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1. Introduction 

This paper is devoted to the discussion of numerical methods for solving an 
optimal control problem of a differential-algebraic dynamic system. As for the 
the case of optimal control of ordinary differential equations, the idea is based 
on dynamic programming, that leads to the Hamilton-Jacobi-Bellman (HJB) 
equation (Bellman, 1961), whose well-posedness can be proved in the viscos
ity sense, see Crandall and Lions (1983), and also Bardi and Capuzzo-Dolcetta 
(1997). and Barles (1994). ThP rli~rrPt.i? >l tirm r.f th o l-TT"Q nn n ~ ~ ; n_ : ~ ~ _, .; ,_ _ 
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papers for such methods, in the case of optimal control problem of a differen
tial dynamic system, let us mention the historical paper by Kruzkov (1966), 
the analysis of time discretization in Capuzzo Dolcetta (1983) and Capuzzo 
Dolcetta and Ishii (1984), and the analysis of full discretization by Crandall 
and Lions (1984). More recent contributions on such algorithms, including the 
analysis of space discretization, may be found in Bardi and Capuzzo-Dolcetta 
(1997), Appendix by M. Falcone, Barles and Souganidis (1991), Camilli and Fal
cone (1999), Falcone (1987), Falcone and Ferretti (2002), and Rouy and Tourin 
(1992). 

In principle, optimal control of differential-algebraic dynamic systems can be 
reduced to the standard framework of optimal control of an ordinary differential 
equation. The idea is to extract the algebraic variable from the time derivatives 
of the algebraic constraint, i.e., to express the algebraic variable as a function 
of state and control, and of some of their derivatives. 

However, this cannot always be done. The main reason is that, often, the 
dynamics is available, but not its derivatives. This is indeed the main reason for 
the design of specific numerical schemes for integration of differential-algebraic 
dynamic system, see e.g. IIairer et al. (1980) . 

In that case, it may be effective to discretize the problem in a way that is 
coherent with the spirit of these specialized numerical schemes, except of course 
for the fact that one aims not to have high order accuracy, since the value 
function is in general not differentiable. 

In this paper we introduce such a method, obtain error estimates, compare 
the new approach with the idea of reduction to the standard situation, and 
discuss numerical results for both methods on a simple example. 

The paper is organized as follows. Section 2 presents the problem and the 
main hypotheses. The continuous problem is presented in Section 3, while 
Section 4 is devoted to the numerical analysis of the state equation. We obtain 
error estimates, in Section 5 for the discrete time optimal control problem, and 
in Section 6 for the fully discretized problem. Numerical results are presented 
in Section 7. 

2. Setting of the problem. Preliminary results 

Consider the following differential-algebraic dynamic system, 

{

Yx(t) = f(Yx(t), Zx(t), u(t)) t > 0, 

ax= g(yx(t)) t > 0, 

Yx(O) =X. 

(1) 

Here x stands for the initial condition for the state variable (or differential 
variable) Yx(t) ERn, while zx (t) E Rq is called the algebraic variable; we have 

l ••• - L-.l - ·- -f-\ fYI-.n n~un f h <> f mo 11CO thP nnt:l.f.inn ( 11-. Z- ) for the SOlution 
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initial condition x. The dependence of Yx and Zx with respect to the control 
variable u(t) E Rm is understood and must be clear following the setting of the 
problem. 

Consider the following infinite horizon optimal control problem: 

V(x) = inf {'XJ f(yx(t), zx(t), u(x, t))e->.t dt for x ERn. 
uEUad Jo (2) 

Here Uad denotes the set of all continuous and piecewise differentiable functions 
of [0 , oo[ with image in a nonempty compact subset U of Rm, f is a function 
from Rn x Rq x Rm into R, and>. is a positive constant. 

We assume that the functions £, f, and g satisfy the following hypotheses: 

Hl The function e : Rn X Rq X Rm -t R is continuous, and satisfies the 
following estimate: 

lf(y, z, u)- f(y', z', u)l ~ A£(1Y- y'l + lz - z'l), lf(y, z, u)l ~ Mi', 

for some AI', Mi' > 0, and for all y, y' E Rn, z, z' E Rq, u E U. 
H2 The function f : Rn X Rq X Rm -t Rn is of class C1' and satisfies the 

following estimate: 
lf(y, z, u)- f(y', z', u)l ~ AJ(IY- y'l + lz- z'l), lf(y , z, u)l ~ Mf, 

for some Af, MJ > 0, and for ally, y' ERn, z, z' E Rq, u E U. 
H3 The function g: Rn--> Rq is Lipschitz continuous, with constant A9 > 0. 
H4 The q X q matrix g'(y)fz(Y, z, u) is invertible for all (y, z, u) E R X Rq xU, 

and we have: 
l[g'(y)fz(y,z,u)f

1
1 ~ M, 

V (b.yb b.yz) ERn X Rn, lg"(y)(b.y1 , b.yz)l ~ M~ylb.Y1IIb.yzl, 

V b.z E Rq, lfzz(Y, z, u)(b.z, b.z)l ~ M~zlb.zl 2 . 
for some positive constants M, Mffy and Mfz and for every (y, z, u) E 
Rn X Rq XU. 

Hypotheses Hl to H3 are natural extensions of those classically used when 
studying the Hamilton-Jacobi-Bellman (HJB) equation for the value function 
of an optimal control problem. Computing the time derivative of the algebraic 
constraint along a trajectory, we obtain what is called the hidden constraint 

Thanks to hypothesis H4, the implicit function theorem implies that (at least 
locally) we can extract the algebraic variable zx(t) from this equation or, equiv
alently, that we can obtain ix(t) by differentiating a second time. This kind of 
algebraic-differential system is said to be of index 2. For the sake of simplicity, 
---- - L - 11 ------ _ _ • 
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and Lipschitz continuous function Z from Rn X Rm into Rq such that for all 
(y, u) ERn x Rm, z = Z(y, u) is the unique solution of the hidden constraint: 

0 = g'(y)f(y,z,u) . (3) 

If the fu nction Z(y, u) can be computed numerically, then we can elimi
nate the algebraic variable and reduce the problem to the optimal control of an 
ordinary differential equation. However, it often occurs that f and g are avail
able, but not their derivatives. It is still possible then to integrate numerically 
the state equation. The main contribution of this paper is to state a numer
ical scheme for solving the HJB equation associated with the optimal control 
problem. 

3. Study of the cont inuous problem 

Since our hypotheses allow to express the algebraic variable z(t) as a Lipschitz 
function Z(y(t) , u(t)), it is convenient to denote the "reduced" dynamics and 
running cost as 

F(y, u) := f(y, Z(y, u), u) ; L(y, u) := f.(y, Z(y, u), u). 

We can formulate the continuous optimal control problem as follows : 

V(x) = inf {'X) L(yx(t), u(t))e- >.t dt for x ERn, 
uEUad Jo 

where Yx(t) is solution of t he ordinary differential equation 

{
Yx(t) = F(yx(t), u(t)) t > 0, 

Yx(O) = x. 

(4) 

(5) 

(6) 

Since the dynamics and running cost functions are Lipschitz and bounded, it 
is well known that the state equation has a unique solution in the space of 
absolutely continuous functions, and that the value function is finite and Holder 
continuous as the next lemma tells. Let Ao be defined by 

A ·- {IIF(x',u)-F(x,u)ll. } 
o .- sup l!x' _ xll , x' ::j:. x; u E U . 

LEMMA 3.1 The value function is bounded. In addition, let 'Y be such that 

{
/ = 1 if A > Ao; 

'Y = 1, if A < Ao. 
(7) 

Then there exist A-y > 0, and c:-y > 0 such that, for all x and x' satisfying 
lx' - x i ~ c:-y, the following holds: 

!V(x)- V(x')i ~ Alx - x'j"t. (8) 
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Consider the Hamilton-Jacobi-Bellman (HJB) equation 

max {>.W(x)- F(x, u) · Dx W(x)- L(x, u)} = 0 't/x ERn, 
uEU 

(9) 

( 
8 8 ) . . Here Dx = 

8
x

1
, · · · , 

8
Xn and "·" denotes the mner product m Rn . 

For convenience, we recall here the definition of viscosity solution, see Cran
dall and Lions (1983) . 

DEFINITION 3.1 A continuous function W on Rn is called a viscosity solution 
of (9) if, for every cp E C1 (Rn), the following holds: 

(i) If x1 is a local maximum point of W - cp, then 

(ii) If x2 is a local minimum point of W- cp, then 

REMARK 3.1 In fact, the bounded ness and Lipschitz continuity of F and L 
imply (see, e.g., Earles, 1994) that the value function V is the unique bounded 
and uniformly continuous viscosity solution of the HJB equation. 

4. Numerical analysis 

Let us briefly discuss two standard first-order schemes for solving the state 
equation. In each of these schemes, the control variable is supposed to be 
constant during the time step h > 0. Since we consider one step methods, it is 
sufficient to state the formula for computing the state after the first step. So, 
let us fix uo E Uad and an initial condition x ERn. The two schemes are 

{ 
y~=x+hf(x,z~,uo) 
0 = g'(x)f(x, z~, uo) 

on the one hand, and 

{ 
y~=x+hf(x,z~,uo) 
0 = g(y~)- g(x) 

(10) 

(11) 

on the other hand. The first scheme is of explicit type while the second one is 
of implicit type. 

In each of these schemes, one has to solve a system of nonlinear equations. 
In practice, this will mean using a variant of Newton's method, in which the 
Jacobian may be approximated using finite differences. The functions defining 
the equations to be solved, however, have to be computed with a good accuracy. . -
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precise evaluation off and g', whereas the second needs only to evaluate f and 
g. In other words, if only g is available and not its derivative, then the second 
scheme can be implemented, while the first cannot. 

First scheme. In the first scheme we have that 

y~ = x + hf(x, Z(x, uo) , uo). (12) 

THEOREM 4.1 Let u0 E Rm, X 0 ERn be given and consider w = Z(x, uo) be the 
solution of 

g'(x)f(x,w,uo) = 0. 

For all h 2: 0, there exists a unique solution of (10). Moreover, the functions 
x t-. (y~, z~ ), that map x to the unique solution of (10) are Lipschitz continuous 
functions. 

Proof. The proof is classical and therefore omitted. • 
Second scheme. We now turn to the study of the second scheme. 

THEOREM 4.2 (Existence and uniqueness of the solution) Let uo E Rm and 
x ERn be given and consider w = Z(x, uo) the solution of 

g'(x )f(x, w, uo) = 0. 

There exist ho > 0, c. > 0 and TJ > 0, all independent of x such that for all 
0 < h < ho the system (11} has a unique solution (y~, z~) in the set B(x, ~) x 
B(w, ~) . 

Proof. The proof follows closely the ideas of Hairer et al. (1980). Consider the 
system 

{ 
y(r) = x + hf(x,z(r),uo) + h(r -1)f(x,w,uo ) 
0 = g(y(r))- g(x ) · 

(13) 

ForT= 1, (13) is equivalent to (11), while forT= 0, it has the obvious solution 
y = x and z = w. Differentiating with respect toT, we get 

{ 
y = hfz(x, z, uo) i + hf(x, w, uo) 
0 = g'(y)fz(x, z, uo)i + g'(y)f(x, w, uo) · 

(14) 

Now, due t o H4, it is easily seen that g'(y)fz(x, z, uo) is invertible for y in 
B(x, ~)with c.= (M.M~y ) - 1 and that 
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Within B(x, ~), (14) is equivalent to the differential system 

{ 
iJ = hP(x, y, z)f(x, w, uo) 
i =- (g'(y)fz(x, z, uo))- 1 g'(y)f(x, w, uo) ' 

where P(x, y, z) is the projection I- fz(x, z, uo) (g'(y)fz(x, z, uo))- 1 g'(y) and 
with initial conditions y(O) = x and z(O) = Wo This system has a unique solution 
which satisfies 

jy(r)- xj = 11r y(()d(l ::; rh(1 + 2AJMA9 )M1, 

iz(r)- wi::; 2M g'(x)f(x,w,uo) 

=0 

+ 11 

g"(x + t(y(r)- x))(f(x,w,uo),y(r)- x)dtl 

::; 2MMffyM!jy(r)- xj, 

and thus remains in B(x, ~) x B(x, ~) for r ::; 1, provided h < ho, where 

h 0 ( c 77 ) o =min , 0 

2(1 + 2A1MA9 )M1 4MMeyM1(1 + 2A1MA9 )M1 

In order to prove uniqueness, we consider another solution (fj, Z) in B(x, ~) x 
B(w, ~) of (11)0 Writing D.y = y- y, b.z = z- z and b.f = f(x, z, uo) -
f(x, z, uo), we then have 

0 = g(fj)- g(y) 

= g'(y)b.y+BY(y,fj)(b.y,b.y) 

= hg' (y)fz(x, z, uo)b.z + hg' (y)Bf (x, z, Z)(D.z, D.z) + B9 (y, fj)(D.y, D.y), 

where 

BY(y, fj)(!:::.y, !:::.y) = 11 

(1- t)g"(y + t!:::.y)(!:::.y, !:::.y)dt 

and 

Bf (x, z, Z)(!:::.z, !:::.z) = 11 

(1- t)fzz(x, z + t!:::.z, uo)(!:::.z, !:::.z)dto 

It follows that 

!:::.z = ( -g'(y)fz(x, z, uo))- 1(g'(y)Bf(x, z, Z)(!:::.z, !:::.z) 

+ hB9 (y, fj)(!:::.f, !:::.!)) 0 

We consequently get the estimate 
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Now, provided 'rJ is sufficiently small, the constant M(A9 Mfz + HA}Mffy)'rJ is 
smaller than 1 and we necessarily have 6.z = 0. The fact that 6.y = 0 follows 
straightforwardly. • 

THEOREM 4.3 For any uo E Rm fixed and for 0 < h < ho/2 the functions 

X H y~ and X H Z~ (15) 

that map x to the unique solution of (11) lying in B(x, ~ ) x B(Z(x, uo), ~) are 
Lipschitz continuous functi on. 

Proof. Given x and x in Rn, let f(r) = rx + (1- r)x and consider the system 

{ 
y = r(r) + hf(f(r), z, uo) 
0 = g(y)- g(f(r)) ' (16) 

whose solution is (y~,z~) for r = 1 and (y~,z~) for r = 0. As in previous 
theorem, differentiation with respect to r leads to 

{ 
iJ = (x- x) + hfy(f, z, uo)(x- x) + hfz (r, z, uo)i 
0 = k (g'(y)- g'(r) + hg'(y)fy(f, z, uo) ) (x- x) + g'(y)fz(r, z, ua)i 

with initial conditions y(O) = Yx and z(O) = z~. Within the set 

E = uTE[D,1JB (r(r), ~), 

the previous system is equivalent to the differential equation 

{ 
iJ = (x- x) + hfy(f, z, uo)(x- x) + hfz(r , z, uo )i 
i = -(g' (y)fz(r, z, uo))- 1

( *(g' (y) - g'(r) +hg'(y )fy(r, z, uo))(x-x)) 

with the same initial conditions as before. It has a unique solution for r < r* 

which satisfies 
c 

ly(r)- f(r)l ~ hMJ ~ 2 

and thus can be extended up tor= 1. Now, we have 

lz(1)- z~ l =I {
1 

i(()d( l ~2M (~Mffy sup IY- fl + AgAj) lx- xl, lo TE[0,1) 

~ 2M(MffyM1 +A9 A1)1x-xl. 
From this estimate, we then get 

lz(1)- Z(x, uo)l = lz(1)- z~ + z~ - Z(X, uo) + Z(x, uo)- Z(x, uo)l 

< I2M(MffyM/ + AgAj) lx - xl + ~ + Llx - xl 

K 
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It follows that for lx- xl :::; ~' lz(1)- Z(x, uo)l < ~' so that z(1) = z~ 
and 

lz;- z~l :::; Klx- xl. 

Now, if lx- xi>~' we have 

lz;- z~ l :::; lz;- Z(x, uo) + Z(x, uo)- Z(x, uo) + Z(x, uo)- z~ l 

:::; 77 + Llx - xl 

:::; 4(K + L)lx- xi + Llx- xi 

:::; (4K + 5L) Ix- xl. 

The function x ~--+ z~ is consequently Lipschitz continuous and so is x ~--+ y~ in 
an obvious manner. • 

5. Analysis of the discrete-time optimal control problem 

5.1. Case of reduction to the standard framework 

Let h be a positive number, and consider the value function: 

Vl(x) = inf Jh(y;,z;,uh); x ERn, 
uEU/:d 

(17) 

where u::d denotes the subset of Uad consisting of all controls Uh which take 
constant values uk on each interval [kh, (k + 1)h[, k EN, (y~, z~) denotes the 
sequence determined by the recursion 

{

yk+l = yk + hF(yk, uk) k = 0, 1, 2, ... , 

zt = Z(yk,uk) k = 0,1,2, ... , 

Yo= x, 

(18) 

and the cost function h is given by: 

00 

Jh(y,u) = h L(l + >.h)-(k+l)L(yk,uk). 
i=O 

Then we have that the following dynamic principle holds: 

max{(1 + >.h)Vl(x)- V~(x + hF(x, u))- hL(x, u)} = 0. 
uEU 

(19) 

As in Capuzzo Dolcetta and Ishii (1984), we prove that if h < 1/ >. then 
(19) has a unique bounded continuous solution Vl and that {Vl} converges 
locally uniformly in R n, as h tends to 0, to the unique bounded uniformly 
continuous viscosity solution of (9). Equation (19) stands for an approximate 
problem of (9), and the following theorem follows from Capuzzo Dolcetta and 
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THEOREM 5.1 Assume that H1-H3 hold. Let V and V~ be the solutions of (9} 
and ( 19) , respectively. Let 1 E ]0, 1 [ be a Holder exponent of V. Then 

sup jV(x)- V~(x)j -s; Ch"~l 2 , (20) 
x ER" 

for all h small enough, where C > 0 is independent of h. 

5.2. Second scheme 

In this section we discuss a discrete t ime opt imal control problem associated 
with the second scheme (11 ). 

Let h be a positive number, and consider t he value function: 

Vh(x) = inf Jh(y~ ,z~ ,uh) ; x E R 0
, (21) 

uEU::d 

where u:d denotes the subset of Uad consisting of all controls Uh which take 
constant values uk on each interval [kh, (k + 1)h[, for all k E N, and (y;, z;) 
denotes the sequence determined by the recursion 

{

yk+l = yk + hf(yk, zk, uk) k = 0, 1, 2, . . . ' 

Yo= x 

g(yk+l) - g(yk) = 0 k = 0, 1, 2, ... . 

(22) 

Here zk can be expressed, as we have seen, as a function of yk and uk, that we 
denote z(yk, uk), and the cost function Jh is given by: 

00 

Jh(y~,z~,uh) = h L(l + .Ah)-(k+l)f(yk, zk,uk). 
k=D 

Observe that for every (x,u) E Rn X Rm, z = z(x,u) is the solution of the 
nonlinear system 

g(x + hf(x, z,u))- g(x) = 0, 

then 

z(x, y) = Z(x, u) + O(h) , 

and consequently 

f(x , z(x, u) , u)- f( x, Z(x, u) , u) = O(h) ; 

C(x, z(x, u), u)- C(x , Z(x, u) , u) = O(h). 

(23) 

(24) 

(25) 

So, it is convenient to consider the following abstract framework: consider 
two functions ph : Rn X Rm-+ Rn and Lh : Rn X Rm -+ Rand satisfying 

Fh(x, u)- F(x, u) = O(h); (26) 
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The state equation and cost function are, respectively, 

{
yk+l = yk + hFh(yk,uk) 

Yo= x 

00 

k = 0, 1, 2, ... , 

Vh(x) = inf h L(l + )..h)-(k+l) Lh(yk, uk). 
uEU!:d k=O 

The corresponding dynamic principle is 

LEMMA 5.1 The solution of (30) satisfies 

43 

(28) 

(29) 

(31) 

for all x, x' ERn, h E]O, 1/ >-.[,for some Mo > 0 independent of h, and where 1 
and A0 > 0 are as in Lemma 3.1. 

The following theorem holds. 

THEOREM 5.2 Assume that H1-H3 hold. Let V and Vh be the solutions of (9) 
and (30), respectively. Let 1 E]O, 1[ be a Holder exponent of V. Then 

sup jV(x)- Vh(x)l ~ Ch1 12
, (32) 

xER" 

for all h E]O, 1/ >-.[, where C > 0 is independent of h. 

Proof. We adapt to our case the proof from Capuzzo Dolcetta and Ishii (1984). 
Given 0 < E < 1, set 

(33) 

Define 

cp(x, y) := Vh(x)- V(y) + f3c:(X- y) for (x, y) ERn X Rn. 

Let a E (0,1). Since V and V,, are bounded on Rn, there exists (x1 ,yl) in R2n 
such that 

cp(x1, yl) >sup cp-a. 

Choose~ E C0 (R2n) so that 

rf - .. \ 
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and set 

'1/J(x,y) = cp(x,y) + a~(x,y) for (x,y) E R2
n. 

Clearly, 'ljJ attains its maximum value at some point (x 0 , Yo) in the support of 
~· That is, 

'1/J(xo, Yo) 2: '1/J(x, y) for all (x, y) E R2
n. (34) 

In particular, y t----7 -'ljJ(x0 , y) attains its minimum at Yo· Therefore, by the 
definition of a viscosity solution of (9), there exists u* E U such that 

Using (34) with x = xo + hF"(xo, u*) andy= Yo, we obtain 

- h -Vh(Xo + hF (xo, u*))- Vh(xo) :S f3e(xo- Yo)+ a~(xo, Yo) 

- f3e(xo + hF"(xo, u*)- Yo)- a~(xo + hF"(xo, u*)). 

Adding (30) to the previous inequality and using the definitions and properties 
of f3e and ~, we get 

- h AhVh(xo) :S hL (xo, u*) + f3e(xo- Yo)+ a~(xo, Yo) 

- f3e(xo + hF"(xo, u*)- Yo)- a~(xo + hF"(xo, u*)) 

:S hL"(xo, u*)- h{3~ (xo - Yo)F"(xo, u*)- c:- 2h2 IF"(xo, u* W 

+ ah!F"(xo, u*)l. 

Dividing by h and subtracting (35) leads to 

Vh(xo)- V(yo) :S L"(xo, u*)- L(yo, u*) 

+ {3~(xo- Yo)(F(yo, u*)- F"(xo, u*)) 

+C[~+a]. 
Combining this inequality with the estimates 

L"(xo, u*)- L(yo, u*) = L"(xo, u*)- L(xo, u*) 

+ L(xo, u*)- L(yo, u*) 

= O(h) + O(lxo- Yoi), 

F"(xo, u*)- F(yo, u*)) = O(h) + O(lxo- Yoi), 

we obtain, whenever c: ::::; 1, 

(36) 

(37) 

(38) 

(39) 

(40) 

( 41) 

(42) 
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Using ab ~ ~(a2 + b2
), we get 

as well as 

Then, by (43), and for c.~ 1 and h ~ 1, and taking a= O(h), we obtain 

- c 2 
Vh(xo)- V(yo) ~ 2 (Jxo- Yo I +h)· 

c 
(44) 

Observe that if we choose x = y = X 0 in (34), we obtain first that Jxo -yoJ --+ 

0; using the fact that V has Holder constant "(, we get, using a < 1, 

1 2 
2Jxo- Yo I ~ KJxo- Yoi"Y + a Jxo- Yol ~ KJxo- YoJ"Y. 
c 

Equivalently, 

with K independent on c. and h. Thus, from (36) and 1(45) 

Choosing c.= h(2 --y)/4 , we are lead to: 

From (34), we finally obtain: 

Vh(x)- V(x) ~ Kh"Y/2 for all x ERn. 

(45) 

(46) 

(47) 

It remains to prove the opposite inequality. This can be done in a similar 
manner, by setting 

cp(x,y) := V(x)- Vh(Y) + f3c(x- y). 

Again, given a E (0, 1), there exists (x2, Y2) such that cp(x2, Y2) >sup cp-a, and 
hence, given ( E C0 (R2n) such that ((x2, Y2) = 1, 0 ~ ( ~ 1, and JD(J ~ 1, and 
setting {l(x,y) = cp(x,y) +a((x,y) for (x,y) E R2n, we have that'¢ attains its 
maximum value at some point (xo, Yo) in the support of~: 

I An\ 
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Since x -+ i/;(x, Yo) attains its maximum at X0 , we have that, for each u E U, 

On the other hand, (19) implies that, for some u E U, 

Using (34) with x = X0 and y = Yo+ hFh(x0 , u) , we obtain 

Vh(Yo + hFh(Yo, u))- Vh(Yo) ::::: -f3e:(Xo- Yo )- a~(Xo, Yo) 

+ f3e:( Xo + hFh(Xo, u)- Yo)+ a~(Xo + hFh(Xo, u), Yo)· 

Adding equality (50), dividing by hand then subtracting (49), we obtain 

Vh(Xo)- V(Yo) 2:: C [ixo- Yo I+ lxo ~2Yo l
2 

+ t:~ +a] . 

The end of the proof parallels the one for proving ( 4 7). 

6. Convergence of finite difference schemes 

(50) 

(51) 

• 

Consider the following finite difference scheme. Let 81 , ... , 8n be the (positive) 
space steps. With j E zn t he point Xj E Rn is associated with coordinates 
ji8i. Denote by e1, .. . , en the natural basis of Rn. With <; E Rn, whose each 
coordinate is either 0 or 1, we associate the spatial finite difference which, for 
the ith component, is on the right if \i = 1, and on the left elsewhere: 

(D e; ·)· _ Vj +c;;e;- Vj+(c;; -l)e; 
VJ t- Di . (52) 

With this vector<; is also associated a subset of U: 

U, ( x) : = { u E U; Fi ( x, u) 2:: 0 if \i = 1, Fi ( x, u) < 0 otherwise}. 

A standard fi nite differences numerical scheme for computing the value function 
is 

.>.vi+ max sup (-L(x.1,u)- D'vi · F(xj,u)) = 0, 
c; uEU<(x) 

j E zn. (53) 

This is the classical upwind scheme, where for each component, the spatial 
finite difference is on the right if the corresponding component of dynamics 
is nonnegative, and on t he left otherwise. Consider now the case when the 
available data are the functions ph and Lh satisfying (26)-(27). Introducing 
the "fictive" time step h, we can approximate (53) in the following way: 

j E zn. (54) 
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Note that, in the case of the second scheme (11), h can be interpreted as 
a time step. In our abstract framework, however, the parameter h is just a 
measure of the quality of approximation ofF and L. In particular, there is no 
stability condition linking h with the space steps. 

THEOREM 6.1 Assume that H1-H3 hold. Let V be the solution of (9), let (vj) 
be the solution of the finite difference scheme (54), and let Vh5 be the piecewise 
linear function on R n such that V ( x j) = Vj. 

Let 1 E]O, 1[ be a Holder exponent of V . Then 

(55) 

for all (h, 8) E R+ x (R:f-)n, where C > 0 is independent of (h, 8). 

Proof. Denote by R6 the spatial grid, i.e. points of the form (81k1, ... , 8nkn), 
with k1, ... , kn in zn. Given 0 < e < 1, set 

(56) 

Define 

cp(x, y) := Vh6(x)- V(y) + f3"(x- y) for (x, y) E R6 X Rn. 

Let a E (0, 1). Since V and Vh6 are bounded on Rn and R6, respectively, there 
exists ( x 1, yi) in R6 X R n such that 

cp(x1, yi) > sup cp-a. 

Choose~ E C0 (R2n) so that 

and set 

'lj;(x, y) = cp(x, y) + a~(x, y) for (x, y) E R6 x Rn. 

Clearly, 'lj; attains its maximum value over R6 X Rn at some point (x 0 , Yo) in the 
support of~- That is, 

'lj;(xo,Yo) 2: 'lj;(x,y) for all (x,y) E R6 X Rn . (57) 

In particular, y ~ -'lj;(x0 , y) attains its minimum at Yo· Therefore, by the 
definition of a viscosity solution of (9), there exists u* E U such that 

\ T!f •• \ , r;>f - . •. *\ r no r .. 
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Since Xo belongs to R6' there exists j E zn such that Xo = X j. Let ~ E R n be 
such that 

~i = 1 if Fh(xo, u*); ;:::: 0, 0 otherwise. 

Then 

Using (57) with x = Xo ± 8;e; and y = y0 , we obtain 

Vj±e, - Vj :S f3c(xo -Yo)+ a~(xo, Yo) - f3c(xo ± 8;e; -Yo) - a~(xo ± 8;e;) 

:S -(J~(xo- Yo)(±8;e;)- c- 28z + a8; . 

If Fhxi,u*);:::: 0, multiply this inequality (for±=+)) by F;h(xj,u*)/8; ; oth
erwise multiply this inequality (for ± = - )) by -F;h(xj, u*)/8i; adding these 
inequalities to (59), we obtain 

n 

>.vi :S Lh(xj, u)- (J~ (xo- Yo)Fh(xj, u)- c-2 L 8i + na. (60) 
i=l 

Subtracting (58) from the previous inequality, we obtain 

>.(vi- V(yo)) :S (Lh (xo, u*)- L(yo, u*)) 

+ (J~(xo- Yo)(F(yo, u*)- Fh(xo, u*)) + 2:_;
2

8
; + O(a). 

c 

Combining this inequality with the estimates 

Lh(xo, u*)- L(yo, u*) = Lh(xo, u*)- L(xo , u*) 

+ L(xo, u*) - L(yo, u*) 

= O(h) + O(lxo- Yoi), 

Fh(xo, u*)- F(yo, u*)) = O(h) + O(lxo- Yoi), 

and taking a= O(h), we obtain, 

( ) ( ) C [I I lxo-Yol
2 

hlxo-Yol 2:-i 8i h] vhC Xo -V Yo :s; Xo-Yo + 2 + 2 +-2-+ . 
c c c 

From ab :s; ~(a2 + b2) we deduce that 

1 2 2 
hlxo- Yol :S 2(h + lxo- Yo I ) 

as well as 

(61) 

(62) 

(63) 

(64) 

(65) 
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Then, by (43), and fore:::; 1 and h:::; 1, we obtain 

(66) 

Choosing x = y = Xo in (57) we get lxo - Yoi -+ 0; using the fact that V has 
Holder constant "{, and using a < 1, obtains 

This is equivalent to 

lxo- Yoi:::; Ke 2 '!..,, 

where K is independent of e, h, and (6i)· Thus, from (66) and (67) 

Choosing e = (h + I:i od2
- 7 l/\ we lead to: 

From (34), we finally obtain: 

Since a E]O, 1[ is arbitrary, we thus have 

for all x E R6. 

(67) 

(68) 

From the definition of Vho and the Holder continuity of V, we conclude that 

(69) 

It remains to prove the converse inequality. This can be done in a similar 
manner, by setting rp : R n x R6 -+ R defined by 

; -:;;;( ,._ ..,, \ · - T Tf __ \ Tr I \ , " I 



50 J. F. BONNANS, P. CHARTIER, H. ZIDANI 

Again, given a E (0,1), there exists (x2,Y2) such that cp(x2,y2) > supcp- a, 
and hence, given [ E C0 (R2n) such that [(x2, fh) = 1, 0 :S [ :S 1, and ID[I :S 1, 
and setting {;(x,y) = cp(x,y) + a[(x,y) for (x,y) ERn x Rg, we have that{; 
attains its maximum value at some point (x 0 , Yo) in the support of~: 

(70) 

Since x-+ {;(x, ilo) attains its maximum at xo , we have that, for each u E U, 

On the other hand, let j E zn such that Yo = Xj E Rh. Then the equality 
(54) implies that, for some u E U, 

+ '""' Vj - Vj-ei Fh(x . u) 
L.,; 8· t ]l . 

i ;c;i=O 1 

(72) 

The end of the proof parallels the one for (69). • 
REMARK 6.1 If we choose a "fictive" time step h = O(I.:i c5i), then the error 
estimate (55) is 

(73) 

7. Numerical test 

Consider a system described by the following differential-algebraic equation 

{
x~e(t) = Yse + sin(zse), 

Y~e(t) = -Xse + cos(zse) + u, 

g(xse,Yse) = ~i + ~~' 

Xse(s) = 6, 
Yse(s) = 6, (74) 

where (xse, Yse, zsd denotes the state variable, and u is the control variable. 
The function g is defined y g( x, y) = x2 + y2, for every ( x, y) E R 2. It is clear 
that the system (74) is of index 2 and that its associated hidden equation is the 
following: 
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11 13 15 17 19 21 

Computed optimal control for s = 0, ~ = (0 .3, -0.2) 

0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 

Computed optimal trajectory for s = 0, ~ = (0.3, -0.2) 
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II 13 15 17 19 21 

Computed optimal control for s = 0, ~ = (0.3, -0.2) 

0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 

Computed optimal trajectory for s = 0,~ = (0.3 , -0.2) 



54 .J . F. BONNANS, P. CHARTIER, H. ZIDANI 

For every s E [0, 1] and every~= (6, 6) E R2 , we define a control problem 
(Ps{) by: 

{ 

MinJ(xs{, Ys€, Zs€, u) = 11 

~(x;€ + u2
) dt 

(xs€, Ys€, Zs{, u) sat isfies (74), and 
u(t) E [0, 1] a.e t E [0, 1] . 

We are interested in the computation of the value function for s E [0, 1] and 
for~ in the bounded domain [-1, 1f. In order to avoid artificial boundary 
conditions, we use the classical method that consists in computing the value 
function on a big domain containing [-1, 1f and using the fact that the value 
function is known on R2 when s = 1. 

By this simple test, we remark that the value functions computed by the 
first scheme and the second one are very close to each other (see Fig. 1). 

In Figs. 2- 3, we represent the optimal trajectories starting at s = 0 with the 
initial condition ~ = (0.3, 0.2). These trajectories seem to be very close. How
ever, the trajectory computed by the scheme 1 satisfies the "hidden" constraint 
with precision of 10- 16 but sat isfies the algebraic constraint only with preci
sion of 2.4 x 10-2 . On the contrary, the trajectory computed with the second 
scheme, satisfies the hidden constraint with precision of 2.9 x 10- 2 and satisfies 
the algebraic constraint with precision of 10- 16 . Note that, in view of the two 
algorithms, these results are not surprising. To conclude, it is important to note 
that the second scheme has the advantage of not needing the explicit knowledge 
of the derivative of the function g. 
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