 

The extent of the impact this alternative approach may have on interactive 
decision making methods has to be studied experimentally and should be a 
subject of further research. 

6. Concluding remarks 

It is nowadays commonly accepted that decisional tools should follow the soft 
computing principle. Likewise, one tends to be very modest when estimating 

• J - ---L~ -L --~~ Ll~ .... . ..,.,.. ..... +- : ..-. '"' 1 ,...,,.,. ..... +-J...,,....rl co ,-.'".ln ho rornnn{..lotitiu() t.() htl lll:::t.n~ wh P.n 
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it comes to decision making. A complementary rather than competitive role is 
attributed to such methods and this role consists in handling bulky data and 
performing laborious data processing. 

Our idea to harness deductive approximate representation of efficient out­
comes to MCDM framework can be seen as an attempt to soften the computa­
tional complexity of the existing MCDM methods without, however, losing any 
aspect of the MCDM methodologies developed over decades. One of the agents 
of man - machine interactions, namely the DM, always processes information 
in a soft manner. It is quite reasonable then to accept, and we advocate this in 
the work, the same principle for its complementing agent - the "machine". The 
game is to lose little with respect to information accuracy and to gain much in 
terms of reduced computation expenditures. 
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