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Abstract: The holdability and stabilizability problem of 2D 
Roesser model is formulated and solved . Conditions for the exis­
tence of solution to the problem are established. Two procedures 
for computation of a gain matrix of the state-feedback are proposed 
and illustrated by a numerical example. 
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1. Introduction 

Roughly speaking, the feedback holdability problem can be formulated as fol­
lows: given a discrete-time linear system, find a linear state-feedback such that 
the closed-loop system trajectory is nonnegative (positive) whenever the ini­
tial conditions are nonnegative (positive). The feedback holdability problem 
for standard continuous-time linear system has been considered in Berman and 
Stern (1987), Berman, Neumann and Stern (1989), for standard discrete-time 
linear systems it has been studied in Rumchev (2001) and for singular discrete­
time linear systems in Kaczorek (2000). 

The feedback holdability problem arises in the dynamic modeling of capac­
ity planning in manufacturing systems, see Kaczorek (2001), Rumchev (2001). 
The feedback and positive feedback holdability problems have applications in 
chemical and production engineering, population dynamics, economics, biology 
and medicine, see for instance Caccetta, Foulds and Rumchev (2001), Rumchev 
(2001). 

The most popular models of two-dimensional (2D) systems were introduced 
by Roesser (1975), Fornasini and Marchesini (1976, 1978) and Kurek (1985) . 
These models have been generalized for singular 2D models in Kaczorek (1992 , 
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In this paper the holdability and stabilizability problem will be formulated 
and solved for the 2D Roesser model. To the best knowledge of the author the 
holdability and stabilizability problem for the 2D Roesser model has not been 
considered yet. 

2. The preliminaries and the problem formulation 

Let Rn xm be the set ofnxm real matrices and Rn = Rn xl . The set ofn x m real 
matrices with nonnegative entries will be denoted by Ktx m and R+ = R+.x1

. 

Z+ will denote the set of nonnegative integers and h will stand for the k x k 
identity matrix. 

Consider the 2D Roesser model, Kaczorek (1985), Roesser (1975): 

[ 
x,vh+1,1. ] [ x':. ] = A x~,}1. + Buij, 
xi,i+l 

i, j E z+ 

[ 
xh. ] 

Yii = C x'..! + Duij, 
t) (1) 

where x~ E Rn1 and xyj E Rn2 are horizontal and vertical state vectors at the 
point (i , j) E Z+ X Z+ , Uij E Rm is the input vector, Yi j E RP is the output 
vector and 

(2) 

DE Rp xm, k , l = 1,2. 

DEFINITION 1 (Kaczorek 2001 , 1996). The Roesser model (1) is called inter­
nally positive (shortly: positive) if for any nonnegative boundary conditions 

h Rnl c · z d v Rn2 f · z x 01 E + 10r J E + an xio E + or z E + (3) 

and all inputs Uij E W\"', i , j E Z+ we have Xij = [ ~~ ] E R+, n = n1 + nz 

and Yij E R~ for all i , j E Z+ . 

THEOREM 1 (Kaczorek 2001, 1996) . The Roesser model (1) is internally posi­
tive if and only if 

BE Rnx m + , C E Rp xn + , (4) 

DEFINITION 2. The Roesser model (1) is called asympotically stable if for the 
zero input Uij = 0, i , j E z+ and finite 

xh =sup llx~jll 
j 

and xv =sup llxi'oll ( llxll is a norm of x) (5) 
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THEOREM 2 (Kaczorek 1985, Kurek 1984). The positive Roesser model (1} is 
asymptotically stable if and only if 

Au and Az2 + A21 [In 1 - Anr1 A12 are asymptotically stable (6) 

or equivalently 

A22 and Au+ A12 [In 2 - Azz]-1 A21 are asymptotically stable. (7) 

Consider the Roesser model (1) with the state-feedback 

Uij = K [ ~~ ] , K = [ K1 K2 ) , 
(8) 

K1 E RmXn1 , l = 1,2. 

Substitution of (8) into (1) yields 

[ 
xt+l,j ] = Ac [ xx~,hJJ: ] 
xi,j+l 

(9) 

where 

The problem can be stated as follows: given the matrices A and B of (1), 
find a gain matrix K E Rmxn of the state feedback (8) such that the state 
vector Xij of the closed-loop system (9) satisfies the conditions 

Xij E R: for all boundary conditions (3) and i, j E Z+ (10) 

and 

. lim Xij = 0 for all boundary conditions (3). (ll) 
t,J--+00 

In this paper conditions for the solvability of the problem will be established 
and two procedures for computation of the gain matrix K will be proposed. 

3. Problem solution 

Let ilK be the set of gain matrices K such that Ac E R:xn. If the set ilK is 
empty then the problem has no solution. 

To check if the set flK is not empty the elimination procedure presented in 
Kuhn (1956) can be applied. The necessary and sufficient conditions for the 
solvability of the inequalities were also established in Kuhn (1956). 
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1. the i-th row Ai (i = 1, ... , n) of the matrix A = [aij] contains at least one 
entry aij < 0 and the i-th row Bi of the matrix B is zero (Bi = 0}; 

2. thej-th column (j = 1, ... ,n) ofthe matrix A= [aij] contains at least 
two entries aij < 0, akj < 0 and corresponding entries of the matrix B = 
b = [b1b2 ... bnf (m = 1, T denotes the transpose} satisfy the conditions 
bibk < 0. 

Proof If at least one entry aij < 0 and Bi = 0 t hen Ai + BiK = Ai and there 
does not exist K such that AcE R~xn. 

For Ac =A+ bK = [aij] and K = [k1k2 . . . kn] we have 

(12) 

From (12) it follows that if aij < 0, akj < 0 (i i- k) and bibk < 0, then there 
does not exist kj such that aij ~ 0 and akj ~ 0. • 

Let us assume that the set rtK is not empty. The transition matrix Iii of the 
closed-loop system (9) is defined by (see Kaczorek, 1992, 1985, Klamka, 1991, 
Roesser, 1975): 

In fori= j = 0 

[A~, A12 l fori= 1, j = 0 
0 

Tij = [ ;,, 0 l fori= 0, j = 1 
(13) 

A22 

T10Ti - l,j + 1(nTi,j-1 for i,j E Z+, i + j > 0 

0 (the zero matrix) fori< 0 or/and j < 0. 

Using (13) it is easy to show that if Ac E R~xn, then Tij E R~xn for 
i,j E Z+, Kaczorek (2001, 1996). The solution to the equation (9) with (3) is 
given by 

(14) 

From (14) it follows that if AcE R~xn, then the condition (10) is satisfied. 
Therefore, the following lemma has been proved: 

LEMMA 2. Let rtK be not empty. The condition {10} is satisfied if and and only 
if a gain matrix K is chosen so that Ac E R~xn. 

Proof The necessity will by proved by contradiction. Assume that the condition 
(10) is satisfied but iirs < 0 for some r, s E [1, . .. , n!] and aij = 0 fori i- r and 
j :f- s. Take Xij = e. (the basic unit vector with 1 in its s-th position and all 
other entries equal to zero). Then, x?+l,j = iirs < 0, and we got a contradiction. 

• • • ,. t~ ....., , 1 1 -t A\ -
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To find K E nK satisfying (11) we shall use the following theorem, Kaczorek 
(2001), 

THEOREM 3. The system 

(15) 

is asymptotically stable if and only if 
1. all the coefficients of the polynomial 

det [In (z + 1)- X) = zn + an-1Zn- 1 + ... + a1Z + ao 

are positive, ai > 0, i = 0, 1, . . . , n- 1, or, equivalently, 
2. the principal minors of the matrix A:= In - A= [aij] are positive, i.e. 

I 
~11 ~12 I > 0, 
a21 a22 

. 0., det.A > 0. (16) 

Let the set nK be non empty. Then we are looking for a gain matrix K E nK 
such that for the closed-loop matrix Ac 2': 0 the condition (6) or (7) is satisfied, 
i.e. 

or 

An and A'zz := A22 + A21 [In 1 - Au] -
1 

A12 

are asymptotically stable 

A22 and A' u :=Au+ A12 [In2 - A22] -
1 

A21 

are asymptotically stable. 

(17) 

(18) 

Using Theorem 3 we may replace the condition (17) (or (18)) by the condi­
tion 1. : 
the polynomials 

(19) 

(20) 

have positive coefficients ai > 0, i = 0, 1, . .. , n1 -1 ; a' j > 0, i = 0, 1, ... , n2 -1. 
or by the condition 2.: 

lanl > o, I ~11 a21 
~12 1 > 0, 
a22 

• . 0' detAu>O (21) 

and 

ja'ul > o, a'u a'12 
I> o, det A'zz > 0 ;:,_- ;:,_- (22) 
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where 

and Iii= ai(k), i = 0, 1, ... , n1- 1; a'j = a'j(k); j = 0, 1, ... , n2; akl = akz(k), 
k, l = 1, ... , n1, (;' pq = (;' pq ( k), p, q = 1, ... , n2. 

Similar (dual) relations can be written for (18). 
For m > 1 the coefficients Iii, lij, akz and apq depend nonlinearly on the 

entries of the gain matrix K. 
Therefore, the following theorem has been proved: 

THEOREM 4. Let the set nx be non empty. Then, the problem has a solution 
if there exists a K E nx such that the polynomials (19) and {20) have positive 
coefficients or, equivalently, the conditions {21) and {22) are satisfied. 

The dual theorem can be obtained by replacing the condition (18) by the 
conditions 1 and 2 of Theorem 3. 

From the above considerations we have the following procedure for compu­
tation of the gain matrix K. 

PROCEDURE 1. STEP 1. Find t he set f2x such that AcE Rf_xn. If the set [!I< 

is empty the problem has no solution. 
STEP 2. Find a K E nK such that the conditions (21) and (22) are satisfied or, 
equivalently, such that the coefficients of polynomials (19) and (20) are positive. 

In some cases the problem can be solved by its decomposition into the fol­
lowing two subproblems. 

SUBPROBLEM 1. Given Au, B1, find a gain matrix K1 such that K = [K1 OJ 
E nK and the matrix Au = Au + B1K1 is asymptotically stable. Let the pair 
(Au,B1) satisfy the stabilizability condition 

for all lzl 2: 1 (23) 

and K 1 E Rmxn 1 be a sol tion of the Subproblem 1. 

Then we may proceed to the second subproblem. 

SuBPROBLEM 2. Given Au , A12, A21, A22, find a gain matrix K2 such that 
K = [ K1 K2 ) E J!K and the matrix 

A22 = A22 + B2K2 + (A21 + B2K1) [In 1 -Au) -
1 

(A12 + B1K2) 

= .A22 + B2K2 

is asymptotically stable, where 

A22 = A22 + (A21 + B2K1) [Inl- Aur
1 

A12, 
I .. ' n T7 \ rT A" 1-1 n 

(24) 
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It is assumed that the pair (A22, B2) is stabilizable, i.e. 

rank [ In 2 Z- A22 B2 J = n2 for all /z/ 2: 1. 
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(25) 

LEMMA 3. Let K 1 be chosen so that An = An+ B1K 1 is asymptotically stable. 
Then the matrix In, -Au is nonsingular and the condition (25) is equivalent 
to the condition 

k [ 
In 1 - An 

ran -
A21 + B2K1 I

-B1 ] B
2 

= n1 + n2 
(26) 

for all /z / 2: 1. 

Proof It is easy to verify that 

[ 
In 1 0 ] 

- (A21 + B2Kl) [In, -Au) - l In2 

[ 
In, -Au A12 ~-B1 ] 

x A21 + B2K 1 In 2 Z- A22 B2 
(27) 

= [In, -
0

Au A12 ~-B1 ] 
In2 Z-A22 B2 

where A22 and B2 are defined by (24). 
From (27) it follows that (25) holds if and only if the condition (26) is satisfied 

since rank [In, -Au] = n1 and the first (left) matrix in (27) is nonsingular. • 

REMARK . It is well known, see Kaczorek (1992), that if there are no restrictions 
on K then there exist K1 and K 2 such that the matrices An and A22 are asymp­
totically stable if and only if the conditions (23) and (25) are satisfied. From 
the considerations presented we have the following procedure for computation 
of the gain matrix K E DK. 

PROCEDURE 2. STEP 1. The same as in Procedure 1. 
STEP 2. Compute K1 such that K = [ K1 0 ] E DK and the matrix Au = 
Au + B1K is asymptotically stable. 
If the Subproblem 1 has a solution K 1 , go to the step 3. Otherwise Procedure 2 
does not allow for finding a solution to the problem. 
STEP 3. Compute K2 such that [ K1, K2 ] E DK and the matrix A22 = 

A22 + B2K2 is asymptotically stable. 

4. Examples 

EXAMPLE 1. For the Roesser model (1) with 

B= fll 
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find a gain matrix K = (k1 k2 k3] such that the closed-loop system satisfies 
the conditions (10) and (11). 

In this case the second row of A has the negative entry -2 and the second 
row of B is zero. Hence by the condition 1 of Lemma 1, the set flg is empty 
and the problem has no solution. 

EXAMPLE 2. For the Roesser model (1) with 

A= [ ~
1 

~2 ; ] B = [l_] 
-2 1 1 -1 

find a gain matrix K = (k1 k2 k3] such that the closed-loop system satisfies 
the conditions (10) and (11). 

In this case the first column of A has two negative entries ( -1, -2) and the 
corresponding entries of Bare 1 and -1. Hence by the condition 2 of Lemma 1, 
the set flg is empty and t e problem has no solution. 

EXAMPLE 3. For the Roesser model (1) with 

[ 

-1.5 0 -1 ] 
A = -2 0.2 -0.2 , 

-1.8 0.1 -0.8 
(28) 

find a gain matrix K = (k1 k2 k3] such that the closed-loop system satisfies 
the conditions (10) and (11). 

In this case n1 = 2, n2 = 1 and m = 1. Using the Procedure 1 we obtain 

STEP 1 
In this case the closed-loop matrix (9) 

(29) 

for ki/ge2, k2 2: 0, k3 2: 1. Hence the set flg is not empty and it has the form 

(30) 

STEP 2 

Using the conditions (21), (22) and (29) we obtain 
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and 

liinl = 12.5- kd > 0 

det An = 2 - 0.5k2 - 0.8k1 > 0 

d A
-, 5.6k1 + 9.6k2 + 6.1k3- 20.1 0 

et 22 = > . 
8k1 + 5k2- 20 

It is easy to check that 

K = [2 0 1] E [lK defined by (30) 

and it satisfies the conditions (31). 

Using the Procedure 2 we obtain 

STEP 1 
The set [lK is given by (30). 

STEP 2 

In this case K1 = [k1 k2] 

An = [-~2.5 00.2] + [11] [k1 k2] = [kk1 - 1.5 k k20 2] 1-2 2+. 

and 

- lz - k1 + 1.5 -k2 I det[In 1 Z- An]= 2 _ k1 z _ k2 _ 0.2 

= z2 + (1.3- k1 - k2)z + 0.2k1 + 0.5k2 - 0.3. 

83 

(31) 

(32) 

The matrix An is asymptotically stable if k1 = 2 and k2 = 0, since det[In1 z -
- 2 - [ l An]= z - 0.7z+O.l. Hence K = 2 0. 

STEP 3 

Using (24) we obtain 

~ - - 1 
A22 = A22 + (A21 + B2K1)[In 1 - Ant A12 

[
0.5 0] -1 [-1] = -0.8 + [0.2 0.1] 0 0.8 -0.2 = -1.225 , 

~ - - -1 
B2 = B2 + (A21 + B2K1)[In 1 - An] B1 

[
0.5 0 ] -

1 

[1] = 1 + [0.2 0.1] 0 0.8 1 = 1.525. 

Hence for K2 = [k3] we have 
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For k3 = 1 the matrix A22 = 0.3 is asymptotically stable. 
The desired gain matrix is equal to K = [2 0 1] and it coincides with 

(32) obtained by the use of Procedure 1. 
For (32) the matrix (29) has the form 

[

0.5 0 0 l 
Ac = 0 0.2 0.8 

0.2 0.1 0.2 

and by Theorem 2 the closed-loop system is asymptotically stable since the 
matrices 

Au= [
0
0
5 0~2] and A22 + A2dln1 - Aut1A12 = 0.3 

are asymptotically stable. 

5. Concluding remarks 

The holdability and stabilizability problem for 2D Roesser model has been for­
mulated. Conditions for solvability of the problem have been established. Two 
procedures for computation of t he gain matrix of the state-feedback have been 
proposed and illustrated by a numerical example. The considerations also can 
be applied to the first 2D Fornasini- Marchesini model which is a particular case 
of the 2D Roesser model, Kaczorek (1992 , 1985) . With slight modifications the 
considerations can be extended for the second 2D Fornasini-Marchesini model 
and the general 2D model, Kaczorek (1992, 1985). An extension of the consid­
erations for singular 2D models is an open problem and it will be considered in 
a forthcoming paper. 
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