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Abstract: The mathematical background of multiple criteria 
optimization (MCO) is closely related to the theory of decisions un
der uncertainty. Most of the classical solution concepts commonly 
used in the MCO methodology have their origins in some approaches 
to handling uncertainty in decision analysis. Nevertheless, the MCO 
as a separate discipline has developed several advanced tools of in
teractive analysis leading to effective decision support techniques 
with successful applications. Progress made in the MCO tools raises 
a question of possible feedback to the decision making under risk. 
The paper shows how decisions under risk, and specifically the risk 
aversion preferences, can be modeled within the MCO methodology. 
This provides a methodological basis allowing for taking advantage 
of the interactive multiple criteria techniques for decision support 
under risk. 
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1. Introduction 

The multiple criteria optimization (MCO) is commonly considered a relatively 
young methodology. However, the theoretical basis of MCO is closely related 
to the decision theory with its very early roots in the eighteen century (Stadler, 
1979). Later, the theory of decisions under uncertainty had a crucial impact 
on the initial MCO concepts. Especially, the utility concepts influenced the 
classical MCO developments (Fishburn, 1964; Keeney and Raiffa, 1976). Actu
ally, most of the classical solution concepts commonly used in MCO have their 
roots (or equivalents) in some approaches to handling uncertainty in decision 
analysis. 

1The research was supported by the grant PBZ-KBN-016/P03/99 from The State Com-
tnit.tPP fnt• C:riontl~ro TI.nco n•-.>'1"'1-. 
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The MCO as a separate discipline has xperienced enormous development 
during recent years (Steuer et al. , 1996). Following the efforts of Charnes and 
Cooper (1961) t o operationalize t he MCO approaches, a gamut of techniques 
and algorithms arrived. Several advanced tools of interactive analysis have been 
int roduced to define a decision support process. T hey depend on additional pref
erence information gained interactively from the DM, allowing simultaneously 
t he DM to learn the problem during the process wit h possible evolution of pref
erences. In particular the reference point approach (Wierzbicki, 1982) has led 
to effective decision suppor t techniques wit h successful applications (Wierzbicki 
et al. , 2000). 

The methods of decisions under risk were operationalized by Markowitz 
(1952) with his seminal mean-variance model. Since then many aut hors have 
pointed out that the mean-variance model is, in general, not consistent with 
stochastic dominance rules or other axiomatic models of decisions under risk. 
Nevertheless, decisions under risk and particularly portfolio optimization remain 
mostly within t he mean-variance methodology. Progress made in t he MCO tools 
raises a question of possible feedback to the decision making under risk. The 
paper shows how the decisions under risk, and specifically the risk aversion 
preferences, can be modeled within the MCO methodology. H systematizes 
commonly known relat ions as well as introduces new models . T his provides 
a methodological basis allowing advantage of the interactive multiple criteria 
techniques for decision support under risk. 

The paper is organized as follows. In the next section, we consider deci
sion problems under uncertainty where decision is based on maximization of a 
scalar outcome with various realizations under several scenarios. we show that 
the rational preference model leads then to Pareto efficiency with respect to 
the realizations under scenarios understood as multiple criteria . We demon
st rate also how the classical solution concepts commonly used in t he multiple 
criteria optimization can be originated from approaches to handle uncertainty 
in decision analysis. Further , in Section 3 we deal with decisions under risk. 
We show that the case of equally probable scenarios leads to the concept of 
symmetric optimization (efficiency) of multiple criteria corresponding to real
izations under scenarios. The concept is further extended to the distribution 
approach equivalent to the rules of the first degree stochastic dominance (FSD). 
Two alternative mixed integer linear programming criteria modifications are 
introduced, t hus allowing us to represent t he decisions under risk within t he 
standard MCO methodology. In Sect ion 4 we focus on risk averse preferences. 
The case of equally probable scenarios leads us then to the concept of equitable 
optimization (efficiency) of multiple crit eria corresponding to realizations un
der scenarios. Extension to the distribution approach is equivalent to the rules 
of the second degree stochastic dominance (SSD). Two alternative linear pro
gramming criteria modificat ions are introduced allowing us to represent the risk 
averse preferences with t he standard MCO methodology. This results, in partic-

·- 'L' -- ' - -··'·~- ·:~ l : nA~,. n >•nn·l •<">lYil i no• mnrlr.ls for nortfolio optitnization. 
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2. Decisions under uncertainty and Pareto efficiency 

2.1. Pareto efficiency 

977 

Let us consider a decision problem under uncertainty where the decision is based 
on the maximization of a scalar (real valued) outcome. The final outcome is 
uncertain and only its realizations under various scenarios are known. Exactly, 
for each scenario Si ( i = 1, ... , rn) the corresponding outcome realization is 
given as a function of decision variables y; = J;(x). 

We are interested in larger outcomes under each scenario. Hence, the decision 
under uncertainty can be considered a multiple criteria optimization problem: 

max {f(x) X E Q}, (1) 

where: 

f=(JI, ... ,Jm) is a vector- function that maps the decision space X 
Rn into the criterion space Y = Rm, 

QcX 
xEX 

denotes the feasible set, 
denotes the vector of decision variables. 

The elements of the criterion space are referred to as achievement vectors. An 
achievement vector y E Y is attainable if it expresses outcomes of a feasible 
solution x E Q (y = f(x)). 

From the perspective of decisions under uncertainty, model (1) only spec
ifies that we are interested in maximization of all objective functions J; for 
i E I= {1,2, ... ,m}. In order to make it operational, one needs to assume 
some solution concept specifying what it means to maximize multiple objective 
functions. The solution concepts are defined by properties of the corresponding 
preference model. We assume that solution concepts depend only on evaluation 
of the achievement vectors (outcomes) while not taking into account any other 
solution properties not represented within the achievement vectors. Thus, we 
can limit our considerations to the preference model in the space of achieve
ment vectors. The preference model is completely characterized by the relation 
of weak preference (Vincke, 1992), denoted hereafter with ~- Namely, the cor
responding relations of strict preference >- and indifference ~ are defined by the 
following formulas: 

y' >- y" {::} (y' ~ y" and y" t y'), 

y' ~ y" {::} (y' ~ y" and y" ~ y') . 

The standard preference model related to the Pareto efficient solution con
cept assumes that the preference relation ~ is reflexive: 

(2) 

transitive: 

( v' >- v" and v" >- v'") ~ v 1 >- v 111 {'/.\ 
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and strictly monotonic: 

y + c:e.i >- y for c: > 0; i = 1, ... , m., (4) 

where ei denotes the i- th unit vector in the criterion space. The last assumption 
expresses that for each individual objective function more is better (maximiza
tion). The preference relations satisfying axioms (2)- (4) are called hereafter 
mtional preference relations. The rational preference relations allow us to for
malize the Pareto efficiency concept with the following definitions. We say that 
achievement vector y' rationally dominates y" (y' >-r y " ), iff y' >- y" for all 
rational preference relations C:::. We say that feasible solution x E Q is a PaTeto 
efficient solution of the multiple criteria problem (1) , iffy = f(x) is rationally 
nondominated. 

The relation of weak rational dominance y' C::: ,. y" may be expressed in terms 
of the vector inequality y' ~ y". Hence, we can state that a feasible solution 
x 0 E Q is a Pareto efficient solution of the multiple criteria problem (1), if and 
only if, there does not exist x E Q such that f(x) ~ f(x0

) . The latter refers 
to the commonly used definition of the (Pareto) efficient solutions as feasible 
solutions for which one cannot improve any criterion without worsening another 
(Steuer , 1986). In other words, decision problem under uncertainty, defined by a 
finite set scenarios Si (i = 1, ... , m) and t he corresponding outcome realizations 
Yi = fi(x) may be considered a standard multiple criteria optimization (1). 
However, the axiomatic definition of the rational preference relation will allow 
us to introduce additional properties of the preferences related to the principles 
of choice under risk. 

2.2. Multiple criteria optimization and decision support 

There usually does not exist an outcome vector that dominates all the other 
with respect to all the criteria. Thus in terms of strict mathematical relations 
we cannot distinguish the best outcome vector. All the Pareto efficient solutions 
are incomparable on the basis of the specified set of criteria. In theory, one may 
consider multiple criteria optimization as a problem depending on identification 
of the entire set of efficient solutions. We are interested, however , in an opera
t ional use of multiple criteria analysis to help the decision maker (DM) to select 
one efficient solution for implementation. 

Efficient solutions of the multiple criteria problem (1) can be generated with 
simple scalarizations of the problem. Most of them are based on the maxisum 
approach: 

m 

max { 2: fi(x) X E Q } , (5) 
i=l 

or on the maximin approach: 

max~ min fi(x) : x E Q}. (6) 
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However, the latter generates an efficient solution only in the case of a unique 
optimal solution. In the general case, the optimal set of (6) contains an effi
cient solution but it may also include some dominated ones. Therefore, some 
additional refinement (regularization) is necessary to select the optimal solu
tion which is efficient and the maximin scalarization is regularized by the addi
tional maxisum term thus generating the augmented maximin problem (Steuer, 
1986): 

m 

max { i=~:i.U.m fi(x) + E: 2:".: f;(x) 
i=l 

X E Q }, (7) 

where E: is an arbitrarily small positive parameter. In terms of decisions under 
uncertainty, the maximin approach represents a pessimistic solution concept of 
the worst scenario achievement maximization. One may also consider the max
imax approach to represent an optimistic solution concept of the best scenario 
maximization. Similarly to the maximin approach, it needs a regularization for 
the case of nonunique optimal solution thus resulting in the following formula
tion: 

m 

max { i~e~m fi(x) + c L fi(x) 
i=l 

X E Q }· (8) 

The maxisum approach (5) represents the so-called Laplace criterion of selec
tion under uncertainty. Namely, maximization of the total outcome is equivalent 
to the maximization of the average outcome (arithmetic mean). The latter rep
resents the expected value maximization under assumption that all scenarios 
are equally probable, which is just the concept of the Laplace criterion. One 
may consider the weighting approach: 

m 

max { 2:".: wdi(x) : x E Q }, (9) 
i=l 

with positive weights Wi summing to 1. The approach generates Pareto efficient 
solution and it can be interpreted as the expected value maximization with vari
ous subjective probabilities (or importance) of several scenarios. Unfortunately, 
the weighting approach does not provide us with a complete parameterization of 
the entire Pareto efficient set, thus restricting the preference model. Actually, in 
the case of a discrete (or nonconvex) feasible set Q, there exist Pareto efficient 
solutions that cannot be identified as optimal solutions to problem (9) with any 
set of positive weights (Ogryczak, 1997). This flaw of the weighting approach 
(9) can be overcome with the weights considered in the maximin aggregation 
(7) as used within the reference point approaches (Wierzbicki, 1982) discussed 
below. 

In general, it is very difficult to identify and formalize the DM preferences at 
the beginning of the decision orocess. Then~fom. a rlP.risinn snnnmt. nrn"""" ;" 
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needed which depends on additional preference information gained interactively 
from the DM, allowing simultaneously the DM to learn the problem during 
the process with possibly evolving preferences. T his can be effectively achieved 
with the so-called quasi-satisficing approach t o multiple criteria decision prob
lems (Wierzbicki et al. , 2000). The best formalization of the quasi-satisficing 
approach to multiple criteria optimization was proposed and developed mainly 
by Wierzbicki (1982) as the reference point method. The reference point method 
(RPM) is an interactive technique where the DM specifies preferences in terms 
of aspiration levels (reference point), i.e., by introducing desired (acceptable) 
levels for several criteria. Depending on the specified aspirat ion levels, a special 
scalarizing achievement function is built which, when optimized, generates an 
efficient solution to the problem. The scalarizing achievement function may be 
direct ly interpreted as expressing utility 1.o be maximized. However, to keep 
t he discussion consistent we will assume that the scalarizing achievement func
tion is minimized (thus representing dis-utility) . The computed efficient so
lution is presented to the DM as the current solution in a form that allows 
comparison with the previous ones and modification of the aspiration levels if 
necessary. 

While building the scalarizing achievement function the following properties 
of t he preference model are assumed . First. of all, for any individual outcome Y.i 
more is preferred to less (maximization) . To meet this requirement the function 
must be strictly decreasing with respect to each outcome. Second, a solution 
with all individual outcomes y; equal to the corresponding aspiration levels is 
preferred to any solution with at least one individual outcome worse (smaller) 
than its aspiration level. Thus, similar to the goal programming approaches 
(Charnes and Cooper , 1961), the aspiration levels are treated as the targets but 
following the quasi-satisficing approach they are interpreted consistently with 
basic concepts of efficiency in the sense that the optimization is cont inued even 
when the target point has been reached . 

The generic scalarizing achievement f nction takes then t he following form 
(Wierzbicki, 1982): 

m 

max {s;(a; , j ; (x))} + c L si(a;,fi(x)), 
l <t<m 

(10) 
- - i = l 

where c is an arbitrary small positive number and s; : R 2 ----. R, for ·i = 1, . .. , m, 
are the individual achievement functions measuring actual achievement of the 
i-th outcome with respect to the corresponding aspiration levels ai . For any 
reference value a;, the function s;(a;, Y·i) must be strictly decreasing with respect 
toy; (the i-th outcome) and it has to take value 0 for Yi =a; . 

Various functions s; provide a wide modeling environment for measuring 
individual achievements (Wierzbicki et al., 2000; Ogryczak, 1997). For the 
sake of computational robustness, the piecewise linear functions s ; are usually 
- --- ' ~--~-1 l- ~ 1,~ ~;.,,~J o~+ mr.rlol c thr.>v ic» k-P >l. form of t.wo SP.!!'lllent Diecewise 
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linear functions: 

( ) { 
vi'(a;- Yi), for Yi ::; a; 

s· a· y· - P 
'· " ' - vi (a; - y;), for y; > a; 

(11) 

where v;' and vf are positive weights corresponding to underachievement and 
overachievement, respectively, for the i-th outcome ( vf is usually much larger 
than v;'). Let us consider a specific case when the best possible values of the 
individual outcomes (the so-called utopia or ideal point) are used as the aspi
ration levels, i.e., a; = Yi = max {f;(x) : x E Q}. The achievement function 
(11) can be simplified then to vf(yi- Yi) as in goal programming (GP) models 
(Ogryczak, 2001). Note that in decisions under uncertainty, following Savage 
(1954), the minimization of maxi=l, ... ,m (yi- Yi) is used as the so-called mini
max regret criterion. This commonly accepted decision selection rule expresses 
the minimization of the (maximum) regret due to opportunity loss. Namely, 
after decisions have been made and the scenarios have occurred, the DMs may 
experience regret because they now know what scenario has taken place and 
may wish that they had selected a different action. The regret is the difference 
between the outcome that could be achieved with perfect knowledge of the fu
ture and the outcome that was achieved from the selected solution. Hence, the 
scalarizing achievement function (10)- (11) is a generalization of the minimax 
regret criterion used in the decision analysis. The RPM, similarly to the inter
active multiple goal programming (IMGP) techniques, extends the maximum 
regret criterion with a capability to consider various reference achievements to 
define opportunity loss (regret) as well as allows us to scale differently several 
regret measures. Moreover, in the RPM (but not in IMGP), the regularization 
is introduced to guarantee Pareto efficiency of all the generated solutions. 

The reference point method was later extended to permit additional in
formation from the DM. It is implemented in the form of so-called aspira
tion/reservation based decision support (ARBDS) which, in addition to the 
main target (aspiration) levels a;, employs also reservation levels 1·;, so that the 
DM can specify desired as well as required values for given outcomes. This 
allows an implicit definition of weights, leaving aspiration and reservat ion levels 
as the exclusive control parameters. The ARBDS techniques were implemented 
in several decision systems with many successful applications (Lewandowski 
and Wierzbicki, 1989; Wierzbicki et al., 2000). Since the problems of decision 
under uncertainty can be treated as standard MCO problems (1), the ARBDS 
methodology provides us with effective tools to solve interactively decision prob
lems under uncertainty. It is important that various Pareto efficient solutions 
can be found in this way (compare Kaliszewski, 1994, with respect to limitations 
caused by the positive value of c: ) and, therefore, the methodology is capable 
of meeting various rational preference models connected to decisions under un
certainty. Moreover, it can be applied to continuous as well as discrete feasible 
sets. In further sections we will show that the ARBDS approaches can be also 
applied to decisions under risk. 
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3. Decisions under risk and symmetric efficiency 

3.1. Symmetric efficiency 

As discussed in the previous section, any decision problem under uncertainty 
defined by a finite set scenarios S; (i = 1, . . . , m.) and t he corresponding out
come realizations y; = J;(x) may be considered a standard multiple crit eria 
optimization (1). In a decision problem under risk the probabilities of several 
scenarios are also known. The decision outcome is then a random variable and 
it is described by a distribution of values y; with probabilities p;. Although 
the decision problem can still be expressed as t he multiple criteria optimiza
tion (1) , the corresponding criteria y; = f; (x) as associated with probabilities 
cannot be treated as completely independent criteria. The achievement vector 
y represents now a lottery (the values of several tickets in a lottery). Hence, 
while representing decisions under risk t he problem (1) is no longer a standard 
multiple criteria optimization wit h a possible selection of any rational preference 
relation. 

Let us focus on the case of equally probable scenarios. Assuming that all 
the scenario probabilities p; are given as rational numbers, the decision problem 
can easily be transformed into an equivalent problem with equally probable 
scenarios. Note that the transformation itself is conceptually very simple as 
requiring only multiple replications of some scenarios. Nevertheless, it may 
cause problem size explosion with respect to the resulting number of scenarios. 
Therefore , we assume equally probable Ecenarios in order to introduce some 
formal concepts while later this assumption will be relaxed for computational 
approaches. 

Under the assumption of equally probable scenarios, the achievement vector 
y = (1/1, y2, ... , Ym) within the multiple criteria problem (1) represents an uncer
tain outcome as a lottery with rn equaily probable (p.; = p = ~) tickets yielding 
gains Yi (i = 1, ... , m.), respectively. In order to interpret the achievement vec
tors as lotteries one needs to focus on the distribution of outcome values while 
ignoring their ordering. T his means that in the multiple criteria optimization 
problem (1) we are interested in a set of values of the criteria without taking 
into account which criterion a specific value. Such a requirement is mat hemat
ically formalized as the property of impart iality of the preference relation. We 
say that a preference relation ~ is impartial (anonymous, symmetric) if 

(12) 

for any perrnutation T of I. 
The rational preference relations satisfying the requirement of impartiality 

will be called hereafter impa·rtial mt·ional preference relations. T he impartial 
rational preference relations allow us to introduce the concept of symmetric ef
fi ciency by the following definitions. We say t hat the achievement vector y' 
"" ·~~n•~~nr.llo. rl n""'.;.,.,r.+o o "" fv 1 '>- _ v 11

) iff v 1 '>- v 11 for all in1nartial rational 
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preference relations t. We say that feasible solution x E Q is a symmetrically 
efficient solution of the multiple criteria problem (1), iffy= f(x) is symmetri
cally nondominated. 

Note that an impartial rational preference relation must satisfy axioms (2)
( 4) and the requirement (12). Hence, the achievement vector y' E Y symmet
rically dominates y" E Y, or y" is symmetrically dominated by y', if there 
exist permutations T

1 and T
11 such that y~'(-i) 2: y~"(i) for all i E I and for at 

least one index io strict inequality holds (i.e., y~'(io) > y~, io)). The symmetric 
dominance relation may be illustrated with the so- called domination structure 
(Nakayama et al., 1985), i.e. a point-to-set map 

D(y)={dEY: y>-y+d}U{O}. (13) 

For the standard rational dominance relation, the sets D(y) are independent of 
y and they take the form of the nonnegative orthant. The domination structure 
of the symmetric dominance depends on the location of an achievement vector 
y relative to the absolute equity line (Yl = Y2 = · · · = Ym)· In the general case, 
the set D(y) is not a cone and it is not convex. Fig. 1 shows D(y) fixed at y, 
i.e. the set y + D(y). 

Y2 

Figure 1. Symmetric dominance structure in R2 

The relation of symmetric domination can be expressed as domination of 
the achievement vectors with coefficients ordered in nonincreasing order. This 
can be mathematically formalized with the ordering map 8 : Rm --. Rm such 
that 8(y) = ((h(y),B2(Y), ... ,Bm(Y)), where B1(y) ~ B2(y) ~ ··· ~ Bm(Y) and 
there exists a permutation T of set I such that e.i(Y) = Yr(i) for i = 1, ... , m . 
The following proposition is valid (Podinovskii, 1975). 
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PROPOSITION 3.1 An achievement vector y' E Y symmetrically dominates 
y" E Y , if and only ifG(y') domin ates G(y"), i. e. B;(y ' ) 2: B;(y") fo r all i E I 
and for at least one index i o strict ineq·uality holds (i .e.' e io (y ') > e io (y" )). 

Proposition 3.1 permits one to express symmetric efficiency for problem (1) 
in terms of the standard efficiency for the multiple criteria problem with objec
tives G(f(x)): 

max {(B1(f(x)) , B2(f(x)) , . . . , Bm(f(x) )) : x E Q}. (14) 

A feasible solution x E Q is a symmetrica:.Iy efficient solution of the multiple 
criteria problem (1), if and only if it is an efficient solution of the multiple 
criteria problem (14) . 

Note that the maximin (7) and the maximax (8) approaches to t he original 
multiple criteria problem (1) can also be expressed in terms of the ordered out
comes of problem (14) . Hence., these approaches generate symmetric efficient 
solutions. The same applies to the maxiE:um ( 5) approach but it cannot be 
extended to the weighting approaches (9). One may apply the weighting ap
proach to the ordered problem (14) but t his will result in the ordered weighted 
averaging aggregation (Yager , 1988) applied to the original problem (1). 

The quantity 81 (y) representing the worst outcome can be easily computed 
directly by the LP maximizat ion: 

B1(y) =max t1 s.t . t1 ::; Yi for i= 1, . . . ,m. 

Similar formula can be given for any Bk(y) although requiring t he use of integer 
variables. Namely, for any k = 1, 2, . .. , m the following formula is valid: 

Bk(Y) = max tk 
s.t. tk- Yi::; M z k-i , Zk-i E {0, 1} for i = 1, .. . , m, 

m 

L Zk i::; k -1. 
(15) 

where M is a sufficiently large constant (larger t han any possible difference 
between various individual outcomes y;). Note that for k = 1 all the binary 
variables z1i are forced to 0 t hus reducing t he optimization to the standard LP 
model for t hat case. 

The entire ordered multiple criteria model (14) can be formulated as the 
following mixed integer multiple criteria problem: 

max [h , t2 , ... , tm] 
s.t. 

t k - /;(x) ::; M Zki 

Zk i E {0, 1} 
m 

L Zki ::; k - 1 
i =l 

fori= 1, .. . , m ; k = 1, . .. , rn, 
fori = 1, . . . , m.; k = 1, .. . , 1n, (16) 

for k = 1, . .. , m , 
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The mixed integer formulation of the multiple criteria problem (14) implies 
that its efficient set may be not connected. Indeed, the symmetric efficient 
set may be in general not connected, as illustrated in the following example. 
Therefore, integer variables are necessary to formulate its ordered equivalent. 

EXAMPLE 3.1 Let us consider a bicriteria problem: 

··· .• B' 

Figure 2. Not connected symmetric efficient set DB U BE U FC 

Fig. 2 gives the graphical illustmtion of the problem in the objective space 
(YI, Y2). However, due to the identity-defined objective functions YI = XI and 
y2 = x 2 , it can be directly interpreted in the decision space (XI, x 2 ). The stan
dard efficient set consists of two line segments AB and BC, where A=(0,21), 
B=(9,18) and C=(23.4,0). While taking into account the symmetric dominance 
we eliminate segments AD and EF. Thus, the symmetric efficient set consists 
of three segments: DB, BE and FC. Note that the symmetric efficient set is not 
connected. 

3.2. Distribution approach 

The ordered achievement vectors describe a distribution of outcomes generated 
by a given decision x. In the case when there exists a finite set of all possible 
outcomes of the individual objective functions, we can directly deal with the 
distributiOn Of OUtCOmeS deSCribed bV freflllP.ll~iPS nf SPVPl'>J] rmtrr>moo T A~ l7 -
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{ v1, v2, .. . , v,. } (where v1 < v2 < · · · < Vr) denote t he set of all attainable 
outcomes (all possible values of the individual objective functions f i for x E Q). 
We introduce integer functions hk(Y) (k = 1, ... , r) expressing the number of 
values Vk taken in the achievement vector y. Having defined the functions hk 
we can introduce cumulative distribution functions: 

k 

lik(Y) = L hl(Y) , fork= 1, . .. , r . (17) 
1=1 

The function lik expresses t he number of outcomes smaller than or equal to 
Vk · Since we want to maximize all the outcomes, we are interest ed in the 
minimization of all t he functions lik. The following assertion is valid (Ogryczak, 
1997): for achievement vectors y', y" E V"\ 

8(y') ~ 8(y") {::> h(y') ~ h(y"). (18) 

Equivalence (18) permits one to express syn~.metric efficiency for problem (1) in 
terms of the standard efficiency for the multiple criteria problem with objectives 
h(f(x)) : 

min {(li1(x), li2(x) , .. . , li,.(x)) : x E: Q} . (19) 

PROPOSITION 3.2 A feasible sol·ution x E Q ·is a symmetrically efficient solttlion 
of the mnltiple criteria problem {1}, if and only if it is an efficient solution of 
the multiple criteria problem ( 19). 

T he quantity lik (Y) can be computed directly by the minimization: 

m. 

lik(Y) = min L Zki 
i = l 

s .t. vk+l - Y.i ~ Mzki , Zki E {0, 1} fori= 1, . . . ,m, 

where M is a sufficiently large constant. He: ce, the multiple criteria model (19) 
can be formulated as the following mixed integer multiple criteria problem: 

[ 

m m m l 
min t; z 1i, t; Z2i, . . . , t; z.,. _ l. i 

s .t. 
Vk+l - J;(x) ~ M zki fori= 1, . .. ,m, k = 1, . . . ,r - 1, 
Zl.oiE {0, 1} for ·i= 1, . . . , 7n, k=1, . . . , r-1 , 
x E Q. 

(20) 

Note that li,.(y) = m, for any y which means that the r-th criterion is always 
constant and t herefore redundant in ( 19). :Moreover 

~ Vk - Vi.·+l -, ( ) _ !__ ~ 1 ~ [ ] v,. + 6 L!;- y - 6 VJ,hk(y) =- 6 Y·i = E y, 
m. m. . . ·m., 
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where the weights (vk-vk+t)fm are negative. Hence, when applying to problem 
(19) the weighting approach based on maximization (note the sign change) of 
the weighted combination with weights Wk = (vk - Vk+t)fm fork= 1, ... , r -1, 
one gets a symmetric efficient solution equivalent to the maximization of the 
mean outcome (the expected value of the corresponding random variable). In 
other words, the maximization of the mean (expected) outcome is equivalent to a 
specific weighting aggregation (9) of the multiple criteria optimization problem 
(19). The same can be shown for the expected utility maximization (Levy, 
1992). One may notice that for any utility function u 

Certainly, in the case of a strictly increasing utility function tt, the corresponding 
weight coefficients are negative. Therefore, maximization of the expected utility 
generates an efficient solution of problem (19) and consequently a symmetric 
efficient solution to the original multiple criteria problem (1) . On the other 
hand, as based on the weighting approach (9), the expected utility approach 
does not allows us to identify all the symmetric efficient solutions. Especially 
so, in so far as the problem (20) is discrete even for a convex feasible set Q . 

3.3. FSD and general MCO models 

The vector h(y) has a lucid interpretation when its coefficients are considered 
as a function of the corresponding values Vk. i.e., the pairs (vk, hk(Y)/m) for 
f..: = 1, . .. , r are considered. The function can be extended to a right continuous 
non decreasing function of the outcome value v. The extension is based on the 
definition of h,.(y) for any v ERas a number of outcomes'!}; less or equal to v. 
I.e. 

for v 2: Vr 

for Vk ::; v < VJ.:H 

for v < 111 

Note that ~hv(Y), considered as a function of v represents the (right con
tinuous) cumulative distribution function of random variable Y generating the 
outcomes distribution y;: 

1 -
-hv(Y) = P{Y::; v} = F}.(v ). 
771 

(22) 

Hence, inequality h(y') ::; h(y") represents the relation of the first order stochas
tic dominance (FSD) (Levy, 1992). Recall that the weak FSD dominance is 
defined as 

Y' ?:Fso Y" ¢;> Fv,(v)::; F..,.(v) Vv E R. 
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while the strict FSD dominance is defined in the standard way 

Y' >-FsD Y" {::} Y' ~FSD Y" and Y" 'if. FsD Y'. 

W. OGRYCZAK 

We say that random variable Y' dominates Y" according to FSD if Fy• ( v) < 
Fyu ( v) for any v E R, and there exists v0 E R such that a strict inequality 
holds. 

The relation of first stochastic dominance is crucial for the assessment of the 
risky profit defined by random variables (Whitmore and Findlay, 1978). In a 
general case it is based on the comparison of the infinite number (continuum) 
of criteria defined as values of the cumulative distribution functions F( v) for 
every possible real target v E R . Note that having a cumulative distribution 
function representing a lottery y, one can define the order outcomes Bi(Y) as 
values of the corresponding ·i/m-quantiles. For this purpose one may consider 
the left continuous generalized inverse of the cumulative distribution function: 

F~-l)(p) = inf{v : Fv(v) 2: p} for 0 < p ~ 1. (24) 

Values F1~-l) (!3) represent /3-quantiles of Y providing alternative characteriza
tion of FSD as: 

(25) 

This is again a comparison model based on the infinite number (continuum) of 
criteria defined as values of the quantile functions p( - 1) (/3) for every possible 
tolerance level 0 < f3 ~ 1. If random variable Y represents a lottery y with m 
equally probable tickets, then 

Bi(Y) = p(- 1
) (i) fori= 1, ... , m 

v m. 

and the symmetric dominance 8(y') ~ 8(y") is equivalent to (25). 
The first stochastic dominance can be verified directly by comparing values 

of the cumulative distribution functions (23) or by comparing values of the 
quantile functions (25). Both approaches formally require infinite numbers of 
inequalities to be verified, for all possible outcome values v E R, and all possible 
tolerance levels f3 E (0, 1] , respectively. In t he case of finite lotteries the quantile 
conditions (25) can be reduced to a. finite system of inequalities. Similarly, in 
the case of a finite set (grid) of possible outcomes the cumulative distribution 
conditions (23) are reduced to a finite system of inequalities. We illustrate this 
with the following example. 

EXAMPLE 3.2 Let 1tS consider a choice among three mndom variables A, B 
and C representing r-eturns (in %) jTOm some investments. The distributions of 
outcomes are given in Table 1. 

One may easily notice that all the o·utcom.es aTe intege1·s between 3 and 11. 
T.Tn~ nn +/, , T<'C:n ""''~'~ J,p ••Prifi.erl rli7'Pr.f.lu o.r:r:m·dina to (23) b'IJ examination of 
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Table 1. Sample outcome distributions 
A B c 

Outcome Probability Outcome Probability Outcome Probability 
3 0.4 5 0.1 5 0.1 
4 0.3 6 0.2 7 0.1 
6 0.1 8 0.1 8 0.2 
7 0.1 9 0.2 9 0.2 
9 0.1 10 0.4 11 0.4 

Table 2. FSD verification 
v 3 4 5 6 7 8 9 10 11 

FA(v) 0.4 0.7 0.7 0.8 0.9 0.9 1.0 1.0 1.0 
Fa(v) 0.0 0.0 0.1 0.3 0.3 0.4 0.6 1.0 1.0 
Fc(v) 0.0 0.0 0.1 0.1 0.2 0.4 0.6 0.6 1.0 

the corTesponding cumulative distribution functions at integers from 3 to 11. 
Table 2 contains these values. One can see that C >- FSD B >- FSD A. Thus, the 
investment C is the best choice for all decision makers maximizing outcome. 

ThP- same conclusion can be deT"ived by the analysis of quantile relations 
(25). Namely, all the outcome distributions can be completely characterized by 
quantiZes corresponding to tolerance levels i/10 fori= 1, . . . , 10 (or expressed as 
lotteries with 10 equally probable tickets). Table 3 contains the quantile values 
(ordered achievement vectors). 

Table 3. Symmetric dominance verification 
i 1 2 3 4 5 6 7 8 9 10 

'\ lJ i 3 3 3 3 4 4 4 6 7 9 O;(a) = F? (10 ) 
O;(b) = Ffl)(fo) 5 6 6 8 9 9 10 10 10 10 

O;(c) = Fc-l)(fo) 5 7 8 8 9 9 11 11 11 11 

Two possible approaches to the FSD verification imply two corresponding 
multiple criteria optimization models for decisions under risk. One depends 
on selection of a finite set of target outcome values v1 < v2 < · · · < Vr and 
minimization of criteria Fy ( vk) for k = 1, ... , r. In the case of scenarios with 
(possibly different) probabilities Pi such a single criterion can be expressed as: 

m 

Fy(vk) = min '2::: Pi Zki 
i=l 

s.t.vk -Yi+~:::::;Mzki, z~.:;E{0,1} fori = 1, ... ,m, 

(26) 

where e is an arbitrarily small positive parameter, while M is a sufficiently large 
constant. 
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The second approach depends on selection of a finite set of tolerance levels 
0 < /31 < (32 < · · · < (3,. and maximization of criteria F1S-1l(/3J.,) for k= 1, . .. , r·. 
In the case of scenarios with (possibly different) probabilities Pi , a single criterion 
can be expressed as: 

F~- l) (f3k) = maxtk 
s .t . tk- Y·i::;Mzk-i, ZkiE {0, 1} fori = 1, . . . ,m 

m 

2:::.:: PiZki ::; f3k - E' 

i=l 

where M is a sufficiently large constant . 

(27) 

Both the multiple criteria models are consistent with the FSD relation. The 
models themselves introduce binary variables , thus creating discrete structures 
independent ly of the nature of the feasible set Q. Nevertheless, the ARBDS 
methodology is capable interactive analysis of discrete problems. 

4. R isk aversion and equitable efficiency 

4.1. Equitable efficiency 

T he concept of symmetric efficiency does not limit the risk attitude of the DM. 
It covers both pessimistic (risk averse) and optimistic (risk seeking) preferences. 
In order to focus on the risk averse decision makers (Bell et al. , 1988), the 
preference model should satisfy the Pigou- Dalton principle of transfers . The 
principle of transfers states that transfer of a small amount from an outcome to 
any relatively worse- off outcome results iL a more preferred achievement vector, 
L e. 

Yi' > Yi" => y - c:ei' + c:ei" >- y for 0 < c: < Yi' - Y·i" . (28) 

In terms of outcome distributions t he principle of transfer depicts that any mean 
preserving contraction results in a more preferred (less risky) distribut ion. The 
ra tional preference relations satisfying the requirement of impartiality (12) and 
the principle of transfers (28) we will call hereafter equitable rational preference 
Telations. 

The equit able rational preference relations allow us to define t he concept 
of equitably efficient solution (Kostreva and Ogryczak, 1999), similar to the 
Pareto efficient solution defined with the rat ional preference relat ions. We say 
that t he achievement vector y' eq1titably dominates y" (y' >-e y"), iffy' >- y" 
for all equitable rational preference relat ions ~. We say t hat a feasible solution 
x E Q is equitably efficient (is an equit ably efficient solution of t he multiple 
criteria problem (1)) if and only if t here does not exist any x' E Q such that 
f(x' ) >-e f(x) . Note that each equitably efficient solution is also an efficient 
solution but not vice verse. 

The equitable dominance relation may be illustrated with the domination 
~h-, ~h,·o (1 ~ ~ H'rw th, "bnrb r rl r::l.t.innil.l rlnm in a nc.e relation. the sets D (v) are 
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Figure 3. Equitable dominance structure in R 2 

independent of y and they take the form of the nonnegative orthant. The dom
ination structure of the symmetric dominance is a union of the set defined by 
the nonnegative orthants for the achievement vector y and all its permutations 
(symmetric copies), as shown in Fig. 1. The domination structure of the equi
table dominance depends additionally on the location of an achievement vector 
y relative to the absolute equity line (y1 = Y2 = · · · = Ym)· In the general case, 
the set D(y) is not a cone and it is not convex. Fig. 3 shows D(y) fixed at y, 
i.e. the set y+D(y). Although, when we consider directions leading to outcome 
vectors dominating given y, i.e., S(y) ={dEY: y + d >- y} U {0}, we get a 
convex set. Fig. 4 shows S(y) fixed at y, i.e. the set y + S(y). 

The relation of equitable dominance can be expressed as a vector inequality 
on the cumulative ordered achievement vectors. This can be mathematically 
formalized as follows. Recall that we have introduced the ordering map 8 such 
that 81 (y) :-::; 1)2 (y) :-::; · · · :-::; Bm (y). This allows us to focus on distributions of 
outcomes impartially. Next, we apply to ordered achievement vectors 8(y), a 
linear cumulative map to get 

Bi(Y) = L IJj(Y) fori= 1, ... , rn. (29) 
j = l 

Hence, the coefficients of vector El(y) express, respectively: the worst (smallest) 
outcome, the total of the two worst outcomes, the total of the three worst 
outcomes, etc. 
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Figure 4. The set of outcomes equitably dominating y E R 2 

Directly from the definition of 8 , it follows that for any two achievement 
vectors y' , y" E Y equation 8(y' ) = 8(y") holds if and only if y' and y" have 
the same distribution of outcomes (i.e. , 8(y') = 8(y")). Similarly, inequality 
8(y') ~ 8(y") implies 8 (y' ) ~~ 8(y") but the reverse implication is not valid. 
For instance, 8(2, 2, 2) = (2, 4, 6) ~ (1, 3, 6) = 8(1, 2, 3) and simultaneously 
8(2,2 , 2) "l 8(1,2,3). 

The relation 8(y') ~ 8(y") was extensively analyzed within the theory of 
majorization (Marshall and Olkin, 1979), 'Nhere it is called the relation of weak 
supermajorization. The theory of majorization includes the results which allow 
us to derive the following assertion (I<ostreva and Ogryczak, 1998). 

PROPOSITION 4.1 Achievement vector y' E Y equitably dominates y" E Y , if 
and only if 1Ji (y') ~ 1Ji (y") fm· all i E I where at least one strict inequality holds. 

Proposition 4.1 allows us to express equitable efficiency for problem (1) in 
terms of the standard efficiency for the multiple criteria problem with objectives 
G(f(x)): 

max {(1i1(f(x)), 1iz(f(x)), . .. , 1J.,(f(x))) X E Q} . (30) 

A feasible solution x E Q is an equitably efficient solution of the multiple criteria 
problem (1) , if and only if it is an efficient solution of the multiple criteria 
problem (30). 

The objective functions in a multiple criteria problem can be divided by 
positive constants without affecting t he set of efficient solutions. For better un
derstanding of the multiple criteria problem (30), one may consider normalized 

- fi 1--' t .: •~·· .: - 1 , ., t lmc: ,.PnrPc:r-mtin e· averages of the i 
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smallest outcomes in y . Note that the first objective B1 (y)/1 represents then 
the worst outcome (the maximin approach (6)) and the last objective Bm(Y)/m 
represents the mean outcome ~ I:7~1 y; (the maxisum approach ( 5)). On the 
other hand, the risk seeking strategy of the maximization of the best possible 
outcome (the maximax approach) is not available in the multiple criteria model 
(30). Ogryczak (2000) has shown how various mean-risk approaches to portfolio 
optimization can be derived from the model (30). 

The optimization formula (15) for fh(y) can easily be extended to define 
Bk(y). Namely, for any k = 1, 2, ... , m the following formula is valid: 

m 

Bk(Y) = max ktk- L dki 
i=l 

s.t. tk- y; :S dk;, dki ~ 0 
dk; :S Mzk;, Zki E {0,1} 

fori= 1, ... , 1n, 
fori= 1, ... , m, 

(31) 

m 

L Zki:::; k- 1, 
i=l 

where M is a sufficiently large constant (larger than any possible difference 
between various individual outcomes y;). However, the optimization problem 
defining the cumulated ordered outcome can be dramatically simplified since all 
the binary variables (and the related constraints) turn out to be redundant as 
shown in the following theorem. 

THEOREM 4.1 For any given vector y E R111
, the cumulated ordered coefficient 

Bk(Y) can be found as the optimal value of the following LP problem: 

m 

Bk(Y) = max ktk- L dki (32) 
·i=l 

s.t. tk- y; :S dki, dki ~ 0 fori= 1, . .. , no. 

Proof. In order to prove the theorem we will show that the optimal value of 
problem (32) is the same as that of problem (31) . First of all, let us notice 
that any feasible solution of (31) (when ignoring variables Zki) is also feasible to 
problem (32). Moreover, such a solution has no more than/..; - 1 positive values 
of variables dki. Opposite, every feasible solution of problem (32) corresponds 
to a feasible solution of problem (31), provided that it contains no more than 
than k - 1 positive values of variables dki. 

On the other hand, for any feasible solution to (32) which contains s ~ f..; 

positive values of variables dki one can define an alternative feasible solution: 
tk = tk- 6.. and dki = dk;- 6.. for dki > 0, where 6.. is an arbitrary small positive 
number. For at least k positive values one gets 

·i= l i= l i=l 

which completes the proof. • 
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The entire cumulative ordered multiple criteria model (30) can be formulated 
as the following LP extension of the original multiple criteria problem: 

m rrl. rn 

max [h - 2::::: d1i, 2t2- L d2·i, .. . , ·rntm - 2::::: dmi] 

s.t . 
i=l i=l ·i= l 

tk - J.;(x) ::; dki, dki 2: 0 for i, k = 1, ... , m, 
XE Q. 

(33) 

When applied to an LP multiple criteria problem (1) the extended problem 
remains within t he class of LP. We illustrate this with the following example of 
an LP model for portfolio optimization. 

EXAMPLE 4.1 Consider a simple problem of poTifolio optimization. Let J = 
{ 1, 2, . .. , n} denote the set of sewrities in which one intends to invest a capi
tal. We assume, as usual, that for each security j E J there is given a vector 
of data ( Cij )i=l, ... ,m (hereaft er ref erred to as outcome), where Cij is the ob
served (or f orecasted} rate of return of security j under scenario i (Zenios , 
1995). We consider discrete distributions of returns defined by the fin ite set 
I = { 1, 2, .. . , 1n} of equally pmbable scenarios. The outcome data forms an 
m X n matrix C = ( cij)i=l , .. . ,m;j=l, ... ,n, whose columns correspond to secu
rities, while rows ci = ( Cij )j=l ,2 , ... ,n correspond to outcomes. Further, let 
x = (xj ) j =l ,2, ... ,n denote the vectm· of decision variables defining a portfolio. 
Each variable Xj expresses the portion of the capital invested in the correspond
ing security. Portfolio x gen erates the outcomes 

representing the portfolio returns under several scenarios. The portfolio selection 
problem can be considered as an LP optimization pmblem with m unifor·m ob
jective f1mctions fi(x) = CiX = 2:~'= 1 CijXj to be maximized (Ogryczak, 2000): 

n 

max { Cx : 2::::: x j = 1, x j ;:::: 0 fo r j = 1, ... , n} . 
j=l 

Typical investors represent risk averse preferences. Hence, o·ur portfolio opti
m ization pmblem can be considered a case of the multiple criteria pmblem (1} 
with the equitably rational preference model. Due to (33}, we can formula te the 
portfolio selection problem as the following multiple criteria LP model: 

max[81 , 82, .. . , 8m] 
s. t. 

m 

8k = kt1 - 2::::: dki fork== 1, .. . , m, 
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n 

tk - L CijXj :::; dki, dki ~ 0 joT i, k = 1, ... , m, 
j=1 

n 

L Xj = 1 and Xj ~ 0 
j=1 

joT j = 1, ... , n, 

covering all the mtional risk averse preferences. 
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Recall Example 3.1 showing a not connected symmetrically efficient set for a 
bicriteria LP problem. Fig. 2 shows the standard efficient set consisting of two 
line segments AB and BC, where A=(0,21), B=(9,18) and C=(23.4,0). While 
taking into account symmetric dominance we have eliminated segments AD and 
EF, thus resulting in the symmetric efficient set consisted of three segments: DB, 
BE and FC. Further, taking into account the equitable dominance we get the 
segment BE as the equitably efficient set. Actually, the equitably efficient sets 
for multiple criteria LP problems are always connected (Kostreva and Ogryczak, 
1999). 

4.2. Distribution approach 

Consider again the case when there exists a finite set of all possible out
comes of the individual objective functions and we can directly deal with the 
distribution of outcomes described by frequencies of several outcomes. Let 
V = { v1, v2 , ... , v,.} (where v1 < v2 < · · · < v,.) denote the set of all attainable 
outcomes (all possible values of the individual objective functions /i for x E Q). 
Recall that we have introduced integer functions hk(Y) (k = 1, ... , r) expressing 
the number of values Vk taken in the achievement vector y as well as the cumu
lative distribution functions hk(Y) expressing the number of outcomes smaller 
or equal to Vk· In order to take into account the principle of transfers we need 
to distinguish values of outcomes smaller or equal to Vk· For this purpose we 
weight vector h(y) to get: 

k-1 

h1(y) = 0 and hk(Y) = L (v1+1- v1)h1(y) fork= 2, ... ,r. (34) 
1=1 

Note that 

k - 1 I 

hk(Y) = L [(vl+1- v1) L hj(y)] 
1=1 j=1 
k-1 (35) 

= L(vk- v1)h1(y) fork = 2, ... , T. 

1=1 

In other words, hk(Y) expresses the total of differences between Vk and all the 
outcomes Yi smaller than Vk· Since (vk- vd > 0 for 1 < l < k, it follows from 
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(35) tha t vector function h(y) provides a unique description of the distribution 
of coefficients of vector y, i.e., for any y' , y" E Vm. one gets: 

h (y') = h(y") {:} h(y') = h(y") {:} e(y') = e(y"). 

Moreover the following assertion is valid (Ogryczak, 1997). For t he achievement 
vectors y' , y" E vm, 

h (y') ::; h(y") {:} 8(y') 2 8(y"). (36) 

Equivalence (36) permits one to express t he equitable efficiency for problem 
(1) in terms of the standard effi ciency for the nmltiple criteria problem with 
objectives h(f(x)): 

min {(h1(f(x)), h2(f(x)), . .. , h r(f(x)) ) X E Q}. (37) 

PROPOSITION 4 .2 A f easible solution x E Q is an equitably efficient solution of 
the multiple criteria problem (.l) , if and only if it is an efficient sol1d·ion of the 
1mtltiple criteria problem (37). 

Note that h1 (y) = 0 for any y which means that the first criterion is constant 

and redundant in problem (37). Moreover, mvr - h.r(Y) = 2:::~': 1 Yi · Thus, 
single objective minimization of the last criterion in problem (37) is equivalent 
to maximization of the sum of a ll the original criteria in problem (1). In other 
words, the maximization of the mean (expected) outcome is equivalent to a 
single criterion minimization in the multiple criteria optimization problem (37) : 

1 111 1 ~ 
E [Y] =-L Yi = v.,.- -h,.(y). 

1n rn 
·i=1 

One may notice that for any utility function u the corresponding expected utility 
(Levy, 1992) may be expressed as a linear combination of criteria h,.(y). Namely, 
it follows from (21) and (34) that: 

1 ~ ~:__., Wk-
E [u(Y)] = - L.....,; u(y;) = u(v,.) + L -hk(y), 

1n -' m 
i = 1 k =2 

where the weights Wk are given as: 

v.,.- V-1·-1 

Certainly, in t he case of a strictly increasing and concave utility function u, all 
~1-.n ... n; ~ l,~ .-.n,.ffi ,.,;,n t<, .,, <~rP n PP":ol.tivf' . Therefore. maximization of t he expected 
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utility generates then an efficient solution of problem (37) and, consequently, an 
equitably efficient solution to the original multiple criteria problem (1) . How
ever, as based on the weighting approach (9), the expected utility approach does 
not allows us to identify all the equitably efficient solutions. 

Formula (35) allows us to express h~..:(y) as a piecewise linear function of y: 

m m 

h~..:(Y)=L(v~..:-y;)+=L max{vk-y;,O} fork=1, ... ,r. (38) 
i=l i=l 

Hence, the quantity hk(Y) can be computed directly by the minimization: 

hk(Y) = min L tki 
i=l 

(39) 

s.t. v~..:- y; :S t/..:i, tki ~ 0 fori= 1, ... ,m.. 

Therefore, the entire multiple criteria model (37) can be formulated as follows: 

s.t. 
v~..: - fi(x) :S tki, tki ~ 0 for i = l, ... , m; k = 2, . . . , r, 
xEQ 

( 40) 

Note that contrary to problem (20), the above formulation does not use integer 
variables and can be considered as an LP modification of the original multiple 
criteria problem ( 1). 

4.3. SSD and general MCO models 

Formula (38) can easily be extended for any target values v E R to define the 
quantity hv(Y) as follows: 

m 

hu(Y) = L (v- Yi)+ for v E R. ( 41) 
i=l 

While ~hv(Y) represents the right continuous cumulative distribution function 

of the random variable Y generating outcomes y; (see (22)), f,hu(Y) is the 
expected shortfall to the target v and therefore ( Ogryczak and Ruszczy1l.ski, 
1999; 2001) the corresponding integral of Fy: 

- hu(Y) = E{(v- Y)+} = pC2l(v) = Fy(Od~. 1 Jv 
1n Y -oo 

(42) 

Hence, inequality h(y') :S h(y") represents the relation of the second order 
stochastic dominance (SSD) (Levy, 1992). Recall that the weak SSD dominance 
is defined as 

(43) 
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We say that random variable Y' dominates Y" according to SSD if Fl~~l (v) :::; 
FS~} (v) for any v E R, and there exists to E R such that a strict inequality 
holds. 

The SSD relation is crucial for decision making under risk. If Rx' >- ss 0 Rx", 
then Rx' is preferred to Rx" within all risk-averse preference models where larger 
outcomes are preferred (Whitmore and Findlay, 1978). In a general case it is 
based on the comparison of the infinite number (continuum) of criteria defined 
as values of t he the expected shortfalls p (Z) ( v) for every possible real target 
v E R. 

To obtain a quantile representation of the SSD we introduce t he second 
quantile function defined for a random variable Y as: 

Similarly to Fl(}l, the function F lS-2
) is convex. The graph of F~ - 2) is called 

the absolute Lorenz curve. T he pointwise comparison of the second quantile 
functions defines the so-called absolute (or general) Lorenz order (Shorrocks, 
1983). 

Recently, an intriguing duality relation between the second quantile function 
F~ - 2 ) and the second performance function FS2 ) has been shown (Ogryczak and 

Ruszczy1l.ski, 2002). Namely, function FlS- 2
) is a conjugent (Rockafellar, 1970) 

of F~2) , i.e., for every p E [0, 1], one gets 

F~-2l(p) = sup{17p -- FS2l(7J)}. ( 45) 
'7 

It follows from the duality theory that we may fully characterize the SSD relation 
by using the conjugate function pC-2l: 

Y' t sso Y" ¢:> 
(-2) (-:•) Fy, (p) 2: Fy, · (p) for all 0:::; p:::; 1. (46) 

In other words, t he absolute Lorenz order is equivalent to the SSD order. 
If a random variable Y represents a lottery y with m equally probable tickets, 

then 

1 - ( 2) ( i ) - Bi (Y) = F ,- -
rn l 1n 

fori = 1, . .. ,1n 

and the equitable dominance G(y') ~ G(y") is equivalent to ( 46). Vector G(y) 
can be viewed graphically with the absolute Lorenz curve (Fig. 5) connecting 
point (0,0) and points (ijm,B,(y)jm.) for i = 1, . .. ,m. Note that t he construc
tion of the absolute Lorenz curves is then similar to the standard Lorenz curve 
(Marshall and Olkin, 1979) for the population of m outcomes. However, the 
~•~nrl .-, ,·rl T.,..,.,w ,..,,.""'" ,. ,., f'nnc::i rlPrPr1 fnr nns itivP. outcmnes and norn1alized by 
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Figure 5. G(y) and the absolute Lorenz curves. 
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their mean. Therefore, in terms of the Lorenz curves no achievement vector can 
be better than the vector of equal outcomes. Comparison of absolute Lorenz 
curves takes into account also values of outcomes. Vectors of equal outcomes 
are distinguished according to the value of their outcomes. They are graphically 
represented with various ascent lines in Fig. 5. With the equitable dominance, 
an achievement vector of large unequal outcomes may dominate an achievement 
vector with small equal outcomes. 

The second stochastic dominance can be verified directly by comparing val
ues of the second cumulative distribution functions ( 43) or by comparing values 
of the quantile functions ( 46). Both approaches require formally infinite num
bers of inequalities to be verified, for all possible outcome values v E R, and all 
possible tolerance levels (3 E (0, 1], respectively. In the case of finite lotteries 
the quantile conditions ( 46) can be reduced to a finite system of inequalities. 
Similarly, in the case of a finite set (grid) of possible outcomes the cumulative 
distribution conditions ( 46) arc reduced to a finite system of inequalities. We 
illustrate this with the following example. 

EXAMPLE 4.2 Let us consider a choice among three random variables A, B 
and C representing returns (in %) from some investments. The distributions of 
outcomes are given in Table 4. 

All the possible outcomes are integers between 4 and 10. Hence, for the 
FSD verification one may examine the corresponding cumulative distribution 
functions at integers from 4 to 10. Table 5 contains these values. One can see 
that there is no FSD relation among the investment opportunities. The same 
conclusion can be derived by examination of the inverse cumulative distributions 
(equivalent lotteries) as qiven in Table 6. 
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Table 4. Sample outcome distributions 
A B c 

O utcome Probability Outcome P robability Outcome Probability 
4 0. 2 5 0.1 6 0.4 
6 0.3 6 0.3 7 0.3 
8 0.4 7 0.2 8 0.2 

10 0.1 8 0.3 10 0.1 
9 0.1 

Table 5. SSD verification 
v 4 5 6 7 8 9 10 

FA(v) 0.2 0.2 0 .5 0.5 0.9 0.9 1.0 
Fa(v) 0.0 0.1 0.4 0.6 0.9 1.0 1.0 
Fc(v) 0.0 0.0 0 .4 0.7 0.9 0.9 1.0 

Ft(v) 0.0 0.2 0.4 0.9 1.4 2.3 3.2 
F 2)(v) 0.0 0.0 0.1 0.5 1.1 2.0 3.0 

F~2)(v) 0.0 0.0 0.0 0.4 1.1 2.0 2.9 

In order to examine if the SSD relation occurs among the investment oppor
tunities we compute the cumulative ordered quantiles 8 (absolute Lorenz curves) 
as in Table 6. One may notice that C >- ssD B >-ssD A. Hence, the investment C 
is better under all risk averse preference models. The same conclusion can be de
rived by examination of the cumulative distrib1dion values FP)(vk) = hk(y)jm, 
presented in Table 5. As in our case VI = 4, v2 = 5, ... , V7 = 10 all the differ
ences vz - vz-I are constant and equal to 1, the quantities hk(y)jm are easily 
generated by a dir·ect cumulation of values from Table 5. 

Table 6. Equitable dominance verification 
i 1 2 3 4 5 6 7 8 9 10 

c\ lJ' ; 4 4 6 6 6 8 8 8 8 10 B;(a)=F
1

_ (TQ) 
B;(b) = F - l )(-/o) 5 6 G 6 7 7 8 8 8 9 

O;(c) = F~- 1 \-/o) 6 6 6 6 7 7 7 8 8 10 

faB;(a) = F? 2)(io) 0.4 0.8 1.4 2.0 2.6 3.4 4.2 5.0 5.8 6.8 
I - _ -2) ; 

0.5 1.1 1.7 2.3 3.0 3.7 4.5 5.3 6.1 7.0 TOB;(b) - Ff (TQ) 
-foe;( c) = Fi;- 2)( -fo) 0.6 1.2 1.8 2.4 3.1 3.8 4.5 5.3 6.1 7.1 

Two dual approaches to the SSD veriJ1cat ion imply two possible multiple 
criteria optimization models for risk aversion preferences. One depends on se
lection of a finite set of target outcome values VI < v2 < · · · < v,. and min
imization of criteria F~2l ( vk) for k = 1, .. . , r. This approach may be very 

• · - ---'L1- r __ __ ,., f'7; ."~a.·rn<> nn 1 QQfl\ mnrlPli n !t of tare:et values. In the 
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case of scenarios with (possibly different) probabilities Pi, following the formula 
F~2l(v) = E{(v- Y)+}, such a model can be expressed as: 

1nin[T1, T2, ... ,Tr] 

s.t. 
m 

Tk = L Pitki fork= 1, ... ,r (47) 
i=l 

Vk- fi(x) ::; tki, tki 2 0 fori= 1, ... , m; k = 1, ... , r 
X E Q. 

The second approach depends on selection of a finite set of tolerance levels 
0 < fJ1 < fJ2 < · · · < {3,. ::; 1 and maximization of criteria F~ - 2

) (f3k) for 
k = 1, . . . , r. This approach is very attractive when one needs to emphasize the 
risk of extreme events (Haimes, 1993). In the case of scenarios with (possibly 
different) probabilities Pi, due to (45), such a multiple criteria model can be 
expressed as: 

max [(h, 82, ... , Dr] 
s.t. 

m 

i=l 

fork= 1, ... , r 

tk - fi(x) ::; dki, dki 2 0 fori = 1, ... , m; k = 1, ... , r 
X E Q. 

(48) 

Both of the multiple criteria models are consistent with the SSD relation in 
the sense that the dominance of two distributions of outcomes Y' ~ssv Y" 
implies 7£ ::; Tf and 5~ 2 5~ for all k = 1, ... , r, respectively. Moreover, the 
models result in LP expansions of the original decision problem thus offering, 
for instance, multiple criteria LP models for portfolio optimization. The models 
open up an opportunity to apply various interactive techniques of multiple cri
teria decision support. In particular, the ARBDS methodology can be used to 
support decisions under risk while preserving the risk averse preference model. 

5. Concluding remarks 

Multiple criteria optimization is closely related to the theory of decisions under 
uncertainty. Most of the classical solution concepts commonly used in mul
tiple criteria optimization have their origins in some approaches to handing 
uncertainty in decision analysis. Actually, as shown in the paper, optimization 
of multiple independent criteria and optimization of a scalar uncertain out
come with various realizations under several scenarios are equivalent problems 
since the Pareto efficiency concept matches both of the corresponding preference 
models. 
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In this paper we have shown how that decisions under risk, and specifically 
the risk aversion preferences, can be effectively modeled with the multiple cri
teria optimization methodology. Multiple criteria models for general problems 
of decision under risk may require the use of auxiliary integer variables since 
they allow for possible risk seeking preferences. The risk averse preferences can 
be modeled by the use linear programming techniques, leading to very simple 
multiple criteria models. The models provide a methodological basis allowing 
to take advantage of the interactive multiple criteria techniques for the process 
of decision support under risk. In particular, interactive techniques of the refer
ence point method can be effectively applied to linear as well as mixed integer 
models. 
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