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Abstract: This paper is concerned with time-discrete dynamical 
systems whose dynamics is described by a system of vector difference 
equations involving state and control vector functions. It is assumed 
that the uncontrolled system (in which the control vectors are put to 
zero) admits steady states. The aim is to reach such a steady state by 
a suitable choice of control functions within finitely many time-steps 
starting with an initial state at the time zero. We first give sufficient 
conditions for the solvability of this problem of controllability. Then, 
we develop a stepwise game-theoretical method for its solution. In 
the cooperative case this method can be combined with the solution 
of a suitable approximation problem and thereby leads to a solution 
of the problem of controllability within the smallest number of time 
steps, if the problem is solvable. Finally, we present a stepwise non
cooperative game theoretical solution. 

Keywords: time-discrete control problems, approximation prob
lem, controllability. 

1. Introduction 

We consider a controlled dynamical system whose dynamics is described by the 
difference equations of the form 

x;(t + 1) = Xi(t) + J;(x(t), u(t)) (1.1) 

fori= 1, ... , nand t E No = N U {0}, where x; :No -+ R1
' and Ui :No -+ Rm' 

for i = 1, ... , n are state and control vector functions, respectively, which are 
composed of the vector functions 

x(t) = (x1(t), ... ,xn(t)) and u(t) = (u1(t), ... , Un(t)) fortE No . 

Further, 

n n 

.fi : n R 11 x n Rmi -+ R 11 
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are given vector functions for i = 1, ... , n. 
In addition, we assume, for every i = 1, ... , n, non-empty sets X i ~ R1

' and 
Ui ~ Rm• to be given and require control conditions of the form 

ui(t)EUi foralli=1, . .. ,n and tENo 

as well as state constraints of the form 

xi (t)EXi foralli=1, . .. ,n and tE No. 

Finally, we require initial conditions of the form 

xi(O) = Xoi for i = 1, .. . , n 

where Xoi E X i fori = 1, . .. , n are given. 

(1.2) 

(1.3) 

(1.4) 

If one choses n control functions Ui :No-> ui fori= 1, ... , n, t hen, by (1.1) 
and (1.4), n state vector functions Xi : N0 -> R1' are uniquely determined. We 
now make the following 

ASSUMPTIONS 

1. For every i = 1, ... , n the zero vector em, of Rm• belongs to Ui. 
2. The nonlinear system 

!i(x1, ... , xn, em11 .•• , emJ = e1, fori= 1, ... , n (1.5) 
has at least one solution 

n 

x = (x1, . . . ,xn) E IT Xi. 
j=l 

Under these assumptions we formulate the 

PROBLEM OF CONTROLLABILITY 

Let 

n 

x = (x1, ... , xn) E IT Xi 
j=l 

be a solution of (1.5). Then we are looking for control functions Ui : No -> Rm; 
fori= 1, ... , nand some N E No such that under the conditions (1.1)- (1.4) it 
is true that 

Ui(t) = em, and Xi(t) =Xi (1.6) 

for all i = 1, ... , n and t 2:: N. 

In words: 
n 

Given an init ial state Xo E n Xj of the dynamical system under consider
j=l 

ation, find control functions 
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which satisfy (1.2) and steer the system, under the conditions (1.3), into a steady 
state of the uncontrolled system whose dynamics is described by 

Xi(t + 1) = Xi(t) + fi(x(t), e) 
for i = 1, ... , n and t E No 

(1. 7) 

where e = (em,, . . . , emn). The main purpose of this paper is to develop 
methods for solving this problem via the solution of an approximation problem. 
We begin, however, with 

2. Sufficient conditions for the solvability of the problem 
of controllability 

In addition to the Assumptions 1 and 2 of Section 1 we assume that 

n 

x = (x1, ... , xn) E IJ Xj 
j=l 

(as a solution of (1.5)) is a globally attractive steady state of the uncontrolled 
system (1.7) which means that, for every i = 1, ... , n and for every Xoi E R1

• 

and every solution x = x(t) of (1.7) with 

Xi(O) = Xoi for i = 1, ... , n 

it is true that 

lim xi(t) =Xi for i = 1, ... , n . 
t-oo 

For every N E No we denote by S(N) the set of all initial states 

n 

Xo = (xol, . . . , Xon) E IJ R1
' 

j=l 

such that there exist control functions Ui : No -t Rm• satisfying (1.2) for which 
the corresponding solutions Xi :No_, R1• of (1.1) and (1.4) satisfy 

Xi(N)=xi for i=1 , ... ,n. 

Let 

S = U S(N). (2.1) 
NENo 

Obviously it follows that x = (x1, ... , Xn) E S. The following theorem now 
f nrrn11l !l t o c c,fh ,... ~ rvn t- ,.. ,......., ,...1 ~ t-~ ...... ......... t ......... ,... ........... 4. - ...... 11 ~ 1-! l ! L--
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THEOREM 2. 1 We assume that 

Xi= R1
' for i = 1, ... ,n 

and that 
n 

(2.2) 

is a globally attractive steady state of the uncontrolled system {1. 7). Further we 
assume that x is an interior point of the setS of controllability defined by (2.1). 

n 
Then the problem of controllability is solvable for every xo E II R1i. 

j=l 

Proof Since x is an interior point of S, there is a neighborhood V.9(x) with 
V.9(x) ~ S. Since x is a globally attractive steady state of (1.7), for every 

n 

xo E II R1
i there is some N1 E No such that x(N1) E V.9(x). This implies 

j=l 
the existence of a control f nction 

n n 

u* :No -+ II Rmi with u*(t) E II Ui for all t E No 
j=l j=l 

and some time N2 E No such that the corresponding trajectory x* = x* (t) of 
(1.1) for u = u* and x*(O) = x(Nl) satisfies x*(N2) = x . If one defines a 
control function 

by 

n 

u : No -+ II Rmi 

j=l 

{ 
e = (6m1 , ••• , 6 mJ for t = 0, ... , N1 

u(t)= u*(t-N1 -1) fort=N1 +1, ... ,N1+N2+1 
6=(6m1 , • •• ,6mn) fort2:N1+N2+ 2 

then the corresponding trajectory x = x(t) of (1.1) which satisfies the initial 
conditions (1.4), we have x(N) = x for N = N1 + N2 + 2. This completes the 
proof. • 

Let us conclude this section with sufficient conditions for x to be an interior 
point of the set S of controllability defined by (2.1). For this purpose we write 
the system (1.1) in the form 

x(t + 1) = x(t) + f(x(t), u(t)) 

where f: R1 x Rm-+ R1 with 
n n 

l = ), li and m = L mi. 

(2.3) 

(2.4) 
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We assume that f E C 1(Rt xRm). We further assume that all sets Ui ~ Rm•, 
n 

i = 1, ... 'n, are open and hence the set u = II ui is open in Rm. 
i=l 

Then we can prove the following 

THEOREM 2.2 Let the matrix It+ fx(x, fJm) with It being the l x l-unit matrix 
and fx(x, fJm) the Jacobi matrix off with respect to x at (xT, e;;,f E R1 x Rm 
be non-singular. 

Further let, for some N E N, 

rank(fu(x, fJm)I(Iz + fx(x, fJm))- 1 fu(x, fJm)l 

· · . I(Iz + fx(x, fJm))-N+l fu(x, fJm)l = l (2.5) 

where fu(x,fJm) is the Jacobi matrix off with respect to u at (xT,e;;,f E 
Rt xRm. 

Then x is an interior point of S (2.1) . 

The proof of this theorem will appear in Krabs (2003). 

3. A stepwise, cooperative game-theoretical solution 

We assume, for some t E No, the vectors 

Xi(t) EX; for i = 1, ... ,n 

to be given. For t = 0 we choose 

x;(O) =xoi for i=1, .. . ,n 

with x0; EX; being the initial values in (1.4). 
n 

For every vector u E II Rm1 we define 
j=l 

xi(u)(t + 1) = Xi(t) + fi(x(t), u) for i = 1, . . . , n 

where x(t) = (x1(t), . .. , Xn(t)) and 

aHu)=llxi(u)(t+1)-xill~+lludl~ for i=1, ... ,n 

(3.1) 

(3.2) 

where ll·ll 2 denotes the Euclidean norm. For every i = 1, ... , n we consider t he 
function 

n 

a~ : IT Rm1 ---* R+ 
j=l 

as payoff function for the i-th player of a game in which the i-th player has the 
set Ui at his disposal as the set of strategies by which he tries to control the 
game. The players are, however, linked through the set 

n 

Zt={uE J1 Uilxi(u)(t+1)EXi forall i =1, ... ,n} (3.3) 
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of feasible controls. Every player endeavours to minimize the value aHu) of his 
own payoff function. This val e, however, depends on all controls u1 , . . . , Un 

and therefore cannot be determined by the i-th player alone. Let us assume 
that all players cooperate and try to minimize the common payoff function 

n 

cpt(u) = L a!{u), u E Zt, (3.4) 
i=l 

with aH u) for i = 1, . . . , n being defined by (3.2) . Then they have to solve the 
following 

PROBLEM: Find ut E Zt such that 

(3.5) 

Let ut E Zt be a solution of this problem. Then we have to distinguish the 
cases: 
(a) cpt(ut) = 0 

Then it follows necessarily that 
u~=8m, and Xi(ut)(t+1)=xi fori=1, ... ,n. 

If we put N = t + 1 and define control functions Ui : No ---+ Rm• for 
i = 1, ... , n by 

( ) { 
u'f for s = 0, ... , N - 1 , 

Ui s = em, for s 2: N, 
and state functions 

Xi : No ---+ R1
' for i = 1, . . . , n by (3.6) 

Xi(O) = Xoi, 

Xi(s) = { :i(us- l )(s) for s = 1, ... , N- 1, 
Xi for s 2: N, 

then we have gained a solution of the problem of controllability. 
(b) cpt (ut) > 0 

Then we put 
xi(t+1)=xi(ut)(t +1) for i = 1, ... ,n 

and solve problem (3.5) with t + 1 instead oft. 
The cooperation of the players is expressed by the following 

THEOREM 3.1 Every solution ut E Zt of problem (3.5} is a so called Pareto 
Optimum, i.e., for every u E Zt with 

a~(u):::; a~(ut) for all i = 1, ... , n 

it follows that 

a~(u)=a~(ut) forall i=l, ... ,n. 

(3. 7) 

(3.8) 

Proof From (3.7) we infer cpt(u) :::; cpt(ut) where cpt is the common payoff 
function defined by (3.4). This in turn implies cpt (u) = cpt(ut) because of the 

~ - -~ · • 1 - -- ! L 1 - ! £ /~ 0'\ h ,.... l ...ln f,...,,a • 
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The assertion of Theorem 3.1 has the consequence that there is no u E Zt 
with (3. 7) and 

a~0 (u)<a~0 (ut) foratleastone ioE{1, ... ,n}. 

In many applications there appears the following Special Case: 
We assume that all the functions on the right hand side of (1.1) are of the 

form 
n 

J;(x, u) = fo;(x) + L J;j( x)uj 
j=l 

where f;i is a l; x mj-matrix function and 
n n 

u E II Rm1 for i = 1, . . . , n. 
j=l 

(3.9) 

(3.10) 

Further we assume the sets U; ~ Rm• fori= 1, ... , n to be convex and compact 
and the sets X; ~ R1• fori= 1, ... , n to be convex and closed. Then, for every 
t E N0 , the set Zt of feasible controls defined by (3.3) is convex and compact, if 
it is non-empty. 

n 

Further the common payoff function 'Pt : IT Rm• ---. R+ given by (3.4) has 
j=l 

the form 
n n 2 

'Pt(u) = L (II L J;j(x(t))uj + fo;(x(t)) + x;(t)- x;ll2 + lludl0 
i=l j=l 

n 
for u E IT Rm1 and is convex and hence also continuous. Consequently, for 

j=l 
every t E No, there is one ut E Zt satisfying (3.5), if Zt is non-empty. This is 
the case, for instance, if (2.2) holds true, for then 

n 

Zt =II Uj 
j=l 

is non-empty for every t E No. For every t E No and u E Zt we define 

\7 'Pt ( U) = (\7 1 'Pt ( U) 1 • • • 1 \7 n 'Pt ( U)) 

where 

( 
8cpt 8cpt ) Y' s'Pt(u) = -;--(u), ... , -n -(u) 
UU8 1 UUsm, 

for s = 1, ... , n 

and 

(3.11) 
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for r = 1, ... , m 8 and s = 1, ... , n. 
Then it is well known that (3.5) is equivalent to 

(V<pt(ut),u-ut)~O forall uEZt 

n 
where (·, ·) denotes the scalar product in IT Rm1. 

j=l 
In particular for 

Uj = {uj E Rm1 lllu1ll2:::; Mj} for j = 1, .. . ,n 
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(3.12) 

and given numbers Mj > 0 and Zt being of the form (3.11) condition (3.12) 
turns out to be equivalent to 

n n 

- L(Vs<pt(ut),u!) ~- 'LMsiiVs<pt(ut)ll2 
s=l s=l 

which implies 

u; = { IIV' . :.(~')II 2 V s<pt(ut) , if V s<pt(ut) =I em,, 
em.' if v s<pt( ut) = em.' 

(3.13) 

for s = 1, ... , n. 
This representation of ut can be used in order to determine ut by an iteration 

procedure. For numerical results we refer to Pickl (2000). 

4. An approximation problem 

We assume condition (2.2) to hold and choose some N EN. Then we consider 
the following 

Approximation Problem A: 
Find control functions Ui :No -t Rmi with Ui(t ) E ui fort= 0, ... 'N- 1 and 
i = 1, ... , n such that under the conditions 

Xi (t + 1) = Xi(t) + fi (x(t), u(t)), t = 0, .. . , N- 1 and Xi(O) = XOi 

for i = 1, . . . , n the function value 

n 

<pN(u) = L(llxi(N)- Xi ll~ + !lui(N- 1)11~) 
i=l 

is as small as possible. 
If the problem of controllability has a solution, then there is some N E N 

such that for every solution of the approximation problem A it necessarily follows 
that 
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so that by solving the problem A one also obtains a solution of the problem of 
controllability. The solution of the approximation problem can be achieved by 
iteration as follows: 

We choose control functions u? :No -+ Rmi with 

u~(t)EU; for t=O, . .. ,N -1 and i=1, . . . , n 

(for instance u~(t) = E> mi for t = 0, ... , N- 1 and i = 1, ... , n) 

and calculate 

fort= 0, ... , N- 1 with x?(O) = xo; fori = 1, ... , n. 
Then we construct a sequence 

Ill { u : {0, ... , N- 1} -+ IT U1 } 
j=l 

and a sequence 

n 

(xk)kENo in { x : {0, ... , N} -+ IT R11 } 

j=l 

as follows: If uk and xk are given for some k E No, then we determine 

u7+l(t)EU; for t=O, ... ,N- 1 and i=1 , .. . ,n 

such that under the conditions 

and 

the function value 
n 

cp~(uk+l) = L(llx7+l(N)- i;ll~ + llu7+1(N- 1)11~) 
i=l 

becomes minimal. 

( 4.1) 

With this representation we obtain the following transformed objective func
tion taking advantage of the special structure of the discrete dynamics: 

n N-1 

cpt(uk+l) = ) (II ) U x k(t) .?J.k+ 1 ({\) + 7' n - -1- 11 2 
..L ll .,k+l r 1\T 1\112\ 
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If uk+1(t) has been determined fort= 0, . .. , N- 1, then we calculate 

xk+l(t + 1) = xk+l(t) + f(xk+ 1(t), uk+l(t )) 

for t = 0, . . . , N- 1 where xk+l(o) = x0. 

If xk+l(t) = xk+1(t) for all t = 0, . . . , N, then we have found a solution of the 
problem A. Otherwise we proceed with uk+1 and xk+1 instead of uk and xk , 
respectively. Let us make the assumption that all functions 

n n 

/i : IT R lj X IT Rmj --t Rl; 

j=l j=l 

fori = 1, .. . , n are continuous. 
T hen we have the following 

THEOREM 4.1 If for every t E {0, ... , N- 1} , there is some 

n 

u(t) E IT Uj with u(t) = lim uk(t) 
k ->oo 

j=l 

then ui(t) fo r t= 0, . . . , N- 1 and i = 1, ... , n solve the problem A. 

Proof. For t = 0 it follows from 

xk+1 (1) = xo + f(xo, uk+l (o)) 

that the limit 

x(1) = lim xk+1(1) = xo + f( xo, u(O)) 
k-> oo 

exists. 
We assume that, for some t E {1, ... , N- 1 }, the limit 

x(t) = lim xk+1(t) = x(t- 1) + f( x(t -1) , u(t- 1)) 
k-> oo 

exists. 
T hen it follows from 

xk+l(t + 1) = xk+l(t ) + .f(xk+1(t), uk+l(t )) 

that the limit 

x(t + 1) = lim xk+1(t + 1) = x(t) + f (x(t ), u(t)) 
k-> oo 

exists. By the principle of induction , for every t E {0, . . . , N- 1 }, with respect 
to t it therefore follows t hat the limit 
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exists and is given by 

x(t + 1) = x(t) + f(x(t), u(t)) 

for every t E { 0, ... , N - 1} . 
This implies, because of 

N-1 

xk+1(N) = Xo + L f(xk(t), uk+l(t)) 
t=O 

that 

N-1 

lim xk+ 1(N) = Xo + L f(x(t) , u(t)) = x(N) 
k-+ oo 

t=O 

and hence 

n 

Now, let u: {O, . . . ,N -1}--+ I1 Uj be chosen arbitrarily. 
j=1 

Then it also follows that lim cp~(u) = 'PN(u). 
k -+oo 

Further, we have, for every kENo , 

and hence 

67 

This shows that ui(t) for t = 0, ... , N- 1 and i = 1, ... , n solve the approxi
mation problem A. • 

We again consider the special case in which the functions 

n n 

fi : II R1i X II Rmi --+ R1
; for i = 1, ... , n 

j=1 j=1 

are of the form (3.9) and the sets Uj ~ Rmi for j = 1, . .. , n are given by 

with given numbers Mj > 0. With (3.3) let us define 

( 4.2) 
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Then, for uk+1 E ZN, the statement 

cpt(uk+l) ~ cpt(u) for all u E ZN 

is equivalent to 

('vcpt(uk+1),u- uk+l) 2:0 for all u E ZN 

where (·, ·) denotes the scalar product in ( TI Rmj) N and 
J=l 

'Vcpt(u) 

= ('Vwcpt(u), · · ·, 'Vno'Pt(u),. · ·, 'VlN-l'Pt(u), · ·., 'VnN-l'Pt(u)) 

with 

k ( acpt ocpt ) 
'Vst'PN(u) = OU

8
1(t ) (u), · · . ' OUsm,(t) (u ) ' 

( 4.3) 

( 4.4) 

for s = 1, ... , n and t = 0, . . . , N- 1. From the definition of the scalar product 

(-,·)in ( TI Rmj)N it follows t hat (4.4) is equivalent to 
J=l 

n N-1 
L L ('Vst'Pt(uk+l), Us(t)- u~+ 1 (t))Rm, 2:0 
s=l t=O 

for all u E ZN , where(·, ) Rm, denotes the scalar product in Rm, for s = 1, ... , n. 
This, in turn, is equivalent to 

n N-1 n N-1 
-L L ('Vst'Pt(uk+ 1 ),u~+l(t))Rm, 2:- L L Msii'Vst'Pt(uk+l) ll 2 

s=l t=O s=1 t=O 

which is satisfied if 

u~+l(t) = IIV,,cpt(uk+l ) ll2 st N 
{ 

M \7 cpk ( uk+l ) , if \7 st'PkN ( uk+l) f. em, 
em, ' if \7 st'Pt ( uk+l ) = em, 

for s = 1, . . . , nand t = 0, ... , N- 1. 
This representation can be used in order to determine uk+1 by an iteration 

procedure. The approximation problem A can be coupled with the stepwise, 
cooperative game-theoretical solution of the problem of controllability described 
in Section 3. 

Let uN E ZN (4.2) be a solution of the approximation problem A for some 
N E N. Then we put 

XN (t + 1) = XN (t) + j(xN (t), UN (t)) 
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n 

For every u E I1 Rm1 we define 
j=l 

x(u)(N + 1) = xN (N) + f(xN (N), u) 
n 

and determine UN E I1 Uj so that 
j=l 

n 

'PN+l(uN):::; 'PN+l(u) for all u E II Uj 
j = l 

where 
n n 

'PN+l(u) = 2)!! xi(u)(N + 1)- xd ! ~ +!lui!!~) for u E II Uj . 
i=l j=l 

After having determined UN we define 

u0 (t) = uN(t) for t = 0, ... , N -1, u0 (N) =UN 

and 

69 

and perform the above iteration procedure for solving the approximation prob
lem with N + 1 instead of N. 

For N = 1 the approximation problem coincides with the problem to be 
solved in the algorithm of stepwise solution for t = 0. 

If the problem of controllability is solvable for some N E N and if the itera
tion procedure converges, then the combination of the two methods guarantees 
finding of a solution for the smallest possible N E N. 

5. A stepwise, non-cooperative game theoretical solution 

We assume that the players do not cooperate and everybody tries to minimize 
his own payoff function (3.2). This, however, is in general not possible so that 
the players have to compromise. A compromise solution is a so called Nash 
equilibrium ut E Zt (3.3) for which the following condition is satisfied: 

a~(ut):::; aHui, ... ,uL 1 ,ui,u~+l, ... ,u;) (5 .1 ) 

forall (ui, ... ,uL 1 ,ui,u~+l, ... ,u;)EZt and i=1, ... ,n. 

Let ut E Zt be a Nash equilibrium. Then we have to distinguish two cases: 
(a ) aHut) = 0 for all i = 1, . .. ,n 

Then it follows that 
u~=Gm, and Xi(ut)(t+1)=i:i for i=1, ... ,n. 

If we put N = t + 1 and define control functions Ui : N0 --+ Rm, and state 
functions Xi :No--+ R1• fori= 1, . .. , n by (3.6), then we obtain a solution 
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(b) There is some it E {1, ... , n} with af. ( ut ) > 0 Then we put 
Xi(t + 1) = Xi(ut)(t + 1) for i = 1, ... , n 

and determine a Nash equilibrium for the step t + 1 instead oft. 

In order to guarantee the existence of Nash equilibria we make the following 

AssuMPTIONs 

1. All the sets Ui ~ Rm• are compact and convex and all sets Xi ~ R1• are 
closed and convex for i = 1, ... , n. 

2. The set Zt (3.3) of feasible controls is non empty. 
n 

3. All functions u ---> fi(x(t), u), u E I1 Rm•, are affine-linear for i = 
j=l 

1, .. . , n, i.e., of the form (3.9) for x = x(t) and the matrices fij(x) have 
n 

full rank for all x E IJ R1
j. 

j=l 

CoNCLUSION 1 For every u* E Zt and every i = 1, ... , n there is exactly one 
vector 

(5.2) 

with 

(5.3) 

Proof. By the assumptions 1 and 3 t he set 

(5.4) 

is compact and convex for every i = 1, ... , nand the function 

is strictly convex, hence continuous, as a consequence of Assumption 3. This 
implies the assertion of Conclusion 1. • 

CONCLUSION 2 The mapping T = TnoTn- 1 O· · ·oT1 : Zt ---> Zt with Ti : Zt---> Zt 
defined by virtue of (5.2) and (5.3) fori= 1, . . . , n, is continuous. 

Proof Let (uk)kEN be a sequence in Zt with uk---> u* for some u* E Zt. Then, 
for every k E N and every i = 1, ... , n it follows that 

(5.5) 
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Further we have, for every i = 1, ... , n, 

aH ui, ... , uL 1, (Tiu* )i, ui+l, ... , u~) ~ a~( ui, ... , ui_ 1, u;, ui+ 1, ... , u~) 

for all Ui E Zf*. Choose i E { 1, ... , n} arbitrarily. Then there is a subsequence 
( uk1 )lEN and some u; E Zf* such that 

lim (T;uk 1 
); = Ui. 

1-.oo 

From (5.5) it therefore follows that 

t( • • ' • * ) < t( • • • * ) ai U1, ... ,ui-1,u;,ui+1, ... ,un -a; u1, ... ,ui-1,ui,ui+1, ... ,un 

for all u; E Zf*, which implies 

u; = (T;u*)i. 

In the same way one shows that for every subsequence ( uk1 )lEN there exists a 
subsequence ( uk1m )mEN with 

lim (Tiuklm ); = (Tiu*); 
m-+oo 

from which we infer that 

lim (T;uk)i = (Tiu*); 
k-.oo 

holds true. Hence, every Ti : Zt -+ Zt fori = 1, ... , n is continuous and therefore 
also 

n 
Since Zt ~ TI Rmj is convex and compact, Brouwer's fixed point theorem 

j=1 

implies the existence of a fixed point ut E Zt of 

T: Zt-+ Zt. 

Each such fixed point ut E Zt is a Nash equilibrium for Tut = ut, which is 
equivalent to (5.1). • 

As a result of Conclusion 1 and 2 we obtain the following 

THEOREM 5.1 Under the Assumptions (1}, (2}, (3) there exists a Nash equilib
rium. 

For the calculation of a Nash equilibrium the following iteration procedure is 
conceivable: Starting with u 0 E Zt one defines recursively a sequence ( uk)kENo 

in Zt by virtue of 

(5.6) 

where T = Tn o Tn_ 1 o ... T1 defined by (5 .2) and (5.3) for every i = 1, . .. , n. 
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THEOREM 5. 2 If the sequence (uk)kENo defined by {5.6) converges to some 
n 

ut E IT Rmi' 
j=l 

then u1 E Zt and u1 is a Nash equilibrium. 

Proof u1 E Z1 follows from the closedness of Z1 and u1 = Tu1 is a consequence 
of the continuity of T. If the Assumptions (1), (2), (3) are not necessarily 
satisfied, then the iteration (5.6) has to be performed as follows: Starting with 
k = 0, i = 1 and some uk E Zt we determine Ui E zfk such that 

a~(u~, ... , uf_ 1 , Ui, u~+ 1 , .. . , u~) ~ aHu~, . . . , uf_ 1 , Ui, u7+1, . .. , u~) (5.7) 

for all Ui E Zfk, put 

(5.8) 

and replace i by i + 1 modulo n. • 
Instead of (1), (2), (3) we now make the assumptions: 

(a) All sets Ui ~ Rm; are compact and all sets Xi ~ R1
i are closed for i = 

1, .. . ,n. 
(b) For every u = (ui, . .. ,un) E Zt and u = (ul, .. . ,un) E Zt and every 

i E {1, ... , n} it follows that 

n 

(c) All functions u -t fi(x(t) , u), u E IT Rmi , are continuous fori= 1, ... , n. 
j=l 

If Zt is non-empty, then the Sssumptions (a) and (b) guarantee, for every 
i E {1 , ... , n} and kENo, the existence of ui E Zt with (5 .7). 

Under the Assumptions (a), (b), (c) the following statement holds 

THEOREM 5.3 If the sequence (uk)kENo in Zt defined by {5. 7) and {5.8) con
verges to some 

n 

ut E I1Rmi, 
j=l 

then ut E Zt and u1 is a Nash-equilibrium. 

Proof The assumptions (a) and (c) imply that Z1 is closed (even compact) . 
Therefore ut E Zt. Let us assume that ut is not a Nash-equilibrium, i.e., (5.1) 
is violated for some i E { 1, . .. , n}. Then there is some 

-i ( t t - t t ) z u = u1 , ... ,ui_1 ,u,ui+I>···,un E t 

with a!(ui) < a!(ut). Since u -t a!(u),u E IT Rmi is continuous (as a conse-
1=1 

quence of Assumption (c)), it follows that 
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If we put 8 = ~(aHut)- a~('ui)), then we can infer that 

aHuk+l) > a~('ui) + 8 for all k ~ k1(8). 

If one puts, for every k E N, 

( - k )i ( k k - k k) u = ul, ... ,ui- l,Ui ,Ui+l, ... ,un 

then it follows that 

ui = lim (uk)i 
k->oo 

and hence 

aWuk/) < a~(ui) + 8 < a~(uk+ 1 ) for all k ~ k2(8) 
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which contradicts (5.7) and (5.8), since because of assumption (b), for every 
k E No, it follows from 

and 

-i ( t t - t t ) z u = u 1, .. . ,ui_1, ui,Ui+l, ... ,un E t 

k+l - ( k k ". k k) z u - u 1, ... ,ui_1,u"ui+l, ... ,un E t 

that also 

( -k)i ( k k - k k) z u = ul, ... ,ui- l,ui,Ui+l, ... ,un E t· 

Hence, the assumption that ut is not a Nash equilibrium is false. • 
In Pickl (1998) algorithms are implemented in order to treat an actual eco

nomic model, namely a Joint-Implementation Program which can be used to 
simulate and diminish the C02-emissions. 
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