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Abstract: Using asymptotic techniques based on Laplace trans­
forms, spectral analysis and theory offeedback systems we character­
ize the asymptotic behavior of the repeat loci in microsatellite DNA 
and cancer cells with incresasing number of copies of genes respon­
sible for coding proteins causing drug removal or metabolisation as 
well as telomeres shortening, which is supposed to be the mechanism 
of aging and death. These three problems are described by models 
in the form of infinitely many differential linear or bilinear first order 
equations resulting from branching random walk processes used to 
represent the evolution of particles in these problems. 
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1. Problem statement and motivation 

Shortening of telomeres is one of the supposed mechanisms of cellular aging 
and death. The hypothesis is that each time a cell divides, it loses pieces of 
its chromosome ends. These ends are called telomeres and consist of repeated 
sequences of nucleotides, telomere units. When a critical number of telomere 
units is lost, the cell stops dividing. Telomeres are assumed to consist of telomere 
units - repeated sequences of nucleotides. When a chromosome replicates , each 
newly synthesized strand loses one telomere unit at one of its ends. This means 
that the pair of daughter chromosomes each has one old unchanged strand and 
one new, one unit shorter. Once a critical number of telomere units is lost , 
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this assumption, only the lenght of the shortest telomere will matter and thus 
a chromosome is said to be of type j if its shortest telomere has j remaining 
units. This leads to a model where a type j chromosome gets two offsprings, 
one of type j and one of type j - 1. Cells of type 0 do not divide. 

The amount of DNA per cell remains constant from one generation to an­
other because during each cell cycle the entire content of DNA is duplicated 
and then at each mitotic cell division the DNA is evenly apportioned to two 
daughter cells. However, recent experimental evidence shows that for a fraction 
of DNA, its amount per cell and its structure undergo continuous change. 

Gene amplification can be enhanced by conditions that interfere with DNA 
synthesis and is increased in some mutant and tumor cells. Increased number of 
gene copies may produce an increased amount of gene products and, in tumor 
cells, confer resistance to chemotherapeutic drugs. Amplification of oncogenes 
has been observed in many human tumor cells and also may confer a growth ad­
vantage on cells which overproduce the oncogene products (for an overview see 
e.g. survey in Stark (1995) ). The simplest models of gene amplification in Kim­
mel and Axelrod (1990) assume the above process. Cells with 2j-l gene copies 
are said to belong to type j (with 0 gene copies, to type 0). The parameters of 
the models are the probabilities of gene amplification and deamplification, and 
average life times, respectively. The moment of death represents in this case the 
moment of cell division. 

The shortest non-coding repeats of DNA, which are the subject of this pre­
sentation are microsatellites. Microsatellites are the repetitive sequences com­
posed of 2 to 5 nucleotide motifs, (for review see e.g. Ramel (1997)). Formation 
of tandem repeats composed from such short units occurs most probably as a 
result of DNA replication errors in which slippage through strand occurs. The 
slippage of polymerase during replication leads to base pairs mismatching and, 
if not repaired, gives rise to elongation or shortening of the microsatellite with 
one or more repeated unit. The stability of the number of repeats in microsatel­
lite sequence depends on the i tact mismatch DNA repair. The changes in the 
number of repeats in microsatellites accompany some human diseases. Disorders 
such as Hutington's disease, spinocerebellar ataxia type 1, syndrome of fragile X 
chromosome, myotonic dystrophy and other are related to expansion of repeated 
units in microsatellites lying in the vicinity of some genes Green (1993). In this 
case we consider a population of individuals stratified into subpopulations with 
different variants of a repeat sequence, labeled by numbers i = 0, 1, 2, .... 

In all these processes the simplified time evolution of the population distri­
bution can be described by a branching random walk Athreya and Ney (1972) 
with an absorbing boundary defined as the multitype branching. 

We focus our interest on t he stability analysis of the models resulting from 
the analysis of these three processes. 

We use techniques from Swierniak, Kimmel and Polanski (1996) including in­
verse Laplace transforms for non-rational functions Doetsch (1964) and asymp-
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can provide stability conditions for the case of initial conditions with finite sup­
port, and they give us conditions for model parameters for our further study. 
Using the obtained relations between parameters we formulate the model of 
DNA repeats' evolution as a differential equation in Banach space and we study 
its stability by examining spectra of the appropriate infinite-dimensional opera­
tors. We are able to calculate analytically the resolvent sets and the spectra of 
the operators and then to obtain analytical stability conditions. These condi­
tions are related to the distribution of the number of repeats or the number of 
gene copies. The tail of this distribution must decay sufficiently fast in order for 
the system to be stable. Such problems do not exist in the case of the telomere 
shortening model because it does not allow for infinite increase of the type of 
particles. We use also some well-known results for feedback systems to analyse 
more realistic models of drug resistance evolutions and telomere shortening. 

2. Model of telomere shortening 

The simplest model of telomere shortening is due to Levy, Allsopp, F'utchert, 
Grieder and Harley (1992). It is based on the following assumptions: 

1) Each chromosome consists of 2 strands: upper and lower, each of them 
having 2 endings, right and left. The number of telomere units on both endings 
may be written as the quadruple (a, b; c, d), where a and c correspond to the 
left and right ending of the upper strand, while b i d corresponds to the left and 
right ending of the lower one. The sole possible combinations are of the form 
(n- 1, n; m,m) or (n, n; m,m- 1). 

2) Cells having chromosomes described by the quadruple (n- 1,n;m,m), 
when dividing, result in progenies of types (n- 1, n- 1; m, m- 1) and (n -
1, n; m, m). The similar rule takes place for the second type leading to the 
situation, in which one of the progenies is always of the same type as the parent 
cell , while the other is missing two sequences - each on a different ending of a 
different strand. 

3) The process ends when telomere endings are short enough; without loss 
of generality it may be viewed as the case of (n- 1, n; 0, 0) or (0, 0; m, m- 1). 
In this case the cell does not divide and the single progeny is identical with the 
parent. 

The transformation takes the form: 

( 1 ) { ---. (n - 1, n; m, m) 
n- 'n; m, m ---. (n- 1, n- 1; m, m- 1) 

( ) { ---. (n,n;m,m -1) 
n,n;m,m - 1 ---. (n -1,n;m -1,m - 1) 

(n -1,n;O,O)---. (n -1,n;O,O) 

rn n. ~ ~ , \ , ffl fl.- _ 1 \ 
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We can observe that such "two-dimensional" process may be simplified by 
introducing indices k and l , denoting the total number of units on both upper 
and lower strand for left and right endings, respectively. 

By denoting: 

k _ { 2n if (n , n ; m, m- 1) appears 
- 2n- 1 if (n- 1, n; m, m) appears 

l- { 2m 
- 2m-1 

if (n- 1, n; m, m) appears 
if (n , n ; m , m- 1) appears 

we obtain the feasible transformations as follows: 

{ 
-+ (k,l) 

(k,l) -+(k-1,l-1) 

(k ,O)-+ (k,O) 

(O, l)-+ (O,l) . 

Defining i = min(k, l) lea s to an even simpler form of the admissible transi­
tions: 

. { -+ i 2 . 
-+ 2-1 

and 

0-+ 0. 

Index i, describing the state of the cell in the sense of the telomere's length 
may be called the type of cell. Thus, a particle of type i produces after death 
two cells, one of type i and the other of type i -1, fori > 0, while 0 type particle 
always is substituted by the particle of the same type. In this sense particles of 
type 0 are immortal but also not creative. 

If we denote by Mi ( t) the number of cells of type i in the discrete time t 
we have the following deterministic model of cell evolution with corresponding 
length of telomeres: 

(1) 

For the initial condition: 

(2) 

where Oij is the Kronecker symbol, we obtain the number of type i cells origi­
nating from one cell of type j in time t: 

(3) 
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assuming 0 :::; j - t :::; i :::; j. 
Thus, the number of cells of type i, originating from different cells defined 

in t = 0 by initial conditions: 

is given as 

For long horizons it can be approximated by: 

tN - i 
Mi(t)"' (N _ i)!MN(O) 

and the sum of cells of all types tends to: 

N tN 
ME = L Mi(t) f"V N! MN(O). 

t=O 

(4) 

(5) 

(6) 

(7) 

The deterministic form of the model treats the whole population as homo­
geneous, not taking into account its variability associated mainly with different 
life time. The simplest way of getting closer to the real world is to treat cell dou­
bling times as iid random variables with exponential distribution, characterized 
by the same parameter a. The evolution process becomes a branching random 
walk with an expected number of cells of type j, originated by the ancestor of 
type i, denoted by Mij(t), given by the following state equation Arino, Kimmel 
and Webb (1995): 

For the initial condition: 

the solution is similar to the one resulting from the deterministic model: 

(at)i-j 
Mii(t) = (i _ j)! 

while for the initial conditions: 

we have: 

(8) 

(9) 

(10) 

(11) 

(12) 
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where M1(t) is an average number of cells in the state j. 
The case of arbitrary time distribution is much more complicated and does 

not lead usually to the closed form of the state equations. Nevertheless, if all 
cells of different type have the common distribution of life time G(t) with mean 
m, the average number of type j cells originated from ancestor type i are given 
by Olofsson and Kimmel (1999): 

Mii(t)= f c:j)(l-G)*G*n(t) 
n=l-J 

(13) 

where * is a convolution, c•n is n-fold convolution of the distribution function, 
and C:J is an average number of type i- j cells in the n-th generation. Time 
domain analysis of asymptotic behaviour of (13) is near to impossible. Its 
Laplace transform is given as: 

Mij(s) = ( G~) )i-j 
1- G(s) 

(14) 

From control theoretic point of view it is a cascade of i - j identical systems 
with the unit positive feedback and main loop transfer function G(s). If 

lim G(s) = 1 
s--->0 

(15) 

then for small s: 

G(s) 1 

1-G(s) ms 
(16) 

Thus 

(17) 

For large t the Tauberian theorem (e.g. Doetsch (1964)) leads to the following 
asymptotic result: 

(18) 

which is consistent with the solution for exponentially distributed intermitotic 
times with parameter being an inverse of m. 

3. Model of gene amplification 

In the dynamical process of gene amplification cells of different types are iden­
tified with different numbers of copies of the drug resistance gene and differing 
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the cytostatic agent. Due to the mutational event the sensitive cell of type 0 can 
acquire a copy of the gene that makes it resistant to the agent. Likewise, the 
division of resistant cells can result in the change of the number of gene copies. 
This factor can have a strong influence on the evolution of drug resistance of 
cancer cells and in turn becomes one of the most important reason for failure 
of cancer chemotherapy. 

The probability of mutational event in a sensitive cell is of several orders 
smaller than the probability of the change in number of gene copies in a resistant 
cell. Since we do not limit the number of gene copies per cell , the number of 
different cell types is denumerably infinite. 

The hypotheses are as follows: 

1. The lifespans of all cells are the independent exponentially distributed 
random variables with means 1/ Ai for cells of type i. 

2. A cell of type i :::: 1 may mutate in a short t ime interval (t, t + dt) into a 
type i + 1 cell with probability bidt + o(dt) and into type i- 1 cell with 
probability didt + o(dt). A cell of type i = 0 may mutate in a short time 
interval (t, t + dt) into a type 1 cell with probability adt + o(dt), where a 
is several orders of magnitude smaller than any of bis or dis, ie. 

a« min(di, bi), i:::: 1. (19) 
3. The chemotherapeutic agent affects cells of different types differently. It 

is assumed that its action results in fraction u ; of ineffective divisions in 
cells of type i. 

4. The process is initiated at time t = 0 by a population of cells of different 
types. 

We denote by N;(t) the expected number of cells of type i at time t, and 
for simplicity we assume that the resistant cells are insensitive to drug's action. 
Moreover, in the simplest case the differences between parameters of cells of 
different types are small enough to be neglected, leading to parameters inde­
pendent of the type of cells: 

b; = b > 0, d; = d > 0, A; =A > 0, Ui = 0, i:::: 1, 

>.o = >., uo = u 

This leads to the following form of the model for the considered system: 

No(t) [1- 2u(t)]>.No(t) aNo(t) 
+ dN1(t), 

N1(t) AN1(t) (b + d)N1 (t) 
+ dN2(t) + aNo(t), 

(20) 
N;(t) >.N;(t) (b + d)N;(t) 

+ dNi+ l (t) + bN; -l(t ), 
i ~ 2, 
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We assume (as postulated in literature, see e.g. Kimmel and Axelrod (1990)) 
that the deamplification ratio is greater than the one of amplificat ion d > b. It 
means that the process is subcritical. 

Now, assume that the sensitive subpopulation could be completely anihilated 
by the drug i.e. No(t) = 0. Moreover assume that at t he initial time t = 0, 
Nk(O) 2 0; k ~ K, Ni(O) = 0, i > K, and denote N(t) = 'Li>l Ni(t). 

In this case our system is modelled by the following linear state equations: 

lh(t) = >.N1( t ) - (b + d)N1(t) 
+ dN2(t), 

Ni(t) = >.Ni( t ) (b + d)Ni(t) (21) 

+ dNi+1 (t) + bNi-l(t), 
i 2 2, 

Using the approach elaborated in Swierniak, Polanski, Kimmel, Bobrowski 
and Smieja (1999) (only for K= 1), we can investigate the asymptotic properties 
of N1 (t) and N(t) for the case of arbitrary (but finite) number of nonzero initial 
conditions. Denote Laplace transforms of N1(t) and N(t ) by N1 (s) and N(s). 

Then, for the initial condition: 

Ni(O) = 8ik (22) 

Nl(s) = c-)..+ b + d- J(~b-).. + b + d)2- 4bd) k /d. (23) 

.N ( s) = ( _ ( s - >. + b + d - J ( s - >. + b + d) 
2 

- 4bd) k + 1) _1_. ( 24) 
2b s-).. 

Note that 

is the Laplace transform of 

(2Vbdjt)k h(2Vbdt) exp[( -b- d)t], 

where h(.) is the modified Bessel function of order k, see e.g. Doetsch (1964). 
The system linearity leads to the following result, which generalizes our The­
orem 3.1 from Swierniak, Polanski, Kimmel, Bobrowski and Smieja (1999) ob­
tained using the methods of Swierniak, Kimmel and Polanski (1996), based on 
the inverse Laplace transforms technique and Laplace asymptotic expansions. 

THEOREM 1 For the initial condition: 



Three random branching walk models arising in molecular biology 155 

the expected number of resistant cells of type 1 evolves according to the equation: 

N1(t) = L (kjd)h(2Vbdt)( Jdfb)ke[>.-(b+d)]t Nk(O), 
k5,K 

while the evolution of the expected number of all resistant cells is given by: 

Moreover, in the case when k = 1: 

(25) 

(27) 

(28) 

The asymptotic expressions are based on the formulae for asymptotic ex­

pansions of h(t) and J; !,( 2~-r)e-(b+d)-r dT, given in Lemma 1 and Lemma 2 
in Kimmel and Stivers (1994) (obtained via the Laplace method for integrals, 
de Bruijn (1958)) and are valid only for the subcritical case. 

Both (27) and (28) are valid for t -t oo. From (27) and (28), the condition 
both N1(t) and N(t) to converge exponentially to zero, as t--> oo, is: 

(29) 

The analysis of the asymptotic behavior of the resistant subpopulation was 
carried out under the assumption that there was no influx from the sensitive 
compartment. However, using tools of feedback systems analysis we can over­
come this unrealistic assumption. Assuming that the initial condition for (1) is 
zero, Ni(O) = 0, i = 1, 2 ... , and using calculations similar to those previously 
performed in Swierniak, Polanski, Kimmel, Bobrowski and Smieja (1999) we 
find that the function N1(t) is a convolution of two functions: aN0 (t), and the 
free solution for the first state variable N1 (t) of equation (2) (being also the 
impulse transfer function of the system) in the case analysed in Theorem 1 for 
K = 1. Thus, for the Laplace transforms we have 

~ s - >. + b + d- J(s- >. + b + d)2- 4bd ~ 
N1(s) = a 

2
bd No(s). (30) 

Therefore 

s-). + b + d- J(s-). + b + d) 2 - 4bd 
a 2bd 
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The equations of the asymptotic model without cell influx have the same 
form as a part of the drug resistance model (1). The model including both the 
sensitive and the resistant parts of the neoplastic population may be treated as 
a system with positive feedback. In the case of constant dosage of a cytotoxic 
agent the stability analysis can be based on the Nyquist criterion (see e.g. Zadeh 
and Desoer (1963)). In this case we have: 

~ d ~ 
No(s) = ( ).X N1(s). s + a - 1- 2u 

The loop transfer function for the system is 

K(s) = a [s- .X+ b + d- J(s- ,X+ b + d)2- 4bd]_ 
2b[s +a- (1- 2u).X] 

The frequency response of (32) is: 

K(jw) = K(s)ls=jw· 

(31) 

(32) 

(33) 

By the analysis of the relation (32), it can be verified that the supremum 
is achieved for w = 0, with the condition that both transfer functions define 
stable systems. As a result we can state the following conditions of exponential 
stability of the drug resistance model ( 1): 

THEOREM 2 The model of the drug resistance (1} is exponentially stable if: 

(Stability condition for resistant population}. 
and 

0:' 
u > 0.5 + -:---:----:----r:====.=::=== 

d - b - .X + J ( b + d - .X) 2 - 4bd 

(Stability condition for the feedback loop). 

(34) 

(35) 

The stability condition of the sensitive compartment ( u > 0.5 - 2~ ) is in­
cluded in the condition (35). Condition (35) makes sense only if (34) is satisfied . 
Inequality (35) gives the smallest value u which ensures asymptotic elimination 
of cancer cell population. 

4. Modelling microsatellite DNA repeats 

To model the evolution of DNA repeats in microsatellites, we consider a pop­
ulation of individuals strat ified into subpopulations, indexed by the number of 
repeats of the considered motif, described by a branching random walk with an 
absorbing boundary defined as the following multitype branching process (see 
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1) There exist denumerably many types of particles, labeled i = 0, 1, 2, .. .. 
2) Each particle survives for a random t ime, distributed exponentially with 

parameter B. 
3) Upon its death, each particle produces a pair of progeny, each of which 

independently survives with probability {3 . 
4) Each progeny of an i-th type (i 2: 1) is independently distributed among 

types i - 1, i + 1 or i with probabilities v, rJ and 1 - v- rJ respectively. 
5) Each progeny of a 0-type particle is of type 0. 

No(t) >-.No(t) + dN1(t), 
N1(t) >-.N1(t) (b + d)N1 (t) 

+ dN2(t), 
(36) 

Ni(t) >-.Ni(t) (b + d)Ni(t) 
+ dNi+l (t) + bNi-l(t), i 2: 2, 

We assume t hat there exist Ni(O) particles of each type i at t = 0, and Ni(t) 
is the expected number of particles of type i at time t. 

Moreover, 

d = 2{3vB, b = 2f3rJ(), >-. = (2/3 - 1)8 (37) 

and d > 0, b > 0, >-. > 0, d > b 
Since equations with i 2: 1 do not include No(t) and we are interested only 

in the fate of tandem repeats and not of the whole population (notice that in 
this model subpopulation of type 0 always grows exponentially) , therefore the 
analysis can be limited to equations with i 2: 1 of the form: 

N1(t) >-.N1(t) (b + d)N1(t) 
+ dN2(t), 

Ni(t) >-.Ni(t) (b + d)Ni(t) 
(38) 

+ dNi+l(t) + bNi-l(t), i 2: 2, 

The main point considered is the asymptotic stability of this model, equivalent 
to the disappearance of the repeat locus. 

The asymptotic behavior of the DNA repeats may be analyzed using the 
results of the previous section. In this case nonzero initial conditions must 
be, however, finite. In this section we will analyze the stability of the model 
(38) using the theory of infinite-dimensional systems as this was performed in 
Kimmel, Swierniak and Polanski (1998) for the gene amplification model. We 
will allow infinitely many elements Ni(O) not equal to 0. We will formulate the 
stability analysis problem in the terms of spectral properties of an appropriate 
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of the previous section, that for finite k the solution starting from Nk(O) > 
0, Ni(O ) = 0, i :j:. k decays exponentially to zero, as t-+ oo: 

d > 0, b > 0, >. > 0, d > b, 

or equivalently 

II > 'f1 > 0, (} > 0, {3 > 0.5 

We denote the solution vector of system (38) by 

N(t) = col(N1(t), N2(t), . . . ], 

and the initial condition by 

No= N(O) = col[N1(0), N2(0), ... ]. 

(39) 

(40) 

( 41) 

(42) 

The generating function of N o is denoted by No(s) = 2::~ 1 Ni(O)si. It seems 
most appropriate to choose the initial condition from space 11 of the absolutely 
summable infinite sequences with the norm 

INI =I: INd. (43) 
i~l 

Note that the Hilbert space l2, which includes h as its subspace, is inap­
propriate for our analysis. The reason is that t he sum of squares of elements 
of N(t) does not provide information about the total number of repeat loci. 
However, the h-norm may grow to infinity for some solutions. This suggests 
formulating the problem in a different space, included in h, which imposes ad­
ditional conditions on the rate of decay of Ni 's. Let us write the system (38) in 
the form 

N (t) = AN(t), (44) 

where N(t) belongs to a Banach space Band A is now a linear operator mapping 
B into itself. The form of A is implied by the system of equations (38) . We 
will consider B being the space lf of infinite sequences summable exponentially 
with base R > 1, i.e. 

N E lf ¢::=:} INin = 2:::: INdRi < oo. ( 45) 
i~l 

The analysis. based on Theorems 1 and 2 in, Swierniak, Polanski, Kimmel, 
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THEOREM 3 The system is exponentially stable (sup{lR(~t): {L E aR(A)} < 0) 
for the values of the base parameter R in the rangeR E (s1, s2) where s1, s2 are 
the roots of the equation: 

d 
-bs + (-.X+ b +d)- - = 0. 

s 
( 46) 

Then, the Banach spaces l~ with R E (s1, s2) are stable state spaces for the 
system (38). Choosing initial conditions from these spaces results in solutions 
converging to zero. 

It is interesting to note that increase of the value R ( R E [ s2, oo)) results in 
the loss of the exponential stability property. However, one should remember 
that exponential stability is in terms of the norm in l~, which changes with R. 

The results for the infinite dimensional model are important, since any finite 
approximation of (38) demonstrates only partially the asymptotic properties of 
the model (see e.g. Mitkowski (1999)). 

5. D iscussion 

In this paper we have studied asymptotic properties of the three molecular pro­
cesses, each of them being modelled by the random branching walk models. 
Although all the models have the form of infinite dimensional systems of or­
dinary linear or bilinear equations, their asymptotic behaviours are different. 
Under the assumptions arising from biological meaning of the system parame­
ters one can find some additional conditions leading to stable behaviour of the 
considered parameters. Nevertheless, the particular form of each of the model 
implies the need of different tools for the analysis. The methods used in this 
study include the Laplace transforms machinery, spectral analysis for infinite 
operators, techniques of the theory of feedback systems, and asymptotic ex­
pansions of special functions. This study generalizes some previously published 
results of the authors (see Arino, Kimmel and Webb (1995), Kimmel and Axel­
rod (1990), Kimmel, Chakraborty, Stivers and Deka (1996), Kimmel and Stivers 
(1994), Kimmel, Swierniak and Polanski (1998), Swierniak, Polanski, Kimmel, 
Bobrowski and Smieja (1999), Swierniak, Kimmel and Polanski (1996), Olofsson 
and Kimmel (1999)) dealing with only one of the discussed processes, indicates 
similarities and differences between the models of these processes, techniques of 
analysis and asymptotic properties. Moreover, it is for the first time that we 
discuss so extensively the role of positive feedbacks in the considered models. It 
is worth noting that the models, although looking quite simple, for large range 
of parameters, beyond the scope discussed in our paper, may manifestate com­
plex behaviour (including chaotic trajectories) (see e.g. Banasiak and Lachowicz 
/nnn1 \\ 
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