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Abstract: Multiple-criteria classification (sorting) problem con­
cerns assignment of actions (objects) to some pre-defined and prefer­
ence-ordered decision classes. The actions are described by a finite 
set of criteria, i.e. attributes, with preference-ordered scales. To per­
form the classification, criteria have to be aggregated into a prefer­
ence model which can be: utility (discriminant) function, or outrank­
ing relation, or "if. .. , then ... " decision rules. Decision rules involve 
partial profiles on subsets of criteria and dominance relation on these 
profiles. A challenging problem in multiple-criteria decision making 
is the aggregation of criteria with ordinal scales. We show that the 
decision rule model we propose has advantages over a general utility 
function, over the integral of Sugeno, conceived for ordinal criteria, 
and over an outranking relation. This is shown by basic axioms 
characterizing these models. Moreover, we consider a more general 
decision rule model based on the rough set theory. The advantage 
of the rough set approach compared to competitive methodologies is 
the possibility of handling partially inconsistent data that are often 
encountered in preferential information, due to hesitation of decision 
makers, unstable character of their preferences, imprecise or incom­
plete knowledge and the like. We show that these inconsistencies 
can be represented in a meaningful way by "if. .. , then ... " decision 
rules induced from rough approximations. The theoretical results 
reported in this paper show that the decision rule model is the most 
general aggregation model among all the considered models. 

Keywords: multiple-criteria classification, preference modeling, 
decision rules, conjoint measurement, ordinal criteria, rough sets, 
axiomati7.ation _ 
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1. Introduction 

Making decisions with respect to a set of actions (objects) requires, usually, tak­
ing into account multiple criteria representing different and conflicting points of 
view on evaluation of the actions. Multiple-criteria decision making (MCDM) 
may concern either a choice of t he best a.ction, or a ranking, or a classifica­
tion of the set of actions (see Roy, 1985; Gal, Stewart and Hanne, 1999). It 
is well known that a MCDM problem is mathematically ill posed, because t he 
only objective information that follows from its mathematical formulation is the 
dominance relation. Action x dominates action y if x is at least as good as y on 
all considered criteria. If it is the case, xis objectively better than y. Apart from 
trivial problems, this information does not permit , however, to solve a part icular 
MCDM problem because the most interesting actions, t hat are non-dominated, 
are non-comparable to each other, unless one gives additional information per­
mitting to aggregate multiple criteria into a single preference model. T he pref­
erence model establishes a preference structure in t he set of actions; a suitable 
exploitation of this structure yields a recommendation of the "best compromise 
solution" for either choice, or ranking, or multi-criteria classification. 

The information permitting to move forward the solution process is called 
preferential information; its acquisition, construction of the preference model 
and, finally, exploitation of the preference structure involve a single or multiple 
decision makers (DM) in the solution process - for this reason this is not an 
automatic solution procedure but a decision aiding method. 

A much-desired feature of decision aiding is transparency of the methodology 
that should be intelligible, at least intuitively, for the users. The transparency 
may enhance the confidence to recommen ations and facilitate their robustness 
analysis. There are two elements of crucial importance for the transparency: the 
type of a preference model and t he type of DM's preferential information used 
for its construction. Very often t he model adopted requires this information to 
be given in terms of preference model parameters, such as importance weights, 
substitution ratios and various thresholds. Giving such information requires a 
great cognitive effort of t he DM. 

It is generally acknowledged, however, tlwt people prefer to make exemplary 
decisions rather than to explain them in terms of specific parameters. For 
this reason, the idea of inferring preference models from exemplary decisions 
provided by the DM is compatible with the aim of transparency. Artificial 
intelligence and, particularly, inductive learning approach, submits a simple 
idea of inferring the preference model in terms of decision rules being logical 
statements of the type "if. .. , then. ~ . " . Such preference model is comprehensible 
for the users, because it speaks the language of examples, and its distributed 
form is a ble to represent local trade-offs and dependencies among criteria that 
are hidden by more synthetic models, like a utility function . 

The exemplary decisions may, however, be inconsistent because of limited 
rl i",...rimin,trwv n()WPT" ()f r rit.Pria and due to hesitation ofDMs, unstable character 
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of their preferences, imprecise or incomplete information, etc. (see Roy, 1989). 
Inconsistent examples concern pairs of actions (x, y) such that x dominates y, 
however, x has been assigned to a worse class than y. These inconsistencies 
cannot be considered as simple error or noise. They can convey important in­
formation that should be taken into account in the construction of the DM's 
preference model. To deal with this problem, the authors have adapted the 
rough set theory (Pawlak, 1982, 1991; Pawlak and Slowi1'tski, 1994) that, in its 
classic form, is not able to use the information about preference order in at­
tribute domains, i.e. about scales of criteria (Greco, Matarazzo and Slowi1'tski, 
1999, 2000, 2001a, 2002a). The authors' extension of the rough set concept 
permits a separation of certain and doubtful knowledge about the DM's prefer­
ences by distinction of different kinds of decision rules, depending whether they 
are induced from lower approximations of decision classes or from the bound­
aries of these classes composed of inconsistent examples that do not observe the 
dominance principle. 

The above two elements, preference information (possibly inconsistent) in 
terms of exemplary decisions and preference model in terms of rules, are the 
main features of our methodology characterized in this paper with respect 
to multiple-criteria classification problem (also called multiple-criteria sorting 
problem). Let us recall that classification concerns an assignment of a set of 
actions to a set of pre-defined decision classes. The actions are described by 
a set of criteria, i.e. attributes with preference-ordered domains (scales). The 
decision classes are preference-ordered. 

Although multi-attribute classification is the most popular problem consid­
ered also in Artificial Intelligence and its derivative- Knowledge Discovery and 
Data Mining - this methodology ignores the preference scale that gives to reg­
ular attributes the meaning of criteria. On the other hand, the usual MCDM 
methodology assumes that all attributes are criteria. Our methodology, based 
on the extended rough set approach, permits to take into account both regular 
attributes and criteria in multiple-criteria classification, which makes sense in 
many real decision problems. 

Summing up this introduction, one can remark that the central problem of 
any decision-aiding methodology proposed for multiple-criteria and/or multiple­
attribute classification is the aggregation of the multiple criteria and attributes 
into a single preference model. In this paper, we propose to compare different 
paradigms used to solve this central problem by different theories (see Table 1.1). 
This comparison will be made at the level of axiomatic foundations, which has 
no precedence in the theoretical research concerning multi-criteria classification. 
The axiomatic approach is interesting for at least three reasons: 

• it exhibits differences between preference models and methods, 
• it permits to interpret methods conceived for one model in terms of another 

model, 
• knowing the basic axioms, one can pass from one method to another with 

diff0.rPnt. nrPfPrPnf'A mrvlal" 
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Moreover, we will consider aggregation of ordinal criteria that has been studied 
much less than that of cardinal criteria (see Roberts, 1979). Among several 
aggregation models, a particular interest has been paid recently for an integral 
proposed by Sugeno (1974), able to deal with ordinal data; it has been considered 
the most general ordinal aggregation operator of the max-min average type. It 
appears, however, that this operator has some unpleasant limitations: the most 
important is the so-called commensurability (Modave and Grabisch, 1998), i.e. 
the evaluations with respect to each considered criterion should be defined on 
the same scale. Comparison of the Sugeno integral wit h the decision rule model 
at the axiomatic level permits to show other limitations of the former. 

Table 1.1. Different paradigms of aggregation and preference representation 

Theory (paradigm) Main preoccupation The aggregation 
(axiomatic basis) model shows 

D ecision Theory Defini t ion of p refereuce structures Relation in X 
Measurement Theory Can cellation property Function, 

like in conjoint 1neasuren1e nt 
Measure Theory Cap acity Weights or interac tions 

& or a1nong criteria, like in 
Fuzzy sets fuzzy m easure Choquet integral 

or S ugeno integral 
Artificial Intelligence, Boolean or pseudo-Boolean function, Knowledge, 

Logical Analysis of Data d ecis ion rules like in knowledge discovery 
& Rough Sets or decisio n trees or data 1nining 

This article is extending a preliminary version (Greco, Matarazzo and Slo­
wit1ski, 2001b) that did not include all the results related here. For the reason 
of space limitation, we are omitting formal proofs. The article is organized as 
follows. In Section 2, an axiomatic characterization of multiple-criteria classifi­
cation is presented. The main result is a. theorem proving equivalence of four ele­
ments: a simple cancellation condition, a utility function with a set of t hresholds 
which works as a discriminant function. an outranking function which, together 
with a set of reference actions, operates as a decision model of ELECTRE TRI­
like methods (Roy and Bouyssou, 1993), and a set of "if .. , then . . . " decision 
rules. In Section 2, we give, moreover , a theorem characterizing multiple-criteria 
classification based on Sugeno integral utility function, in terms of a simple can­
cellation condition or, equivalently, in terms of a set of "if. .. , then ... " decision 
rules having a specific syntax. Sections 3 presents main steps of the rough 
set approach to multiple-criteria classification. Using the concepts recalled in 
Section 3, we give in Section 4 a result on representation of multiple-criteria 
classification in case of inconsistent data. Section 5 groups conclusions. 

2. Axiomatic foundations of multiple-criteria classifica­
tion and associated preference models 

2.1. A representation theorem 
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X= [1~1 X;, where X; is an evaluation scale of criterion i = 1, ... , n. With ap­
propriate topological conditions we can also work with infinite non-denumerable 
space, but in this paper, for the sake of simplicity, we will skip this possibility. 
When aggregating multi-criteria evaluations within a preference model, we will 
exploit the ordinal character of the criteria scales only. This means that eval­
uations on particular criteria are considered as if they were words (linguistic 
qualifiers, like bad, medium, good, very good) even if an original scale was nu­
merical. Let (x;z_;), x; EX; and z_; EX_;= IT]=l,j#i Xj, denote an element 
of X equal to z except for its i-th coordinate being equal to x;. 

Moreover, let Cl = {Clt, t E T}, T = {1, ... , 1n}, be a set of classes of X, 
such that each x E X belongs to one and only one class Clt E Cl and no class 
Clt is empty. We suppose, moreover, that the classes of Cl are increasingly 
ordered, i.e. for all r, s E T, such that r > s, the elements of Clr have a better 
comprehensive evaluation than the elements of Cl8 • In consequence, the classes 
of Cl are equivalence classes of a weak preference relation t: being a complete 
preorder, and we say that Cl is a classification in X. 

Let us also consider the following upward and downward unions of classes, 
respectively, 

Clt = U Cls, Clf = U Cls. 
s~t 

Observe that Clt = Cl'i, = X, Cl'i, = Clm and Clt = Ch. We will use these 
unions in the syntax of decision rules in order to handle the preference order of 
classes and to respect the dominance principle. It requires that actions having 
not-worse evaluation with respect to a set of considered criteria than a referent 
action cannot be assigned to a worse class than the referent action. 

The classification decision is generally modeled by one of three models: util­
ity function (scoring methods, Capon, 1982, discriminant analysis, Altman, 
1968, UTADIS, Zopounidis and Doumpos, 1998, etc.), outranking relation (as in 
ELECTRE TRI, Roy and Bouyssou, 1993) or decision rules (as in Dominance­
Based Rough Set Approach, Greco, Matarazzo and Slowi1'lski, 1999, 2001a, 
2002a): 

[> Utility function f ( ·) gives a real value f ( x) to each x E X and assigns x 
to Clt if f(x) ;:::: Zt, where Zt, t = 2, ... , m, are m- 1 ordered thresholds 
satisfying 

Z2 < Z3 < ... < Zm. 

[> Outranking relationS is a binary relation on X such that for each .1:, y E X, 
xSy means "xis (comprehensively) at least as good as y". An outranking 
relation S on X assigns x to Clt if xSpt, where pt, t = 2, ... , m, are 
m, - 1 reference profiles p1

, such that pt+I dominates p1 (i.e. pt+l is at 
least as good as pt with respect to each criterion i and there is at least 
one criterion for which pt+l is strictly preferred to p1 ), t = 2, .. . , m- 1. 

[> A set of "if. .. , then . .. " decision rules is a set oflogical implications whose 
SyntaX is "if Xil iS at }east aS good aS r" n.nrl T.".-, i<:: ::1t lP»d "" rrr.r.rl ~~ ~·-
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and . .. and x .;h is at least as good as Tih, then x E Clf", where Xi1 , ril E 

Xil, X;2,7"i2 E xi2 , ... , :"E.;h , Tih E xi/, with {i1,i2, ... ,ih} ~ {1 , ... ,n} 
and r = 2, . .. , m . These decision rules are called "at least" decision rules. 
Let us consider the case where for each criterion i = 1, . . . , n there exists 
a function gi : x i ____. R such that for each x, y EX: gi(Xi):?:: gi (Yi) ¢:} X is 
at least a good as y with respect to criterion i (i.e. x; is at least as good 
as Yi)· In this case, an "at least" decision rule can also be written as 

"if gil(xil):?:: 9il (r,.l) and gi2(~~i2):?:: gi2(ri2) and .. . 

and gih(Xih):?:: gih(rih), then x E C lf. " 

with {i1 , i2, ... ,ih} ~ {l, . .. , n} and r = 2, . . . , m . The classification of 
x E X with "at least" decision rules is done according to t he following 
procedure: 

• x E Clt if and only if there exists a rule matching x that assigns x 
to Cl~ , and t here exists no rule matching x that assigns x to Clf, 
where s > t; 

• x E Cl1 if and only if there exists no rule matching x. 

The following result is a representation theorem for t he multiple-criteria clas­
sification problem, stating t he equivalence between a very simple cancellation 
property, a general utility function, a very general out ranking relation and a set 
of decision rules. Let us mention that equivalence of the considered cancellation 
property and the utility function was already noted by Goldstein (1991), within 
the conjoint measurement approach, for t he special case of t hree classes. 

THEOREM 2.1 The following four pTOpos·itions are equivalent: 
1) (cancellation pTOpe'l'ty) for each i == 1, ... ) n , for each Xi, Yi E xi and 

a_i,b_i E X_i , and for each r,s E {1 , . .. ,m}: 

{(x.;a-i) E C l,. and (yib-i) E Cl8 } 

=? {(yia-i ) E Cl~ or (xib_ i ) {:: C l f}, 

2) (utility function) there exist 

• functions gi :X; - + R f or each i = 1, .. . , n , called criteria, 

• function f : Rn ____. R, non-deC'rea.sing in each ar-gument, called utility 
function , 

• m - 1 ordered thresholds Zt, t = 2, ... , m , satisfying 

Z2 < Z3 <. · · < Zm 

such that f or each x E X and each t = 2, ... , 1n, 

f[g1(xl),g2 (x2), ... ,gn(J:,)J:?:: Zt {::} x E Cl~, 

3) (outmnl.:ing function and relation) the·re exist 
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• function s : R 2
n ---+ R, non-decreasing in each odd argument and 

non-increasing in each even argument, called outranking function, 

• m - 1 reference profiles pt, t = 2, ... , m, satisfying 

gi(P2
) :S g;(p3

) :S ... :S gi(Pm), fori= 1, ... , n, 

such that for each x EX and each t = 2, ... , m 

s[gl(xl),gl(Pt),g2(xz),g2(Pt), ... ,gn(Xn),gn(Pt)]2: 0 <*X E Clf, 

(N.B. s[gl(xl),gl(Pt),gz(x2),g2(Pt), ... ,gn(Xn),gn(Pt)] 2: 0 <* xSpt, 
where S is a binary outranking relation), 

4) ("at least" decision rules) there exist 

• functions 9i :Xi ---+ R for each i = 1, ... , n, called criteria, 

• a set of "at least" decision rules whose syntax is 

"if 9i1(Xil) 2: ril and 9iz(xiz) 2: riz and ... 

and 9ih(Xih) 2: rih, then x E Clf ", 

with { i1, i2, ... , ih} <:;; { 1, ... , n}, t = 2, ... , m, 
such that for each y E Clt, t = 2, . .. , m, there is at least one rule 
implying y E Clf and there is no rule implying y E Clf, with r > t. 

Let us remark that the above representation theorem for multiple-criteria 
classification problem starts with a very weak axiomatic condition called can­
cellation property. Indeed, this property does not require existence of criterion 
functions g;, i = 1, ... , n, or a dominance relation D on X in order to char­
acterize the three preference models. Instead, for i = 1, ... , n, it permits to 
define a binary weak preference relation ~i on X; which is a complete preorder. 
Consequently, there exists a function 9i : Xi ---+ R such that for each x .;, Yi E X i 

On the basis of relations ~i, i = 1, ... , n, one can also define a dominance 
relation Don X as follows: for each x, y EX 

xDy <*Xi ~i Yi for all i = 1, ... , n. 

This is of course equivalent to 

xDy <* 9i(xi) 2: g;(Yi) for all i = 1, ... , n. 

Cancellation property 1) of Theorem 2.1. permits to state the following condi­
tion of coherence between dominance relation D and classification Cl, for each 
x,y EX 

xDy =>X E Clr andy E Cl8 , with r 2: s. 
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For any subset of criteria P s:;: { 1, . . . , n} and for each pair x, y E X one can 
also define a dominance relation D p on X: 

xDpy ~Xi ti Yi for all i E P, 

which is equivalent to 

xDpy ~ 9i(xi) ~ 9i(Yi) for all i E P. 

Dominance relations D p, P ~ { 1, .. . , n} , are used in the condition part of 
decision rules. Being an intersection of complete preorders , binary relations D p 

are partial preorders, i.e . they are reflexive and transitive. 
Observe, moreover, that Theorem 2.1 regards a representation of classifica­

tion Cl in terms of "lower bounds". Theorem 2.1 can be reformulated in terms 
of "upper bounds" in such a way that 

C> condition of proposition 2) is expres~;ed as 
j[g1(xi),g2(x2), . .. ,g,(xn)] :S Wt ~X E Clf, 

where 'lllt, t = 1, . .. , m- 1, are m- 1 suitably ordered thresholds, 
C> condition of proposition 3) is expressed as 

s [g1(xl),gl(q1),g2(:r2),g2(qt), ... ,gn(Xn),gn(q1
)] < 0 ~ X E Clf 

where q1
, t = 1, ... , m - 1, are m. - 1 reference profiles q1

, such that 
qt+l dominates qt (i.e. qt+l is at least as good as q1 with respect to each 
criterion i = 1, . .. , n, and t here is at least one criterion j E { 1, ... , n} for 
which qt+l is strictly preferred to qt), t = 1, ... , m- 2. 

C> condition of proposition 4) considers a set of decision rules whose syntax 
is 

"if g;1(x;1) :S Til and gi2(x;2) :::; r i2 and ... 
and 9ih(Xih) :S r;,., then x E Cl.f" 

with {i1,i2, .. . ,ih} s:;: {1, .. . ,n}. T hese decision rules are called "at 
most" decision rules. The classification of x E X with "at most" deci­
sion rules is done according to t he following procedure: 

• x E Cl1 if and only if t here exists a rule matching x that assigns x 
to czf' and there exists no ru:te matching X that assigns X to Clf'' 
where s < t; 

• x E Cl.,, if and only if there exists no rule matching x. 

The reformulation of Theorem 2.1 in t erms of "upper bounds" is as follows. 

THEOREM 2.2 The following four propositions are equivalent: 
1) (cancellation property) joT each i == 1, ... , n, for each x;, y; E Xi and 

a_i, b_i EX_; , and for each r, s E {1, ... , m }: 

{(xia-;) E Cl ,. and (y;b_i) E C:ls } 

=? {(y;a-;) E Cl~ or (x;b_;) E: Cl?}, 

2} (utility function) there exist 

• fu.nr:tions a.; :X; ---.. R. i = 1, ... , n, called criteria, 
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• function f: Rn --+ R, non-decreasing in each argument, called utility 
function, 

• m- 1 ordered thresholds Wt, t = 1, ... , m- 1, satisfying 

W1 < Wz <. ·. < Wm-1 

such that for each x E X and each t = 1, ... , m - 1 

f[gl(xl),gz(xz), ... ,gn(Xn)]:::; 'Wt {:} .'C E Cl~; 

3) (outranking function and relation) the1·e exist 

• functions g; :Xi--+ R for each i = 1, ... , n, called criteria, 

• function s : R 211 --+ R, non-decreasing in each odd argument and 
non-increasing in each even argument, called outranking function, 

• m - 1 reference profiles qt, t = 1, ... , m - 1, satisfying 

g;(q1) :::; g;(q2) :::; ... :::; g;(qm-l ), for ·i = 1, ... , n 

such that for each x E X and each t = 1, ... , m - 1 

s[gl(xl),gl(qt),gz(xz),gz(l), ... ,gn(Xn),gn(l)J < 0 {:}X E Cl~, 
(N.B. s[gl(xl),gl(qt),gz(xz),gz(qt), ... ,gn(Xn),gn(qt)] < 0 {:} qtSx, 
where S is a binary outranking relation), 

4) ("at most" decision rules) there exist 

• functions g; :X;--+ R for each i = 1, ... , n, called criteria, 

• a set of decision rules whose syntax is 

"if 9il(x;I):::; r;1 and giz(xiZ):::; riz and . . . 

and gi!,(Xi!,) :::; r .i/, then x E Cl~ ", 

with {i1,i2, ... ,ih} ~ {1, ... ,n}, t= 1, ... ,m.-1, 
such that for each y E Clt, t = 1, ... , m- 1, there is at least one rule 
implying y E Cl~ and there is no rule implying y E Cl~, with r < t. 

Another interesting question concerning Theorem 2.1 is that proposition 1) 
can be reformulated as follows: 

{(x;a_;) E Cl,. and (yiL;) E Cls}--+ {(yia-i) E Cl~ or (x;b_i) E Cl~}. 

This is formally stated by the following result. 

THEOREM 2. 3 The following two propositions are equivalent for each i = 1, . . . , n 
1) for each Xi,Yi E Xi and a_i,b_i E X_i, and for each r,s E {1, ... ,m}: 

{( x.ia-;) E Cl,. and (yia - ;) E Cls} => {(yia- i) E Cl,? or (x;b_;) E Cl~}, 

2) for each X;, ViE xi and a_i, b_; E x _ i, and for each r, s E {1, ... , m}: 

{(xia-i ) E Cl,. and (yib_;) E Cl8} => {(u;a_;) E Cl?- or (x,b_,) F {}1~1. 
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2.2. An example 

Let us consider a multiple-criteria classification problem inspired by the example 
of evaluation in a high school proposed by Grabisch (1995). Suppose that a high 
school director wants to assign students to different classes of merits on t he basis 
of t heir scores in Mathematics and Literat ure. The ordinal scale of evaluation 
in Mathematics and Literature has been composed of three following grades: 
"bad" , "medium" and "good" , while the comprehensive evaluation scale has 
been composed of two grades: "bad" and "good". The evaluations of student 
x in Mathematics and Literature are denoted by x1 and x 2 , respectively. To 
b e criteria, functions 91 (-) and 92 ( ·) must respect mono tonicity, i.e. 9i (bad) < 
9i(medium) < 9i(9ood), i = 1, 2. For example, a simple way to define 91 ( · ) and 
92(-) is to set 9i(bad) = 1, 9i(medium) = 2, 9i(9ood) = 3, i = 1, 2. 

Table 2.1. Classification of all nine profiles of possible evaluations 

Student Mathematics Literature Decision ![91 (x), 92(x) ] Matching 
rules 

Sl bad bad bad 0 # 3 
S2 medium bad bad 1 #3 
S3 good bad good 4 #1 
S4 bad medium bad 1 #3 
S5 medium medium good 4 #2 
S6 good medium good 6 #1,2 
S7 bad good bad 2 #3 
ss medium good good 5 #2 
S9 good good good 8 #1 ,2 

Table 2.1 presents all t he possible profiles of students with respect to t he 
two considered criteria, and a classifica tion decision made by the director. Let 
us observe t hat the classification of students presented in Table 2.1 satisfies 
proposition 1) of T heorem 2.1. In fact, each t ime a student x dominates a 
student y , student x belongs t o the same or higher class than student y . 

This can also be seen on the Hasse diagram in Fig. 2.1 where each node 
corresponds t o a profile of evaluations. Profile x corresponding to node a dom­
inates over the profile y corresponding to node (3 if a is over (3 and there is a 
path from a to (3 . 

The diagram in Fig. 2.2 represents the binary relation R defined on the set 
of all possible profiles of evaluations X == {S l , S2, ... , S9} as follows: for each 
x,y EX 

xRy ¢:? xDy or x E C l,. and y E Cls, with r > s . 
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and transitive and, therefore, it is a partial preorder. Thus, there is a function 
h : X ----> R such that for each x, y E X 

xRy => h(x) ~ h(y). 

According to the definition and to the condition of coherence between dominance 
relation D and classification Cl, we have 

x E Clr andy E Cl., with r ~ s {:} h(x) ~ h(y). (i) 

On the basis of property (i), it is possible to build function f: Rn ---->Rand set 
of thresholds Zt, t = 2, ... , m, used in Theorem 2.1. 

-----------------------------------, 
: "good" students [good, good] 1 

[good, bad] 

[good, medium] [medium, good] 

I r­

I I 

I I 

I I 

[medium, medium] I I 
I I 

_____ I I 

I 

[medium, bad] [bad, medium] 

[bad, bad] 

[bad, good] 

"bad" students 

Figure 2.1. Hasse diagram profiles x = [x1,x2] where XI= score in Mathematics, 
x2 = score in Literature 

In the diagram presented in Fig. 2.2, the arcs representing relation R are 
drawn from profile x to profile y if and only if x dominates y or x belongs 
to the class of "good" students and y belong to the class of "bad" students. 
Since relation R is transitive, we are not drawing the arcs between profiles that 
are already connected by a path; e.g. profiles "good-good" and "bad-good" are 
in relation R, however, there exist a path between them through the profile 
"n1ediun1-good". so thP. rlirPrt. :ur wnnlrl hP ,.,rlnnrl<>nt 
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Comparing Figs. 2.1 and 2.2, one can see that in the latter there are two 
additional arcs. The arc from profile "medium-medium" to profile "bad-good" 
does not exist in Fig. 2.1 because profile "medium-medium" does not dominate 
profile "bad-good", however, it exists in Fig. 2.2 because, due to the director, 
the student with profile "medium-medium" is classified better than the student 
with profile "bad-good" (class "good" vs. class "bad"). For the same reason, 
in Fig. 2.2 there is an arc from profile ''good-bad" to profile "bad-good", while 
this arc does not exist in Fig. 2.1. 

-----------------------------------, 
"good" students [good, good] 1 

~ 
[good, medium] [medium, good] 1 

~-~---: 
/-------- I< I I I 

[good, bad] [medium, medium] [bad, good] 1 
I 

~-------~-----/-- - ·--·~ ____ :/: 
------- ----- ------- --- · 
I 

I 

I [medium, bad] 

I 
[bad, bad] 

[bad, medium] 

I 

"bad" students : 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 2.2. The binary relation in the set of student profiles 

On the basis of relat ion R one can build the function f [g1 (xI), g2 ( x 2 ) ], 

used in proposition 2) of Theorem 2.1, in a very simple way: for each profile 
x = [x1,x2] represented by a node a , f[g1(x1),g2(x2)] is equal to the num­
ber of nodes to which there is a directed path starting from a . The function 
f[g1(x 1),g2(x2)] is presented in Fig. 2.3. It has the property that all t he stu­
dents classified as "good" have a greater value of this function than the stu­
dents classified as "bad". Among the "good" students, the minimum value 
of function j [g1(xl) , g2(.1:2)], equal to 4 , is obtained by students with profiles 
"good-bad" or "medium-medium" . Therefore, the only t hreshold z2 is equal to 
4; j[g1(xl) , g2(x2)] 2: 4 if and only if .Tis "good", and f[g1 (xl),g2(x2)] < 4 if 
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-----------------------------------, 
: "good" students ./(good, good)=7 1 

~ 
./(good, medium)=6 ./(medium, good)=5 

./(good, bad)=4 
I I 

./(medium, medium)=4 -..,..-,~ ./(bad, good)=2 

I_-----~------/--~--_:/: 
------~-~-------~· 

./(medium, bad)= I ./(bad, medium)= I 

~/ 
./(bad, bad)=O "bad" students 1 

Figure 2.3. The function f[g(x),g(x)] for student profiles x = [x,x] 
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An outranking function satisfying conditions present in proposition 3) of 
Theorem 2.1 can be built as follows: for each x, y E X set 

The only reference profile p2 

chosen such that: 
(pi,p§) E X defined in Theorem 2.1 can be 

It is easy to see that the reference profile p2 is again one of the profiles "good­
bad" or "medium-medium" . 

The "if. .. , then . .. " decision rules specified in proposition 4) ofT heorcm 2.1 
can be easily built on the basis of the Hasse diagram presented in Fig. 2.1. Let us 
observe that among the profiles classified as "good", there are two profiles that 
do not dominate any other profile from this class. These arc the profiles "good­
bad" and "medium-medium" . Starting from these profiles we can induce the two 
following "at least" decision rules representing the classification of the director: 

#1) "if Mathematics 2: good and LiteratuTe 2: bad, then student 2: good"; 
#2) "if Mathematics 2: medium and Literature 2: medium, then student 2: 
good"; 
#3) all uncovered students are bad. 



1018 R. SLOWINSKI, S. GRECO, B. MATARAZZO 
----

Since all the students are at least bad on any criterion, then the rule #1) can 
be simplified to: 

#1 *) "if Mathematics 2: good, then student 2: good" . 
Let us observe, moreover, that among the profiles classified as "bad", there 

are two profiles that are not dominated by any other profile from this class. 
These are the profiles "bad-good" and "medium-bad". Starting from these 
profiles we can induce the two following "at most" decision rules representing 
the classification of the director: 

#1') "if Mathematics ::; bad and Literature ::; good, then student ::; bad"; 
#2') "if Mathematics ::; medium and Literature ::; bad, then student ::; bad"; 
#3') a ll uncovered students are good. 

Since all the students are at most good on any criterion, then the rule #1' ) 
can be simplified to: 

#1'*) "if Mathematics ::; bad, then student ::; bad". 

2.3. Ordinal criteria, max-min ave rage and Sugeno integral 

Handling ordinal criteria has recently received much attention from researchers 
considering the multiple-criteria classification. To deal with this problem some 
max-min aggregation operators have been used , with the most general one -
the fuzzy integral proposed by Sugeno (19?4). To apply the Sugeno integral, an 
identical finite ordinal scale V := {1 , ... , m} must be assumed for all criteria, for 
classes of classification Cl and for a fuzzy measure defined on the set of criteria. 
Let X = vn denote an evaluation space involving n criteria. Each X E X is 
called a profile. The scale value of x E X on criterion 9i is denoted by 9i (xi) 
and belongs to V. A fuzzy measnre on C = {gl,g2, . .. ,gn} is a set function 
1-L : P(C) ---+ V, where P(C) is the power set of C, satisfying the following 
axioms: 

1) J.L(0) = 1, J.L(C) = m., 
2) A~ B implies J.L(A) ::; J.L(B), for all A., BE P(C). 

For each x EX, the criteria are ordered according to increasing values of 9i(xi): 

9(1),9(2)> . .. ,g(n)> such that 9(IJ(:c(l)) :S: 9(2J(x(2)) :S: ... :S: 9(n)(x(n)). 

The Sugeno integral of [g1 (::z: I), g2(x2), .. . , 9n (x, )] with respect to fuzzy measure 
J.L is defined as follows: 

where I(i) = {9(i), . . . , 9(n)} · 
An alternative equivalent definition of the Sugeno integral is the following: 
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The following result is the counterpart of Theorem 2.1 with respect to Sugeno 
integral, stating equivalence between a simple cancellation property, a utility 
function represented by a Sugeno integral and a set of specific decision rules. 
Let r E V be a grade of scale V and an identifier of class Clr corresponding to 
this grade. 

THEOREM 2.4 The following three propositions are equivalent: 
1} (cancellation property) for each i = 1, ... , n, for each X;, Yi, Z; E xi and 

a_i, b_.i E X_i, and for each r, s E {1, ... , m}: 

{(xia-i) E Cl~ and (zib_i) E Clf and r ~ s} 

=> {(yia-i) E Cl~ or (x;b_i) E Clf}, 

2} (utility function} there exist 

• functions gi :xi____, v for each i = 1, ... 'n, called criteria, 

• a fuzzy measure J..L on C = {g1, g2, ... , gn} having values in V, such 
that for each x EX and each t = 1, ... , m, 

S[g1(xi),g2(x2), ... ,gn(Xn);J..L] ~ t {::}X E Clf, 

3) ("at least" decision rules) there exist 

• functions gi : Xi ----> V for each i = 1, ... , n, called criteTia, 

• a set of "at least" decision rules, called single-graded, whose syntax 
zs 

"if 9il(xi1) ~ r and 9i2(xi2) ~ r and ... 

9ih(Xih) ~ r, then x E Cl~ ", 

with {il,i2, ... ,ih} <:;; {1, ... ,n}, r = 2, ... ,m, 
satisfying the following properties: 

<•l given the rule: "if 9il(xii) ~ r and gi2(xi2) ~ r and ... gih(Xih) 
~ r, then x E Clf ", the following rules are also true for each 
s < r: ''if g;l(x.ii) ~ s and 9i2(.7;i2) ~ sand ... gii,(xit,) ~ s, 
then x E Clf", 

( •) for each y E C lr, r = 2, ... , m, there is at least one rule implying 
y E Cl~ " and there is no rule implying y E Clf, with t > r. 

Comparison of points 2) and 3) of Theorem 2.4 has a positive and a negative 
interpretation. Positive interpretation says that any preference model expressed 
in terms of the Sugeno integral can be represented by a set of specific decision 
rules, i.e. single-graded decision rules satisfying property <•l· Negative interpre­
tation of Theorem 2.4 says that not all preference models represented by a set 
of decision rules can be represented also in terms of the Sugeno integral. In the 
next section we present an example of preference model representable by a set 
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of decision rules but not representable by the Sugeno integral. Therefore, the 
decision rule model has a larger applicability than the Sugeno integral. This 
seems to be an advantage of the decision rule model compared to the Sugeno 
integral. In our opinion there is also another advantage of the decision rule 
model, which is perhaps more important for multiple-criteria decision aiding: 
the decision rule model expresses the preferences in much more intelligible terms 
than the Sugeno integral. 

2.4. An example 

Let us consider an augmented example of evaluation in a high school. Suppose 
that a high school director wants to assign students to different classes of merits 
on the basis of their scores in Mathematics, Physics and Literature. The ordinal 
scales of the evaluation in Mathematics, Physics and Literature, as well as the 
comprehensive evaluation scale have been composed of three following grades: 
"bad" , "medium" , "good". 

Table 2.2 presents all possible profiles of the students with respect to the 
three considered criteria, and a classification decision made by the director. 
Let us observe that the classification of students presented in Table 2.2 sat­
isfies proposition 1) of Theorem 2.1. In fact, it can be seen in the table 
that each time a student x dominates a student y, student x belongs to the 
same or higher class than student y . Furthermore, it is possible to build a 
utility function j[91(x1), 92(x2),93(x3)] where the evaluations of student x in 
Mathematics, Physics and Literature are denoted by x1, x2 and x3 , respec­
tively and functions 91 ( ·), 92 ( ·) and 93 ( ·) respect monotonicity; for example, 
9i(bad) = 1, 9i(medium) = 2, gi(good) = 3, i = 1, 2, 3. The utility function 
f[g1 (xi), 92 (xz) , 93(x3)] satisfies conditions present in proposition 2) of Theo­
rem 2.1. The values of this function are presented in Table 2.2. The ordered 
thresholds Zt, t = 2, 3, defined in Theorem 2.1, are set on the values z2 = 20, 
z3 = 24, and the classification is performed by checking the following conditions: 

![91(xl) , 9z(x2) , g3(x3)] < 20 <(::}"xis bad" , 

20:::; f[91(xl),9z(xz),g3(x3)] < 24 <(::} "xis medium", 

f[91(xl) , 9z(xz) , 93(x3)]2: 24 <(::}"xis good". 

An outranking function , satisfying conditions present in proposition 3) of The­
orem 2.1 can be built as follows : for each x , yE X, set 

s[g1 (xi), 91 (y1), gz(xz), gz(y2), g3(x3) , 93(y3)] 

= f[g1(xl) , gz(xz) ,g3(x3)]- f[gl(y1),gz(y2),g3(y3)] . 

The reference profiles pt E X defined in Theorem 2.1 can be chosen as follows: 
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The resulting reference profiles are: p2 = {good, medium, bad} or {medium, 
good, bad} or {medium, medium, medium}; p3 ={good, medium, medium} or 
{medium, good, medium}. 

Table 2.2. Classification of all 27 cases of possible evaluations 
(f(x) = f[g1(x1),gz(xz),g3(x3)]) 

Student Mathematics Physics Literature Decision 

S1 bad bad bad bad 
S2 medium bad bad bad 
S3 good bad bad bad 
S4 bad medium bad bad 
S5 medium medium bad bad 
S6 good medium bad medium 
S7 bad good bad bad 
S8 medium good bad medium 
S9 good good bad medium 

810 bad bad medium bad 
Sll medium bad medium bad 
812 good bad medium bad 
813 bad medium medium bad 
814 medium medium medium medium 
815 good medium medium good 
816 bad good medium bad 
817 medium good medium good 
818 good good medium good 
819 bad bad good bad 
820 medium bad good bad 
821 good bad good bad 
822 bad medium good bad 
823 medium medium good medium 
824 good medium good good 
825 bad good good bad 
826 medium good good good 
827 good good good good 

f(x) Matching 
rules 

1 #6 
10 #6 
14 #6 
10 #6 
16 #6 
20 #2 
14 #6 
20 #3 
21 #2,3 
7 #6 
13 #6 
15 #6 
13 #6 
20 #1 
24 #1,2,4 
15 #6 
24 #1 ,3,5 
26 #1,2,3,4,5 
12 #6 
15 #6 
16 #6 
15 #6 
21 #1 
26 #1,2,4 
16 #6 
26 #1,3,5 
27 #1,2,3,4,5 

Finally, according to proposition 4) of Theorem 2.1, the classification of Table 
2.2 can be represented by means of the following set of "at least" decision rules: 

#1) "if Mathematics ~ medium and Physics ~ medium and Literature ~ 
medium, then student ~ medium"; 

#2) "if Mathematics ~ good and Physics ~ medium, then student ~ medium"; 
#3) "ifMathematics ~ medium and Physics ~ good, then student ~ medium"; 
#4) "ifMathematics ~good andPhysics ~medium and Literature~ medium, 

then student ~ good"; 
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#5) "if Mathematics 2: medium and Physics 2: good and Literature 2: medium, 
then student 2: good"; 

#6) all uncovered students are bad. 
The numbers of rules matching a student's profile are indicated in the column 
"Decision" of Table 2.2. Let us recall that when more than one "at least" rule is 
matching a student, he/she is assigned to the highest "at least" class indicated 
by the matching rules. 

The classification presented in Table 2.2 can also be represented by a set of 
"at most" decision rules: 
#1') "if Mathematics ::; bad, then student ::; bad"; 
#2') "if Physics ::; bad, then student ::; bad"; 
# 3') "if Mathematics ::; medium and Physics ::; medium and Literature ::; bad, 

then student ::; bad" ; 
#4') "if Literature ::; bad, then student ::; medium"; 
#5') "if Mathematics::; medium and P hysics::; medium, then student:S:medium"; 
# 6') all uncovered students are good. 
Let us observe that all the 27 classification decisions made by "at least" or "at 
most" decision rules in Table 2.2 cannot be represented by the most general 
max-min aggregation operator permitting ordinal aggregation, i.e. the fuzzy 
integral proposed by Sugeno ( 197 4) . Why? This can be understood intuitively 
from Theorem 2.4: in fact, many of the rules applied for the classification of 
the 27 cases are not single-graded , i.e. they use more than one grade of the 
evaluation scale in conditions and decision. 

The answer can also be more direct : consider the decision rule # 2): 

"if Mathematics 2: good and Physics 2: medium, then student 2: medium". 

There are the following possible values of fuzzy measure J.L permitting to obtain 
with Sugeno integral the same classification as with rule #2) , without misclas­
sification: 

1) either J.L ( {Mathematics, Physics}) = medium, 
2) or J.L( {Mathematics}) = good, 
3) or J.L( {Physics}) = medium. 

Case 1) corresponds to the rule: 
"if Mathematics 2: medium and P hysics ·::: medium, then student medium", but 
it has the condition part weaker than rule #2) ; 
case 2) corresponds to the rule: 
"if Mathematics 2: good, then student 2: medium" , but it has the condition 
part weaker than rule #2); 
case 3) corresponds to the rule: 
"if Physics 2: medium, then student 2: medium", but it has the condition part 
weaker than rule #2). 

Tn rnnrlnsion. there is no possibility of representing the classification made 
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3. Rough set approach to multiple-criteria classification 
problems 

This section summarizes main steps of the methodology presented in Greco, 
Matarazzo and Slowi1iski (1999, 2001a, 2002a). 

Let ~i be a weak preference relation on U ~ X with reference to criterion 
9i E C = {91, 92, ... , 9n}, such that x ~i y means "x is at least as good as 
y with respect to criterion g;''. Suppose that ~i is a complete preorder, i.e. a 
strongly complete and transitive binary relation. 

It is said that x dominates y with respect to P ~ C (denoted by xD py) if 
x ~i y for each g; E P. Since the intersection of complete preorders is a partial 
preorder and ~i is a complete preorder for each 9i E P, and Dp = ng;EP ~i, 
then the dominance relation Dp is a partial preorder. Given P ~ C and x E U, 
let 

Dt(x) = {y E U: yDpx}, 
D?(x) = {y E U: xDpy}. 

We define the P-lower approximation and the P-upper approximation of Clf, 
t E T, with respect toP~ C (denoted by P(Clf) and P(Clf), respectively), 
as: 

P(Clf) = {x E U: Dt ~ Clf}, 
- > u + P(Clt) = Dp(x). 

xECt'f-

Analogously, we define the P-lower approximation and the P-upper approxima­
tion of Clf, t E T, with respect toP~ C (denoted by P(Clf) and P(Clf), 
respectively), as: 

P(Clf) = {x E U: D? ~ Cl~}, 
P(Cl~) = U D?(x). 

xEClf 

> - > < - < The pairs P(Clt ), P(Clt), and E.(Clt), P(Clt) are called rough approxima-
tions of Clf and Cl~, respectively. Intuitively, P( Clf) represents the set of 
actions that, according to the information given by criteria of P, can be as­
signed to Clf with certainty. Analogously, P( Cl~) represents the set of actions 
that, according to the information given by criteria of P, can be assigned to 
Cl~ with certainty. Instead, P(Clf) and P(Cl~) represent the sets of actions 
which, according to the information given by criteria of P, could be assigned to 
Clf and Cl~, respectively, however, there are some doubts due to inconsistency 
of the available information. 

The P-lower and P-upper approximations so obtained satisfy the following 
properties for each t E T and for each P ~ C: 

P(Clf) ~ Clf ~ P(Clf), E_(Cl~) c Cl~ c P(Cl~). 
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Furthermore, the following specific complementarity properties hold: 
> - < P(Clt) = U - P(Clt:_ 1 ) , t = 2, .. . , 1n, 

E._(Cl~) = U- P(Cl~+1 ), t = 1, ... , rn- 1, 
P(Cl~) = U- P(Cl~_ 1 ) , t = 2, ... , m, 
- < > P(Clt) = U - P(Clt:+l) , t = 1, . . . , m. - 1. 

The ?-boundaries (?-doubtful regions) of Cl~ and Cl~ are defined as 

Bnp(Cl~) = P(Cl~ ) - E.(Cl~), 
< - < < Bnp(Clt) = P(Clt)- E._(Clt), for each t E T . 

Bnp(Cl~) and Bnp(Cl~) represent the set of all the actions which, according 
to the information given by criteria from P , are assigned to Cl~ and Cl~, 
respectively, in a way being inconsistent with the dominance principle. The 
ability of handling inconsistency in classification data is a key feature of t he 
rough set approach ( Slowit1ski et al., 2000). 

We define the accuracy of approximation of Cl~ and Cl~, for each t E T 
and for each P s;; C, respectively, as: 

a (Cl?_) = IE(Cl~ )l a (Cl~) = IP(Clf) l . 
p t IP(Cl~) l ' p t IP(Clf)l 

The ratio 

IU- ((UtET Bnp(Cl~)) U (UtET Bnp(Cl f)))l 
I'P(Cl) = lUI 

defines the quality of approximation of the partition Cl by means of the set of 
criteria P, or, briefly, quality of classifi cation. It expresses the ratio of all ?­
correctly classified actions to all the actions in the set U. Let us stress that this 
quality measure does not concern the "prediction quality" of the set of criteria 
P, but its capacity of non-ambiguous reclassification of the actions from the 
set U. 

Every minimal subset P s;; C' such that /'P(Cl) = !'c(Cl) is called a reduct 
of C with respect to Cl and is denoted by REDel (C). For a given classification 
there may exist more than one reduct. The intersection of all the reducts is 
known as the core, denoted by CORECI. 

Let us observe that we can write the definitions of P-lower approximations 
of Cl f and Cl~ alternatively, as follows: 

P(Cl~) = {x E U : yDpx => y E Cl~ }, 
P(Clf) = {x E U : xDpy => y E Cl~ } . 

On t he basis of this observation, it is possible to induce from the above approx­
imations a generalized description of the preferential information contained in 
the given set of classification examples, in terms of "at least" and "at most" 
rlQ~;";"" ,.,Jp" r r.!t·Prn M ll.tll.rll.7.7.0 ~nd Slowit'lski, 2002c). 
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4. Conjoint measurement for multiple-criteria classifica­
tion problems with inconsistencies 

4.1. Representation theorems for multiple-criteria classification with 
inconsistencies 

The conjoint measurement model presented in Section 2 cannot represent the 
inconsistency with the dominance principle considered within the rough set ap­
proach. In this section we present a more general model of conjoint measurement 
that permits representation of this inconsistency. This model is based on the 
concepts of rough approximation of upward and downward unions of classes Clt 

and Cl(. 
The following concepts will be useful: for each x E X, the lower class and 

the upper class of x, denoted by r*(x) and r*(x), respectively, are defined as 
follows 

r*(x) = max{s E T: x E C(Clt)}, 

r*(x) = min{s E T: x E C(Clt)}, 

where C(Clt) and C(Cl() are C-lower approximations of Clt and Cl(, re­
spectively. 

THEOREM 4.1 For each set of binary relations ti, i = 1, ... , n, being complete 
preorders, and for each classification Cl there exist 

- functions gi :xi---+ R, such that Xi ti Yi ¢:} gi(Xi) 2: gi(Yi), i = 1, ... 'n, 
- functions f?. : Rn ---+ R and f'5. : Rn ---+ R, non-decreasing in each 

argument, such that 
f?. [gl (xl), g2(x2), · . · , gn (xn)] ~ f'5. [gl (xi), g2 (x2), ... , gn (xn)] 

- rn- 1 ordered thresholds Zt, t = 2, ... , rn, 
Z2 < Z3 < ... < Zm 

such that for each action x E X, functions f?. and f'5. assign x to a lower 
and an upper class, respectively: 

f?. [gl (xi), g2(x2), ... , gn(Xn)] 2: Zt ¢:?X E C( Clt ), 
f'5.[gi(XI),g2(X2), ... ,gn(Xn)] < Zt ¢:?X E C(Clt-1), 

where C = {g1,g2, ... ,gn}· 

Inconsistency with the dominance principle can also be represented in terms 
of a set of "at least" and "at most" decision rules considered together. More 
formally, a set of "at least" and "at most" decision rules does not contradict 
the classification Cl if for each x E Clt there exists no "at least" decision rule 
for which x E Clf, with s > t, and there exists no "at most" decision rule 
for which x E Clf, with s < t. A set of decision rules is complete if for each 
x E C( Clt) there exists a decision rule for which .1: E Clf, with s 2: t, and for 
each x E C(Clt) there exists a decision rule for which x E Clf, with s ~ t. A 
set of decision rules represents the classification Cl if it does not contradict Cl 
and it is comnlP.t.P.. 
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THEOREM 4.2 For each set of binary relations C:::i, i = 1, ... , n, being complete 
preorders, and for each classification Cl, there exists a set of decision rules 
representing the classification Cl. 

4.2. Interval classification and its representation 

As stated above, one of the main reasons of inconsistency in the sense of dom­
inance is the hesitation of the DM assigni g some action x E X to a class of 
Cl. It is thus worth considering a more relaxed definition of the classification 
problem, which we call interval classification. In the interval classification, Cl 
is not always a partition of X, a.nd C lt , t = 1, ... , rn, a.re preference-ordered and 
non-necessarily disjoint subsets of X, such that the evaluation corresponding to 
Cl.,. is better than the evaluation corresponding to Cls when r > s. More pre­
cisely, in interval classification for each x E X we have xUC'lr UC'lr+l U ... U C'l8 , 

where r,s E {1, ... ,m.}, r:::; s . Of course, ifr = s for each x EX, the interval 
classification boils down to the usual classification. For the interval classifica­
tion, the membership of x to the upward and downward unions Clt and Clt is 
defined as follows: 

Cl Cl Cl {
X E Cl~ 

X E r- U r+l U . . . U s ¢:> C'l ~ 
X E b 

for any a:::; r , 
for any b;::: s. 

For example, if in a school a student x is classified as "between medium and 
good", we have x E Clmedium U C lgood, which is equivalent to: x E Cl~edium 
and x E Cl~ood· Each classification with some inconsistency in the sense of 
dominance can be represented in terms of interval classification by stating for 
each x EX: x U Clt U C'lt+l U ... U C'lu , where t = r.(x) and u = 1·*(x) . 

Let us introduce some cancellation conditions having the same nature as 
proposition 1) in Theorem 2.1: 

Condition Cl): for each i = 1, ... ,n, for each X -i,Yi EX; and a_;,b_; EX_; 

{(xia-i ) E Clf and (y;b._.;) E C ln ==> {(y;a_;) E Clf or (x;b_;) E C tn, 

Condition C2): for each i = 1, ... , n, for each x;, y; E X; and a_;, b_; E X - i 

{(x;a_;) E C'l: and (y;b_i) E C'l~} =? {(y;a- ;) E C'l: or (x;b_;) E C'ln, 

Condition C3): for each i = 1, . .. ,n, for each x;,y; E Xi and a _;, b_; E X_.i 

{(x;a_; ) E Clf and (x .ib_; ) E C'l~} :=? {(yia-;) E C lf or (yib_i) E C'l~} . 

Conditions C1)- C3) can be interpreted as follows: 
- Condition C1) says that the upward unions of ordered classes induce a 

1 ----- ~ -- ~ J.~ ~--..-. 1 ... ..,"; +-.-.u ; ..-.""' 'T'J,~ o l""'\l 'Ofaral1r>tl nrf'lPr i_q_ 
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represented by the binary relation "c.t defined on Xi as follows: 
x; "c.t Yi <:::? [(y;a_;) E Clt => (x;a_;) E Clt, for each a_; E X-i 

and for each t = 1, ... , m]. 
On the basis of condition C1), one can prove that "c.t is a complete pre­
order. This is formally stated by Theorem 4.3. 

- Condition C2) says that the downward unions of ordered classes induce a 
preference order on the domain of each criterion. This preference order is 
represented by the binary relation 'c.i defined on xi as follows: 

x; 'c.i Yi <:::? [(x;a-i) E Clt => (yia-i) E Clt, for each a_i EX_; 

and for each t = 1, ... , m]. 
On the basis of condition C2), one can prove that 'c.i is a complete pre­
order. This is formally stated by Theorem 4.4. 

- Condition C3) says that the two previous preference orders are not contra­
dictory in the sense that there cannot exist x;, Yi E X; such that x; "c.t y; 
and not y; "c.t x; (i.e. x; is preferred toy; according to ~t), and Yi 'c.i x; 
and not x; 'c.i y; (i.e. y; is preferred to Xi according to 'c.i)· This is 
formally stated by Theorem 4.5. 

Therefore, conditions C1)- C3) are useful to state the following representa­
tion theorems for interval classification. 

THEOREM 4.3 The following three propositions are equivalent: 
1) (cancellation property) condition Cl) holds, 
2) (utility function) there exist 

• functions g'f :X;--. R for each i = 1, ... , n , 

• function f?. : Rn --. R, increasing in each argument, called upward 
classification function, 

• m- 1 ordered thresholds Zt, t = 2, ... , m, satisfying 

> > > Z2 < Z:f < ... < Zffi 

such that for each x E X 

f?.[gf(xi),gf(x2), ... ,g~(.xn)] ~ zt <:::?X E Clt, 

3) ("at least" decision rules) there exist 

• functions gf : Xi --. R for each i = 1, ... , n, called criteria, 

• a set of "at least" decision rules whose syntax is 

"if gfi(xit) ~ r;1 and g~(x;2) ~ r;2 and ... 

and g;~(xil,) ~ ri/, then x E Cl~ ", 

with {i1,i2, ... ,ih} ~ {1, . .. ,n}, r = 2, ... ,m, such that for each 
y E C lr, r = 2, .. . , m, there is at least one rule implying y E C l~ 
and there is no rule imvlvina v F C l f. with. t > r. 
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THEOREM 4.4 The following three proposdions are equivalent: 
1) (cancellation property) condition C2) holds, 
2) (utility function) there exist 

• functions g~ : Xi ____. R for each i == 1, ... , n, 

• function f~ : R 11 
____. R , increasing in each argument, called down­

ward classification function, 

• rn - 1 ordered thresholds z~, t = 1, . .. , m - 1, satisfying 

< < ' < 
Zf < Z2 < ... < z,:n_l 

such that fo r each x E X 

f~ [gr(xi) , g~(1:2), . .. ,g,~ (x,.)] :S z~ {?X E Cl(_ 

3) ("at most" decision rules) there exist 

• functions g~ :Xi - • R for each i = 1, ... , n , 

• a set of decision rules whose syntax is 

"if g,J(xil) :S Ti l and g~(Xi2) :S Ti2 and . .. 

and g.~.(:l:iJ,) :S r·ih, then :c E Cl,'? ", 

with { i 1, i2, .. . , ih} <:;; { 1, ... , n}, T = 1, . . . , rn- 1, such that for each 
y E Cl,. , r = 1, ... , rn- 1, there is at least one rule implying y E Cl~ 

and there is no n de implying y E Cl~, with t < r. 

THEOREM 4.5 The following three propositions are equivalent: 
1) (cancellation proper-ties) conditions C1), C2), C3) hold, 
2) (utility functions) ther-e exist 

• functions gi :Xi ____. R for each i = 1, . . . , n , 

• two functions f ?. : Rn ____. R a.nd f~ : R n ____. R, non-decreasing in 
each argument, called upward and downward classification functions , 
respectively, .such that for each x E X 

f~ [gl (xi) , g2 (x2), · . . , 9n (xn)] ~ J?. [gl (xi), g2(x2) , . . · , 9n (xn)J, 

• rn- 1 ordered thresholds Z t, t = 2, .. . , rn , satisfying 

Z2 < Z3 < . .. < Zm 

such that for each action .T E: X 

J?. [gl (xi) , g2 (x2), ... , gn(Xn )] ~ Z t {? X E Clf, 

f~ [g1(xi),g2(x2 ), ... , gn(Xn)] < Z t {?X E Cl~_ 1 , 

3) ("'at least" and "at most" decision Tules) there exist 

- ffii iYlr> -f ,; I'VYl C' rr-. y , _., R fnr Pllrh 1. = 1 . - n _ 
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• a set of "at least" decision rules whose syntax is 

"if gil(xil) 2: Til and gi2(xi2) 2: ri2 and ... 

and gih(Xih) 2: Tih, then X E Clr?. ", 
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with {i1,i2, ... ,ih} ~ {1, ... ,n}, r = 2, ... ,m, such that for each 
y E Clr, r = 2, ... , m, there is at least one rule implying y E Cl"f 

and there is no rule implying y E Clt, with t > r, 

• a set of "at most'' decision rules whose syntax is 

"if gil(xil)::; Til and g;2(x;2)::; r;2 and ... 

and g;h(Xih)::; rih, then x E Clf' ", 

with {i1,i2, ... ,ih} ~ {1, ... ,n}, r = 1, ... ,m-1, such thatforeach 
y E Clr, r = 1, ... , m -1 , there is at least one rule implying y E Clf' 

and there is no rule implying y E C lt, with t < r . 

The following Theorem 4.6 gives conditions for utility functions f:<:;[g1(xl), 
g2(x2), ... ,gn(Xn)] and P[g1(xl),g2(x2), ... ,gn(xn)] of Theorem 4.5 being 
Sugeno integrals. Theorem 4.6 gives also a syntax of the corre~ponding "at 
least" and "at most" decision rules. 

THEOREM 4.6 The following three propositions are equivalent: 
1} (cancellation properties) condition 03} and the following conditions Gl' }, 

C2') hold: 
Condition Cl'): for each i = 1, ... , n, for each X;,y;,z; E xi and 
a_i, b_.i EX_;, t = 1, 2, ... , m 

[(xia-i) E Clt] and (y;b_i) E Clt] 

* [(z;a-i) E Clt ] or (xib-i) E CltJ, 

Condition C2'): for each i = 1, ... , n, for each Xi, Yi, Zi E X; and 
a_i,b-i EX_;, t = 1,2, . .. ,m 

[(xia-i) E Cl(] and (y;b_i) E Cl(] 

=} [(zia-i) E Cl(] or (xib_i) E Cl(], 

2} (utility functions being Sugeno integrals) there exist 

• functions gi: xi-tv, v = {1, ... ,m}, for each i = 1, ... ,n, 

• two fuzzy measures f-t 1 and J.t2 on C = {g1, g2, ... , gn}, having val-
ues in V and satisfying for each A ~ {g1, g2, ... , gn} the inequality 
J.t2(A) 2: J.t1(A), such that for each action x EX 

~ > 
S[g(xl), g(x2), . .. , g(xn); J.t1] 2: t {:} x E Clt, t = 1, ... , m, 
~ < 
S[g(xl), g(x2), ... , g(xn); J.t2] ::; t {:} ::r: E Clt, t = 1, . .. , m. 

3) ("at least" and ''at most" decision rules) there exist 

• functions gi: xi-tv, v = {1, ... ,m}, for each i = 1. .. . . n. 
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• a set of decision rules whose syntax is 

"if g(x;1) 2 r and ... and g(x;h) 2 r, then x E Cl,. 2 ", 

with { i1, i2, ... , ih} s;; {1, ... , n }, r = 2, .. . , m, satisfying the follow-
ing properties: 

C•l given the rule: "if g.;I(X;I) 2 rand g;2(x;z) 2 1· and ... g;h(x;,) 
2 r, then x E Clf ", the following rules are also true for each 
s < r: "if gil(:r;I) 2 s and g;z(x.;z) 2 s and ... g;h(X;h) 2 s, 
then x E C lf ", 

c•l for each y E Cl,., r = 2, ... , m, there is at least one rule implying 
y E Clf and there is no rv.le implying y E Clf , with t > 1· , 

• a set of decision rules whose syntax is 

"if gil(x;I)::; rand . .. and gih(Xii,)::; r , then x E Cl,~ ", 

with {i1 , i2 , .. . ,ih} s;; {1, ... ,n}, r = 1, ... , m-1 , satisfying the 
following properties: 

C•l given the rule: "if g;1(:r,I)::; rand g;z(xi2)::; rand .. . g;h(Xih) 
::; r, then x E C lf' ", the following rules are also true fo r each 
s > r: "if g;I(x;I) ::; 8 and g;2(x;2) ::; 8 and .. . g;h(X;h) ::; s, 
then x E Clf' ", 

c•l for each y E Clr, r = 1, ... , m- 1, there is at least one rule 
implying y E Cl~ and thc:re is no rule implying y E Clf, with 
t < 7' . 

4.3. An example 

Let us consider a new version of the example presented in Section 2.4. As 
before, the director of the school wants to assign students to different classes 
of merits on the basis of their scores in Mathematics, Physics and Literature, 
but now in his classification decisions there is some inconsistency in the sense of 
dominance. All the 27 possible cases are presented in Table 4.1. As can be seen 
in the table, several pairs of students are inconsistent in t he sense of dominance. 
For example , student S3 is dominated by student S6 (in Mathematics S3 and S6 
are both good, in Physics S3 is bad and :36 is medium, in Literature S3 and S6 
are both bad). The pairs of students inconsistent with the dominance principle 
are: (S3,S6), (S3,S15), (S12,S15), (S7,S8) , (S7,S17) , (S16,S17). 

The above cases of inconsistency represent situat ions of hesitation in as­
signing a student to a given class of merit. Therefore, we can represent the 
inconsistent classification of Table 4.1 in terms of an equivalent interval classifi­
cation as shown in Table 4.2. In Table 4.2, the values assigned by functions 
{':[gi(x i) , gz(xz), g3(x3)] and pO[g1(x i),gz(x2),g3(x3)], respectively are pre­
sented. Functions (~ [gi(xi),gz(:~;2),g:l(:r3)] and f :-::: [gi(xi) , gz(xz),g3(x3)] were 
h,; J• ~" ,~,. J ,;n.,rl in t.lw r·nmmP.nt. to Theorem 4.1. The ordered thresholds 
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Table 4.1. An inconsistent classification of the cases of possible evaluations 

Student Mathematics Physics Literature Decision 
81 bad bad bad bad 
82 medium bad bad bad 
83 good bad bad good 
84 bad medium bad bad 
85 medium medium bad medium 
86 good medium bad medium 
87 bad good bad good 
88 medium good bad medium 
89 good good bad good 
810 bad bad medium bad 
Sll medium bad medium bad 
812 good bad medium good 
813 bad medium medium bad 
814 medium medium medium medium 
815 good medium medium medium 
816 bad good medium good 
817 medium good medium medium 
818 good good medium good 
819 bad bad good bad 
820 medium bad good bad 
821 good bad good good 
822 bad medium good bad 
823 medium medium good medium 
824 good medium good good 
825 bad good good good 
826 medium good good good 
827 good good good good 

Zt, t = 2, 3, considered in proposition 3) of Theorem 4.3, are set to the values 
z2 = 10, z 3 = 30, and the interval classification is performed by checking the 
following conditions: 

J2':[g1(xl),g2(x2),g3(x3)]2: 10 ~"xis at least medium" 

j2':[g1(xl),g2(x2),g3(x3)] 2: 30 ~ "x is (at least) good" 

f::;[gl(x1),g2(x2),g3(x3)] ~ 10 ~"xis (at most) bad" 

f::;[g1(xl),g2(x2),g3(x3)]2: 30 ~"xis at most medium". 

The inconsistent classification of Table 4.1, or the equivalent interval classi­
fication of Table 4.2, can also be represented by the following set of "at least" 
and "at most" decision rules: 
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1) "ifMathematics 2: m edium and Physics 2: med ium, then student 2: m edium" 
2) "if Mathematics 2: good, then student ~~ medium", 
3) "if P hysics 2: good, then student 2: medim ", 
4) "if Mathem atics 2: good and Physics 2: good, then student 2: good", 
5) "if Mat hem a tics 2: good and Litcrat rc 2: good, then student 2: good", 
6) "~f Physics 2: good and Literature 2: good, then student 2: good", 
7) "if Mathematics ::::; bad and Physics ::::; medium, then student ::::; bad", 
8) "if Mathematics ::::; medium and Physics ::::; bad, then student ::::; bad", 
9) "if Mathematics::::; m edium and Physics ::::; medium, then student ::::; medium". 

Table 4.2. Interval classification by rules and by functions f ;?: [91 (.1:1), 92(.1.:2), 93 (x3)) 
and J:5[91(x!),92(X2 ),93(x3 )) (f ;?: (x ) = /[9I(x1),92(x2),93(x3)) and J:5 (x ) = 

f[!li (x1) , 92 (x 2 ), !73 (x3 ))) 

Student Mathematics Physics Literature Decision f~(x) F"(x) Matching 
rules 

81 bad bad bad bad 0 0 #7,8,9 
82 medium bad bad bad 1 1 #8,9 
S3 good bad bad medium-good 18 32 # 2 
S4 bad medium bad bad 1 1 # 7,9 
S5 medium medium bad medium 18 18 # 1,9 
S6 good medium bad medium-good 20 33 # 1,2 
S7 bad good bad medium-good 18 32 #3 
S8 medium good bad medium-good 20 33 # 1,3 - -
S9 good good bad good 36 36 # 1,2,3,6 
810 bad bad medium bad 1 1 #7,8,9 
Sll medium bad medium bad 3 3 #8,9 
812 good bad medium medium-good 19 33 #2 
8 13 bad medium medium bad 3 3 # 7,9 
814 medium medium medium medium 19 19 # 1,9 
S15 good medium medium medium-good 23 35 # 1,2 
816 bad good medium medium-good 19 33 #3 
8 17 medium good medium medium-good 23 35 # 1,3 
818 good good medium good 41 41 #1,2,3,4 
819 bad bad good bad 2 2 #7,8,9 
820 medium bad good bad 5 5 #8,9 
821 good bad good good 34 34 #2,5 

--
822 bad medium good bad 5 5 # 7,9 
823 medium medium good medium 20 20 # 1,9 
824 good medium good good 37 37 # 1,2,5 
825 bad good good good 34 34 #3,6 
826 medium good good good 37 37 #1,3,6 
827 good good good good 46 46 #1,2,3 ,4,5,6 

In the last column of Table 4.2 the numbers of rules m a tching the particular 
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5. Conclusions 

We considered a class of multiple-criteria decision problems, called multiple­
criteria classification, concerning an assignment of some actions to some pre­
defined and preference-ordered decision classes. The actions are described by a 
finite set of criteria with ordinal scales. We characterized the multiple-criteria 
classification problem by a representation theorem stating equivalence of a very 
simple cancellation property, a general utility function and a specific outranking 
relation, on the one hand, and a decision rule model on the other hand. When 
considering the decision rule model, we focused our attention on the rough set 
theory, offering an original methodology for extraction of knowledge from data 
that, in this case, are examples of classification provided by a decision maker. 
The advantage of the rough set approach with respect to competitive method­
ologies is the possibility of handling partially inconsistent data that are often 
encountered in preferential information, due to hesitation of decision makers, 
unstable character of their preferences, imprecise or incomplete information and 
the like. Therefore, we proposed a general model of conjoint measurement that, 
using the basic concepts of the rough set approach (lower and upper approxi­
mations), is able to represent these inconsistencies by a specific utility function. 
We showed that these inconsistencies can also be represented in a meaningful 
way by "if .. , then ... " decision rules induced from rough approximations. 

As the rough set approach to multiple-criteria classification problems and 
the underlying decision rules exploit only the ordinal properties of the scales of 
criteria, they are appropriate for aggregation of ordinal criteria. This challenging 
problem of multiple-criteria decision making has been solved until now by using 
some max-min aggregation operators, with the most general one - the fuzzy 
integral proposed by Sugeno. We showed that the decision rule model following 
from the rough set approach has advantages over the integral of Sugeno, in 
particular, it can represent some (even consistent) preferences that the Sugeno 
integral cannot. 

The characterization of the decision rule preference model performed in this 
paper shows clearly its extraordinary capacity of criteria aggregation in multiple­
criteria classification problems. The decision rule preference model, apart from 
its capacity of representation, fulfils the postulate of transparency and inter­
pretability of preference models in decision aiding. The characterization shows 
that the decision rule preference model is a strong alternative to functional and 
relational preference models to which it is formally equivalent. Recently, similar 
benefits of the decision rule model have been proved with respect to multiple­
criteria choice and ranking problems (Greco, Matarazzo and Slowi1iski, 2002b). 
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