
Control and Cybernetics 

vol. 32 (2003) No. 1 

A novel approach for the optimal control of autonomous 
underwater vehicles 

by 

Sang-Bin Yim and Jun-Ho Oh 

Machine Control Laboratory 
Department of Mechanical Engineering 

Korea Advanced Institute of Science and Technology 
Kusong-dong, YusungGu, Taejeon 305-701, South Korea 
E-mail: sog@ohzlab.kaist.ac.kr or gnovia@hanmail.net 

E-mail: junhoh@ohzlab.kaist.ac.k 

Abstract: The SDRE (State-Dependent Riccati Equation) is 
a technique recently proposed as a nonlinear control method. De
spite the benefits due to its flexibility, the SDRE places high de
mand on the computational load of real-time applications, which is 
one of its most significant drawbacks. This paper discusses a new 
nonlinear feedback controller for autonomous underwater vehicles 
(AUVs), which eventually converges to a conventional SDRE-based 
optimal controller. The proposed controller is derived by direct for
ward integration of an SDRE. This enables fast computation, and 
so is applicable to real-time applications. For a state-dependent sys
tem, the proposed controller may be an alternative candidate to a 
conventional SDRE-based optimal controller if the system is slow
varying to different states. To cope with fast-varying systems, we 
introduced a deviation index, which indicates the extent of devia
tion of the proposed controller from the solution of a conventional 
SDRE-based one. Whenever the index exceeds a designated bound, 
the controller is initialized to the conventional SDRE optimal value. 
Using the deviation index, a designer can achieve a compromise be
tween computation time and optimality. We applied the proposed 
controller to a numerical model of an AUV called ODIN (Choi et 
a!., 1995), a well-known nonlinear, relatively higher order, and slow
varying system. The global position/ attitude regulation, tracking 
problems, and fault tolerance properties were examined in the sim
ulation to show the effectiveness of the proposed controller. 

K eywords: SDRE, optimal control, AUV. 

1. Introduction 

The SDRE technique is growing increasingly popular in design of nonlinear onti-
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1998). SDRE solutions approximate dynamic programming in the local sense, 
and they are robust, stable, and converge to an optimal control solution (Lang
son and Alleyne, 1997, Mracek and Cloutier, 1998). In spite of its systematics, 
flexibility, and on-line implementation properties, the SDRE's high computa
tional burden means that it is inadequate for real-time applications. Because 
of this latter property, we have developed a modified SDRE controller and ap
plied it to the well-known AUV called ODIN, which has een developed at the 
University of Hawaii (Choi et al., 1995). 

Recently, numerous reports have emerged on using AUVs arising from the 
needs of the scientific, economic, and biological communities, and their dynam
ics and control methods have became important issues. However, the highly 
nonlinear time-varying dynamic behavior of these systems and the large distur
bances from the driving environment are severe limitations to the adoption of 
traditional control theories. As a result, the control of AUVs requires advanced 
controller design. Yoerger and Slotine (1990) proposed a sliding mode control 
method for t he robust tracking problem of AUVs, and Healey et al. (1993) and 
Rodrigues et al. (1996) have applied this method to the autonomous diving and 
steering motion of an AUV. Most articles treating sliding mode control method 
with AUVs have assumed reduced models for the vario s types of motion to 
enable easy implementation. Yuh (1994) and Ishii et al. (1998) have studied 
neural network control of AUVs, and Yuh (1995) has also presented a much 
simpler adaptation mechanism. Antonelli et al. (1999) presented experimental 
results on the application of the adaptive control method. Recent ly, Antonelli 
et al. (2001) have also introduced a new adaptive mechanism, which simulta
neously considers an earth-fixed frame and a vehicle-fixed frame. One of the 
difficulties faced by the adaptive control technique is that the number of the 
parameters that need to be estimated quickly increases with the system order. 
Serrani and Zanoli (1998) and Fjellstad and Fossen (1994) have utilized nonlin
ear control, which combines a t raditional PID controller with feedforward-like 
nonlinear terms. Katebi and Grimble (1999) have carried out research into an in
tegrated control for an AUV. Boskovic and Krstic (1999) have also introduced a 
nonlinear controller based on Lyapunov theory, which achieves stabilization but 
not optimality. A nonlinear optimal control design problem for keeping station 
control was presented as an approximate numerical solution of the Hamilton
Jacobi-Bellman (HJB) equat ion by McLain and Beard (1998). However, they 
could not establish sufficient conditions for t he selection of the basis functions. 
Park et al. (2000) discussed an optimal PID controller based on the nonlinear 
controller. The resultant controller was revealed to be the linear PID controller, 
which lost the benefits of the nonlinear controller of Mracek and Cloutier (1998). 

Set against this background, we propose a new fast nonlinear state feedback 
controller, which eventually converges to a conventional SDRE-based optimal 
control mechanism. The global stability of our proposed method is commented 
bv Lyapunov theory. Our controller is nonlinear and feasible, as it is a simple 
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however, its optimality is degraded in a fast-varying system. We introduce a 
deviation index, which indicates the extent of deviation of t he proposed con
troller from a conventional SDRE-based optimal controller. By using the index, 
a designer can achieve a compromise between computation time and optimal
ity. The method will be applicable to t he highly nonlinear , slow-varying, and 
model-varying properties of AUVs. 

A conventional SDRE-based optimal control architecture is introduced in 
Section 2, and t he stability and various properties of the proposed controller 
are discussed. Section 3 introduces the dynamics and driving modes of the 
ODIN AUV, and Section 4 discusses the numerical simulation results of t he 
proposed SDRE and t heir application to the AUV. Additional comments and 
proposals for further work are discussed in the final section. 

2. Controller design and properties 

For an input-affine nonlinear system with f(O) = 0, we can always find a con
t inuous matrix valued function , A(x), that has the following state-dependent 
linear representation 

x = f(x) + g(x)u 
= A(.x)x + B(x)u 

(1) 

where f(O) = 0 and g(x) =J 0 for all x in a compact set , f( x) E Ck,g(x) E 

Ckwherek 2: 1. 
The choice of A(.x) is not unique , and this influences t he performance of 

the resultant SDRE controller. The goal of optimal control is to minimize an 
optimal cost function given by 

J = -(xTQ(x)x + uT R(.x)u)dT 1
00 1 

t 2 
(2) 

with respect to the state x and control input u. Here, x E R", u E Rm 
and Q(x) E Ck, R(x) E Ck, k 2: 1 are analytic matrix valued functions with 
Yx E Rn . We let the following assumptions hold (Langson and Alleyne, 1999) 
for Yx E R" in a compact set: 

(A1) Q(x) = cr(x)C(x) > 0 and R(x) = RT(x) > 0; 
(A2) A(x) and B(x) are analytic matrix valued functions; 
(A3) {C(x),A(x)}/{A(x),B(x)} are uniformly observable/controllable; 
(A4) The full-state measurement vector is available; 
(AS) There exists a control and a trajectory pair, [u(t) , x(t)]t E [0, oo), satisfy

ing ( 1) for which the cost function (2) is finite. 

The convent ional SDRE optimal solution of (1)- (2) (Mracek and Cloutier , 
1998) is 

.. . (.J.\ nl \- 1 n / , rr r , ,, 
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L(T) = -A(xf L(T)- L(T)A(x)- Q(x) + L(T)B(x)R(x)- 1 B(x)T L(T) 

L(oo) = LJ > 0. (3) 

The state dependence of the solution of the SDRE has been neglected for sim
plicity. With assumptions (A1 )-(A5), the above differential Riccati equation 
has a unique, locally asymptotically stable solution, and this can be derived 
from the following algebraic lliccati equation: 

0 = - A(xf L(x)- L(x)A(x)- Q(x) 

+ L(x)B(x)R(x)- 1 B(xf L(x), Vx ERn. 

In the above equation, the optimal control input needs to be calculated over 
the entire sampling time about fixed states, x. This burden on solving the Ric
cati equation severely limits real-time applications (Mracek and Cloutier, 1998, 
Langson and Alleyne, 1999). There have been a few approaches to overcome 
such a shortcoming using SDRE-based optimal control (Langson and Alleyne, 
1999). We now propose a new fast, nonlinear feedback control solution that 
eventually converges to a conventional SDRE optimal solution, and this enables 
a fast on-line application with easy implementation. The controller is derived 
by direct forward integration of a modified SDRE. The exponential convergence 
property of the SDRE (Callier et al., 1994) at each control point suggests that 
the proposed controller has nearly the same suboptimality when the system 
is slow-varying. To successfully deal with a fast-varying system, we need to 
introduce some form of control strategy. 

2.1. Comments on the stability 

First, we introduce various properties of the proposed controller. Let the control 
input and the corresponding proposed SDRE be given by 

u(t) = -R(x)- 1 BT P(t)x 

F(T) = A(xf P(T) + P(T)A(x) + Q(x)- P(T)B(x)R(x)- 1 B(xf P(T) 

P(O) =Po> 0, 0 ~ T ~ t. (4) 

The derivative of the proposed SDRE is the negative of (3), and its integra
tion is forward from T = 0. By intuition, these imply that the forward integra
tion of ( 4) will converge to the same value as that of the backward integration 
of (3), as time tends to infinity. At each t ime step, when the control action 
is given, the solution of the proposed SDRE is on an exponentially converging 
trajectory to the corresponding conventional SDRE solution that is extracted 
with fixed at the given time. When there is measurement noise on finite points, 
the solution of the conventional SDRE is transparent to noise and shows rapid 
variation. As the solution of t he proposed SDRE is given by integration, the 
integral property attenuates and smoothens the solution at the noisy measure
ments. In addition, we discuss the following stability property of the closed loop 
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LEMMA 1 Take Equation (4) as the state feedback controller for System (1). If 
there exist P(x, t) and Q(x, t) such that 0 < Cil ~ P(x, t) ~ fjJ < oo Vt E [0, oo) 

and P(x, t) > -Q(x) in a compact set, x, where Pij = 8J;,; :i; is the i,Ph element 

of P(x, t), then the closed loop system is globally stable. 

Proof. Let V = xTP- 1x, a1llxll2 < V < a21ixll2 

V = xT p-1(A(xf- B(x)R(x) - 1 B(xf P)x 

- xT p-1(P + A(xf P + PA(x)- PB(x)R(x)- 1 B(xf P + Q(x))P- 1x 

+xT(A(x)- B(x)R(x)-1 B(x)P)P-1x (5) 

= -xT p-1(P + PB(x)R(x)- 1 B(xf P + Q(x))P-1x 

• 
As P(x, t) is not an explicit function of x, then the design of Q(x) depends 

on the experimental data. At the Pseudo Steady State (PSS), P(x, t) naturally 
enters into the bound of Q(x). The existence of an SDRE-stabilizing feedback 
controller was discussed in the work of Shamma and Cloutier (2001). The 
solution of the proposed SDRE P values should be positive definite, and have 
bounded Vx E Rn in a compact set. The positivity and boundedness of P is 
proven in the following sequence of theorems. There has been some previous 
work that has proven the boundness of P. A system is said to be uniformly 
controllable by the following definition and lemma (Silverman and Anderson, 
1968). 

DEFINITION 1 The controllability pair [A(x(t)), B(x(t))] is uniformly control
lable if the following holds for all t E [0, oo), and for all x in a compact set: 

0 < o:I < I (t) < (3! < oo 
where I(t) = JL6 w(x(t) , t , T)B(x(t), T)BT(x(t), T)WT(x(t) , t, T)dT. 

(6) 

The open loop state transition matrix of System (1) is given by w(x(t), t, T). 
There is another expression for the uniform controllability. 

LEMMA 2 A bounded realization of Equation (1) is uniformly controllable, if 
and only if there exists be > 0 such that for every state, ~ E Rn , at any time, 
t, there exists an input, u, defined on (t- be, t) such that if x(t- be) = 0, then 
x(t) = b and llu(T)II ~!(be, 11~11) for all T E (t- be, t) and for all t E [0, oo). 
Where 1 is the bounded function, which depends on be and 11~11-

Proof. See Silverman and Anderson (1968). 

If an open loop system is uniformly controllable, then its closed loop system 
• 1 1 , ' ~ .. 
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LEMMA 3 If the pair [A(x(t)) , B(x(t))] is uniformly controllable, then the pair 
[A(x(t))- B(x(t))K(x(t)) , B(x(t))] is uniformly controllable with a bounded K 
for all t E [0, oo) and x in a compact set. 

Proof. From the assumptions in System (1), f( x ) is smooth and analytic for 
Vx ERn. Then 

span{h(x), h(x) , · · · , fn(x)} = Rn , Vx(t) fi's columns of f. 

Further, there exists a smooth function, w(x(t),t,r), which has local diffeo
morphism (onto its image) in the neighborhood of x(t), such that the following 
hold 

iNt(x(r1':' t- 8) = A(x(r))w(x(r), r, t- 8) 

w(x(r),r-8,t-8)=I 

W(x(r), T, t- 8) = W- 1(x(r), t- 8, r) , t- 8 ~ T ~ t. 

(7) 

The uniform controllability of the system is given by Lemma 2. We then con
sider controllability of the closed loop system, which is the special case described 
by Silverman and Anderson (1968). Let the classes of a uniformly controllable 
system be described by the auxiliary input u1 = K(x)x+v, where vis the input 
to the closed loop system. From Assumption (A3), we may choose a bounded 
matrix K that stabilizes the closed loop system at every time such that. 

u1 = K(x)x + v (8) 

x = (A(x) + B(x)K(x) )x + B(x)v 

llv(r)ll ~ llu1(r)ll + IIK(x)II1~ 6 IIW"(x(s), s, t- 8)B(x(s))u1(.s)llds 

~ "Y1(8, 11~11), 

where W(x ,t) is smooth and bounded for all t E [O ,oo) and compact set x. 
And the bounded function 11 depends on 8c and 11~11· This is demonstrated 
by Lemma 2, and implies that t he controllability grammian of the closed loop 
system is bounded by Definition 1. This result assists the following theorem. 

THEOREM 1 If the pair [A(x), B(x)] is uniformly controllable, then the solution 
of the proposed SDRE is bounded for all t E [0, oo) and a compact set x, 

0 < ai ~ P(t) ~ /JI < oo. 

Proof. Consider a reshaped Riccati equation 

F(r) = (A(x)- B(x)K(r )f P(r) + P(r)(A(x)- B(x)K(r)) 
+Q(x) + K(r)R(x) - 1 K(r)r ~ 0 
K(r) = R(x)-1 B(x)P(r ) 

(9) 
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Using Assumption A3, we can always find a constant matrix K such that A(x)
B(x )K is stable in the vicinity of the current state x. Let P be the solution of 
the above Riccati equation with K(r) = R. Then, from Wonham (1968), the 

solution of the original Riccati equation, ( 4), is bounded with the solution P 
such that P(r) :S P(r). In the same way as Wonham (1968), the closed loop 
system will be 

oiJ!(x(r),r,t-6) ~ -
07 

= (A(x(r))- B(x(r))K(r))IJ!(x(r), r , t- 6) 

IJ!(x(r),r-6,t-6)=I,t-6:Sr:St (10) 

P(t) = ~(x(t), t, t- 6f Pt-li~(x(t), t, t- 6) 

+ t ~(x(t),r,t - 6f{Q(r) + K(rf R(x(t))- 1 K(r)}~(x(t),r,t- 6)dr. 
lt-6 

Since Q(x(r)), W(x(r)) are positive and bounded, the second term of (10), the 
controllability grammian of the closed loop system, is positively bounded from 
t he uniform controllability (Lemma 3), and the Volterra equation has a unique 
integrable solution, P, in the vicinity of the current state, which can be found by 
successive approximation. Along with the following results of Wonham (1968), 
we can see that the solution of the proposed SDRE is positively bounded. With 
the positive and bounded property of the solution of the proposed SDRE, the 
stability proof (Lemma 1) is completed. 

2.2. Properties at the PSS 

Consider the following exponential properties of the solution of the Riccati equa
tion. 

COROLLARY 1 Convergence to P+ for all Po > 0: t::..P(t) = P(t) - P+ expo
nentially converges to 0 as t -+ oo for each Po = P(f > 0 if Assumptions (A 1) 
and (A 3) hold. Here, P + is the unique symmetric positive semi-definite solu
tion that is stabilizing, i.e., such that in a closed loop system A+ = A- W P+ 
is exponentially stable. 

Proof From Theorem 3 of Callier eta!. (1994). Hence, we have the final theorem 
for the proposed controller. 

Intuitively, in the case of a time-invariant system, we found that the proposed 
controller converges to the optimal control value. We must then consider the 
state for a dependent nonlinear system. The solution of the proposed SDRE is 
given by 

F(r) = AT P(r) + P(r)A- P(r)W P(r) + Q 

where A= A(x(r)), W = B(x(r))R(x(r))- 1 B(x(r)f, Q = Q(x(r)) (11) 

P(t.) = r Pfr'\rl-r· 
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Its deviation from the conventional SDRE is exploited by t he following reshaped 
Riccati equation given by 

P(r) = Aif P(r) + P(r)Ao - P(r)WoP(r) + Qo 

+ AP(r) + P(r)A- P(r)W P(r) + Q (12) 

where A= A- Ao, W = W- Wo, Q = Q- Qo 

Also x(r)---> x(t), A---> Ao, Q---> Qo, W---> Wo, as r---> t. As the state goes into 
invariant sets at the PSS, then the SDRE behaves like a time-invariant system. 

THEOREM 2 If Assumptions ( A1)- ( AS) hold, then the solution of the proposed 
SDRE eventually converges to the conventional SDRE-based optimal solution, 

P(x(t), t)---> L(x(t)) as t---> oo. 

Proof At the PSS, the system behaves like a t ime-invariant system (Rusnak, 
1998) . 

ax - - -at ~ 0 and A ~ 0, W ~ 0, Q ~ 0. 

The given SDRE has the time-invariant form at PSS, 

P(r) ~ Aif P(r) + P(r)Ao- P(r)WoP(r) + Qo, 
Po= P(r8 ), 0 « T 8 ::; r < t. (13) 

From Theorem 1, the initial value, P(rs), is positively bounded, and the re
sultant solution exponentially moves to the time-invariant trajectory. Thus, 
there exists a bounded solution, P(t) > 0, by Corollary 1 such that the solution 
exponentially converges to L(x(t)) as v---> oo. • 

2.3. As a suboptimal cont roller 

From Corollary 1, the solution of the proposed SDRE approaches exponentially 
the solution of the conventional SDRE at each time step. When a system is 
slow-varying, the proposed solution can be a good approximation to the con
ventional SDRE solution. If the system is varying too fast to follow its optimal 
value, then we introduce a control strategy so that the solution may be changed 
and initialized by the conventional SDRE solution. In this case, there is the 
question of the extent of deviation of the given solution from the conventional 
SDRE solution. The following describes the details of the answer. We assume 
that cost function, J of (2) has a local optimal solution, V(x) . Then, for this 
local optimality, the Hamilton-Jacob-Bellman equation enables the following 
relationship (Hayase et al., 2000) 

,_:_ f 1 r-.TDt~\ •. ,_~Tnr~\,.\..L r av,T(Af-rh-1- R(T.)n)1. (14) 
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where l min is the local optimality. The complete square form of (14) is 

0 = l min H[u + R(x)-1B(xfVxJT R(x)[u + R(x)-1 B(xfVx] (
15

) 
-[VXT B(x)R(x)-1 B(xfVx + XT A(xfVx + v[ A(x)x- xTQ(x)x]} 

where Vx = 8V fox. 
If we take Vx = L(x)x with a symmetric matrix, L(x) E R nxn, then (15) 

becomes 

1 
0 = l min 2{[u + R(x)-1 B(x)T L(x)x]T R(x)[u + R(x)-1 B(x)T L(x)x] 

- xT[L(x)B(x)R(x)- 1 B(xf L(x) -A(x)T L(x) -L(x) A(x) -Q(x)]x }. (16) 

This is the usual approach that a conventional SDRE controller is induced to 
follow. From equation (16) we obtain the following local optimal control related 
to the conventional SDRE. If there exists a positive definite solution, L(x), for 
Vx E R n in a compact set of the following conventional SDRE 

L(x)B(x)R(x)- 1 B(xf L(x) - A(xf L(x)- L(x)A(x)- Q(x) = 0, 

then u = - R(x)- 1 B(xf L(x)x is a local optimal control law, and the resultant 
closed loop system, x = [A(x) - B(x)R(x) - 1 B(x)T L(x))]x, is locally asymptot
ically stable. Here we define a deviation index with the following value 

H = [u + R(x)-1 B(x)rVxJT R(x)[u + R(x)- 1 B(xfVx] 
-[V[ B(x)R(x)- 1 B(xfVx- xT A(xfVx - V[ A(x)x- xTQ(x)x]. (17) 

If the conventional SDRE control input, Vx = L(x)x, is given at each time 
step, then the deviation index will maintain a zero value over the entire time 
domain. The proposed controller, however, is not able to drive the index to 
zero. This is easily seen from the following relation. Given Vx = P(x)x and 
u = -R(x) - 1 B(xf P(x)x, where P(x) is the positive definite solution of the 
proposed SDRE, 

P(x) = A(x f P(x) + P(x)A(x) - P(x)B(x)R(x)- 1 B(xf P(x) + Q(x). 

The deviation index is reduced into 

H = -xT [P(x)B(x)R(x)- 1 B(x)T P(x) - A(xf P(x)- P(x)A(x)- Q(x)]x 

= xr Px. (18) 

The monotonic and exponential property of P to the conventional SDRE 
solution, L, implies that xT Px can be chosen as a deviation index from op
timality. If we set a bound, D., to H such that if H > D. then we switch the 
integral solution, P, with conventional SDRE solution, L, and replace the initial 
value of the integral with L, then the designer can plan the bound D. to obtain a 
compromise between optimality and computational load. As mentioned in Sec
tions 1 and 2, a slow-varying system can take the bound as being a relatively 

11 , , • • * -· 
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The slowly varying dynamics may be explained through mathematical treat
ment . The solution of the conventional SDRE L(x) (3) is reduced into an alge
braic Riccati equation and it does not depend on the current time t. But the 
solution of the proposed SDRE P = P(x, t) is dependent on both the current 

time and current state. Time derivatives of each solution are ~~ = Z + ~~ = Z 
and dP = P + fJP where ffi · · = D$ ;; x is the (i y·)th element of ffi(x) A slowly dt fJt W tJ OX l W ' 

varying system would be a system in which the proposed SDRE does not deviate 
significantly from the conventional SDRE solution, such t hat ~~ :::::; ~~ over the 
entire horizon. Intuitively at t he near steady state, 0:: :::::; 0, resulting in slowly 
varying dynamics. 

3. Dynamics and driving modes of an AUV 

We investigat ed the dynamics of an AUV, which are given from ODIN (Podder 
and Sarkar, 1999) as 

Mw + f(w )w + D(w )w + G(q) = T, 

where q E ~6 are the generalized coordinates containing the position (x, y, Z) 
and the orientation (J;, B, ;f) of the AUV with reference to the inertial frame, 
and w E ~6 are the linear and angular velocities of the AUV on t he vehicle's 
body-attached frame. The vector, T E ~6 , is the vector of generalized forces on 
the AUV, which is operated by eight t hrusters. The inert ia matrix of the AUV, 
ME ~6 x 6 , includes both the rigid body and the added mass terms. The matrix 
of the centrifugal and Coriolis forces is given by r E ~6 

X 
6 ' and D E ~6 

X 
6 and 

G E ~6 are t he drag forces and restoring forces, respectively. 
The linear and angular velocities of the inertial frame are related with those 

of the body-attached frame by the following linear transformation 

q = ~(q)w 

where ~(q) E ~6 x 6 is t he transformation matrix. With the above relationship, 
the dynamic equation of the system, based on the inertial frame is given by 

ij = ~(q)w + ~(q)w 
= ~(q)~(q)- 1 q + ~(q)M- 1 ( -r(w)~(q) - 1 q- D(w)~(q) - 1q- G(q) + T) 

= ITq + ~Ft + ~(q)M- 1 G(q) (19) 

w = ~(q) - 1 q, T =EFt 

Here, II= ~(qW(q)- 1 +~(q)M- 1 (-f(w)~(q)- 1 -D(w)~ (q)- 1 ), ~ = ~(q)M- 1 E , 
E E ~BxB is the thruster configuration matrix, and Ft E ~8 x 1 is the vector of 
the thruster forces. The resultant state equation is 

(20) 
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The generalized coordinates, q, and their derivative, q, have the states x, y, z, '¢, 
e, ;f and u, v, w' p, q,T, respectively. If the vehicle is ordered to move along 
the diving plane (vertical for pure diving) relative to the inertial frame, then 
it is possible to obtain a_ simpler model for its dynamics. In this case, the 
restrictions are given by ¢ = v = p = r = 0 and 'lj; = constant, and the state 
reduces to u, w, q, z, B, x (from Rodrigues et al. , 1996) . In the case of the steering 

(horizontal) mode, since B = w = q = 0 and u = constant, the state reduces 
to x, y, '¢, ;f, v, p, r. For a state-dependent nonlinear system, numerous examples 
have been found when the closed loop system is stable for every state x, but there 
are some points where the controllability of the system totally vanishes. From 
the results of Hammett et al. (1998), while the pair [A(x), B(x )] is controllable 
for all x, System (1) is not necessarily in the weakly controllable state. The 
weakly cont rollable condition means that the system does not lose controllability 
for all .7: . Hammett et al. (1998) proved that if the rank of B(x) = [~] is equal 
to t he rank of t he system, t hen System (1) is weakly controllable. As the rank 
of B(x) in the dynamics of the AUV, (20), is six and the rank of t he system 
is 12, t he closed loop system may not be in the weakly controllable condition . 
However, if the vehicle is restricted to only the diving or steering motion, then 
the rank of B(x) is equal to that of the system. In the following simulation, 
we do not consider the issue of weak controllability, but when the vehicle has 
restrictive motion, t he controllability of the system will be enhanced. 

4. Numerical simulat ions 

With the proposed SDRE controller, we adopted the rc3ults to a numerical 
model of the AUV called ODIN (Choi et al. , 1995). We assumed that the 
restoring forces (gravity and buoyancy) were negligible, and were attenuated 
by feed-forward compensation in advance. Parameterization of the restoring 
forces and reflecting these in the controller, though not particularly difficult, 
were not regarded for simplicity. Also, we did not consider the representa
tion of singularities; that is, excluding pure diving motion in the physical 
sense. Boskovic and Krstic (1999) introduced a space transformation that 
eliminates an infinite number of possible orientation configurations due to a 
singularity. 

Additional comments on implementation issues were considered. First, the 
needs of a full-state measurement of the controller may induce a restriction on 
a real application. Haessig and Friedland (1997) wrote a paper on coping with 
the problem by showing a method for a simultaneous state and parameter esti
mation. Second, Park et al. (2000) have addressed severe thruster saturation, 
one of the problems of AUVs in underwater operation. Also, the rate of thruster 
output may be limited. Mracek and Cloutier (1998) have successfully solved the 
situation where there exists a hard bound on the control and control rate. The 
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All the desired states are oriented from the inertial frame. The initial con
ditions are given by q = [0.5, 1, 5, 0, 0.5, 0.7, OJ, q = [0.3, 0.4, 0.5, 0, 0, 0), and the 
parameters of equation (2) are R = 0.005! E ~s x s and Q = 200! E ~12 x 12 , re
spectively. The simulations were carried out using the following four steps. 
First, the problem of regulation of station-keeping was simulated using the 
methodology as described above. Fig. 1 shows the global position and attitude 
of the AUV, which were regulated simultaneously with the proposed SDRE and 
conventional SDRE. Fig. 2 reveals that the Lyapunov index V = xr p-lx is 
continuously decreasing under the given conditions. Second, we studied the 
performance of the proposed SDRE as a suboptimal controller by using the de
viation index that indicates the relative distance from the conventional SDRE 
solution. A comparison is given between the conventional SDRE and the pro
posed SDRE with deviation compensation in Fig. 3. It shows less deviated 
plots than Fig. 1. The discontinuous points on Figs. 3 and 4 in the transient 
region show that the control input was initialized with the conventional SDRE 
controller whenever the deviation index H escaped a designed bound (~=50) . 

There are the plots of the deviation index in Fig. 5, with (solid line) or with
out the switching actions. The third simulation was the tracking problem in 
three-dimensional space. The proposed SDRE controller can be applied as a 
servomechanism, in a similar manner as the LQR servomechanism (Cloutier 
and Zipfel, 1999). The controller was designed to follow a desired trajectory 
in 3-dimensional space, given as qd = [sin(0.21t) , cos(0.21t), sin(0.21t) , 0, 0, OJ. 
Good tracking was achieved, and the corresponding plots are shown in Fig. 6. 
The final problem addressed was the fault tolerance characteristics of the pro
posed controller. Figs. 7 and 8 show that faults on the two thrusters do not 
severely deteriorate the tracking performance. The faults were imposed such 
that the second and eighth thrusters did not work after t > 20 s. Various com
binations of fault situations were tested, and all gave positive results. Finally we 
have employed the 5th order Runge-Kutta in Matlab in solving the conventional 
and the proposed SDRE solution, following Mracek and Cloutier (1998). We 
followed their approach and imposed 3 seconds to allow sufficient time for the 
conventional SDRE solution to converge. The proposed SDRE solution is given 
by direct integration with the 5th Runge-Kutta Method. At each control point, 
the computational burde of the conventional SDRE would be 300 times that 
of the proposed SDRE with 100Hz sampling t ime. When the state goes into 
the near-steady state region, the burden does not decrease in the conventional 
SDRE approach. In this region, the state changes slowly and eventually the 
proposed SDRE gives approvable optimality with simple computations. 

5. Concluding remarks 

WP. have introduced a new nonlinear feedback controller for autonomous under-
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properties of an SDRE, then it is a suitable alternative candidate to a conven
tional SDRE-based optimal controller for a slow-varying system. In the case 
of a fast-varying system, we proposed a control strategy that replaces the con
trol input with the true conventional SDRE optimal to guarantee a designed 
optimality. Owing to its nonlinear property and simple implementation, the 
proposed controller is highly recommended for higher order and slow-varying 
systems. We applied the proposed controller to an AUV (ODIN), a well-known 
nonlinear and relatively higher order system. The position/attitude regula
tion, tracking problems, and fault tolerance properties were simulated, and the 
proposed controller satisfactorily performed against the various control objec
tives. 

0 

X I I 

{m) I ------------:-------------:-

f) 
(m) 

0 r--:~~~~~~~: -~~----~~ 
0 

0 
0 

10 
lime( sec) 

""\ 0 0 

I ~--~~ ________ j ___ __ _______ _ L_ 
i ,,1, : : 
I ', 0 0 

• 0 0 

o ------- ~:.s~~--------: 
0 0 

10 
lime( sec) 

z 
{m) I 

0 

0 

0 

0 

0 0 

------------~-------------L-
0 0 
0 0 
0 0 
0 0 

~.r_~~;_-.,.. _ _!_ ________ :__ 
0 0 
0 0 

10 
lime( sec) 

~ 
(rad) 

li 
(rad) 

iii 
(rad) 

0 

0 

0 

0 
0 0 

------------J-------------L-0 0 
0 0 
0 0 
0 0 

0 --~:: :_ : _: __ f=""~""""""~~ 0 

lime( sec) 
10 

0 

0 

0 

0 0 
0 0 

------------~-------------L-
0 0 
0 0 

~-..-.~--.. : : 
---------~:::-:-:-=~~~--

0 0 
0 0 

10 
lime( sec) 

------------J-------------L-
0 0 
0 0 
0 0 
0 0 
0 0 

0 ~.=..~-.:~--
0 

10 
lime( sec) 

Figure 1. Position(left)/ Attitude( right) with proposed SDRE and conventional SDRE 
(rl ,Qh t>rl l;n, ) 



140 

x 
(m) 

y 
(m) 

z 
(m) 

0 

0 

S.-B. YIM, J .-H . OH 

O.l 

0 I I t 0 

O.l, ----------l--- -- -- -- --:----------~------- - - -r- - --------:--- -
0.1 , --------, -- ---- ---- -,--- -- --- -- -r - ----------,-- --- --- -- -r- ---

\ ' ' ' ' ' 

0.0> ___ ':~--~------- - - --~ --- -- --- --!----------~------- -- --~--- -

'''' .. : _: T~=~r-J~ ::=i=I:: 
-0.1 

0 10 

t imc(scc) 

Figure 2. Lyapunov Index V = xT p-1x: proposed SDRE 

' I 
I 
I > 

--- - -- - -----~-------------~-
1 

-......,_~-.... I : 

--- ~ ::.-::.~:::::=-~.---·-------+--
1 I 

10 
time( sec) 

'"' ' --~:::--! _____________ !_ 

----------~~------------~-
1 

10 
time( sec) 

------ - --- - -~- - -- -- -- - --- -~-1 I 
I I 
I I 
I I 

.---::_-_-:-_-_-:~:::::_..-!_.- - ---------~ 
> I 

I 

10 
time( sec) 

$ 
(rad) 

e 
(rad) 

iii 
(rad) 

' I 
' I > 

' ' ------------J--- - ---------L-
1 I 
I > 

I > 

1 - "'\.!...- I I t----~ ::-::::-:. :p::::,"--= 'o.--------~--t-

0 10 
time( sec) 

0 10 
time( sec) 

--- - --------~---- ------ -- -L-
0 I 
I I 
I > 

I I 
I I 

::"~=== ~=~:-=-=--"'i--------------~-

10 
tim e(scc) 

Figure 3. Position(left)/ Attit1ide(right) with proposed SDRE with deviation com pen-
. - •'- -- -- -' -- - -·--•' - -- 1 <::!nRJ<: frl <> ch <>rl linP) 



Optimal control of a utonomous underwat e r vehicles 141 

250 ---.----- --·- ---,---------,- ~I I I I I I 

1 I I I I 
I I I I I 
I I I I 1 

----------~----------~----------t----------~-----------~----
1 I I I I 
I I f I I 
I I I I I 

: : : : : I 

150 

-SO 

-....._ ~ I I I I I 

::::~:::~~--~j ___________ i ___ _ 
: -----I : : I 7::': -- ------:----------- ~-- ------ --~--- ------- -~-- --
1 I I I I 

' ' 
' ' ' : 

F;(N) 

I 
I I 

I I I I ----------:---------r --------- r- ----------:-----------:--]-
• I I I I 
I I I I I 
I I I I I 
I I I I 1 ____ .J1 L__ ____ , ___ ___ ._ _ _ __ __t_ 

- 150 

-250 
() I 0 

time( sec) 

Figure 4. Control inputs Ft E 3?8 x 1
: proposed SDRE with deviation compensation 

zoo·, : : : : : J 
I I I I I I 

I 00 ::_- - - ----- -~- ---- - --_) -- --- -- --- t-- -------- ~- --------)- ---
1 I I I I I 
I I I I I I 
I I I I I I 
1 

I I I I 
I I I I 
I I I I 
I I I I 

' ' ' 

H 

I I I 

1', ' ' ' 
',•------,-:=."'- · ~~ ... -.r: .---~----~------:-------~--
1~ (\ 1 ~--··' ! I I I I 

j: · .. ~;"/ i i i i i 
I I 1 I 1 I I 
1 ' 1 1 1 I I 

I I I I I 

I ' : : : : : I 

- I 
00 ~i-- j------1-----------r------ ---- t---- ------1-----------r- ---l 

. . ·· : : 1 : 1 I 
1

1 I I . -200 _ _ _ _.__ ____ _ .___ _J__ 

0 10 

tim~(St:C) 

Figure 5. Difference on deviation index H - solid/broken lines are with/without 



142 S.-8. YIM, J.-H. OH 

1.5 

O.l 

z 
(m) 

-0.5 

-I 

-1.5 

2 

-2 -2 

Figure 6. The tracking t rajectory in 3-D (x, y, Z) space 

100 

lO 

F;(N) 

.so 

-100 
10 20 )0 40 50 

1 ime{s~) 



Optimal control of autonomous unde rwater ve hicles 

o.s 

z 0 

(rn) 
-O.S 

- 1.5 

2 

·2 -::! 

Figure 8. The tracking trajectory in 3-D space (x, y, Z) with thruster failure 

References 

143 

ANTONELLI G. , CACCAVALE F ., CHIAVERINI S. and Fusco G. (2001) A novel 
adaptive control law for autonomous underwater vehicles. Proceedings of 
the 2001 IEEE International Conference of Robotics f3 Automation, 447-
452 . 

ANTONELLI G., CHIAVERINI S., SARKAR N. and WEST M. (1999) Adaptive 
control of an autonomous underwater vehicles. Experimental results on 
ODIN. Computational Intelligence in Robotics and Automation, Proceed
ings. 1999 IEEE International Symposium, 64- 69. 

BOSKOVIC D.M. and KRSTIC M. (1999) Global attitude/position regulation 
for underwater vehicles. International Journal of Systems Science, 3, (9) , 
939-946. 

CALLIER F.M., WINKIN J. and WILLEMS J.L. (1994) Convergence of the time
invariant Riccati differential equation and LQ-problem: mechanisms of 
attraction. International Journal of Control, 59, ( 4), 983-1000. 

CHOI S.K. , YUH J .K. and TAKASHIGE G.Y. (1995) Development of the omni
directional intelligent navigator. IEEE Robotics and Automation Maga
zine, 44-53. 

CLOUTIER J.R. and ZIPFEL P.H. (1999) Hypersonic guidance via the state
dependent Riccati equation control method. IEEE International Confer
ence on Control Applications, 219-223. 

FJELLSTAD O.E. and FOSSEN H.l . (1994) Position and attitude tracking of 
AUVs: A quaternion feedback approach. IEEE Journal of Oceanic Engi
neering, 19, (4) 512- 518. 

HAESSIG D. and FRIEDLAND B. (1997) A method for simultaneous state and 
parameter estimation in nonlinear systems. Proceedings of the American 
- -



144 S.-B. YIM, J.-H. OH 

HAMMETT K.D., HALL C .D. and RIDGELY D. B . (1998) Controllability issues 
in nonlinear state-dependent Riccati equation control. Journal of Guid
ance, Control, and Dynamics, 21, (5) 767- 773. 

HAYASE M., YAMAZAKI Y. and RIJANTO E. (2000) Nonlinear optimal control: 
Principle of local optimality. Industrial Technology 2000. Proceedings of 
IEEE International Conference, 2, 202- 205. 

HEALEY A.J . and LIENARD D. (1993) Multivariable sliding-mode control for 
autonomous diving and steering of unmanned underwater vehicles. IEEE 
Journal of Oceanic Engineering, 18, (3) 327- 339. 

HULL R.A., CLOUTIER J.R., MRACEK C .P . and STANSBERY D.T . (1998) 
State dependent Riccati equation solution of the toy nonlinear optimal 
control problem. Proceedings of the American Control Conference, 1658-
1663. 

ISHII K., Fum T. and URA T. (1998) Neural network system for on-line con
troller adaptation and its application to underwater robot. Proceedings of 
1998 IEEE International Conference on Robotics and Automation, 756-
761. 

JAZWINSKI A.H. (1965) Quadratic and higher-order feedback gains for control 
of nonlinear systems. AIAA Journal, 3, 925- 935. 

KATEBI M.R. and GRIMBLE M.J. (1999) Integrated control, guidance and 
diagnosis for reconfigurable autonomous underwater vehicle control. In
ternational Journal of Systems Science, 30, (9), 1021- 1032. 

LANGSON W. and ALLEYNE A. (1997) Infinite horizon optimal control of a class 
of nonlinear systems. Proceedings of the American Control Conference, 
3017- 3022. 

LANGSON W. and ALLEYNE A. (1999) A stability result with application to 
nonlinear regulation: Theory and experiments. Proceedings of the A meri
can Control Conference, 3051- 3056. 

McCAFFREY D. and BANKS S.P. (2001) Lagrangian manifolds and asymptot
ically optimal stabilizing feedback control. Systems f3 Control Letters, 43, 
(3) 219- 224. 

McLAIN T.W. and BEARD R.W. (1998) Successive galerkin approximations to 
the nonlinear optimal cont rol of an underwater robotic vehicle. Proceedings 
of the 1998 IEEE International conference on Robotics and Automation, 
762- 767. 

MRACEK C.P. and CLOUTIER J .R. (1998) Control designs for the nonlinear 
benchmark problem via t he state-dependent Riccati equation method. In
ternational Journal of Robust and Nonlinear Control, 8, 401- 433. 

PARK J.H ., CHUNG W.K . and YUH J.K. (2000) Nonlinear Optimal PID Con
trol of autonomous underwater vehicles. Underwater Technology, 2000. 
UT 00. Proceedings of the 2000 International Symposium, 193- 198. 

PonDER T .K. and SARKAR N. (1999) Fault tolerant decomposition of thruster 
forces of an autonomous underwater vehicle. Proceedings of the 1999 IEEE 



Optimal control of autonomous underwater ve hicles 145 

REID W.T. (1970) Monotoneity properties of solutions of Hermitian Riccati 
matrix differential equations. SIAM Journal of Mathematical Analysis, 1, 
(2) 195- 213. 

RODRIGUES 1., TAVARES P. and PRADO M . (1996) Sliding mode control of an 
AUV in the diving and steering planes. Oceans '96, MTS/ IEEE Prospects 
for the 21st Century. Conference Proceedings, 2, 576- 583. 

RusNAK I. (1998) Closed-form solution for the Kalman filter gains of time
varying systems. IEEE Transaction on Aerospace and Electronic systems, 
34, (2) 635- 639. 

SERRANI A. and ZANOLI S.M. (1998) Designing guidance and control schemes 
for AUVs using an integrated simulation environment. Proceedings of the 
1998 IEEE International Conference on Control Applications, 1079- 1083. 

SHAMMA J.S. and C LOUTIER J.R .. (2001) Existence of SDRE Stabilizing Feed
back. Proceedings of the American Control Conference 2001, 4253- 4257. 

SILVERMAN L.M. and ANDERSON B.D.O. (1968) Controllability, observability 
and stability of linear systems. SIAM Journal of Control, 6, (1) 121- 130. 

WONHAM W .M. (1968) On a matrix Riccati equation of stochastic control. 
SIAM Jo·urnal of Control, 6, (4) 681- 697. 

YOERGER D.R. and SLOTINE J.J.E . (1990) Robust trajectory control of un
derwater vehicles. IEEE Journal of Oceanic Engineering, 10, ( 4) 462-470. 

YuH J .K. (1994) Learning control of underwater robotic vehicles. IEEE control 
System Magazine, 15 , (2) 39--46 . 

YuH J .K. (1995) A learning control system for unmanned underwater vehicles. 
Oceans '95. MTS/IEEE. Challenges of our Changing Global Environment. 
Conference Proceedings, 2, 1029- 1032. 




