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Abstract: Multiple-criteria classification (sorting) problem con-
cerns assignment of actions (objects) to some pre-defined and prefer-
ence-ordered decision classes. The actions are described by a finite
set of criteria, i.e. attributes, with preference-ordered scales. To per-
form the classification, criteria have to be aggregated into a prefer-
ence model which can be: utility (discriminant) function, or outrank-
ing relation, or “if..., then...” decision rules. Decision rules involve
partial profiles on subsets of criteria and dominance relation on these
profiles. A challenging problem in multiple-criteria decision making
is the aggregation of criteria with ordinal scales. We show that the
decision rule model we propose has advantages over a general utility
function, over the integral of Sugeno, conceived for ordinal criteria,
and over an oufranking relation. This is shown by basic axioms
characterizing these models. Moreover, we consider a more general
decision rule model based on the rough set theory. The advantage
of the rough set approach compared to competitive methodologies is
the possibility of handling partially inconsistent data that are often
encountered in preferential information, due to hesitation of decision
makers, unstable character of their preferences, imprecise or incom-
plete knowledge and the like. We show that these inconsistencies
can be represented in a meaningful way by “if..., then..." decision
rules induced from rough approximations. The theoretical results
reported in this paper show that the decision rule model is the most
general aggregation model among all the considered models.

Keywords: multiple-criteria classification, preference modeling,
decision rules, conjoint measurement, ordinal criteria, rough sets,
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1. Introduction

Making decisions with respect to a set of actions (objects) requires, usually, tak-
ing into account multiple criteria representing different and conflicting points of
view on evaluation of the actions. Multiple-criteria decision making (MCDM)
may concern either a choice of the best action, or a ranking, or a classifica-
tion of the set of actions (see Roy, 1985; Gal, Stewart and Hanne, 1999). It
is well known that a MCDM problem is mathematically ill posed, because the
only objective information that follows from its mathematical formulation is the
dominance relation. Action x dominates action y if z is at least as good as y on
all considered criteria. If it is the case, z is objectively better than y. Apart from
trivial problems, this information does not permit, however, to solve a particular
MCDM problem because the most interesting actions, that are non-dominated,
are non-comparable to each other, unless one gives additional information per-
mitting to aggregate multiple criteria into a single preference model. The pref-
erence model establishes a preference structure in the set of actions; a suitable
exploitation of this structure yields a recoramendation of the “best compromise
solution” for either choice, or ranking, or multi-criteria classification.

The information permitting to move forward the solution process is called
preferential information; its acquisition, construction of the preference model
and, finally, exploitation of the preference structure involve a single or multiple
decision makers (DM) in the solution process — for this reason this is not an
automatic solution procedure but a decision aiding method.

A much-desired feature of decision aiding is transparency of the methodology
that should be intelligible, at least intuitively, for the users. The transparency
may enhance the confidence to recommencations and facilitate their robustness
analysis. There are two elements of crucial importance for the transparency: the
type of a preference model and the type of DM’s preferential information used
for its construction. Very often the model adopted requires this information to
be given in terms of preference model parameters, such as importance weights,
substitution ratios and various thresholds. Giving such information requires a
great cognitive effort of the DM.

It is generally acknowledged, however, that people prefer to make exemplary
decigions rather than to explain them in terms of specific parameters. For
this reason, the idea of inferring prefererce models from exemplary decisions
provided by the DM is compatible with the aim of transparency. Artificial
intelligence and, particularly, inductive learning approach, submits a simple
idea of inferring the preference model in terms of decision rules being logical
statements of the type “if. ... then...”. Such preference model is comprehensible
for the users, because it speaks the language of examples, and its distributed
form is able to represent local trade-offs and dependencies among criteria that
are hidden by more synthetic models, like a utility function.

The exemplary decisions may, however, be inconsistent because of limited
Adicoviminatory nower af eriteria and due to hesitation of DMs. unstable character
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of their preferences, imprecise or incomplete information, etc. (see Roy, 1989).
Inconsistent examples concern pairs of actions (z,y) such that 2 dominates y,
however, # has been assigned to a worse class than y. These inconsistencies
cannot be considered as simple error or noise. They can convey important in-
formation that should be taken into account in the construction of the DM’s
preference model. To deal with this problem, the authors have adapted the
rough set theory (Pawlak, 1982, 1991; Pawlak and Slowinski, 1994) that, in its
classic form, is not able to use the information about preference order in at-
tribute domains, i.e. about scales of criteria (Greco, Matarazzo and Slowiriski,
1999, 2000, 2001a, 2002a). The authors’ extension of the rough set concept
permits a separation of certain and doubtful knowledge about the DM’s prefer-
ences by distinction of different kinds of decision rules, depending whether they
are induced from lower approximations of decision classes or from the bound-
aries of these classes composed of inconsistent examples that do not observe the
dominance principle.

The above two elements, preference information (possibly inconsistent) in
terms of exemplary decisions and preference model in terms of rules, are the
main features of our methodology characterized in this paper with respect
to multiple-criteria classification problem (also called multiple-criteria sorting
problem). Let us recall that classification concerns an assignment of a set of
actions to a set of pre-defined decision classes. The actions are described by
a set of criteria, i.e. attributes with preference-ordered domains (scales). The
decision classes are preference-ordered.

Although multi-attribute classification is the most popular problem consid-
ered also in Artificial Intelligence and its derivative — Knowledge Discovery and
Data Mining — this methodology ignores the preference scale that gives to reg-
ular attributes the meaning of criteria. On the other hand, the usual MCDM
methodology assumes that all attributes are criteria. Our methodology, based
on the extended rough set approach, permits to take into account both regular
attributes and criteria in multiple-criteria classification, which makes sense in
many real decision problems.

Summing up this introduction, one can remark that the central problem of
any decision-aiding methodology proposed for multiple-eriteria and /or multiple-
attribute classification is the aggregation of the multiple criteria and attributes
into a single preference model. In this paper. we propose to compare different
paradigms used to solve this central problem by different theories (see Table 1.1).
This comparison will be made at the level of axiomatic foundations, which has
no precedence in the theoretical research concerning multi-criteria classification,
The axiomatic approach is interesting for at least three reasons:

e it exhibits differences between preference models and methods,

e it permits to interpret methods conceived for one model in terms of another

model,

e knowing the basic axioms, one can pass from one method to another with
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Moreover, we will consider aggregation of ordinal criteria that has been studied
much less than that of cardinal criteria (see Roberts, 1979). Among several
ageregation models, a particular interest has been paid recently for an integral
proposed by Sugeno (1974), able to deal with ordinal data; it has been considered
the most general ordinal aggregation operator of the max-min average type. It
appears, however, that this operator has some unpleasant limitations: the most
important is the so-called commensurability (Modave and Grabisch, 1998), i.e.
the evaluations with respect to each considered criterion should be defined on
the same scale. Comparison of the Sugeno integral with the decision rule model
at the axiomatic level permits to show other limitations of the former.

Table 1.1. Different paradigms of aggregation and preference representation

Theory (paradigm) Main preoceupation The aggregation
(axiomatic basis) model shows
Decision Theory Definition of preference structures Relation in X
Measurement Theory Cancellation property Function,
like in conjoint measurement
Measure Theory Capacity Weights or interactions
& or among criteria, like in
Fuzzy sets fuzzy measure Choquet integral
or Sugeno integral
Artificial Intelligence, |[Boolean or pseudo-Boolean function, Knowledge,
Logical Analysis of Data decision rules like in knowledge discovery
& Rough Sets or decision trees or data mining

This article is extending a preliminary version (Greco, Matarazzo and Slo-
winski, 2001b) that did not include all the results related here. For the reason
of space limitation, we are omitting formal proofs. The article is organized as
follows. In Section 2, an axiomatic characterization of multiple-criteria classifi-
cation is presented. The main result is a theorem proving equivalence of four ele-
ments: a simple cancellation condition, a ufility function with a set of thresholds
which works as a discriminant function. an outranking function which, together
with a set of reference actions, operates as a decision model of ELECTRE TRI-
like methods (Roy and Bouyssou, 1993), and a set of “if..., then...” decision
rules. In Section 2, we give, moreover, a theorem characterizing multiple-criteria
classification based on Sugeno integral utility function, in terms of a simple can-
cellation condition or, equivalently, in terms of a set of “¢f.. ., then...” decision
rules having a specific syntax. Sections 3 presents main steps of the rough
set approach to multiple-criteria classification. Using the concepts recalled in
Section 3, we give in Section 4 a result on representation of multiple-criteria
classification in case of inconsistent data. Section 5 groups conclusions.

2. Axiomatic foundations of multiple-criteria classifica-
tion and associated preference models

2.1. A representation theorem

g .. 1 3 B R . e L e . e B I P L T Tt e s 1,



Axiomatization of utility, outranking and decision rule preference models 1009

X =TI, X, where X; is an evaluation scale of criterioni = 1,...,n. With ap-
propriate topological conditions we can also work with infinite non-denumerable
space, but in this paper, for the sake of simplicity, we will skip this possibility.
When aggregating multi-criteria evaluations within a preference model, we will
exploit the ordinal character of the criteria scales only. This means that eval-
uations on particular criteria are considered as if they were words (linguistic
qualifiers, like bad, medium, good, very good) even if an original scale was nu-
merical. Let (z;2—;), z; € X;and z_; € X; = H;-;ll#i Xj, denote an element
of X equal to z except for its i-th coordinate being equal to ;.

Moreover, let Cl = {Cl;,t € T}, T = {1,....m}, be a set of classes of X,
such that each z € X belongs to one and only one class Cl; € Cl and no class
Cl; is empty. We suppose, moreover, that the classes of Cl are increasingly
ordered, i.e. for all », s € T, such that r > s, the elements of Cl, have a better
comprehensive evaluation than the elements of Cl,. In consequence, the classes
of ClI are equivalence classes of a weak preference relation > being a complete
preorder, and we say that Cl is a classification in X.

Let us also consider the following upward and downward unions of classes,
respectively,

o=|Jon eiFE=|])ok.

s>t s<t

Observe that CIZ = CIS = X, ClS = Cl,, and CIF = Cl;. We will use these
unions in the syntax of decision rules in order to handle the preference order of
classes and to respect the dominance principle. It requires that actions having
not-worse evaluation with respect to a set of considered criteria than a referent
action cannot be assigned to a worse class than the referent action.

The classification decision is generally modeled by one of three models: util-
ity function (scoring methods, Capon, 1982, discriminant analysis, Altman,
1968, UTADIS, Zopounidis and Doumpos, 1998, etc.), outranking relation (as in
ELECTRE TRI, Roy and Bouyssou, 1993) or decision rules (as in Dominance-
Based Rough Set Approach, Greco, Matarazzo and Slowinski, 1999, 2001a,
2002a):

> Utility function f(-) gives a real value f(z) to each # € X and assigns «

to CE? if f(z) > 2z, where z¢, t = 2,...,m, are m — 1 ordered thresholds
satisfying
22<23< 0. < Zy.
> Qutranking relation S is a binary relation on X such that for each z,y € X,
xSy means “z is (comprehensively) at least as good as y”. An outranking
relation S on X assigns z to Cltz if 2Spt, where pt, t = 2,...,m, are
m — 1 reference profiles p*, such that p'** dominates pt (i.e. p**t! is at
least as good as p* with respect to each criterion i and there is at least
one criterion for which p**! is strictly preferred to p'), t =2,...,m — 1.
> A set of “if..., then...” decision rulesis a set of logical implications whose
avntax is “if =:1 18 at least as eood as r:1 and T:a ig at leact ae annd ao .-
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and ...and x;h is at least as good as 7y, then x € CI,—?"‘ where 21,71 €
Xi1, i2,ri2 € Xigy ..oy Tin, Tin € Xin, with {41,42, ... Tih} c {1, S
and r = 2,...,m. These decision rules are called “af least” decision rules.
Let us consider the case where for each criterion i = 1,...,n there exists
a function g; : X; — R such that for each z,y € X: g;(x;) > gi(yi) & x is
at least a good as y with respect to criterion ¢ (i.e. x; is at least as good
as y;). In this case, an “at least” decision rule can also be written as

“Uf gir(win) 2 gin(ra) and gia(@i2) 2 gio(riz) and ...

and gin(zin) > gin(rin), then z € CIZ”
with {i1,42,...,4h} C {1,...,n} and r = 2,...,m. The classification of
z € X with “at least” decision rules is done according to the following
procedure:

e v € Cl; if and only if there exists a rule matching 2 that assigns z
to CIZ, and there exists no rule matching  that assigns  to ClZ,
where s > ¢;

e z € Cl; if and only if there exists no rule matching w.

The following result is a representation theorem for the multiple-criteria clas-
sification problem, stating the equivalence belween a very simple cancellation
property, a general utility function, a very general outranking relation and a set
of decision rules. Let us mention that equivalence of the considered cancellation
property and the utility function was already noted by Goldstein (1991), within
the conjoint measurement approach, for the special case of three classes.

THEOREM 2.1 The following four propositions are equivalent:
1) (ecancellation property) for each i = 1,...,n, for each z;,y; € X; and
a—i,b—; € X_;, and for each r,s € {1,...,m}:
{{zia_;) € Cl,. and (y;b_;) € Cl,}
= {(yia—:) € CIZ or (z:b;) € CIZ},
2) (utility function) there exist
m functions g; : X; — R for eachi=1,...,n, called criteria,

m function f : R" — R, non-decreasing in each argument, called utility
Sfunction,

m m — 1 ordered thresholds z,, t = 2,...,m, satisfying
20 L 23 vos < Zm
such that for each x € X and each t =2,...,m,
Flos(®1), 92(2), .- -, gn(@n)] = 20 & z € CIF,

3) (outranking function and relation) there exist

- iimetinne ms v X s B A =T .. . 2. prlled resterin.
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m function s : R®*" — R, non-decreasing in each odd argument and
non-increasing in each even argument, called outranking function,

m m — 1 reference profiles p*, t = 2,...,m, satisfying
%(0%) L 5(@%) Lo SEO™),  fori=1,...4m,
such that for each x € X and eacht =2,....m
slgr(21), 91(0"). 92(2), g2(2"): - . 1 g (@) gn(P")] > 0 & z € CIF,

(N.B. s[g1(z1),01(p%), 92(22), 92(p):- - . gn(@n), 9 (p")] 2 0 & =Sp',
where S is a binary outranking relation),
4) ("at least” decision rules) there exist

m functions g; : X; = R for each i =1,...,n, called criteria,
= a sel of “at least” decision rules whose syntaz is

"if gin(@i1) 2 ria and gin(2i2) 2 rip and . ..

and gin(zin) > Tin, then x € CIF 7",

with {i1,2,...,3h} C {1,...,n}, t =2,...,m,
such that for each y € Cly, t = 2,...,m, there is at least one rule
implying y € Citz and there is no rule implying y € CIZ, with r > t.

Let us remark that the above representation theorem for multiple-criteria
classification problem starts with a very weak axiomatic condition called can-
cellation property. Indeed, this property does not require existence of criterion
functions g;, ¢ = 1,...,n, or a dominance relation D on X in order to char-
acterize the three preference models. Instead, for i = 1,...,n, it permits fo
define a binary weak preference relation »=; on X; which is a complete preorder.
Consequently, there exists a function g; : X; — R such that for each 2;,y; € X;

sy e gilz) = gily).

On the basis of relations =;, i = 1,....n, one can also define a dominance

relation D on X as follows: for each z,y € X
2Dy & x; =iy foralli=1,...,n.

This is of course equivalent to
2Dy < gi(x;) > gi(y;) forali=1,... n

Cancellation property 1) of Theorem 2.1. permits to state the following condi-
tion of coherence between dominance relation D and classification Cl, for each
z,y€ X

Dy =2 € Cl. and y € Cl.., with r > s.
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For any subset of criteria P C {1,...,n} and for each pair =,y € X one can
also define a dominance relation Dp on X:

zDpy & x; =;y; forallie P,
which is equivalent to
xDpy & gi(z;) =2 gi(y;) forallie P

Dominance relations Dp, P C {1,...,n}, are used in the condition part of
decision rules. Being an intersection of complete preorders, binary relations Dp
are partial preorders, i.e. they are reflexive and transitive.

Observe, moreover, that Theorem 2.1 regards a representation of classifica-
tion Cl in terms of “lower bounds”. Theorem 2.1 can be reformulated in terms
of “upper bounds” in such a way that

&> condition of proposition 2) is expressed as

Fl91(1), ga(w2). ., gu(2n)] < e ¢ 7 € CIT,
where wy, 1 =1,...,m — 1, are m — 1 suitably ordered thresholds,

> condition of proposition 3) is expressed as

slor(21),91(4"), g2(2), 92(¢%), - -+ 9n(Tn), gn(g)] < O & 2 € CJ;

where ¢*, ¢ = 1,...,m — 1, are m — 1 reference profiles ¢‘, such that
¢'t! dominates ¢* (i.e. ¢"t! is at least as good as ¢' with respect to each
criterion 7 = 1,...,n, and there is at least one criterion j € {1,...,n} for

which ¢+ is strictly preferred to ¢*), t = 1,...,m — 2.
> condition of proposition 4) considers a set of decision rules whose syntax

is

"if gin(in) < rix and gia(wiz) < iz and ...

and gin(zin) < rin, then & € CIS”
with {71,42,....ih} C {1,...,n}. These decision rules are called “at
most” decision rules. The classification of @ € X with “at most” deci-
sion rules is done according to the following procedure:

e 2 € Cl; if and only if there exists a rule matching = that assigns x
to CI?, and there exists no rule matching 2 that assigns = to CIZS,
where s < {;

e 1z € Cl,, if and only if there exists no rule matching «.

The reformulation of Theorem 2.1 in terms of “upper bounds” is as follows.
THEOREM 2.2 The following four propositions are equivalent:

1) (cancellation property) for each i = 1,...,n, for each xz;,y; € X; and
a—i,b—; € X_;, and for eachr,s € {1,...,m}:

{(zia—;) € Cl, and (yib-;) € Cl,}
= {(yia—:) € CIZ or (zib-;) € CIZ},
2) (utility function) there exist

m functions a; - X: = R.1=1.....n. called eriteria.
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m function f : R" — R, non-decreasing in each arqument, called utility
function,

m m — 1 ordered thresholds wy, t =1,...,m — 1, satisfying
u < W < ... < Wp—1
such that for each z € X and eacht=1,... . m—1
flor(@1), g2(ma), ..., gn(xn)] < we & w € CIF;
3) (outranking function and relation) there exist
m functions g; : X; — R for each i =1,...,n, called criteria,

u function s : R*™ — R, non-decreasing in each odd argument and
non-increasing i each even argument, called outranking function,

w m — 1 reference profiles ¢*, t =1,....m — 1, satisfying
9:(q1) £ g:i(g2) < ... < gu(g™Y), fori=1,...,n
such that for eachx € X and eacht=1,...,m—1
slg1(21), 91(a"), 92(%2), 92(4"), -+ gu(@n), 9a(q")] < 0 & x € CIF,

(N.B. s[g1(21),91(q): 92(x2), 92(¢"); - - - s Gn(2n), gn(g")] < 0 & ¢Sz,
where S is a binary outranking relation),
4) (“at most” decision rules) there ewist

m functions g; : X; — R for eachi=1,...,n, called criteria,

m a set of decision rules whose syntax is
“if gin(zin) < ria and gia(wiz) < rig and . ..
and gin(xin) < Tip, then z € th #

with {i1,42,...,th} C {1,...,n}, t=1,...,m—1,
such that for eachy € Cly, t =1,...,m—1, there is at least one rule
implying y € CIF and there is no rule implying y € CIE, with v < 1.

Another interesting question concerning Theorem 2.1 is that proposition 1)
can be reformulated as follows:

{(zia-;) € Cl, and (yib—;) € Cls} — {(yia—:) € CIZ or (x:b_;) € CIS}.
This is formally stated by the following result.

THEOREM 2.3 The following two propositions are equivalent for eachi=1,...,n
1) for each z;,y; € X; and a—; b_; € X_;, and for each r,s € {1,...,m}:

{(zia—;) € Cl, and (yia—i) € Cls} = {(yia—;) € CIS or (z:b_;) € CIS},
2) for each x;,y; € X; and a—;,b_; € X_;, and for each r,s € {1,...,m}:
fria_iY € CL: and (:b_iY € Ol = fla_ Y € CIE or{xb._ )& O15).
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2.2. An example

Let us consider a multiple-criteria classification problem inspired by the example
of evaluation in a high school proposed by Grabisch (1995). Suppose that a high
school director wants to assign students o different classes of merits on the basis
of their scores in Mathematics and Literature. The ordinal scale of evaluation
in Mathematics and Literature has been composed of three following grades:
“bad”, “medium” and “good”, while the comprehensive evaluation scale has
been composed of two grades: “bad” and “good”. The evaluations of student
2 in Mathematics and Literature are denoted by x; and w9, respectively. To
be criteria, functions g;(-) and go(-) must respect monotonicity, i.e. g;(bad) <
gi(medium) < gi(good), i = 1,2. For example, a simple way to define g;(-) and
g2(+) is to set g;(bad) = 1, g;(medium) = 2, g;(good) = 3, i = 1,2.

Table 2.1. Classification of all nine profiles of possible evaluations

Student | Mathematics | Literature | Decision | f[g1(x), g2(z)] | Matching
rules
S1 bad bad bad 0 #3
S2 medinm bad bad 1 #3
S3 good bad good 4 #1
S4 bad medium bad 1 #3
S5 medium medium good A #2
56 good medium good 6 #1,2
S7 bad good bad 2 #3
S8 medium good good 5 #2
59 good good good 8 #1,2

Table 2.1 presents all the possible profiles of students with respect to the
two considered eriteria, and a classification decision made by the director. Let
us observe that the classification of students presented in Table 2.1 satisfies
proposition 1) of Theorem 2.1. In fact, each time a student z dominates a
student y, student = belongs to the same or higher class than student y.

This can also be seen on the Hasse diagram in Fig. 2.1 where each node
corresponds to a profile of evaluations. Profile 2 corresponding to node o dom-
inates over the profile y corresponding to node /3 if « is over  and there is a
path from a to f3.

The diagram in Fig. 2.2 represents the binary relation R defined on the set
of all possible profiles of evaluations X = {51,52....,59} as follows: for each
z,yeX

xRy < xDyor x € Cl,. and y € Cl,, with r > s.

e ) o i FESTENRENY. [ DI & TPy L ifl vy | [T LT e 1 TR | Yii Eamd TP 2 sviandlaw e
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and transitive and, therefore, it is a partial preorder. Thus, there is a function
h: X — R such that for each 2,y € X

TRy = h(z) 2 h(y).

According to the definition and to the condition of coherence between dominance
relation D and classification Cl, we have

z € Cl,. and y € Cly, with r > s & h(z) = h(y). (i)
On the basis of property (i), it is possible to build function f: R" — R and set
of thresholds z, t = 2,...,m, used in Theorem 2.1.
___________________________________ .
| “good” students [good, good] :
I
1
1
[good, medium] [medium, good] :
i

[good, bad] [medium, medium]

[medium, bad] [bad, medium]

[bad, bad]

Figure 2.1. Hasse diagram profiles & = [#1, z2] where 21 = score in Mathematics,
2 = score in Literature

In the diagram presented in Fig. 2.2, the arcs representing relation R are
drawn from profile z to profile y if and only if # dominates ¥ or z belongs
to the class of “good” students and y belong to the class of “bad” students.
Since relation R is transitive, we are not drawing the arcs between profiles that
are already connected by a path; e.g. profiles “good-good” and “bad-good” are
in relation R, however, there exist a path between them through the profile

';nwnﬂhnn_ar\nrf“ <05y "]\l’-\ (‘Iil'f-\f‘*’ AR M A ‘l!ﬁll]fi 'hn |‘n{;||l\f|’.l|'ﬂ'
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Comparing Figs. 2.1 and 2.2, one can see that in the latter there are two
additional arcs. The arc from profile "medinm-medinm” to profile “bad-good”
does not exist in Fig. 2.1 because profile “medium-medium” does not dominate
profile “bad-good”, however, it exists in Fig. 2.2 because, due to the director,
the student with profile “medium-medinm” is classified better than the student
with profile “bad-good” (class “good” vs. class “bad”). For the same reason,
in Fig. 2.2 there is an arc from profile “good-bad” to profile “bad-good”, while
this arc does not exist in Fig. 2.1.

i“

good” students [good, good]

[good, medium] [medium, good]

[medium, bad]

[bad, bad] “bad” students }

Figure 2.2. The binary relation in the set of student profiles

On the basis of relation R one can build the function f[g(z1), ga(x2)].
used in proposition 2) of Theorem 2.1, in a very simple way: for each profile
2 = [z1,22] represented by a node a, f[g1(z1).g2(22)] is equal to the num-
ber of nodes to which there is a directed path starting from «. The function
floi(z1), g2(22)] is presented in Fig. 2.3. It has the property that all the stu-
dents classified as “good” have a greater value of this function than the stu-
dents classified as “bad”. Among the “good” students, the minimum value
of function f[g1(z1). g2(z2)], equal to 4. is obtained by students with profiles
“good-bad” or “medium-medium”. Therefore, the only threshold z; is equal to
4; flo1(z1), g2(x2)] = 4 if and only if « is “good”, and f[g:1(x1), g2(22)] < 4 if

Wl - an
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: *good” students fgood, good)=7

flgood, medium)=6 Simedium, good)=5

JSimedium, medium)=4 —:—:—:r flbad, good)=2

]
_____ ]
]
4

flmedium, bad)=1 fibad, medium)=I

Figure 2.3. The function f[g(x), g(x)] for student profiles = = [, x]

An outranking function satisfying conditions present in proposition 3) of
Theorem 2.1 can be built as follows: for each z,y € X set

s[g1(21), 91(y1), 92(x2), 92(¥2)] = flg1(x1), g2(x2)] = flor(y1), g2(y2)].

The only reference profile p? = (p?,p3) € X defined in Theorem 2.1 can be
chosen such that:
flon(@),g2(03)) = __ min  {flgi(21), ga(2)]}.
z€Class “good
It is easy to see that the reference profile p? is again one of the profiles “good-
bad” or “medium-medium”.

The “if..., then... " decision rules specified in proposition 4) of Theorem 2.1
can be easily built on the basis of the Hasse diagram presented in Fig. 2.1. Let us
observe that among the profiles classified as “good”, there are two profiles that
do not dominate any other profile from this class. These are the profiles “good-
bad” and "medium-medium”. Starting from these profiles we can induce the two
following “at least” decision rules representing the classification of the director:
#1) “if Mathematics > good and Literature > bad, then student > good™;
#2) “if Mathematics > medium and Literature > medium, then student >
good”;
2V all nnecovered students are bad.
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Since all the students are at least bad on any criterion, then the rule #1) can
be simplified to:

#1%) 7 if Mathematics > good, then student > good”.

Let us observe, moreover, that among the profiles classified as “bad”, there
are two profiles that are not dominated by any other profile from this class.
These are the profiles “bad-good” and “medium-bad”. Starting from these
profiles we can induce the two following “at most” decision rules representing
the classification of the director:

#1') “if Mathematics < bad and Literature < good, then student < bad”;
#2') “if Mathematics < medium and Literature < bad, then student < bad”;
#3') all uncovered students are good.

Since all the students are at most good on any criterion, then the rule #1')
can be simplified to:

#1™) “if Mathematics < bad, then student < bad”.

2.3. Ordinal criteria, max-min average and Sugeno integral

Handling ordinal criteria has recently received much attention from researchers
considering the multiple-criteria classification. To deal with this problem some
max-min aggregation operators have been used, with the most general one -
the fuzzy integral proposed by Sugeno (1974). To apply the Sugeno integral, an
identical finite ordinal scale V = {1,...,m} must be assumed for all criteria, for
classes of classification Cl and for a fuzzy measure defined on the set of criteria.
Let X = V" denote an evaluation space involving n criteria. Each z € X is
called a profile. The scale value of z € X on criterion g; is denoted by g;(x;)
and belongs to V. A fuzzy measure on C' = {g1,92,...,9a} 18 a set function
pu o P(C) — V, where P(C) is the power set of C, satisfying the following
axioms:

1) (@) =1, pu(C) = m,

2) A C B implies p(A) < u(B), for all A, B € P(C).
For each x € X, the criteria are ordered according to increasing values of g;(x;):

9(1),92)s - - - » 9(m)» such that gy(2(1)) < g2y(2(2)) < ... < gy(@(n)).

The Sugeno integral of [g1 (1), ga(22), . . . , gn (24 )] with respect to fuzzy measure
1 is defined as follows:

Slg1(x1), 92(@2), - .o gnlTn); p] = i=1111'z_1_)‘c"{m.in{gm(.’n(”), #(Liy) s

where I(,) = {g(i)! N !g(n}}'
An alternative equivalent definition of the Sugeno integral is the following:

§{gl{:z:l),gg(:r2)._ ernln(Enli ] = _max 1{min{‘r,:,-(n:,-),z' €I, u(I)}}.
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The following result is the counterpart of Theorem 2.1 with respect to Sugeno
integral, stating equivalence between a simple cancellation property, a utility
function represented by a Sugeno integral and a set of specific decision rules.
Let r € V be a grade of scale V' and an identifier of class Cl,. corresponding to
this grade.

THEOREM 2.4 The following three propositions are equivalent:
1) (cancellation property) for each i = 1,...,n, for each zi,yi,z; € X; and
a—i,b_; € X_i, and for each r,s € {1,...,m}:
{(zia—;) € CL? and (z:b_;) € G«f? and r > s}
= {(yia—;) € CIZ or (z;b_;) € CIZ},
2) (utility function) there exist
m functions g; : X; =V for eachi=1,...,n, called criteria,

m a fuzzy measure pp on C = {g1,92,....9n} having values in V', such
that for each xz € X and eacht =1,...,m,

Slg1(x1). g2(@2); .-+ gnl@n)i ] > t & @ € CIF,
3) (“at least” decision rules) there exist
m functions g; : X; — V for eachi=1,...,n, called criteria,

m a set of “at least” decision rules, called single-graded, whose syntax
18

“if gi1(zil) > r and gip(wi2) > r and ...
gin(xin) > v, thenz € CI27,

with {31,420 o R S {10 i 0 =250 0
satisfying the following properties:

(#) given the rule: “if gi1(xi1) 2 v and gia(xi2) = v and ... gin(zin)
>, thenz € C'a!i2 " the following rules are also true for each
s <r: Sfginlen) > s and gia(z2) > s and ... gin(@i) > s,
then z € CIZ",

(#) foreachy € Cl.,r=2,...,m, there is at least one rule implying
y € CI2 7 and there is no rule implying y € C’I?, with t > r.

Comparison of points 2) and 3) of Theorem 2.4 has a positive and a negative
interpretation. Positive interpretation says that any preference model expressed
in terms of the Sugeno integral can be represented by a set of specific decision
rules, i.e. single-graded decision rules satisfying property (). Negative interpre-
tation of Theorem 2.4 says that not all preference models represented by a set
of decision rules can be represented also in terms of the Sugeno integral. In the
next section we present an example of preference model representable by a set
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of decision rules but not representable by the Sugeno integral. Therefore, the
decision rule model has a larger applicability than the Sugeno integral. This
seems to be an advantage of the decision rule model compared to the Sugeno
integral. In our opinion there is also another advantage of the decision rule
model, which is perhaps more important for multiple-criteria decision aiding:
the decision rule model expresses the preferences in much more intelligible terms
than the Sugeno integral.

2.4. An example

Let us consider an augmented example of evaluation in a high school. Suppose
that a high school director wants to assign students to different classes of merits
on the basis of their scores in Mathematics, Physics and Literature. The ordinal
scales of the evaluation in Mathematics, Physics and Literature, as well as the
comprehensive evaluation scale have been composed of three following grades:
“bad”, “medium”, “good”.

Table 2.2 presents all possible profiles of the students with respect to the
three considered criteria, and a classification decision made by the director.
Let us observe that the classification of students presented in Table 2.2 sat-
isfies proposition 1) of Theorem 2.1. In fact, it can be seen in the table
that each time a student  dominates a student y, student = belongs to the
same or higher class than student y. Furthermore, it is possible to build a
utility function f[g1(z1), g2(22), g3(z3)] where the evaluations of student = in
Mathematics, Physics and Literature are denoted by 1,22 and z3, respec-
tively and functions g;(-),g2(-) and g3(-) respect monotonicity; for example,
gi(bad) = 1, gi(medium) = 2, g:(good) = 3, i = 1,2,3. The utility function
flo1(=1), g2(w3), ga(ws)] satisfies conditions present in proposition 2) of Theo-
rem 2.1. The values of this function are presented in Table 2.2. The ordered
thresholds z;, t = 2,3, defined in Theorem 2.1, are set on the values zo = 20,
z3 = 24, and the classification is performed by checking the following conditions:

floi(z1), g2(z2), g3(z3)] < 20 & “z is bad”,
20 < flor(z1), 92(z2), g3(z3)] < 24 & “z is medium”,
floi(z1), g2(x2), gs(z3)] > 24 & “z is good”.

An outranking function, satisfying conditions present in proposition 3) of The-
orem 2.1 can be built as follows: for each z,y € X, set

slg1(21), 91(y1), g2(2), 92(y2), g3(23), g3(y3)]

= flg1(z1), 92(@2), gs(w3)] — floa(y1), 92(y2), ga(y3)].
The reference profiles p* € X defined in Theorem 2.1 can be chosen as follows:

f[gl('Pi)»QQ(PE):93(13?;)]:zlgic]i}t{flgl(ffi)s92(132),93(53)]}! for t=2,...,m.
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The resulting reference profiles are: p* = {good, medium, bad} or {medium,
good, bad} or {medium, medium, medium}; p*® = {good, medium, medium} or
{medium, good, medium}.

Table 2.2. Classification of all 27 cases of possible evaluations
(f(z) = flgr(z1), g2(22), ga(w3)])

Student | Mathematics | Physics | Literature | Decision | f(z) | Matching
rules
S1 bad bad bad bad 1 #6
52 medium bad bad bad 10 #6
S3 good bad bad bad 14 #6
S4 bad medium bad bad 10 #6
S5 medium medium bad bad 16 #6
S6 good medium bad medium | 20 $#2
S7 bad good bad bad 14 #6
58 medium good bad medium | 20 #3
S9 good good bad medium | 21 #2.3
510 bad bad medium bad 7 #6
511 medium bad medium bad 13 #6
S12 good bad medium bad 15 #6
513 bad medium | medium bad 13 #6
S14 medium medium | medium | medium | 20 #1
515 good medium | medium good 24 #1,2.4
S16 bad good medium bad 15 #6
S17 medium good medium good 24 #1,3,5
518 good good medium good 26 | #1,2,3,4,5
S19 bad bad good bad 12 #6
520 medium bad good bad 15 #6
S21 good bad good bad 16 #6
S22 bad medinum good bad 15 #6
523 medium medinm good medium | 21 #1
S24 good medium good good 26 #1,24
525 bad good good bad 16 #6
526 medium good good good 26 #1,3,5
S27 good good good good 27 | #1,2,34,5

Finally, according to proposition 4) of Theorem 2.1, the classification of Table
2.2 can be represented by means of the following set of “at least” decision rules:

#1) “if Mathematics > medium and Physics > medium and Literature >
medium, then student > medium”;

#2) “if Mathematics > good and Physics > medium, then student > medium”;

#3) “if Mathematics > medium and Physics > good, then student > medium”;

#4) “if Mathematics > good and Physics > medium and Literature > medium,
then student > good”;



1022 R. SLOWINSKI, S. GRECO, B. MATARAZZO

#5) “if Mathematics > medium and Physics > good and Literature > medium,
then student > good”;

#6) all uncovered students are bad.
The numbers of rules matching a student’s profile are indicated in the column
“Decision” of Table 2.2. Let us recall that when more than one “at least” rule is
matching a student, he/she is assigned to the highest “at least” class indicated
by the matching rules.

The classification presented in Table 2.2 can also be represented by a set of
“at most” decision rules:
#1') “if Mathematics < bad, then student < bad”;
#2') “if Physics < bad, then student < bad”;
#3') “if Mathematics < medium and Physics < medium and Literature < bad,

then student < bad”;

#4') “if Literature < bad, then student < medium”;
#5') “if Mathematics<medium and Physics<medium, then student<medium?”;
#6') all uncovered students are good.
Let us observe that all the 27 classification decisions made by “at least” or “at
most” decision rules in Table 2.2 cannot be represented by the most general
max-min aggregation operator permitting ordinal aggregation, i.c. the fuzzy
integral proposed by Sugeno (1974). Why? This can be understood intuitively
from Theorem 2.4: in fact, many of the rules applied for the classification of
the 27 cases are not single-graded, i.e. they use more than one grade of the
evaluation scale in conditions and decision.

The answer can also be more direct: consider the decision rule #2):

“¢f Mathematics > good and Physics > medium, then student > medium”.

There are the following possible values of fuzzy measure p permitting to obtain
with Sugeno integral the same classification as with rule #2), without misclas-
sification:
1) either p({Mathematics, Physics}) = medium,
2) or p({Mathematics}) = good,
3) or p({Physics}) = medium.
Case 1) corresponds to the rule:
“if Mathematics > medium and Physics > medium, then student medium”, but
it has the condition part weaker than rule #2);
case 2) corresponds to the rule:
“if Mathematics > good, then student > medium”, but it has the condition
part weaker than rule #2);
case 3) corresponds to the rule:
“of Physics > medium, then student > raedium”, but it has the condition part
weaker than rule #2).

In comelnsion. there 18 no possibility of representing the classification made
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3. Rough set approach to multiple-criteria classification
problems

This section summarizes main steps of the methodology presented in Greco,
Matarazzo and Slowiiiski (1999, 2001a, 2002a).

Let »; be a weak preference relation on U C X with reference to criterion
9i € C = {g91,92,...,9n}, such that z »=; y means “z is at least as good as
y with respect to criterion g;”. Suppose that >; is a complete preorder, i.e. a
strongly complete and transitive binary relation.

It is said that 2 dominates y with respect to P C C (denoted by 2Dpy) if
x =; y for each g; € P. Since the intersection of complete preorders is a part.idl
preorder and >; is a complete preorder for each g; € P, and Dp = ﬂ P =
then the dominance relation Dp is a partial preorder. Given P C C a.nd T E U
let

D}(z) = {y € U : yDpa},
Dp(z) ={y € U : zDpy}.

We define the P-lower approzimation and the P-upper approzimation of C!tz,
t € T, with respect to P C C (denoted by P(CI1Z) and P(CIZ), respectively),
as:

P(CIZ) = {z e U: D} C CI7},

Pic)= |J D).

2eC?

Ana.logously, we define the P-lower approximation and the P~upper apprc oxnna.-
tion of CIZ, t € T, with respect to P C C (denoted by P(CI7) and P(Ci2),
respectively), as

P(CI?)={z e U:D; C CI},
P(ciF)= |J Dple)

*ECIE

The pairs P(CIF), _}5(01!;_2), and E(C’Ef). F(CE?) are called rough approrima-
tions of CIF and CIT, respectively. Intuitively, P(CI?) represents the set of
actions that, according to the information given by criteria of P, can be as-
signed to ClZ with certainty. Analogously, P(CIF) represents the set of actions
that, according to the information given by criteria of P, can be assigned to
CIF with certainty. Instead, P(CIZ) and P(CIZ) represent the sets of actions
which, according to the information given by criteria of P, could be assigned to
Cit2 and Cl tS, respectively, however, there are some doubts due to inconsistency
of the available information.

The P-lower and P-upper approximations so obtained satisfy the following
properties for each t € T and for each P C C":

P(CIZ) C CI1Z Cc P(CIZ). P(CIS) C Cif c P(ClE).
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Furthermore, the following specific complementarity properties hold:

PO =U=P(OIZ ), t=2,,...m,
P(CIF) = U-ﬁ(c@l), t=1,...,m—1,
P(CIZ)=U - P(CIZ,), t=2,...,m,
P(CIS)=U-P(CIZ,), t=1,...,m~1.

The P-boundaries (P-doubtful regions) of Cl¥ and CIS are defined as
Bnp(CIZ) = P(CIZ) - P(CI}),
Bnp(Clg) = P(CIF) - P(CIF), foreachteT.

Bnp(CIZ) and Bnp(CIS) represent the set of all the actions which, according
to the information given by criteria from P. are assigned fo C!tz and C‘Ef,
respectively, in a way being inconsistent with the dominance principle. The
ability of handling inconsistency in classification data is a key feature of the
rough set approach (Slowinski et al., 2000).

We define the accuracy of approzimation of CJ? and CIS, for each t € T
and for each P C C, respectively, as:

>\ _ |P(CIE)| < _ |B(CID)|
) = Bag) P = B
The ratio
o0l = = Weer Brp(CIE)) U (User Bre(CI2))

U]

defines the quality of approxzimation of the partition Cl by means of the set of
criteria P, or, briefly, quality of classification. It expresses the ratio of all P-
correctly classified actions to all the actions in the set U. Let us stress that this
quality measure does not concern the “prediction quality” of the set of criteria
P, but its capacity of non-ambiguous reclassification of the actions from the
set U.

Every minimal subset P C C such that y2(Cl) = ¢(Cl) is called a reduct
of C' with respect to Cl and is denoted by REDc(C). For a given classification
there may exist more than one reduct. The intersection of all the reducts is
known as the core, denoted by CORE¢;.

Let us observe that we can write the definitions of P-lower approximations
of CIZ and CIS alternatively, as follows:

P(CI7)={s €U :yDpz =y € CIf},
P(CIS)={z €U :2Dpy = y € CIF}.

On the basis of this observation, it is possible to induce from the above approx-
imations a generalized description of the preferential information contained in
the given set of classification examples, in terms of “at least” and “at most”
Aanician milae ((rvoen Matarazzo and Slowitski 2002¢).
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4. Conjoint measurement for multiple-criteria classifica-
tion problems with inconsistencies

4.1. Representation theorems for multiple-criteria classification with
inconsistencies

The conjoint measurement model presented in Section 2 cannot represent the
inconsistency with the dominance principle considered within the rough set ap-
proach. In this section we present a more general model of conjoint measurement
that permits representation of this inconsistency. This model is based on the
concepts of rough approximation of upward and downward unions of classes CI?
and CIF.

The following concepts will be useful: for each z € X, the lower class and
the upper class of @, denoted by 7.(z) and r*(x), respectively, are defined as
follows

ro(z) = max{s € T : z € C(CIZ)},
r*(z) =min{s €T :z € Q(CIE)},

where C(CIZ) and C(CIS) are C-lower approximations of CIZ and CIS, re-
spectively.

THEOREM 4.1 For each set of binary relations =;, i = 1,...,n, being complete
preorders, and for each classification Cl there exist
- functions g; : X; — R, such that x; =; y; & gi(z:) > gi(vi), 1 =1,...,n,
~ functions fZ : R®™ — R and f< : R" — R, non-decreasing in each
argument, such that
f2 [91(51), 9‘2("32)3 e ~gn(3"n)] < fs[gl{ml)s 92(592)! R 19‘"("1:")]
— m — 1 ordered thresholds z;, t = 2,...,m,
23 <23 i X
such that for each action x € X, functions fZ and f< assign « to a lower
and an upper class, respectively:
F2lo1(21),92(22), - ., gn(@n)] > 2 & z € C(CIY),

FEl01(21), 92(x2)s ., gn(@n)] < 20 > z € C(CIE,),
where C' = {g1,92,---+9n}-

Inconsistency with the dominance principle can also be represented in terms
of a set of “at least” and “at most” decision rules considered together. More
formally, a set of “at least” and “at most” decision rules does not contradict
the classification Cl if for each x € Cl; there exists no “at least” decision rule
for which = € C'if—._ with s > t, and there exists no “at most” decision rule
for which z € CIZ, with s < ¢. A set of decision rules is complete if for each
@ € C(CIZ) there exists a decision rule for which z € CIZ, with s > ¢, and for
each z € C(CIS) there exists a decision rule for which = € CIZ, with s < t. A
set of decision rules represents the classification Cl if it does not contradict C1

prasmton Iy /L. TRSPICRRETRINER) (o0 )
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THEOREM 4.2 For each set of binary relations »=;, i = 1,...,n, being complete
preorders, and for each classification Cl, there exists a set of decision rules
representing the classification C1.

4.2. Interval classification and its representation

As stated above, one of the main reasons of inconsistency in the sense of dom-
inance is the hesitation of the DM assigning some action # € X to a class of
ClL It is thus worth considering a more relaxed definition of the classification
problem, which we call interval classification. In the interval classification, ClI
is not always a partition of X, and Cly, t = 1,...,m, are preference-ordered and
non-necessarily disjoint subsets of X, such that the evaluation corresponding to
Cl, is better than the evaluation corresponding to Cly when r > s. More pre-
cisely, in interval classification for each @ € X we have xUCL-UCl.41U...UCl,,
where r, s € {1,...,m}, r < s. Of course, if r = s for each & € X, the interval
classification boils down to the usual classification. For the interval classifica-
tion, the membership of = to the upward and downward unions CIZ and CIF is
defined as follows:

T E CIU—)— for any a < r,

z€ClUCL41U...UCL, ; <
T € Cliyq c ﬁ{.’BECIb‘“ for any b > s.

For example, if in a school a student z is classified as “between medium and
good”, we have 2 € Cliedium U Clyooa, which is equivalent to: o € C 12
and z € Cl,ﬂmd Each classification with some inconsistency in the sense of
dominance can be represented in terms of interval classification by stating for
eachz € X: 2 UCLUCL V... UCL, wheret = r.(z) and v = r*(z).

Let us introduce some cancellation conditions having the same nature as
proposition 1) in Theorem 2.1:

medium

Condition C1): for each i = 1,...,n, for each z;,y; € X; and a_;,b_; € X_;
{(zia_;) € CIZ and (y;b—;) € CIZ} = {(yia;) € CIZ or (z;:b_;) € CIZ},
Condition C2): for each i =1....,n, for each z;,y; € X; and a_;,b_; € X_;
{(zia_;) € CI= and (yib—;) € CIS} = {(yia_;) € CIZ or (x:b_;) € CIZ},
Condition C3): for each i =1,...,n, for each 2;,3 € X; and a_;,b_; € X_;
{(zia_;) € CIZ and (z;b_;) € CIZ} = {(yia—;) € CIZ or (yib_;) € CIF}.

Conditions C1)-C3) can be interpreted as follows:
— Condition Cl) says that lhc upwa,rd umons of ordered classes mduct, a

~ a1 S e SRR LY | LRy, SRR ettt SOl 4 1) DOF P R PIOh) L e R P NP T s, (1 .
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represented by the binary relation =7 defined on X; as follows:
z; =1 yi © [(yia—;) € CIE = (wia;) € CIZ, for each a_; € X_;
and for each t = 1,...,m].
On the basis of condition C1), one can prove that tg" is a complete pre-
order. This is formally stated by Theorem 4.3.
Condition C2) says that the downward unions of ordered classes induce a
preference order on the domain of each criterion. This preference order is
represented by the binary relation = defined on X; as follows:
T =7 ¥i & [(zia—i) € le = (yia—;) € Ci?, for each a_; € X_;
and for each t =1,...,m].
On the basis of condition C2), one can prove that >=: is a complete pre-
order. This is formally stated by Theorem 4.4.
Condition C3) says that the two previous preference orders are not contra-
dictory in the sense that there cannot exist z;,y; € X; such that =; t;’ i
and not y; =} x; (i.e. x; is preferred to y; according to *}"), and y; =] z;
and not z; >; y: (i.e. y; is preferred to x; according to »=;). This is
formally stated by Theorem 4.5.
Therefore, conditions C1)-C3) are useful to state the following representa-

tion theorems for interval classification.

THEOREM 4.3 The following three propositions are equivalent:
1) (cancellation property) condition C1) holds,
2) (utility function) there exist

m functions g? : X;—= R for eachi=1,...,n,

» function fZ : R" — R, increasing in each argument, called upward

classification function,
m m — 1 ordered thresholds z;, t = 2,...,m, salisfying

22 <2E <. <22
such that for each x € X
FEIOT (1), 0% (@2), -+ -, 05 (%a)] = 27 & 3 € CIF.
3) (“at least” decision rules) there ewist
m functions glg : X;i— R for eachi=1,...,n, called criteria,
m a set of “at least” decision rules whose syntaz is

""z'fg?l (zi1) 2 ri1 and g%(:c,-g] > 70 and . ..

and g,%(:‘.-:.,-h) > rin, then x € CI,_Z o

with {i1,i2,...,ih} C {1,...,n}, r = 2,...,m, such that for

each

y € Cl,, r = 2,...,m, there is at least one rule implying y € CIZ

arnd thers ds nn mile dmmining 11 e (12 apith £~ .



1028 R. SLOWINSKI, S. GRECO, B. MATARAZZO

THEOREM 4.4 The following three propositions are equivalent:
1) (cancellation property) condition C2) holds,
2) (utility function) there exist

m functions gf* : Xi—= R foreachi=1,...,n,

m function f< : R® — R, increasing in each argument, called down-
ward classification function,

m m — 1 ordered thresholds z?, t=1,...,m—1, satisfying

<

< < ) 2
2 <z5 <...<2zZj,1

such that for each x € X
< < < <
FS[o5 (1), 95 (22), ..., g5 ()] € 27 & z € CIF.
3) (“at most” decision rules) there erist
m functions g;—c : X; — R foreachi=1,...,n,
m a set of decision rules whose syntax is
W < <
if g (wi1) < ri and g33(xi2) < 1iz and . ..

and gi—i (zin) < Tin, then z € CI§ !

with {i1,42,....1h} C {1,...,n},r=1,...,m—1, such that for each
y€Cl.,r=1,...,m—1, there is at least one rule implying y € CI=
and there is no rule implying y € C!ts, with t < r.

THEOREM 4.5 The following three propositions are equivalent:
1) (cancellation properties) conditions C1), C2), C3) hold,
2) (utility functions) there exist

m functions g; : X; — R for eachi=1,...,n,

s two functions fZ : R* — R and fS : R® — R, non-decreasing in
each argument, called upward and downward classification functions,
respectively, such that for each v € X

FElo1(1), 92(22), -+ gu(@a)] 2 F2[91(21), 92(22); - -, gn (0]
m m — 1 ordered thresholds z¢, t = 2,...,m, satisfying
bR L TR N
such that for each action v € X
F21(21),92(22), -, guln)] 2 2 & @ € CUF,
FE91(21),92(%2), -+ gnlza)] < 2 & @ € CIE

3) (“at least” and “af most” decision rules) there exisi

. Faixndorme v, o Y. _VUTFE Freiianeh 5 e P
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m a set of “at least” decision rules whose syntaz is
“if gir(zi1) 2 rix and gia(2iz) 2 ri2 and ...
and gin(zin) > rin, then z € Clr2 ",

with {11,42,...,1h} C {1,...,n}, r = 2,...,m, such that for each
y € Cl., r = 2,...,m, there is at least one rule implying y € CIZ
and there is no rule implying y € C!,Z, witht > r,

m a set of “at most” decision rules whose syntax is
“if gin(wiar) < rax and gio(zi2) < 12 and ...
and gin(zin) < rin, then z € CIE”,

with {i1,i2,...,3h} C {1,...,n},r=1,...,m—1, such that for each
y€Cl.,r=1,...,m—1, there is at least one rule implying y € CI=
and there is no rule implying y € CI;, with t < r.

The following Theorem 4.6 gives conditions for utility functions f<[g1(z1),
g2(x2)y ..., gn(zn)] and f2[g1(z1),92(x2),...,gn(2zn)] of Theorem 4.5 being

Sugeno integrals. Theorem 4.6 gives also a syntax of the corresponding “at
least” and “at most” decision rules.

THEOREM 4.6 The following three propositions are equivalent:
1) (cancellation properties) condition C3) and the following conditions C1'),
C2') hold:
Condition C1’): for each i = 1,...,n, for each z;,y;,z; € X; and
g_pbge X 5, =12 000, M
[(zia_;) € CIF] and (y:b_;) € CIZ]
= [(zia—;) € CIF] or (z:b_;) € CIZ],
Condition C2’): for each i = 1,...,n, for each z;,y;,z; € X; and
e, b;eX_;,t=12,...,m
[(zia_;) € CIF) and (yib_;) € CIF]
= [(zia—i) € CIF] or (z;b_;) € CI),
2) (utility functions being Sugeno integrals) there exist
m functions g; : X; >V, V={1,...,m}, foreachi=1,...,n,

» two fuzzy measures p' and p® on C = {g1,92,...,9n}, having val-
ues in V and satisfying for each A C {g1,92,...,9n} the inequality
u2(A) > p(A), such that for each action z € X

Slo(er).g(r), . o(ea)i ] 2t & 2 € O, t=1,....m,
Slg(z1),g(@2)s ... g(xzn);p?] <t @z € CIE, t=1,...,m.
32) (“at least” and “at most” decision rules) there exist

m functions g; : X: = V. V=141....m} foreachi=1..... n.
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m o set of decision rules whose syntax is
“f g(zin) = v and ... and g(xy,) > v, then z € Cl,. >7,

with {i1,i2,...,ih} C {1,...,n}, r = 2,...,m, satisfying the follow-

g properties:

(%) given the rule: “of gir(xi) 2 v and gia(zi2) > r and ... gin(zin)
> r, then x € CIZ”, the following rules are also true for each
s <r: “if gn(za) 2 s and giz(2i2) 2 s and ... gin(zin) 2 s,
then z € Cl1Z”,

(#) foreachy € Cl,, v =2,...,m, there is at least one rule implying
y € ClZ and there is no rule implying y € CIZ, witht > r,

m o sel of decision rules whose syntoz is
“if gin(wir) < v and ... and gin(zin) < 7, then x € CIS 7,

with {i1,42,...,th} C {1,...,n}, r = 1,...,m — 1, satisfying the
following properties:

(#) given the rule: “if gi1(xi1) < r and giz(zi2) <7 and ... gin(Tin)
< r, then & € CIS", the following rules are also true for each
s > 1 “if gia(zi) € s and gia(zi2) < s and ... gin(zin) < s,
then z € CI1S”,

(#) for eachy € Cl., r = 1,...,m — 1, there is at least one rule
implying y € CIS and there is no rule implying y € C'I;‘:‘, with
AT

4.3. An example

Let us counsider a new version of the example presented in Section 2.4. As
before, the director of the school wants to assign students to different classes
of merits on the basis of their scores in Mathematics, Physics and Literature,
but now in his classification decisions there is some inconsistency in the sense of
dominance. All the 27 possible cases are presented in Table 4.1. As can be seen
in the table, several pairs of students are inconsistent in the sense of dominance.
For example, student S3 is dominated by student S6 (in Mathematics S3 and S6
are both good, in Physics S3 is bad and 56 is medium, in Literature S3 and S6
are both bad). The pairs of students inconsistent with the dominance principle
are: (S3,56), (S3,515), (512,815), (S7,58), (87,517), (S16,517).

The above cases of inconsistency represent situations of hesitation in as-
signing a student to a given class of merit. Therefore, we can represent the
inconsistent classification of Table 4.1 in terms of an equivalent interval classifi-
cation as shown in Table 4.2. In Table 4.2, the values assigned by functions
IZ[01(21), g2(w2). gs(a3)] and f=[g1(x1). g2(z2), g3(3)], respectively are pre-
sented. Functions f2[g1(x1), g2(22). gs(x3)] and f=[g1(z1), g2(x2), g3(23)] were
lniild ae avnlainad in the eomment to Theorem 41 The ordered threchalde
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Table 4.1. An inconsistent classification of the cases of possible evaluations

Student | Mathematics | Physics | Literature | Decision
S1 bad bad bad bad
S2 medium bad bad bad
S3 good bad bad good
S4 bad medium bad bad
S5 medium medium bad medium
S6 good medium bad medium
S7 bad good bad good
S8 medium good bad medium
59 good good bad good

S10 bad bad medium bad
S11 medium bad medium bad
S12 good bad medium good
S13 bad medium | medium bad
S14 medium medium | medium | medium
S15 good medium | medium | medium
S16 bad good medium good
517 medium good medium | medium
S18 good good medium good
519 bad bad good bad
S20 medinm bad good bad
S21 good bad good good
S22 bad medium good bad
523 medium medium good medinm
S24 good medium good good
525 bad good good good
S26 medium good good good
527 good good good good

zt, t = 2,3, considered in proposition 3) of Theorem 4.3, are set to the values
z3 = 10, z3 = 30, and the interval classification is performed by checking the

following conditions:

fz[gl(:r,'l), g2(x2), ga(z3)] > 10 & “z is at least medium”

fZ[g1(21), 92(2), ga3(23)] = 30 & “z is (at least) good”

2 lo1(21), g2(22), ga(x3)] < 10 & “z is (at most) bad”

Eg1(21), g2(22), g3(23)] > 30 & “x is at most medium”.

The inconsistent classification of Table 4.1, or the equivalent interval classi-

fication of Table 4.2, can also be represented by the following set of “at least”
and “at moct? dacicion v lece
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1) *#f Mathematics > medium and Physics > medium, then student > medium”
2) “if Mathematics > good, then student > medinm”,

3) *if Physics > good, then student > medium”,

4) “if Mathematics > good and Physics > good, then student > good”,

5) “if Mathematics > good and Literature > good, then student > good”,

6) “if Physics > good and Literature > good, then student > good”,

7) “if Mathematics < bad and Physics < medium, then student < bad”,

8) “if Mathematics < medium and Physics < bad, then student < bad”,

9) “if Mathematics < medium and Physics < medium, then student < medium”.

—_—

I

Table 4.2. Interval classification by rules and by functions f=[g1(x1), g2(x2), gs(xs)
z)

and fS[gi(z1), g2(x2), g3(s)] (fZ(x) = Floi(@1), g2(w2),95(zs)] and fS(x
flor(z1), g2(x2), ga(xs)])

Student|Mathematics| Physics | Literature| Decision [ f=(2)|f=(z)| Matching
rules

S1 bad bad bad bad 0 0 #7,8,9
52 medinm bad bhad bad 1 1 #8.9
S3 good bad bad medinm-good| 18 32 2
54 bad medinm bad bad 1 1 #7.9
85 medinm | medium bad medium 18 18 #1.9
56 good medinm|  bad medium-good| 20 33 #1,2
S7 bad good bad medium-good| 18 32 #3
58 medium good bad  |medium-good| 20 33 #1.3
59 good good bad zood 36 36 #1,2,3.6
510 bad bad medium bad 1 1 #7.89
S11 medinm bad medinm bad 3 3 #8.9
S12 good bad | medium |medimm-good| 19 33 #2
S13 bad medium| medium bad 3 3 #7.9
514 medinm  [medium| medium medium 19 19 #1.9
515 good medinm| mediumn | medinm-good| 23 35 #1,2
S16 bad good | medium [medinum-good| 19 33 #3
517 medium good | medium |medium-good| 23 35 #1,3
518 good good | medium good 41 41 #1,2.34
S19 bad bad good bad 2 2 #7.8,9
S20 medium bad good bad 5 5 #8.9
521 good bad good good 34 34 F#2,5
522 bad medium| good bad 5 5 #7.9
523 medium  |medinum| good medinm 20 20 #1,9
524 good medium|  good good 37 37 #1,2,5
525 bad good good good 34 34 #3.6
526 medium good good good a7 a7 #1,3.6
527 good good good good 46 46 |#1,2,3,4,5,6

In the last column of Table 4.2 the numbers of rules matching the particular
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5. Conclusions

We considered a class of multiple-criteria decision problems, called multiple-
criferia classification, concerning an assignment of some actions to some pre-
defined and preference-ordered decision classes. The actions are described by a
finite set of criteria with ordinal scales. We characterized the multiple-criteria
classification problem by a representation theorem stating equivalence of a very
simple cancellation property, a general utility function and a specific outranking
relation, on the one hand, and a decision rule model on the other hand. When
considering the decision rule model, we focused our attention on the rough set
theory, offering an original methodology for extraction of knowledge from data
that, in this case. are examples of classification provided by a decision maker.
The advantage of the rough set approach with respect to competitive method-
ologies is the possibility of handling partially inconsistent data that are often
encountered in preferential information, due to hesitation of decision makers,
unstable character of their preferences, imprecise or incomplete information and
the like. Therefore, we proposed a general model of conjoint measurement that,
using the basic concepts of the rough set approach (lower and upper approxi-
mations), is able to represent these inconsistencies by a specific utility function.
We showed that these inconsistencies can also be represented in a meaningful
way by “if..., then...” decision rules induced from rough approximations.

As the rough set approach to multiple-criteria classification problems and
the underlying decision rules exploit only the ordinal properties of the scales of
criteria, they are appropriate for aggregation of ordinal criteria. This challenging
problem of multiple-criteria decision making has been solved until now by using
some max-min aggregation operators, with the most general one - the fuzzy
integral proposed by Sugeno. We showed that the decision rule model following
from the rough set approach has advantages over the integral of Sugeno, in
particular, it can represent some (even consistent) preferences that the Sugeno
integral cannot.

The characterization of the decision rule preference model performed in this
paper shows clearly its extraordinary capacity of criteria aggregation in multiple-
criteria classification problems. The decision rule preference model, apart from
its capacity of representation, fulfils the postulate of transparency and inter-
pretability of preference models in decision aiding. The characterization shows
that the decision rule preference model is a strong alternative to functional and
relational preference models to which it is formally equivalent. Recently, similar
benefits of the decision rule model have been proved with respect to multiple-
criteria choice and ranking problems (Greco, Matarazzo and Slowinski, 2002b).

Acknowledgements

The first author wishes to acknowledge the financial support from the State
Committee for Scientific Research. erant KBN ST11F 006 19. and from the



1034 R. SLOWINSKIL, S. GRECO, B. MATARAZZO

Foundation for Polish Science, subsidy no. 11/2001. The research of the two
other authors has been supported by the Italian Ministry of University and
Scientific Research (MURST).

References

ArrMman, E.I. (1968) Financial ratios, discriminant analysis and the prediction
of corporate bankruptcy. Journal of Finance, 589-609.

CaPON, N. (1982) Cedit scoring systems: a critical analysis. Journal of Mar-
keting, 46, 32-91.

GaL, T., STewART, T. and HANNE, T. (eds.), (1999) Advances in Multiple Cri-
teria Decision Making. Kluwer Academic Publishers, Dordrecht, Boston.

GoOLDSTEIN, W.M. (1991) Decomposable threshold models. Journal of Mathe-
matical Psychology, 35, 64-T9.

GRABISCH, M. (1995) Fuzzy integral in multiple-criteria decision making. Fuzzy
Sets and Systems, 69, 279-298,

GRECO, S., MATARAZZO. B. and SrowiNskl, R. (1999) The use of rough
sets and fuzzy sets in MCDM. Chapter 14. In: T. Gal, T. Stewart and
T. Hanne, eds., Advances in Multiple Criteria Decision Making, Kluwer
Academic Publishers, Dordrecht, Boston, 14.1-14.59.

GRECO, S., MATARAZZO, B. and SLOWINSKI, R. (2000) Extension of the rough
set approach to multicriteria decision support. /INFOR, 38, 3, 161-196.

GRECO, S., MATARAZZO, B. and Stowinskl, R. (2001a) Rough sets theory
for multicriteria decision analysis. EJOR, 129, 1, 1-47.

GRECO, S., MATARAZZO, B. and Srowinskl, R. (2001b) Conjoint measure-
ment and rough set approach for multicriteria sorting problems in presence
of ordinal criteria. In: A. Colorni, M. Paruccini, B. Roy, eds., A-MCD-A:
Aide Multi Critere a la Décision — Multiple Criteria Decision Aiding, Eu-
ropean Commission Report, EUR. 19308 EN, Ispra, 117-144,

GRECO, S., MATARAZZO, B. and SLowINsKI, R. (2002a) Rough sets method-
ology for sorting problems in presence ol multiple attributes and criteria.
EJOR, 138, 2, 247-259.

GRECO, S., MATARAZZO, B. and SrowiNskl, R. (2002b) Preference repre-
sentation by means of conjoint measurement and decision rule model.
In: D. Bouyssou, E. Jacquet-Lagreze, P. Perny, R. Slowiiiski, D. Vander-
pooten, Ph. Vincke, eds., Aiding Decisions with Multiple Criteria - Essays
in Honor of Bernard Roy. Kluwer Academic Publishers, Boston, 263-313.

GRECO, S., MATARAZZO, B. and SrowiNskl, R. (2002c) Multicriteria classi-
fication. Chapter 16.1.9. In: W. Kloesgen and J. Zytkow, eds., Handbook
of Data Mining and Knowledge Discovery, Oxford University Press, New
York, 318-328.

MoDAVE, F. and GRABISCH, M. (1998) Preference representation by the Cho-
quet Integral: the commensurability hypothesis. In: Proe. 7th Int. Con-
ference on Information Processing and Management of Uncerlainty in
Knomledae Baosed Susteme Parie Ta Sorbonne 164-171



Axiomatization of utility, outranking and decision rule preference models 1035

Pawrak, Z. (1982) Rough sets. International Journal of Information & Com-
puter Sciences, 11, 341-356.

PAwLAK, Z. (1991) Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer, Dordrecht.

PawLAK, Z. and SLowiINskI, R. (1994) Rough set approach to multi-attribute
decision analysis. EJOR, T2, 443-459.

ROBERTS, F.S. (1979) Measurement theory with applications to decision-making,
utility and the social science. Addison-Wesley Publ., Reading, MA.

Roy, B. (1985) Méthodologie Multicritére d’Aide a la Décision. Economica,
Paris.

Roy, B. (1989) Main sources of inaccurate determination, uncertainty and im-
precision in decision models. Mathematical and Computer Modelling, 12,
10/11 1245-1254.

Roy, B. and Bouyssou, D. (1993) Aide Multicritére a la Décision: Méthodes
et Cas. Economica, Paris.

SLowiNskl, R. (ed.), (1992) Intelligent Decision Support. Handbook of Appli-
cations and Advances of the Rough Sets Theory. Kluwer Academic Pub-
lishers, Dordrecht.

SLowiNskl, R., STEFANOWSKI, J., GRECO, S. and MATARAZZO, B. (2000)
Rough sets based processing of inconsistent information in decision anal-
ysis. Control and Cybernetics, 29 1, 379-404.

SuGeENO, M. (1974) Theory of fuzzy integrals and its applications. Doctoral
Thesis, Tokyo Institute of Technology.

Zoprounipis, C. and DoumpPos M. (1998) Developing a multicriteria decision
support system for financial classification problems: the FINCLAS system.
Optimization Methods and Software 8, 277-304.






