
Control and Cybernetics

vol. 32 (2003) No. 1

Yet another object-oriented dat a model and its
applicat ion1

by

Beata J a nkowska

Department of Control, Robotics, and Computer Science
Poznan University of Technology

A bstract : In this paper we propose a certain object-oriented
data model. It originates from the calculus for complex objects by
Bancilhon and Khoshafian (1989). These two models differ mainly
in terms of set objects interpretation. In our model a set object
stands for a set of items denoting different forms of the same object.
As a consequence, a new sub object relation must be defined. Then,
new functions of union, intersection and complement are defined. It
is proved that the new data model is not only a lattice, but also a
Boolean algebra. Finally, the model is expanded into a new calculus
for objects. It is shown that the calculus provides a firm background
for some interesting query language.

K eyword s: data model, calculus for objects, query language.

1. Int roduction

Among all of the professional database management systems, the systems with
object-oriented databases are now the main object of interest for researchers,
ODMG (1997) . The basic notions of an object-oriented data model are these
of an "object" and a "partial order relation" defined on a set of all objects. By
means of these notions one can easily represent a hierarchical world structure.

There were a number of different attempts to build formal foundations for
object-oriented systems. The most known of them originate from AI theories.
They consider representing the common-sense knowledge in structures called
"frames" or "feature structures". Frames, Minsky (1974), are relatively large
structures, which exemplify typical instances or cases. They inherit default
assumptions that can be displaced when more specific information is available.
Feature structures, Carpenter (1992), correspond to "tuples" in other models.
Both kinds of structures seem to be good tools for creating systems with partial
knowledge representation.

176 B. JANKOWSKA

Other attempts to build such foundations are founded on logic. A leading ex
ample of this trend is LIFE, Ait-Kaci (1993). It reconciles styles from functional
programming, logic programming, and object-oriented programming. From the
theoretical point of view, LIFE implements a constraint logic programming lan
guage with equality (unification) and entailment (matching) constraints over
order-sorted feature terms.

The algebraic approach to a subject of defining object-oriented systems is
quite rare. We can mention here the proposals of CA algebra, Nilsson (1993),
or the AQUA data model and algebra, Leung et al. (1993).

The data model presented in this paper belongs to the algebraic trend. It
comes down from the "calculus for complex objects" by Bancilhon and Khosha
fian (1989). This calculus views objects in a broad manner, allowing the three
different forms of them: elementary (atom or special), tuple or set . On the set 0
of all these objects the partial order sub_ object relation (:::;), the union function
(u) and the intersection function (n) arc defined . It is proved that the algebra
A= (0, {U, n}) is a lattice. The notion of object is expanded to the notions of
object_jormula and object_ rule, being an ordered pair of object formulae. Then,
the functions of object formula in terpretation, object rule application and object
closure are defined. By their means the semantics of object formulae and the
fixpoint semantics of a set of rules are specified.

2. Yet another calculus for objects

Let us change the presented calculus in some respects now. First of all, let us
give the notion of a set object a new, intuitively clear meaning. From now on,
a set object will stand for a set of items denoting different forms of the same
object. At a given moment the object can assume only one of these forms.

In order to simplement t his change let us remind the definition of an object
by Bancilhon and Khoshafian. Objects are defined recursively there, as:

- integers, floats, strings , and booleans (we call them atomic objects),
- two special objects TOP (T - the inconsistent object) and BOTTOM (_i

-the undefined object) ,
- tuple objects of the form: [a1: o1; a2: o2; ... ; an; on], where a1, a2, ... , an

are distinct attribute names and o1, o2, ... , On are some objects,
- set objects of the form {o1,o2, ... ,on} , where o1,o2, ... ,on are pair-wise

different (not the same) objects2
.

Let 0 stand for the set of all such objects. Let A stand for the set { a1, a2, .. . , az}
of the names of all the attributes used in tuple objects.

Now let us introduce the auxiliary identity relation =id specified on the
set 0.

2 It is not obvious if Bancilhon and Khoshafian consider set or multiset objects; we assume

An object-oriented data model and its applications 177

DEFINITION 2.1 Any two objects o1,o2 E 0 are in the relation =id, i.e. 01 =id

02, if and only if:

- o1 and 02 are the same elementary (atomic or special) objects,
- o1 and 02 are tuple objects of the forms [an : on; a12 : 012; ... ; a1z : o1z]

and [a21 : 021; a22 : 022; .. . ; a2z : 02z], such that:

- for each pair ali, a2j of the same attributes from the first and the
second tuples respectively the relation Oti =id o2j is true,

- o1 and Oz are set objects of the forms {on, 012, ... , o1m} and { 021, 022, ... ,
o2m }, such that element objects from these sets are pair-wise in the relation
=id·

Let us observe, that the above identity relation resembles very much the
equality relation of Bancilhon and Khoshafian.

DEFINITION 2.2 An object in the new calculus for objects is:

- a special object BOTTOM (T-the inconsistent object) or TOP (1.-the
undefined object),

- a boolean or else an integer, float or string from a finite subset of integer,
float or string values (we call it an atomic object),

- a tuple object of the form: [ail:O;t;aiz:Oi2; ... ;aiz:Oiz], where ait,aiz, ... ,aiz

are all the elements of the set A (specified in any order) and Oil, Oi2, ... , Oiz

are any objects,
- a set object { o1 , o2 , ... , On}, satisfying the following:

- none element object Oi (1 :S i :S n) is of a set object form,

- none element objects oi, Oj (1 :S i -1 j :S n) are in the identity relation
=id·

Let 0 stand for the set of all such objects.
To simplify notation, let us assume that attributes of TOP (1.) value may

be deleted from specifications of tuple objects from the set 0. Under this
assumption the following exemplary relations hold: [at : o1; a3 :1.; ag : og] =id

[at : o1; ag : og; as :1.] =id [ag : og; a1 : o1], where o1, og E 0.

ExAMPLE 2.1 Here are some examples of objects in the sense of Definition 2.2:
l., T, true, false,

1' 9' -25'
3.5, -81.17, 54.7E-2,
'Alice and George', 'oto lancuch znakow',
[a1 : -15; a2 : [a1 : +9; a3 : {'Cracow',' Warsaw'}]; a6: 2.5],
{ 13, 19,-94, 2}.

Considering Definition 2.2, let us pay attention to the restrictions put on the

178 B . JANKOWSKA

a finite set of values. This restriction is necessary on account of new definitions
of the equality and sub_object relations. On the other hand, note that any
computer architecture makes it possible to implement just finite sets of values.
The second restriction concerns the set object form. It obviously results from
the semantics imposed on the set objects in the new calculus for objects. In this
calculus the former object {3,2.1, {'ABC','DEF'}} will be replaced by the object
{3, 2.1,1 ABC',' DEF'} .

The second difference between the two calculi for objects consists in the way
of interpreting the sub_ object relation ::;. The former sub_ object relation ::; will
be replaced by the dual sub_object relation ~ of the following interpretation:
01 ~ 02 means that the set of (real) entities represented by o1 is smaller than
the set of (real) entities represented by o2 . Let us observe that this new relation
shows correctly the hierarchical nature of the world of real entities.

The two considered changes have subsequent consequences, resulting in com
pletely new definitions of the equality and sub_object relations, as well as the
union and intersection functions in the new calculus for objects.

In the beginning we define the equality relation on the set 0 of all objects in
the sense of Definition 2.2 and the first_normal form for objects from this set.
Let AO stand for the set { ao1 , ao2, . .. , aot} of all the atom objects. Let TO
and SO stand for the sets of all objects of a tuple form and a (new) set form,
respectively.

DEFINITION 2.3 The equality relation (.=.) specified on the set 0 of all objects
is the least equivalence relation, complying with the following requirements:

- 'v'(o~, 02 E O)((o1 =id o2)-+ (o1 .=. o2)) ,
- V(oE(O -SO))(o =.{o}),
- V(o E O)(((o =id [al : 01; a2: 02 ; . .. ; az : oz]) /\ (3(1::; i::; z)(oi .=. T)))-+

(o .=. T)),
- {}.::::. T ,
- { ao1, ao2, ... , aot, []} =..l,
- \:/(1 ::; i::; z)\f(n E N)'v'(o1, 02 , ... , Oi-l, Oi+l, ... , Oz , Oit, Oi2, ... , Oin E 0)

((at: 01;a2: 02; ... ;ai: {Oit,Oi2 1 ••• ,Oin}; ... ;az : Oz] .=.
{[al: o1;a2: 02; . . . ;ai: Oij; . . . ;az: oz]l1::; j::; n}),

- \1(1::; i::; z)\1(01, 02, . .. , Oi - l, Oi , 0~, Oi+l, ... , Oz E 0)

(((o =id (at : Ot; a2 : 02; .. . ; ai : Oi; ... ; az : Oz])

1\(o' =id [at : Ot; a2 : 02; .. . ; ai : o~; ... ; az : Oz]) /\ (oi =om -+ (o.::::. o')) ,

- V(o E SO)((o =id { 01, 02, . .. , On})-+

\:/(1::; i::; n)(((oi = {oi(t),Oi(2), ... ,oi(k)})

A({1::; j::; kl·~(1::; m i- i::; n)(om =id Oi(j))} = {p1,p2, ... ,pr}))
" [)\)

An object-oriented data model and its applications

EXAMPLE 2.2 The following pairs of objects are in the equality relation=.:

'ADAM' .:::. 'ADAM'
5.31 = 5.31
-7 = {-7}
[a3 : 5; a1 :1_] .=. [a3 : 5]
[a1 : true; a3 :

1 rain'; a6: Tj =. T
[a7 : {3, 19, 76}; a2 : false]=.

{[a7 : 3; a2 : false], [a7 : 19; a2 : false], [a7 : 76 ; a2 : false]}
[a2 : {'rain'} ; a3 : true;]= [a2 :'rain'; a3 :true;]
{[a1 : { 1, 2}; a2 :true], [a1 : 1; a2 :true]}=.

{[a1 : 1; a2 : true], [a1 : 2; a2 :true]}

179

Let 0 1 stand for the set of objects being in the so-called first_ normal form.

DEFINITION 2.4 We say that an object o E 0 is in the first_normal form
(o E 01) if and only if it is of a set form {ol,o2 , · · · , on} satisfying the fol
lowing:

- ..., 3 (1 ::; i f j ::; n) (oi =. o i) ,
- ·3(1::; i::; n)(oi =. T) ,
- \1(1::; i::; n)((o i = id [a1: oil ; a2: oi2; ... ; az: Oiz]) -t (\1(1 ::;j::; z)(Oij E 0 1))).
Obviously, 01 c 0. To simplify notation of the objects from 01, assume

that the attributes of the { l_} value may be deleted from specifications of their
tuple sub-objects. Under this assumption the following exemplary relations
hold: {[a1 : o1; a3 : {1_}; ag : og]} =id {[a1 : o1; ag : og; a5 : {1_}]} = id {[ag: og ;

a 1 : o1]}, where 01, o9 E 01.

EXAMPLE 2.3 Here are some examples of objects in the first_normal form:

{}
{5.31, true ,' rain'}
{[a7 : {3, 19, 76}; a2 : {false}]}
{5.31 , [a2 : {'rain'};a3: {true})}

and objects not in the first normal form:

{T}
[a7 : {3, 19, 76};a2 : {false}]
{5.31, [a2 :' rain';a3 : {true})}
{[a7: {[a2 : {3, 19}; as: {false}]}],
[a7 : {[a2 : {3}; as: {false}], [a2 : {19} ; as: {false}]})}

Let us now introduce the auxiliary notion of the so-called object_depth. We
will use it while proving lemmas and theorems formulated later on.

180 B. JANKOWSKA

- object depth (T) = object depth (1_) =object depth ({ }) = 1,
- if o E AO, then object depth (o) = 1,
- if o E TO and o =;d [a1: o1; a2: 02; . .. ; az: oz], then

object depth (o) =max{ object depth (oi)l1:::; i:::; z} + 1,
- if o E SO and o =;d { 01, 02, ... , on}, then

object depth (o) = max{ object depth (o;) 11 :::; i :::; n}.

EXAMPLE 2.4 These are examples of some objects and their object depth:

object depth(T) = 1
object depth(' ADAM') = 1
object depth([a1 :true ; a3 :'rain'; a6 : T]) = 2
object depth([a1 : T; a2 :'rain'; a3 : [at: true; a2 : [a5 :' snoT/j ; a3 :_l))) = 4
object depth({' ADAM',' MACIEJ'}) = 1
object depth({[at :true; a2 :' snow'; a3 :_l),

[at :_l; a3 : [at: true; a2: {'rain' }))})= 3
object depth({[a7 : {[a2 : {3,19};a5 : {false}]})})=

object depth({[a7 : {[a2 : {3} ; a5 : {false}], [a2 : {19};a5 : {false})})})= 3

Let us also observe that there exist such pairs of objects o1 , o2 E 0 for which
the formula (01 .:::. 02) 1\ (object depth(01) of; object depth(02)) is true (the first one
and the third object from Example 2.4). However, for any objects o1 , o2 E 01
we have: (01 .:::. 02) -+ (object depth(ol) = object depth(02)) (the last pair of
objects from Example 2.4).

LEMMA 2.1 For each object o E 0 there exists such an object o' E 01 for which
the relation o .:::. o' is satisfied3 .

Now, we can define the sub_object relation and the second_normal form for
the objects from the set 0 1.

DEFINITION 2.6 The sub_ object relation (~) specified on the set 01 of all ob
jects being in the jirst_normal form may be recursively defined as follows:

- V(o1, 02 E 01)((o1.:::. o2)-+ (o1 ~ o2)),
- \f(o E 0 1)({} ~ o ~ {_l}),
- V(o1 , 02 E 01)((o1 =;d {[a1 :on; a2 : 012; .. . ; az : o1z]}

1\02 =id { [a1 : 021; a2 : 022; . . . ; az : o2z]}

AV(1:::; i:::; z)(o1; ~ o2i))-+ (o1 ~ o2)) ,
- V(o1, 02 E 01)(((o1 =;d {on, 012, ... , Olm}) 1\ (o2 =;d { 021,022, .. . , 02n})

A(V(1:::; i:::; ~)~({o~; , o; 1 ,o;2 , ... , o;q} E 01)
((o2=. { o~ ;, o;1 , o;2, ... , o;q})A({ o1;}.:::. { o~;}))))-+ (o1 ~ o2)),

-no other pair of objects o1 , o2 E 01 can be in the relation ~-

An object-oriented data model and its applications 181

EXAMPLE 2.5 The following pairs of objects are in the sub_object relation (~):

{3.5} ~ {..L}
{} ~ {3.5}
{[a1 : {2.5, -5.}; a2 : {true}]}~

{[a1 : {2.5};a2 : {true}],[a1 : {-5.};a2 : {true}]}
{[a1 : {-5.};a2 : {true};a7 : [a1 : {-2.3,0.5};a3 : {'BIG'}]]}~

{[a1 : { -5., 7.0}; a7 : [a1 : {0.5, -2.3}]]}
{[a1 : {3.5, 18.0};a3 : {'mouse',' cat'}]}~

{[a1 : {3.5, 7.2, 18.0}; a3 : {'mouse',' dog'}),
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]}

For the last , most complicated case of the Example 2.5 we have:

{[a1 : {3.5, 7.2, 18.0}; a3 : {'mouse',' dog'}],
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]}.=.

{[a1 : {3.5, 18.0}; a3 : {'mouse' ,' dog'}],
[a1 : {7.2}; a3 : {'mouse',' dog'}],
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]}=

{[a1 : {3.5, 18.0}; a3 : {'mouse' ,' dog' ,' cat'}],
[a1: {7.2}; a3: {'mouse',' dog'}]}.=.

{[a1: {3.5 , 18.0} ; a3 : {'mouse' ,' cat'}],
[a1 : {3.5, 18.0}; a3 : {'dog'}],
[a1 : {7.2}; a3 : {'mouse',' dog'}]}.

The above equalities follow from the sixth specific point of Definition 2.3. Fi
nally, from the fourth specific point of Definition 2.6 we conclude the correctness
of the last sub_ object relation ~·

Let 02 stand for the set of objects being in so-called second_ normal form.

DEFINITION 2.7 We say that an object o E 01 is in the second normal form
(o E 02) if and only if it is of a set form { o1, 02, ... , on} satisfying the following:

- •3(1 ~ i i- j ~ n)(oi ~ oj),
- \7'(1 ~ i ~ n)((oi =;d [a1: oil; a2 : 0;2; ... ; az : O;z])

-+ \7'(1 ~ j ~ z)(oij E 02)).
Obviously, 02 C 01.

LEMMA 2.2 For each object o E 01 there exists such an object o' E 02, for
which the relation o .=. o' holds.

Let us denote the two deterministic algorithms from Lemmas 2.1 and 2.2:

- by fnf - the algorithm of obtaining for an object o E 0 - an object o' E 01
such that o .=. o',

- by snf- the algorithm of obtaining for an object o' E 01 - an object
-" -~ 1 o l , I

182 8. JANKOWSKA

Consequently, we will write: fnf(o) = o' and snf(o') = o".

LEMMA 2.3 For each object o E 02 there exists an object o' E 02 such that
o =. o' and each set object o" being a sub-component of o' consists of one element
only, i.e. o" =id { o1}, where o1 is a special, atom or tuple object. There exists
exactly one such object o': we call it an object in the elementary form.

EXAMPLE 2.6 Let us assume, that:
o = 1d {5,3.5,[a1 : {'or','and'};a3: {3.5,8.0E-1}],

[a1 : {'or',' and',' xor'}; a3 : {3.5}]}
Then, the only object o' E 0 2 satisfying the constraints of Lemma 2.3 is of the
form:
o' = 1d {5, 3.5, [a1 :{'or'}; a3 : {3.5}], [a1 : {'and'}; a3: {3.5}],

[a1 : {'or'};a3 : {8.0E-1}],[a1 : {'and'};a3 : {8.0E-1}],
[a1 : {'xor'}; a3 : {3.5}]}

LEMMA 2.4 The sub_object relation ~ defined on the set 02 of objects being in
the second_normal form is a partial order relation.

From now on we will co sider objects in the second_ normal form only: thus,
"object o" will mean an object o E 02.

Successively, in the new calculus for objects t he union and the intersection
functions are defined. Although both these functions have their prototypes in
the calculus for complex objects, let us observe a quite new, compact definition
of the union function. It is a consequence of the new object interpretation: each
object is now considered as a set object. In particular, an atom, special or tuple
object is considered an empty or single-element set object.

DEFINITION 2.8 For any two objects o1, 02 E 02, the union function ,\1 is de
fined in the following way:
- V(o1, 02 E 02)((ol =id { ou, 012, ... , Otm} 1\ 02 =id { 021,022, ... , 02n}) -t

(o1 .\102 = snf(fnf({ ou, 012 , ... , Otm, 021,022, .. . , 02n})))).

EXAMPLE 2. 7 From Definition 2.8 we obtain:
{3.5, 18, true, [a1 : {'big',' small'}; a3 : {false}],

[as: {'rain',' snow'}],' ADAM','Maciej',
[a2 : {[a1 : {'A','B'}]}]} ,\1

{ -26, 18, false, [as : {'rain',' snow'}],' Adam',' Maciej',
[a1 :{'big',' small',' other'}], 3.5,
[a2: {[a1: {'A'}], [a1 : {'B'}]}]} =

snf(fnf({3.5, 18, true, [a1 : {'big',' small'}; a3 : {false}],
[as: {'rain',' snow'}],' ADAM','Maciej',
[a2 : {[a1 : {'A',' B'}]}], -26, false,
'Adam', [a1 : {'big',' small',' other'}],

An object-oriented data model and its applications

snf({3.5, 18,true,[a1 : {'big','small'};a3 : {false}] ,
[as: {'rain' ,' snow'}],' ADAM',' Maciej' ,
[a2 : {[a1 : {'A' ,1 B'}]}], -26, false ,
1 Adam', [a1 : {'big',' small',' other'}]}) =

{3.5 , 18, true, [as : {'rain' ,' snow'}],' ADAM','Maciej',
[a2 : {[a1 : {'A','B'}]}],-26,false,' Adam',
[a1 :{'big' ,' small',' other'}]}

183

DEFINITION 2.9 For any two objects from the set 02, the intersection func
tion 0 is defined recursively as follows :
- 'i(o E 02)({} Oo = oO {} = {}),
- 'i(o E 02)({.1} 0 o = o 0 {.1} = o),
- 'i(aoi, aoi E AO)((aoi =id aoi) ~ ({ aoi} 0 { aoi} = { aoi} = { aoi})),
- V(o1, 02 E 02)((o1 =id {[a1: on; a2 : 012; .. . ; az : 01z]}

1\02 =id {[a1: 021; a2: 022; ... ; az: 02z]}) ~
(010 02 = {[a1 :on Oo21 ;a2 :012 Oo22; ... ;az :o1z Oo2z]})),

- V(o1 ,02 E 02)((o1 =id {on,o12, . . . ,o1m}/\o2 =id {o21,022, . .. ,02n}) ~
(01 0 02 = ({on} 0 { o2r}) !,)_ ({On} 0 { 022 }) !,)_ .. . !,)_ ({on} 0 { 02n})

!J ({ 012} 0 { 021}) !J ({ 012} 0 { 022}) !J · · · !J ({ 012} 0 { 02n})
Jl ...
!,)_ ({o1m} 0 {o21}) Jl ({o1m} 0 {oz2}) !,)_ • • · !,)_ ({o1m} 0 {o2n}))),

- for any other pair of objects o1, 02 E 02 we have: o1 0 02 = { }.

EXAMPLE 2. 8 From Definition 2.9 we obtain:
{} 0 {3.5, 18} = {3.5 , 18} 0 {} = {}
{.1} 0 {3.5, 18} = {3.5, 18} 0 {.1} = {3.5, 18}
{'ADAM'} 0 {'ADAM'}= {'ADAM'}

{[a1 :{'big',' small'} ; a3 : {true, false}; as : {3.5, 18, -45}]} 0
{[a1 : {'big',' small' ,' other'}; a3 : {true}]}=
{[a1 : {'big' ,' small'}; a3 : {true}; as: {3.5, 18, -45}]}

{3.5,18,true,[a1 : {'big','small'};a3 : {false}],
[as : {'rain',' snow' }],' ADAM','Maciej',
[a2: {[a1: {'A','B'}]}]} 0

{ -26 , 18, false , [as : {'rain' ,' snow'}],' Adam',' Maciej',
[a1 :{'big',' small' ,' other'}] , 3.5,
[a2 : {[a1 : {'A'}], [a1: {'B'}]}]} = .. . =

{3.5} !,)_ {18} Jl
{[a1 : {'big',' small'} ; a3 : {false}, as: {'rain' ,' snow'}]}!,)_
{[a1 : {'big',' small'} ; a3 : {false}]}!,)_
{[a1 :{'big' ,'small'} ; a2 : {[a1 : {'A'}],[a1 : {'B'}]};a3 : {false}]} !,)_

{[as: {'rain',' snow'}]} Jl
{[a1 : {'big','small','other'};as: {'rain','snow'}]}!J
r r r r r • •' • • ... • ... ~ ·

184

{'Maciej'} !,1 {[a2 : {[a1 : {'A','B' }]}; a5 : {'rain',' snow'}]} !,1
{[a1 : {'big',' small',' other'}; a2 : {[a1 : {'A','B'}]}]} !,1
{[a2: {[a1: {'A'}], [a1 : {'B'}]}]} =
{3.5} !,1 {18} !,1 {[a1 : {'big',' small'}; a3 : {false})} !,1
{[a5 : {'rain',' snow'}]} !,1 {'Mac i ej'} !,1
{[a2: {[a1 : {'A'}], [a1 : {'B'}]}]}

B. JANKOWSKA

The last specific point of the Example is a comprehensive one. It is worth
analysing.

LEMMA 2.5 Under the sub object relation~ it can be proved for any two objects
01, 02 E 02 that:
- 01 !,1 02 .=_sup{ 01, o2},
- 01 0 02 = inf { 01, 02}.

The following theorem is an immediate corollary of Lemma 2.5.

THEOREM 2.1 The algebra A= (02,!,1,0) is a lattice.

Now, in the new calculus for objects the complement funct ion is being
defined. This function has no equivalent in the calculus by Bancilhon and
Khoshafian.

DEFINITION 2.10 For any object from the set 02, the complement function (.::::'.)
is defined recursively as follows:
- 2({ }) = {J_} ,
- 2({ _1_}) = {},
- V(aoi E AO)b{ aoi} = { ao1, ao2, . . . , aoi-1, aoi+I, . . . , aot, [)}),
- V(o E 02)((o =id {[a1 : o1; a2 : o2; ... ; az : Oz]})--+

(2(o) =~ ({[ai: (2oi)]}ll::; i::; z) ~ AO)),

- V(o E 02)((o =id { 01, 02 , ... , On}) --+

(2(o) = (b{ oi}) 0 (2{ 02 }) 0 . . . 0 (2{ On})))).

EXAMPLE 2.9 For the purpose of explaining the semantics of the complement
function 2 let us assume that:

AO = { 1, 2, 3, 1.0,1 ADAM' ,' Maciej' ,'snow' ,' rain' , true , false}

In such case we obtain:
-,({'ADAM'}) =

186 B. JANKOWSKA

EXAMPL E 2. 10 Here are some examples of extended object formulae:

At//,
{Ad//,
{35.6}//,
{[a1 : {'string'}; a3 : Ad}// ,
{[a1: {'string'};a3: {A!}; as: {A2}]}/::; (A1,A2)/,
{35.6,[a2 : {A!};a3 : {'string'};a5 : {2,6,A1,A2}]}/ < (A1,A2)A

> (A1, 6)j.

DEFINIT ION 2.13 An extended_object_rule is defined as an ordered pair
(!I/ pi/, hfp2/) of extended_object_formulae h/Pd and h/P2/ such that:

- the set V1 of variables from h is a subset of the set V2 of variables from
h,

- if V2 = {A1, Az, ... , An}, then the sentence: \f(A1, Az, ... , An)(pz -r pi)
must be a tautology.

The set of all extended_object_rules will be denoted RU.

DEFINIT ION 2.14 Let f fp/ be an extended_object_jormula with variables
{A1 ,A2 , ... ,An}· Let I be an interpretation of predicate constants from the
FOL formula p. A well-formed substitution for f jpj under I is defined as
a =id { od A1, oz/ Az, . .. , on/ An}, with Oi E 0(1 ::; i ::; n) fulfilling the condi
tions:

- for any Ai (1 ::; i::; n) from the FOL formula p there must be: Oi E AO,
- the FOL formula p is satisfied for the substitution a under the interpre-

tation I,
- the result o =id a(f) of substitution u on f is an object such that o E 0 .

We call the object o an instantiation of the extended_object_jormula f jpj.

Finally, in the new calculus for objects t he interpretation, application, and
closure functions are defined. They have their prototypes in Bancilhon, Khosha
fian (1989).

DEFINITION 2.15 Let f jp j be an extended_object_jormula. Let I be an inter
pretation of predicate constants from p. Let o be an object in the second_ normal
form. T he interpretation of f fp/ with respect to o under I is a class C1
f jpj(o,I) of all objects o' such that:

o' =!:J {a (f) Ia is a well-formed substitution for f jpj under I such that

snj(fnj(u(f))) ~ o}.

From commutability of the union function !:J we conclude that all objects

An object-oriented data model and its applications 187

DEFINITION 2.16 Let r =id (!I/ pi/, h/P2/) be an extended_ object_ rule. Let
I be an interpretation of predicate constants from p1 and P2· Let o be an
object in the second_normal form. The application of r on o under I is a class
C2 = r(o, I) of all objects o' such that:

o' =!2 {a(h)!a is a well-formed substitution for h/Pd and h/P2/
under I such that snf(fnf(a(h))) ;£ o}.

DEFINITION 2.17 Let sr be a set of extended_object_rules. Let I be an inter
pretation of predicate constants from the FOL formulas occurring in the rules
of sr. Let o be an object in the second_normal form. The application of sr on
o under I is a class C3 = sr(o,I) of all objects o' such that:

o' =!2 {o" E r(o,I)!r in sr}.

DEFINITION 2.18 Let o be an object in the second_normal form . Let r =id

(fi/pi/, h/p2/) be an extended_object_rule and sr - a set of extended object
rules. Let I be an interpretation of predicate constants from Pl and P2· Object o
is closed with respect tor under I if the relation r(o, I) ;£ o is true. Object o is
closed with respect to the set of rules sr under I if it is closed with respect to
every rule in sr under I .

DEFINITION 2.19 Let o be an object in the second_normal form. Let sr be
a set of extended_object_rules. The closure c (o, sr, I) of o with respect to sr
under I is the unique minimal object closed with respect to sr under I, if it
exists.

The following theorem is a consequence of Theorem 2.1, monotonicity of the
application (it can be proved directly from Definitions 2.16 and 2.17) and result
of Tarski.

THEOREM 2.3 For any set of extended object rules sr ~ RU, any interpreta
tion I of predicate constants from the FOL formulas occurring in the rules of
sr and any object o E 02, if the closure c (o, sr, I) exists, it is the limit of the
following sequence:

01 = o,

02 = sr(o1, I),

03 = sr(o2,I) ,

0 •• '

On= sr(On-1,!).

Proof Can be formulated in exactly the same way, as the proof of Theorem 4.1
.: _ n ____ .: ,,_ ___ T.T l 1 ,.

188 B. JANKOWSKA

It was already proved (Theorem 2.2) that our object-oriented data model
is not only a lattice (as it prototype was) but also a Boolean algebra. We will
show that the proposed extended form of object formulae additionally increases
its expressive power. An adequate example will be presented later.

3. A query language to communicate with a database

On the basis of the new calculus for objects an interesting query language can
be created. This language is object-oriented and possesses a clear, hierarchi
cal structure. It may be used to communicate with some databases, for in
stance databases with complex nested values or N F 2 (non-first-normal-form)
databases, Abiteboul, Hull, Vianu (1995).

The kernel layer (0) of language operations consists of the following elemen
tary operations: union, intersection, complement, application and closure. In
the first layer (1) of language operations there are the simplest compound op
erations - namely those which can be defined by means of operations from the
layer (0). In turn, the second layer (2) contains such compound operations,
which can be defined by means of operations coming from the layers (0) and
(1), and so on.

Here are the examples of a few compound operations.
If we introduce the difference function (=) of the expected semantics:

V'(oi, 02 E 02) (o1=02 = 01 0 (.:::~.02)), we will put it into layer (1). In turn, the
symmetric_difference function (±) of the semantics: V'(o11 02 E 02)(ol±o2 =
(o1=o2) _lJ_ (o2=oi)) will be put into the layer (2).

By means of the new language all but some special SQL operations (Date,
Darwen, 1994) can be defined. By the special operations we mean aggregate
functions, grouping and ordering, which do not have their equivalents in the
relational calculus.

EXAMPLE 3.1 Here are the examples of some SQL queries and their translations
into the new language:
SELECT a(i l) , a(i2)' . . . , a (ir) FROM R;,
where

{ a(il), a(i2), .. . , a(ir)} is a subset of A,
R; is a relation stored in some SQL database,

can be expressed by means of the following function call:
projectl({ a(il)> a(i2), ... , a (ir) }, oi) of the semant ics:

({ [a(il) : A(il); . · . ; a(ir) : A (ir); #a(kl) : A (kl) ; · · · ; #a(ks) : A(ks)]} I I,
{[a(il) : A(i l); . . . ; a(ir) : A(ir); a(kl) : A(kl); . . . ; a(ks) : A(ks);

a(ml): A(ml); ... ;a(mt): A(mt)]}ll)(oi,I) ,

where
the projectl comes from the layer (1) of language operations,

Oi E 02 is the set oft ple objects forming the relation R;,
'

An object-oriented data model and its app licat ions 189

at - a function assigning for an SQL relation the set of all its attributes,
{ a(kl), a(k2), ... , a(ks)} = pk(Ri) - { a(il), a(i2), ... , a(ir)},
pk - a function assigning for an SQL relation the set of all attributes from

its primary key,
#ai is a hidden attribute, i. e. an attribute not shown in a tuple object repre

sentation,
I is a default (empty) interpretation;

SELECT a(il), a(i2)• ... , a(ir), a(jl), a(j2), .. . , a(js) FROM Ri, Ri,
where

{ a(il), a(i2), ... , a(ir), a(jl), a(j2), ... , a(js)} is a subset of A,
Ri, Rj are such relations from SQL database that:

((at(Ri) n at(Rj) = 0) !\ ({ a(il), a(i2) , ... , a(ir)} ~ at(l~))

A({a(jl),a(j2)> . .. ,a(js)} ~ at(Rj))),

can be expressed by means of the following function call:
project2({ a(il), a(i2), ... , a(ir)}, { a(jl), a(j2), ... , a(js)}, Oi, Oj), of the semantics:

projectl({ a(il), a(i2), ... , a(ir)}, Oi) 0 projectl({ a(jl), a(j2), .. . , a(js)}, Oj),

where
the project2 comes from the layer (2) of language operations,
oi, Oj E 02 are the sets of all tuple objects forming the relations~ and Rj
respectively;

SELECT* FROM Ri WHERE j,
where

* stands for the list of names of all attributes from the set A,
Ri is a relation stored in some SQL database,
f is a classical formula, in which attributes (from the set A) act as individual

variables and atom objects (from the set AO) act as individual
constants,

I is presumed to be an interpretation of predicate constants from f,
can be expressed by means of the following function call:

selection({ a(il), a(i2), ... , a(iw)}, f, oi), of the semantics:

({ [a(i l) : A(il); .. · ; a(iw) : A(iw)]} I I,
{[a(il) : A(il); .. ·; a(iw) : A(iw)]} If I)(Oi, I),

where
the selection comes from the layer (1) of language operations,
Oi E 02 is the set of tuple objects forming the relation Ri,
at(Ri) = {a(il), ... ,a(iw) }·

Finally, one more example illustrating expressive power of the closure function
from the kernel layer of operations. The problem and the scheme of its solution

190 B. JANKOWSKA

EXAMPLE 3.2 Suppose that F is a "family" relation stored in some SQL data
base. Let us assume that pk(F) = {name,y_birth, children}. Let us find the
set of all descendants of Abraham, who were born before 1750. Such set can
be obtained from the values of "descoA" attributes of tuples belonging to the
following object o':
o' =id c(o, {({[descoA: {Abraham}]}//, {..l}/ /),

({[descoA: {Ad]}//,

where

{ [family:{[name: { A2 };children:{ [name:{ A1 };y _birth: { A3}]}] },
descoA: {A2}]}/((A3, 1750)/)} , I),

o E 02 is the set of all t uple objects forming the relation F,
I is presumed to be an usual arithmetic interpretation of the less_than
predicate <.

Let us observe that the problem has no solution in the calculus for complex
objects. It is due to the presence of the constraint "who were born before
1750". The application and closure functions have more expressive power than
their prototypes application and closure in Bancilhon, Khoshafian (1989).

4. Concluding remarks

We presented a new object-oriented data model and a query language to commu
nicate with databases of a certain kind. The model originates from Bancilhon,
Khoshafian (1989). It differs from the prototype mainly in the interpretation of
set objects. It was proved (Theorem 2.2), that this model is not only a lattice,
but also a Boolean algebra.

On the basis of this new object-oriented data model we defined a query
language. Its most important feature is a hierarchical structure: it is built of
separate layers of increasingly complex operations. The kernel layer (0) consists
of elementary operations, taken directly from the calculus proposed. A layer (n)
(for each n 2: 1) consists of such operations which can be defined by means of
operations from the layers (0), (1), ... , (n- 1).

At present the language is being implemented. The kernel layer of operations
was implemented in Prolog. The other layers can be implemented by means of
DCG (extending Prolog syntax) or by means of YACC generator.

From the issues that remain open the following are the most important:

- how to extend the new query language to a comprehensive database lan
guage, having statements for data definition, query and update?

- is it possible to extend the new calculus for objects in such a way that the
result could become a background for a query language which would serve
to communicate with an object-oriented database? especially - an active

An object-oriented data model and its applications 191

References

ABITEBOUL S., HULL R. and VIANU V. (1995) Foundations of Databases.
Addison-Wesley, Reading, Mass.

AIT-KACI, H. (1993) An Introduction to LIFE- Programming with Logic, In
heritance, Functions, and Equations. Proceedings of the 1(}h International
Logic Programming Symposium, 1- 17, Vancouver, BC, Canada, October.

BANCILHON F. and KHOSHAFIAN S. (1989) A Calculus for Complex Objects.
Journal of Computer and System Sciences 38, 326-340.

CARPENTER B. (1992) The Logic of Typed Feature Structures. Cambridge
Tracts in Theoretical Computer Science 32, Cambridge University Press.

DATE C. J. and DARWEN H. (1994) A Guide to the SQL Standard. Third Edi
tion, Addison-Wesley, Reading, Mass.

LEUNG T., MITCHELL G., SUBRAMANIAN B., VANCE B., VANDENBERG s.
and ZDONIK S. (1993) The AQUA Data Model and Algebra. Proc. 4th

Intl. Workshop on Database Programming Languages, NYC, August-Sep
tember.

MINSKY M . (1974) A Framework for Representing Knowledge. MIT-AI Labo
ratory Memo 306, June.

NILSSON J.F. (1993) A Concept Object Algebra CA+6 [=l, in: Kangassalo H.,
Jaakkola H., Hori K. , Kitahashi T., (eds.) Information Modelling and
Knowledge Bases IV: Concepts, Methods and Systems, 42- 55, lOS, Ams
terdam.

ODMG Team (1997) The Object Database Standard ODMG, Release 2.0.
R.G .G. Cattel (ed.), Morgan Kaufmann.

Appendix

Proof of Lemma 2.1. Let us prove the lemma by induction on object depth of o.
In the case of object depth(o) = 1, o must be:

- the special object T , or
- the special object ..L, or
- an atom object aoi, or
- a set object {a oil, aoi2, ... , aOin} or { aoil, aoiz, .. . , aoin, ..L}, consisting of

any number (perhaps zero) of atom objects and, optionally, the special
object ..L, or

- a set object {T , aoil, aoi2, . .. , aoin} or {T, a oil, aoi2, . .. , aOin, ..L}, consist
ing of the special object T and any number (perhaps zero) of atom objects
and, optionally, the special object ..L.

Then the required object o' must have the form, respectively:
- {},
- {..L},
- { aoi},

{ ,.. ,..,.. ._ l ,....._ f __ t)

192 B. JANKOWSKA

- {ao;1,ao;2, ... ,ao;n} or {ao;1,ao;2, ... ,ao;n , ..l}.
It follows directly from Definition 2.3, that in all the above cases the relation

o =. o' is true.
Let us assume that the lemma holds for each object o1 E 0 such that

object_depth(o!) :S n- 1 (with n > 1). We will prove, that it also holds for
each object 02 E 0 fulfilling the condition: object_ dep th (o2) = n. Let us
observe that only 02 of a tuple form [a1: o21; a2: 022 ; ... ; az: 02zJ or of a set
form { 021, 022, ... , 02n} may fulfil this condition. Let us consider the first of
the two cases. In this case the required object o~ may take the following form:
{[a1 : o~ 1 ; a2 : o~2 ; ... ; az : o~z]}, where o~i (1 :S i :S z) is such an object in the
first_ normal form, that the equality Ozi =. o~i holds. The existence of objects o~i
results from Definition 2.5 (object_ depth(02;) :S n - 1) and from the induction
hypothesis. Next, the equality oz =. o~ results from Definition 2.3.

If the object 02 is of a set form { 021, 022, . .. , Ozn}, then o~ will be an object
of a set form { o;(j1), o;(j2), .•. , o;(jm)}, where jm :S n, obtained in the following
way:

- for each atom object o2; from the set 02 one must put into the set o~ the
t b . t I a om o Jec o2(jk) =ia 02;,

- for each such tuple object 02i from the set 02, that: -.(o2i = T)
1\ --,:J(1 :S m :S i - 1)(o2i =. o2m) one must put into the set o~ such a
tuple object o;(jk)' that {o;(jk)} is in the first_normal form and the rela
tion o2i =. { o;(jk)} holds - see the previous case,

- no more object can be added to the set o~.

The algorithm of obtaining the set o~ and Definition 2.3 guarantee that o~
is in the first_normal form and the equality o2 =. o~ holds. •

Proof of Lemma 2.2. A proof can be obtained in a similar way as that of
Lemma 2.1: by induction on object_depth of o. •

Proof of Lemma 2. 3. The proof is again by induction on object_ depth of o. In
the case of object_ depth(o) = 1, o must be a set object consisting of any number
(including zero) of atom objects or the special object ..l. Then the required
object o' will take a form identical to that of the object o : o' =ia o. Obviously,
no other object o" E 02 can fulfil the condition o =. o".

Let us now assume, that the lemma holds for each object o1 E 02 such that
object_ depth (o1) :S n- 1 (with n > 1). We will prove that it also holds for each
object oz E 02 fulfilling t he condition: object depth (o2) = n. Let us observe
that only 02 of a set form { 021, o22, .. . , o2n} with at least one o2i (1 :S i :S n}
of a tuple form [a1: o~ 1 ; a2: o~ 2 ; ... ; az: o~zl may fulfi l this condition. Let us
remark that for each object o~j (1 :S j :S z): object_ depth (o~j) :S n - 1.
Then, from the induction hypothesis, it is immediate that for each object o~j
,, ' • ,, • 1 • l 11-r'\.n ____ Lt..L - .L.. - 11~ - !.- LL -- 1 -~-- .L - -~·£' _ _......,

An object-oriented data model and its app lications 193

{ o~j 1 , o~j 2 , . .. , o~j(mj)} and the relation o~j .=. o~j is true. As the result, from Def-
inition 2.3 we obtain: oz =id {oz1,o22, ... ,o2(i-1),[a1:o~1 ; a2:o~2 ; .. . ; az:o~z],
02(i+l)>'"'Ozn} = {o21,022, ... ,0z(i-l)> [a1:o~'1; a2:o~i; ... , az:O~~j,
o2(i+1)l- .. ,o2n} =id 03. Let us assume, that {k1,k2, ... ,ks} = {1 :S p :S m1j
(•3(1 :S r 'I i :S n)({[a1:o~'1P;az:o~i; ... ;az:o~~]} ~ {ozr}))}. Then, again from
Definition 2.3, we can deduce: 03 .=. {ozl,o22, ... ,0z(i-l), [al:{o~1 (kl)};az:o:i;

. a . o"] [a . { o" } . a . o" . . a . o"] [a . { o" } . a . o" . . a . o"] "' ' z· iz ' 1· il(k2) ' 2· i2>" · ' z· iz '" · ' 1· il(ks) ' 2· i2>" ., z· iz '
Oz(i+l)> ... , Ozn}· We can apply the same procedure to the objects o~i,o~~' ... , o~~
and next to all the remaining objects Ozj (1 :S j 'I i :S n) of object_depth ~ 2.
The final result of such an application will be an object OJ in the elementary
form such that 02 = of. Let us complete these considerations by stating that
of is the only object from the set 02 fulfilling both of the lemma constraints.
The last conclusion can be deduced from the fact that for any two objects o1 ,

02 in the elementary form o1 .=. oz if and only if o1 =id 02. •

Proof of Lemma 2.4. While reflexivity is obvious (it follows directly from Defini
tion 2.6) , let us fix our attention on the proof of transitivity and anti-symmetry
properties.

Let us assume that o1, o2 E 02 are objects such that o1 ~ Oz and o1 =id
{on, 012, . .. , o1m} and Oz =id { 021, 022, ... , Ozn}· From Definition 2.6 we deduce
that for each object {o1i} (1:Si:Sm) there exist object {o~i,o~ 1 , ... ,o~k}E02
such that Oz..=. {o~i,o~ 1 , ... ,o~k} and {o1i} = {o~;}. On the other hand, from
Lemma 2.3 it follows that for { o1i} as well as for { o~i} there exists exactly
one object o~i (respectively om in the elementary form, for which the relation
{ o1i} .=. o~i (respectively { o~;} .=. o~D holds. From Definition 2.3 and Lemma 2.3
it is immediate that the objects o~i and o~: must be identical. Let o~, o~ be
objects in the elementary form such that o1 .=. o~ and Oz ..=. o~. As a consequence
of the former deduction we conclude that the relation o1 ~ o2 is true if and only
if each element belonging to the set object o~ belongs also to the set object o~.
Finally, for any objects o1, oz, OJ E 02 we obtain: if o1 ~ Oz and Oz ~OJ, then
01 ~ OJ.

The proof of the property of anti-symmetry can be achieved according to
the same scheme. •

Proof of Lemma 2.5. The proof of the lemma is decomposed into a sequence of
intermediary steps. Let us first assume that:

- 01 and Oz are any objects belonging to 02,

- 03 = 01 lJ. oz,
- 04 = o1 0 oz,
- o~, o~, o~ and o~ are objects in the elementary form and such that, respec-

tively:
01 ..=. o~, oz ..=. o~, 03 ..=. o~ and o4 ..=. o~.

(O) Tt i<! "'" "" tr. f'A n f' lnrl o f), ~ f·

194 B. JANKOWSKA

- any element belongs to the set o~ if and only if it belongs to the set o~ or
to the set o~,

- any element belongs to the set o~ if and only if it belongs to the set o~ as
well as to the set o~.

The first part of the concl sion can be deduced directly from Lemma 2.3
and Definition 2.8. The second part will be proved by contradiction. Let us
assume that in the set o~ t here exists an element o~i which belongs neither to
the set o~ nor to the set o~. The element o~i must be obviously an atom or a
tuple in the elementary form . In the first case the fact of existence of o~i in the
set o~ directly implies (Lemma 2.3, Definition 2.9) the existence of o~i in the
set o~ as well as in the set o~. In this way we come to a contradiction. Next, a
tuple form of o~i obligatorily implies that in t he set objects o1 and o2 there exist
tuples, respectively o1j and o2k, fulfilling the condition: { o11 } 0 { o2k} = { o4z}
such that { o~J ~ { o4z}. But in such case the relations { o~J ~ { o1j} and
{ o~J ~ { o2k} must be true (Definition 2.9, Lemma 2.3, Definition 2.6). As
a simple consequence o~i must belong to the set o~ as well as to the set o~.
So, again we come to a contradiction. The same reasoning will lead us to a
contradiction if we assume that in both of the sets o~ and o~ there exists an
element o(1_2)i' which does not belong to the set o~ .

(1) Let us now prove the first of the facts being the contents of this lemma.
Considering the equality o1 .\d. 02 = sup{o1 , o2}, the truth of the thesis:
(01 ~ (01 11 02)) 1\ (02 ~ (01 11 02)) can be achieved directly from the inter
mediate conclusion derived in the proof of Lemma 2.4 and the first conclusion
proved in step (0) of this lemma. On the other hand, the truth of the thesis:
•3(o' E 02)((o1 ~ o') 1\ (o2 ~ o') 1\ (o' ~ (o1 11 o2)) 1\ •(o' =. (o1 .\d. 02)))
can be proved indirectly, y contradiction. Let us negate the last thesis. If o'
exists, then, on the strength of the intermediate conclusion derived in the proof
of Lemma 2.4, each element from the set object o~ and each element from the
set object o~ must also exist in the set object o" in the elementary form such
that o' .:::. o". Continuing, each element from the set object o" must also belong
to the set o3. But from the first conclusion proved in step (0) of this lemma it
follows that in o3 there are all such and only such elements, which exist in o~
or o~. As a consequence, the relation o' =. (o1 _\d. o2) must be true. In this way
we come to a contradiction.

(2) The proof of the equality 01 0 02 =. inf { o1, 02} can be achieved according
to the same scheme. •

Proof of Lemma 2.6. (1,2) T he first and second equalities can be easily derived
from Definition 2.3, Lemma 2.3, the intermediate conclusions proved in step (0)
of Lemma 2.5, and the k own De Morgan laws.

(3) To derive the third of the equalities it is enough to prove that:
o1 0 (.~ol)) =. { }. It will be proved by induct ion on object_depth of o1 . Observe
that for object_depth(ol) = 1 01 must be a set object { ao(kl), ao(k2) , . . . , ao(ks) }

· ,. r . . 1. --· ~~-- - L . .J: __ _ ...,_ \ ,... .& +,....'VV"O r.h~nf.e> nl" +ho cot nhior.f.

An object-oriented data model and its a pplications 195

{j_} . In the former case, directly from Definition 2.10 we obtain: (:::201) =
((:::2{ao(k1)}) 0 (:::2{ao(k2)}) 0 .. . 0 (:::2{ao(ks)})). Then, from Definitions 2.10
and 2.9 it is easy to see that (:::201) = {ao(n),aO(t2), ... ,aO(tt), []} , where
{ao(l1), ao(lz), ... , ao(lt)} = AO-{ao(k1), ao(k2), ... , ao(ks)}· Finally, again from
Definition 2.9, we have: (o1 0 (:::201)) = { } . Similarly, in the latter case, directly
from Definition 2.9 we obtain: {j_} 0 {} = { }.

Let us now assume, that the equality 01 0 (:::2ol)) =. { } holds for any
object o1 E 02 such that object_depth(o1) :::; n- 1 (with n > 1). We will
prove that it also holds for any object 03 E 02, fulfilling the condition: object
depth (o3) = n. Let' us first assume that 03 =id {[a1: 031; a2: 032; ... ; az: 03z]}.
From the first equality of this lemma, Definitions 2.10, 2.9 and 2.8 and the
induction hypothesis one can derive: (o3 0 (:::203)) = {[a1: 031; a2: 032; .. . ;
az: 03z]} 0 (:::2{[a1: 031; a2: 032; .. . ; az: 03z]}) = {[a1: 031; a2: 032; ... ; az: 03z]} 0
({ao1, ao2, ... , aot} 12 {[a1: (:::2031)]} 12 {[a2: (:::2032)]} 12 ... 12 {[az: (:::203z)]}) =.
({[a1:o31;a2:032; ... ;az:03z]} 0 {ao1,ao2, ... ,aot}) 12 ({[a1:031;a2:032; .. . ;
az: 03z]} 0 {[a1 : (:::2031)]}) 12 ({[a1: 031; a2: 032; ... ; az: 03z]} 0 {[a2 : (:::2032)]}) 12
... 12 ({[a1:031;a2:032; ... ;az:03z]} 0 {[az: (:::203z)]}) = {} 12 {[a1: (o31 0
(:::2o3l));a2:032; ... ;az:03z]} 12 {[a1:031;a2:(o32 0 (:::2032)); ... ;az :03z]} 12 ... !,2
{[a1: 031; a2: 032; . .. ; az: (o3z 0 (:::203z))]} = { }. Next, let us assume, that
03 =id { 031,032, .. . , 03m}, where m 2 2. In such a case, from Definitions
2.10 and 2.8 and the first equality of this lemma, we have: (o3 0 (:::2o3)) =
{ 031, 032, · · · , 03m} 0 (:::2{ 031, 032, · · · , 03m}) = { 031, 032, · · · , 03m} 0 ((:::2{ 031}) 0
(:::2{032}) 0 ... 0 (:::2{03m})) = ({o31} 12 {o32} 12 ... 12 {o3m}) 0 ((:::2{031}) 0
(:::2{ 032}) 0 · · · 0 (:::2{ 03m})) =. ({ 031} 0 ((:::2{ 031}) 0 (:::2{ 032}) 0 · · · 0 (:::2{ 03m}))) !,2
({ 032} 0 ((:::2{ 031}) 0 (:::2{ 032}) 0 .. · 0 (:::2{ 03m}))) 12 .. · 12 ({ 03m} 0 ((:::2{ 031}) 0
(:::2{032}) 0 ... 0 (:::2{o3m}))). Finally, as a consequence of the former case con
cerning the 03 form, the induction hypothesis, Lemma 2.5 and Definition 2.8
we deduce: (o3 0 (:::203)) =. { }. This ends the proof of the third equality of the
lemma.

(4) The proof of the equality (o1 12 (:::201)) 0 02 =. 02 can be achieved
according to the same scheme as the former one. •

