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A bstract : In this paper we propose a certain object-oriented 
data model. It originates from the calculus for complex objects by 
Bancilhon and Khoshafian (1989). These two models differ mainly 
in terms of set objects interpretation. In our model a set object 
stands for a set of items denoting different forms of the same object. 
As a consequence, a new sub object relation must be defined. Then, 
new functions of union, intersection and complement are defined. It 
is proved that the new data model is not only a lattice, but also a 
Boolean algebra. Finally, the model is expanded into a new calculus 
for objects. It is shown that the calculus provides a firm background 
for some interesting query language. 
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1. Int roduction 

Among all of the professional database management systems, the systems with 
object-oriented databases are now the main object of interest for researchers, 
ODMG (1997) . The basic notions of an object-oriented data model are these 
of an "object" and a "partial order relation" defined on a set of all objects. By 
means of these notions one can easily represent a hierarchical world structure. 

There were a number of different attempts to build formal foundations for 
object-oriented systems. The most known of them originate from AI theories. 
They consider representing the common-sense knowledge in structures called 
"frames" or "feature structures". Frames, Minsky (1974), are relatively large 
structures, which exemplify typical instances or cases. They inherit default 
assumptions that can be displaced when more specific information is available. 
Feature structures, Carpenter (1992), correspond to "tuples" in other models. 
Both kinds of structures seem to be good tools for creating systems with partial 
knowledge representation. 
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Other attempts to build such foundations are founded on logic. A leading ex
ample of this trend is LIFE, Ait-Kaci (1993). It reconciles styles from functional 
programming, logic programming, and object-oriented programming. From the 
theoretical point of view, LIFE implements a constraint logic programming lan
guage with equality (unification) and entailment (matching) constraints over 
order-sorted feature terms. 

The algebraic approach to a subject of defining object-oriented systems is 
quite rare. We can mention here the proposals of CA algebra, Nilsson (1993), 
or the AQUA data model and algebra, Leung et al. (1993). 

The data model presented in this paper belongs to the algebraic trend. It 
comes down from the "calculus for complex objects" by Bancilhon and Khosha
fian (1989). This calculus views objects in a broad manner, allowing the three 
different forms of them: elementary (atom or special), tuple or set . On the set 0 
of all these objects the partial order sub_ object relation (:::;), the union function 
(u) and the intersection function (n) arc defined . It is proved that the algebra 
A= (0, {U, n}) is a lattice. The notion of object is expanded to the notions of 
object_jormula and object_ rule, being an ordered pair of object formulae. Then, 
the functions of object formula in terpretation, object rule application and object 
closure are defined. By their means the semantics of object formulae and the 
fixpoint semantics of a set of rules are specified. 

2. Yet another calculus for objects 

Let us change the presented calculus in some respects now. First of all, let us 
give the notion of a set object a new, intuitively clear meaning. From now on, 
a set object will stand for a set of items denoting different forms of the same 
object. At a given moment the object can assume only one of these forms. 

In order to simplement t his change let us remind the definition of an object 
by Bancilhon and Khoshafian. Objects are defined recursively there, as: 

- integers, floats, strings , and booleans (we call them atomic objects), 
- two special objects TOP (T - the inconsistent object) and BOTTOM (_i 

-the undefined object) , 
- tuple objects of the form: [a1: o1; a2: o2; ... ; an; on], where a1, a2, ... , an 

are distinct attribute names and o1, o2, ... , On are some objects, 
- set objects of the form {o1,o2, ... ,on} , where o1,o2, ... ,on are pair-wise 

different (not the same) objects2
. 

Let 0 stand for the set of all such objects. Let A stand for the set { a1, a2, .. . , az} 
of the names of all the attributes used in tuple objects. 

Now let us introduce the auxiliary identity relation =id specified on the 
set 0. 

2 It is not obvious if Bancilhon and Khoshafian consider set or multiset objects; we assume 
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DEFINITION 2.1 Any two objects o1,o2 E 0 are in the relation =id, i.e. 01 =id 

02, if and only if: 

- o1 and 02 are the same elementary (atomic or special) objects, 
- o1 and 02 are tuple objects of the forms [an : on; a12 : 012; ... ; a1z : o1z] 

and [a21 : 021; a22 : 022; .. . ; a2z : 02z], such that: 

- for each pair ali, a2j of the same attributes from the first and the 
second tuples respectively the relation Oti =id o2j is true, 

- o1 and Oz are set objects of the forms {on, 012, ... , o1m} and { 021, 022, ... , 
o2m }, such that element objects from these sets are pair-wise in the relation 
=id· 

Let us observe, that the above identity relation resembles very much the 
equality relation of Bancilhon and Khoshafian. 

DEFINITION 2.2 An object in the new calculus for objects is: 

- a special object BOTTOM (T-the inconsistent object) or TOP (1.-the 
undefined object), 

- a boolean or else an integer, float or string from a finite subset of integer, 
float or string values (we call it an atomic object), 

- a tuple object of the form: [ail:O;t;aiz:Oi2; ... ;aiz:Oiz], where ait,aiz, ... ,aiz 

are all the elements of the set A (specified in any order) and Oil, Oi2, ... , Oiz 

are any objects, 
- a set object { o1 , o2 , ... , On}, satisfying the following: 

- none element object Oi (1 :S i :S n) is of a set object form, 

- none element objects oi, Oj (1 :S i -1 j :S n) are in the identity relation 
=id· 

Let 0 stand for the set of all such objects. 
To simplify notation, let us assume that attributes of TOP (1.) value may 

be deleted from specifications of tuple objects from the set 0. Under this 
assumption the following exemplary relations hold: [at : o1; a3 :1.; ag : og] =id 

[at : o1; ag : og; as :1.] =id [ag : og; a1 : o1], where o1, og E 0. 

ExAMPLE 2.1 Here are some examples of objects in the sense of Definition 2.2: 
l., T, true, false, 

1' 9' -25' 
3.5, -81.17, 54.7E-2, 
'Alice and George', 'oto lancuch znakow', 
[a1 : -15; a2 : [a1 : +9; a3 : {'Cracow',' Warsaw'}]; a6: 2.5], 
{ 13, 19,-94, 2}. 

Considering Definition 2.2, let us pay attention to the restrictions put on the 
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a finite set of values. This restriction is necessary on account of new definitions 
of the equality and sub_object relations. On the other hand, note that any 
computer architecture makes it possible to implement just finite sets of values. 
The second restriction concerns the set object form. It obviously results from 
the semantics imposed on the set objects in the new calculus for objects. In this 
calculus the former object {3,2.1, {'ABC','DEF'}} will be replaced by the object 
{3, 2.1,1 ABC',' DEF'} . 

The second difference between the two calculi for objects consists in the way 
of interpreting the sub_ object relation ::;. The former sub_ object relation ::; will 
be replaced by the dual sub_object relation ~ of the following interpretation: 
01 ~ 02 means that the set of (real) entities represented by o1 is smaller than 
the set of (real) entities represented by o2 . Let us observe that this new relation 
shows correctly the hierarchical nature of the world of real entities. 

The two considered changes have subsequent consequences, resulting in com
pletely new definitions of the equality and sub_object relations, as well as the 
union and intersection functions in the new calculus for objects. 

In the beginning we define the equality relation on the set 0 of all objects in 
the sense of Definition 2.2 and the first_normal form for objects from this set. 
Let AO stand for the set { ao1 , ao2, . .. , aot} of all the atom objects. Let TO 
and SO stand for the sets of all objects of a tuple form and a (new) set form, 
respectively. 

DEFINITION 2.3 The equality relation (.=.) specified on the set 0 of all objects 
is the least equivalence relation, complying with the following requirements: 

- 'v'(o~, 02 E O)((o1 =id o2)-+ (o1 .=. o2)) , 
- V(oE(O -SO))(o =.{o} ), 
- V(o E O)(((o =id [al : 01; a2: 02 ; . .. ; az : oz]) /\ (3(1::; i::; z)(oi .=. T)))-+ 

(o .=. T)), 
- {}.::::. T , 
- { ao1, ao2, ... , aot, []} =..l, 
- \:/(1 ::; i::; z)\f(n E N)'v'(o1, 02 , ... , Oi-l, Oi+l, ... , Oz , Oit, Oi2, ... , Oin E 0) 

((at: 01;a2: 02; ... ;ai: {Oit,Oi2 1 ••• ,Oin}; ... ;az : Oz] .=. 
{[al: o1;a2: 02; . . . ;ai: Oij; . . . ;az: oz]l1::; j::; n}), 

- \1(1::; i::; z)\1(01, 02, . .. , Oi - l, Oi , 0~, Oi+l, ... , Oz E 0 ) 

(((o =id (at : Ot; a2 : 02; .. . ; ai : Oi; ... ; az : Oz]) 

1\(o' =id [at : Ot; a2 : 02; .. . ; ai : o~; ... ; az : Oz]) /\ (oi =om -+ (o.::::. o')) , 

- V(o E SO)((o =id { 01, 02, . .. , On})-+ 

\:/(1::; i::; n)(((oi = {oi(t),Oi(2), ... ,oi(k)}) 

A( {1::; j::; kl·~(1::; m i- i::; n)(om =id Oi(j))} = {p1,p2, ... ,pr} )) 
" [)\) 
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EXAMPLE 2.2 The following pairs of objects are in the equality relation=.: 

'ADAM' .:::. 'ADAM' 
5.31 = 5.31 
-7 = {-7} 
[a3 : 5; a1 :1_] .=. [a3 : 5] 
[a1 : true; a3 :

1 rain'; a6: Tj =. T 
[a7 : {3, 19, 76}; a2 : false]=. 

{[a7 : 3; a2 : false], [a7 : 19; a2 : false], [a7 : 76 ; a2 : false]} 
[a2 : {'rain'} ; a3 : true;]= [a2 :'rain'; a3 :true;] 
{[a1 : { 1, 2}; a2 :true], [a1 : 1; a2 :true]}=. 

{[a1 : 1; a2 : true], [a1 : 2; a2 :true]} 
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Let 0 1 stand for the set of objects being in the so-called first_ normal form. 

DEFINITION 2.4 We say that an object o E 0 is in the first_normal form 
(o E 01) if and only if it is of a set form {ol,o2 , · · · , on} satisfying the fol
lowing: 

- ..., 3 ( 1 ::; i f j ::; n) ( oi =. o i ) , 
- ·3(1::; i::; n)(oi =. T) , 
- \1(1::; i::; n)( (o i = id [a1: oil ; a2: oi2; ... ; az: Oiz]) -t (\1(1 ::;j::; z)( Oij E 0 1) )). 
Obviously, 01 c 0. To simplify notation of the objects from 01, assume 

that the attributes of the { l_} value may be deleted from specifications of their 
tuple sub-objects. Under this assumption the following exemplary relations 
hold: {[a1 : o1; a3 : {1_}; ag : og]} =id {[a1 : o1; ag : og; a5 : {1_}]} = id {[ag: og ; 

a 1 : o1]}, where 01, o9 E 01. 

EXAMPLE 2.3 Here are some examples of objects in the first_normal form: 

{} 
{5.31, true ,' rain'} 
{[a7 : {3, 19, 76}; a2 : {false}]} 
{5.31 , [a2 : {'rain'};a3: {true})} 

and objects not in the first normal form: 

{T} 
[a7 : {3, 19, 76};a2 : {false}] 
{5.31, [a2 :' rain';a3 : {true})} 
{[a7: {[a2 : {3, 19}; as: {false}]}], 
[a7 : {[a2 : {3}; as: {false}], [a2 : {19} ; as: {false}]})} 

Let us now introduce the auxiliary notion of the so-called object_depth. We 
will use it while proving lemmas and theorems formulated later on. 
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- object depth (T) = object depth (1_) =object depth ({ }) = 1, 
- if o E AO, then object depth (o) = 1, 
- if o E TO and o =;d [a1: o1; a2: 02; . .. ; az: oz], then 

object depth (o) =max{ object depth (oi)l1:::; i:::; z} + 1, 
- if o E SO and o =;d { 01, 02, ... , on}, then 

object depth ( o) = max{ object depth ( o;) 11 :::; i :::; n}. 

EXAMPLE 2.4 These are examples of some objects and their object depth: 

object depth(T) = 1 
object depth(' ADAM') = 1 
object depth([a1 :true ; a3 :'rain'; a6 : T]) = 2 
object depth([a1 : T; a2 :'rain'; a3 : [at: true; a2 : [a5 :' snoT/j ; a3 :_l))) = 4 
object depth({' ADAM',' MACIEJ'}) = 1 
object depth( {[at :true; a2 :' snow'; a3 :_l), 

[at :_l; a3 : [at: true; a2: {'rain' }))})= 3 
object depth({[a7 : {[a2 : {3,19};a5 : {false}]})})= 

object depth({[a7 : {[a2 : {3} ; a5 : {false}], [a2 : {19};a5 : {false})})})= 3 

Let us also observe that there exist such pairs of objects o1 , o2 E 0 for which 
the formula ( 01 .:::. 02) 1\ (object depth( 01) of; object depth( 02)) is true (the first one 
and the third object from Example 2.4). However, for any objects o1 , o2 E 01 
we have: ( 01 .:::. 02) -+ (object depth( ol) = object depth( 02)) (the last pair of 
objects from Example 2.4). 

LEMMA 2.1 For each object o E 0 there exists such an object o' E 01 for which 
the relation o .:::. o' is satisfied3 . 

Now, we can define the sub_object relation and the second_normal form for 
the objects from the set 0 1. 

DEFINITION 2.6 The sub_ object relation (~ ) specified on the set 01 of all ob
jects being in the jirst_normal form may be recursively defined as follows: 

- V(o1, 02 E 01)((o1.:::. o2)-+ (o1 ~ o2)), 
- \f(o E 0 1)({} ~ o ~ {_l}), 
- V(o1 , 02 E 01)((o1 =;d {[a1 :on; a2 : 012; .. . ; az : o1z]} 

1\02 =id { [a1 : 021; a2 : 022; . . . ; az : o2z]} 

AV(1:::; i:::; z)(o1; ~ o2i))-+ (o1 ~ o2)) , 
- V(o1, 02 E 01)(((o1 =;d {on, 012, ... , Olm}) 1\ (o2 =;d { 021,022, .. . , 02n}) 

A(V(1:::; i:::; ~)~({o~; , o; 1 ,o;2 , ... , o;q} E 01) 
((o2=. { o~ ;, o;1 , o;2, ... , o;q} )A( { o1;}.:::. { o~;} ))))-+ (o1 ~ o2)), 

-no other pair of objects o1 , o2 E 01 can be in the relation ~-
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EXAMPLE 2.5 The following pairs of objects are in the sub_object relation (~): 

{3.5} ~ {..L} 
{} ~ {3.5} 
{[a1 : {2.5, -5.}; a2 : {true}]}~ 

{[a1 : {2.5};a2 : {true}],[a1 : {-5.};a2 : {true}]} 
{[a1 : {-5.};a2 : {true};a7 : [a1 : {-2.3,0.5};a3 : {'BIG'}]]}~ 

{[a1 : { -5., 7.0}; a7 : [a1 : {0.5, -2.3}]]} 
{[a1 : {3.5, 18.0};a3 : {'mouse',' cat'}]}~ 

{[a1 : {3.5, 7.2, 18.0}; a3 : {'mouse',' dog'}), 
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]} 

For the last , most complicated case of the Example 2.5 we have: 

{[a1 : {3.5, 7.2, 18.0}; a3 : {'mouse',' dog'}], 
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]}.=. 

{[a1 : {3.5, 18.0}; a3 : {'mouse' ,' dog'}], 
[a1 : {7.2}; a3 : {'mouse',' dog'}], 
[a1 : {3.5, 18.0}; a3 : {'cat',' dog'}]}= 

{[a1 : {3.5, 18.0}; a3 : {'mouse' ,' dog' ,' cat'}], 
[a1: {7.2}; a3: {'mouse',' dog'}]}.=. 

{[a1: {3.5 , 18.0} ; a3 : {'mouse' ,' cat'}], 
[a1 : {3.5, 18.0}; a3 : {'dog'}], 
[a1 : {7.2}; a3 : {'mouse',' dog'}]}. 

The above equalities follow from the sixth specific point of Definition 2.3. Fi
nally, from the fourth specific point of Definition 2.6 we conclude the correctness 
of the last sub_ object relation ~· 

Let 02 stand for the set of objects being in so-called second_ normal form. 

DEFINITION 2.7 We say that an object o E 01 is in the second normal form 
(o E 02) if and only if it is of a set form { o1, 02, ... , on} satisfying the following: 

- •3(1 ~ i i- j ~ n)(oi ~ oj), 
- \7'(1 ~ i ~ n)((oi =;d [a1: oil; a2 : 0;2; ... ; az : O;z]) 

-+ \7'(1 ~ j ~ z)(oij E 02)). 
Obviously, 02 C 01. 

LEMMA 2.2 For each object o E 01 there exists such an object o' E 02, for 
which the relation o .=. o' holds. 

Let us denote the two deterministic algorithms from Lemmas 2.1 and 2.2: 

- by fnf - the algorithm of obtaining for an object o E 0 - an object o' E 01 
such that o .=. o', 

- by snf- the algorithm of obtaining for an object o' E 01 - an object 
-" -~ .... 1 o l , I 
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Consequently, we will write: fnf(o) = o' and snf(o') = o". 

LEMMA 2.3 For each object o E 02 there exists an object o' E 02 such that 
o =. o' and each set object o" being a sub-component of o' consists of one element 
only, i.e. o" =id { o1}, where o1 is a special, atom or tuple object. There exists 
exactly one such object o': we call it an object in the elementary form. 

EXAMPLE 2.6 Let us assume, that: 
o = 1d {5,3.5,[a1 : {'or','and'};a3: {3.5,8.0E-1}], 

[a1 : {'or',' and',' xor'}; a3 : {3.5}]} 
Then, the only object o' E 0 2 satisfying the constraints of Lemma 2.3 is of the 
form: 
o' = 1d {5, 3.5, [a1 :{'or'}; a3 : {3.5}], [a1 : {'and'}; a3: {3.5}], 

[a1 : {'or'};a3 : {8.0E-1}],[a1 : {'and'};a3 : {8.0E-1}], 
[a1 : {'xor'}; a3 : {3.5}]} 

LEMMA 2.4 The sub_object relation ~ defined on the set 02 of objects being in 
the second_normal form is a partial order relation. 

From now on we will co sider objects in the second_ normal form only: thus, 
"object o" will mean an object o E 02. 

Successively, in the new calculus for objects t he union and the intersection 
functions are defined. Although both these functions have their prototypes in 
the calculus for complex objects, let us observe a quite new, compact definition 
of the union function. It is a consequence of the new object interpretation: each 
object is now considered as a set object. In particular, an atom, special or tuple 
object is considered an empty or single-element set object. 

DEFINITION 2.8 For any two objects o1, 02 E 02, the union function ,\1 is de
fined in the following way: 
- V(o1, 02 E 02)((ol =id { ou, 012, ... , Otm} 1\ 02 =id { 021,022, ... , 02n}) -t 

(o1 .\102 = snf(fnf( { ou, 012 , ... , Otm, 021,022, .. . , 02n} )))). 

EXAMPLE 2. 7 From Definition 2.8 we obtain: 
{3.5, 18, true, [a1 : {'big',' small'}; a3 : {false}], 

[as: {'rain',' snow'}],' ADAM','Maciej', 
[a2 : {[a1 : {'A','B'}]}]} ,\1 

{ -26, 18, false, [as : {'rain',' snow'}],' Adam',' Maciej', 
[a1 :{'big',' small',' other'}], 3.5, 
[a2: {[a1: {'A'}], [a1 : {'B'}]}]} = 

snf(fnf( {3.5, 18, true, [a1 : {'big',' small'}; a3 : {false}], 
[as: {'rain',' snow'}],' ADAM','Maciej', 
[a2 : {[a1 : {'A',' B'}]}], -26, false, 
'Adam', [a1 : {'big',' small',' other'}], 



An object-oriented data model and its applications 

snf({3.5, 18,true,[a1 : {'big','small'};a3 : {false}] , 
[as: {'rain' ,' snow'}],' ADAM',' Maciej' , 
[a2 : {[a1 : {'A' ,1 B'}]}], -26, false , 
1 Adam', [ a1 : {'big',' small',' other'}]}) = 

{3.5 , 18, true, [as : {'rain' ,' snow'}],' ADAM','Maciej', 
[a2 : {[a1 : {'A','B'}]}],-26,false,' Adam', 
[a1 :{'big' ,' small',' other'}]} 
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DEFINITION 2.9 For any two objects from the set 02, the intersection func
tion 0 is defined recursively as follows : 
- 'i(o E 02)({} Oo = oO {} = {}), 
- 'i(o E 02)( {.1} 0 o = o 0 {.1} = o), 
- 'i(aoi, aoi E AO)((aoi =id aoi) ~ ( { aoi} 0 { aoi} = { aoi} = { aoi} )), 
- V(o1, 02 E 02)((o1 =id {[a1: on; a2 : 012; .. . ; az : 01z]} 

1\02 =id {[a1: 021; a2: 022; ... ; az: 02z]}) ~ 
( 010 02 = {[a1 :on Oo21 ;a2 :012 Oo22; ... ;az :o1z Oo2z]}) ), 

- V(o1 ,02 E 02)((o1 =id {on,o12, . . . ,o1m}/\o2 =id {o21,022, . .. ,02n}) ~ 
( 01 0 02 = ( {on} 0 { o2r}) !,)_ ( {On} 0 { 022 }) !,)_ .. . !,)_ ( {on} 0 { 02n}) 

!J ( { 012} 0 { 021}) !J ( { 012} 0 { 022}) !J · · · !J ( { 012} 0 { 02n}) 
Jl ... 
!,)_ ({o1m} 0 {o21}) Jl ({o1m} 0 {oz2}) !,)_ • • · !,)_ ({o1m} 0 {o2n}))), 

- for any other pair of objects o1, 02 E 02 we have: o1 0 02 = { }. 

EXAMPLE 2. 8 From Definition 2.9 we obtain: 
{} 0 {3.5, 18} = {3.5 , 18} 0 {} = {} 
{.1} 0 {3.5, 18} = {3.5, 18} 0 {.1} = {3.5, 18} 
{'ADAM'} 0 {'ADAM'}= {'ADAM'} 

{[a1 :{'big',' small'} ; a3 : {true, false}; as : {3.5, 18, -45}]} 0 
{[a1 : {'big',' small' ,' other'}; a3 : {true}]}= 
{[a1 : {'big' ,' small'}; a3 : {true}; as: {3.5, 18, -45}]} 

{3.5,18,true,[a1 : {'big','small'};a3 : {false}], 
[as : {'rain',' snow' }],' ADAM','Maciej', 
[a2: {[a1: {'A','B'}]}]} 0 

{ -26 , 18, false , [as : {'rain' ,' snow'}],' Adam',' Maciej', 
[a1 :{'big',' small' ,' other'}] , 3.5, 
[a2 : {[a1 : {'A'}], [a1: {'B'}]}]} = .. . = 

{3.5} !,)_ {18} Jl 
{[a1 : {'big',' small'} ; a3 : {false}, as: {'rain' ,' snow'}]}!,)_ 
{[a1 : {'big',' small'} ; a3 : {false}]}!,)_ 
{[a1 :{'big' ,'small'} ; a2 : {[a1 : {'A'}],[a1 : {'B'}]};a3 : {false}]} !,)_ 

{[as: {'rain',' snow'}]} Jl 
{[a1 : {'big','small','other'};as: {'rain','snow'}]}!J 
r r r r r • •' .. .. .. • • ... • ... ~ · 



184 

{'Maciej'} !,1 {[a2 : {[a1 : {'A','B' }]}; a5 : {'rain',' snow'}]} !,1 
{[a1 : {'big',' small',' other'}; a2 : {[a1 : {'A','B'}]}]} !,1 
{[a2: {[a1: {'A'}], [a1 : {'B'}]}]} = 
{3.5} !,1 {18} !,1 {[a1 : {'big',' small'}; a3 : {false})} !,1 
{[a5 : {'rain',' snow'}]} !,1 {'Mac i ej'} !,1 
{[a2: {[a1 : {'A'}], [a1 : {'B'}]}]} 
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The last specific point of the Example is a comprehensive one. It is worth 
analysing. 

LEMMA 2.5 Under the sub object relation~ it can be proved for any two objects 
01, 02 E 02 that: 
- 01 !,1 02 .=_sup{ 01, o2}, 
- 01 0 02 = inf { 01, 02}. 

The following theorem is an immediate corollary of Lemma 2.5. 

THEOREM 2.1 The algebra A= (02,!,1,0) is a lattice. 

Now, in the new calculus for objects the complement funct ion is being 
defined. This function has no equivalent in the calculus by Bancilhon and 
Khoshafian. 

DEFINITION 2.10 For any object from the set 02, the complement function (.::::'.) 
is defined recursively as follows: 
- 2({ }) = {J_} , 
- 2({ _1_}) = {}, 
- V(aoi E AO)b{ aoi} = { ao1, ao2, . . . , aoi-1, aoi+I, . . . , aot, [)} ), 
- V(o E 02)((o =id {[a1 : o1; a2 : o2; ... ; az : Oz ]})--+ 

(2(o) =~ ( {[ai: (2oi)]}ll::; i::; z) ~ AO)), 

- V(o E 02)((o =id { 01, 02 , ... , On}) --+ 

(2(o) = (b{ oi}) 0 (2{ 02 }) 0 . . . 0 (2{ On})))). 

EXAMPLE 2.9 For the purpose of explaining the semantics of the complement 
function 2 let us assume that: 

AO = { 1, 2, 3, 1.0,1 ADAM' ,' Maciej' ,'snow' ,' rain' , true , false} 

In such case we obtain: 
-,({'ADAM'}) = 
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EXAMPL E 2. 10 Here are some examples of extended object formulae: 

At//, 
{Ad//, 
{35.6}//, 
{[a1 : {'string'}; a3 : Ad}// , 
{[a1: {'string'};a3: {A!}; as: {A2}]}/::; (A1,A2)/, 
{35.6,[a2 : {A!};a3 : {'string'};a5 : {2,6,A1,A2}]}/ < (A1,A2)A 

> (A1, 6)j. 

DEFINIT ION 2.13 An extended_object_rule is defined as an ordered pair 
(!I/ pi/, hfp2/) of extended_object_formulae h/Pd and h/P2/ such that: 

- the set V1 of variables from h is a subset of the set V2 of variables from 
h, 

- if V2 = {A1, Az, ... , An}, then the sentence: \f(A1, Az, ... , An)(pz -r pi) 
must be a tautology. 

The set of all extended_object_rules will be denoted RU. 

DEFINIT ION 2.14 Let f fp/ be an extended_object_jormula with variables 
{A1 ,A2 , ... ,An}· Let I be an interpretation of predicate constants from the 
FOL formula p. A well-formed substitution for f jpj under I is defined as 
a =id { od A1, oz/ Az, . .. , on/ An}, with Oi E 0(1 ::; i ::; n) fulfilling the condi
tions: 

- for any Ai (1 ::; i::; n) from the FOL formula p there must be: Oi E AO, 
- the FOL formula p is satisfied for the substitution a under the interpre-

tation I, 
- the result o =id a(f) of substitution u on f is an object such that o E 0 . 

We call the object o an instantiation of the extended_object_jormula f jpj. 

Finally, in the new calculus for objects t he interpretation, application, and 
closure functions are defined. They have their prototypes in Bancilhon, Khosha
fian (1989). 

DEFINITION 2.15 Let f jp j be an extended_object_jormula. Let I be an inter
pretation of predicate constants from p. Let o be an object in the second_ normal 
form. T he interpretation of f fp/ with respect to o under I is a class C1 
f jpj(o,I) of all objects o' such that: 

o' =!:J {a (f) Ia is a well-formed substitution for f jpj under I such that 

snj(fnj(u(f))) ~ o}. 

From commutability of the union function !:J we conclude that all objects 
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DEFINITION 2.16 Let r =id (!I/ pi/, h/P2/) be an extended_ object_ rule. Let 
I be an interpretation of predicate constants from p1 and P2· Let o be an 
object in the second_normal form. The application of r on o under I is a class 
C2 = r( o, I) of all objects o' such that: 

o' =!2 {a(h)!a is a well-formed substitution for h/Pd and h/P2/ 
under I such that snf(fnf(a(h))) ;£ o}. 

DEFINITION 2.17 Let sr be a set of extended_object_rules. Let I be an inter
pretation of predicate constants from the FOL formulas occurring in the rules 
of sr. Let o be an object in the second_normal form. The application of sr on 
o under I is a class C3 = sr( o,I) of all objects o' such that: 

o' =!2 {o" E r(o,I)!r in sr}. 

DEFINITION 2.18 Let o be an object in the second_normal form . Let r =id 

(fi/pi/, h/p2/) be an extended_object_rule and sr - a set of extended object 
rules. Let I be an interpretation of predicate constants from Pl and P2· Object o 
is closed with respect tor under I if the relation r(o, I) ;£ o is true. Object o is 
closed with respect to the set of rules sr under I if it is closed with respect to 
every rule in sr under I . 

DEFINITION 2.19 Let o be an object in the second_normal form. Let sr be 
a set of extended_object_rules. The closure c (o, sr, I) of o with respect to sr 
under I is the unique minimal object closed with respect to sr under I, if it 
exists. 

The following theorem is a consequence of Theorem 2.1, monotonicity of the 
application (it can be proved directly from Definitions 2.16 and 2.17) and result 
of Tarski. 

THEOREM 2.3 For any set of extended object rules sr ~ RU, any interpreta
tion I of predicate constants from the FOL formulas occurring in the rules of 
sr and any object o E 02, if the closure c ( o, sr, I) exists, it is the limit of the 
following sequence: 

01 = o, 

02 = sr(o1, I), 

03 = sr(o2,I) , 

0 •• ' 

On= sr(On-1,!). 

Proof Can be formulated in exactly the same way, as the proof of Theorem 4.1 
.: _ n ____ .: ,,_ ___ T.T l 1 ,. 
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It was already proved (Theorem 2.2) that our object-oriented data model 
is not only a lattice (as it prototype was) but also a Boolean algebra. We will 
show that the proposed extended form of object formulae additionally increases 
its expressive power. An adequate example will be presented later. 

3. A query language to communicate with a database 

On the basis of the new calculus for objects an interesting query language can 
be created. This language is object-oriented and possesses a clear, hierarchi
cal structure. It may be used to communicate with some databases, for in
stance databases with complex nested values or N F 2 (non-first-normal-form) 
databases, Abiteboul, Hull, Vianu (1995). 

The kernel layer (0) of language operations consists of the following elemen
tary operations: union, intersection, complement, application and closure. In 
the first layer (1) of language operations there are the simplest compound op
erations - namely those which can be defined by means of operations from the 
layer (0). In turn, the second layer (2) contains such compound operations, 
which can be defined by means of operations coming from the layers (0) and 
(1), and so on. 

Here are the examples of a few compound operations. 
If we introduce the difference function (=) of the expected semantics: 

V'(oi, 02 E 02) (o1=02 = 01 0 (.:::~.02)), we will put it into layer (1). In turn, the 
symmetric_difference function (±) of the semantics: V'(o11 02 E 02)(ol±o2 = 
(o1=o2) _lJ_ (o2=oi)) will be put into the layer (2). 

By means of the new language all but some special SQL operations (Date, 
Darwen, 1994) can be defined. By the special operations we mean aggregate 
functions, grouping and ordering, which do not have their equivalents in the 
relational calculus. 

EXAMPLE 3.1 Here are the examples of some SQL queries and their translations 
into the new language: 
SELECT a(i l) , a(i2)' . . . , a (ir) FROM R;, 
where 

{ a(il), a(i2), .. . , a(ir)} is a subset of A, 
R; is a relation stored in some SQL database, 

can be expressed by means of the following function call: 
projectl( { a(il)> a(i2), ... , a (ir) }, oi) of the semant ics: 

( { [a(il) : A(il); . · . ; a(ir) : A (ir); #a(kl) : A (kl ) ; · · · ; #a(ks) : A(ks)]} I I, 
{[a(il) : A(i l ); . . . ; a(ir) : A(ir); a(kl) : A(kl); . . . ; a(ks) : A(ks); 

a(ml): A(ml); ... ;a(mt): A(mt) ]}ll)(oi,I) , 

where 
the projectl comes from the layer (1) of language operations, 

Oi E 02 is the set oft ple objects forming the relation R;, 
' 
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at - a function assigning for an SQL relation the set of all its attributes, 
{ a(kl), a(k2), ... , a(ks)} = pk(Ri) - { a(il), a(i2), ... , a(ir)}, 
pk - a function assigning for an SQL relation the set of all attributes from 

its primary key, 
#ai is a hidden attribute, i. e. an attribute not shown in a tuple object repre

sentation, 
I is a default (empty) interpretation; 

SELECT a(il), a(i2)• ... , a(ir), a(jl), a(j2), .. . , a(js) FROM Ri, Ri, 
where 

{ a(il), a(i2), ... , a(ir), a(jl), a(j2), ... , a(js)} is a subset of A, 
Ri, Rj are such relations from SQL database that: 

( ( at(Ri) n at(Rj) = 0) !\ ( { a(il), a(i2) , ... , a(ir)} ~ at(l~)) 

A({a(jl),a(j2)> . .. ,a(js)} ~ at(Rj))), 

can be expressed by means of the following function call: 
project2( { a(il), a(i2), ... , a(ir)}, { a(jl), a(j2), ... , a(js)}, Oi, Oj ), of the semantics: 

projectl( { a(il), a(i2), ... , a(ir)}, Oi) 0 projectl( { a(jl), a(j2), .. . , a(js)}, Oj ), 

where 
the project2 comes from the layer (2) of language operations, 
oi, Oj E 02 are the sets of all tuple objects forming the relations~ and Rj 
respectively; 

SELECT* FROM Ri WHERE j, 
where 

* stands for the list of names of all attributes from the set A, 
Ri is a relation stored in some SQL database, 
f is a classical formula, in which attributes (from the set A) act as individual 

variables and atom objects (from the set AO) act as individual 
constants, 

I is presumed to be an interpretation of predicate constants from f, 
can be expressed by means of the following function call: 

selection( { a(il), a(i2), ... , a(iw)}, f, oi), of the semantics: 

( { [a(i l) : A(il); .. · ; a(iw) : A(iw)]} I I, 
{[a(il) : A(il); .. ·; a(iw) : A(iw)]} If I)( Oi, I), 

where 
the selection comes from the layer (1) of language operations, 
Oi E 02 is the set of tuple objects forming the relation Ri, 
at(Ri) = {a(il), ... ,a(iw) }· 

Finally, one more example illustrating expressive power of the closure function 
from the kernel layer of operations. The problem and the scheme of its solution 
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EXAMPLE 3.2 Suppose that F is a "family" relation stored in some SQL data
base. Let us assume that pk(F) = {name,y_birth, children}. Let us find the 
set of all descendants of Abraham, who were born before 1750. Such set can 
be obtained from the values of "descoA" attributes of tuples belonging to the 
following object o': 
o' =id c(o, {({[descoA: {Abraham}]}//, {..l}/ / ), 

({[descoA: {Ad]}//, 

where 

{ [family:{[name: { A2 };children:{ [name:{ A1 };y _birth: { A3}]}] }, 
descoA: {A2}]}/((A3, 1750)/)} , I ), 

o E 02 is the set of all t uple objects forming the relation F, 
I is presumed to be an usual arithmetic interpretation of the less_than 
predicate <. 

Let us observe that the problem has no solution in the calculus for complex 
objects. It is due to the presence of the constraint "who were born before 
1750". The application and closure functions have more expressive power than 
their prototypes application and closure in Bancilhon, Khoshafian ( 1989). 

4. Concluding remarks 

We presented a new object-oriented data model and a query language to commu
nicate with databases of a certain kind. The model originates from Bancilhon, 
Khoshafian (1989). It differs from the prototype mainly in the interpretation of 
set objects. It was proved (Theorem 2.2), that this model is not only a lattice, 
but also a Boolean algebra. 

On the basis of this new object-oriented data model we defined a query 
language. Its most important feature is a hierarchical structure: it is built of 
separate layers of increasingly complex operations. The kernel layer (0) consists 
of elementary operations, taken directly from the calculus proposed. A layer (n) 
(for each n 2: 1) consists of such operations which can be defined by means of 
operations from the layers (0), (1), ... , (n- 1). 

At present the language is being implemented. The kernel layer of operations 
was implemented in Prolog. The other layers can be implemented by means of 
DCG (extending Prolog syntax) or by means of YACC generator. 

From the issues that remain open the following are the most important: 

- how to extend the new query language to a comprehensive database lan
guage, having statements for data definition, query and update? 

- is it possible to extend the new calculus for objects in such a way that the 
result could become a background for a query language which would serve 
to communicate with an object-oriented database? especially - an active 
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Appendix 

Proof of Lemma 2.1. Let us prove the lemma by induction on object depth of o. 
In the case of object depth( o) = 1, o must be: 

- the special object T , or 
- the special object ..L, or 
- an atom object aoi, or 
- a set object {a oil, aoi2, ... , aOin} or { aoil, aoiz, .. . , aoin, ..L}, consisting of 

any number (perhaps zero) of atom objects and, optionally, the special 
object ..L, or 

- a set object {T , aoil, aoi2, . .. , aoin} or {T, a oil, aoi2, . .. , aOin, ..L}, consist
ing of the special object T and any number (perhaps zero) of atom objects 
and, optionally, the special object ..L. 

Then the required object o' must have the form, respectively: 
- {}, 
- {..L}, 
- { aoi}, 

{ ,.. ...... .. ,..,.. ._ ....... l ,....._ f __ t) 
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- {ao;1,ao;2, ... ,ao;n} or {ao;1,ao;2, ... ,ao;n , ..l}. 
It follows directly from Definition 2.3, that in all the above cases the relation 

o =. o' is true. 
Let us assume that the lemma holds for each object o1 E 0 such that 

object_depth(o!) :S n- 1 (with n > 1). We will prove, that it also holds for 
each object 02 E 0 fulfilling the condition: object_ dep th ( o2) = n. Let us 
observe that only 02 of a tuple form [a1: o21; a2: 022 ; ... ; az: 02zJ or of a set 
form { 021, 022, ... , 02n} may fulfil this condition. Let us consider the first of 
the two cases. In this case the required object o~ may take the following form: 
{[a1 : o~ 1 ; a2 : o~2 ; ... ; az : o~z]}, where o~i (1 :S i :S z) is such an object in the 
first_ normal form, that the equality Ozi =. o~i holds. The existence of objects o~i 
results from Definition 2.5 (object_ depth( 02;) :S n - 1) and from the induction 
hypothesis. Next, the equality oz =. o~ results from Definition 2.3. 

If the object 02 is of a set form { 021, 022, . .. , Ozn}, then o~ will be an object 
of a set form { o;(j1), o;(j2), .•. , o;(jm)}, where jm :S n, obtained in the following 
way: 

- for each atom object o2; from the set 02 one must put into the set o~ the 
t b . t I a om o Jec o2(jk) =ia 02;, 

- for each such tuple object 02i from the set 02, that: -.(o2i = T) 
1\ --,:J(1 :S m :S i - 1)(o2i =. o2m) one must put into the set o~ such a 
tuple object o;(jk)' that {o;(jk)} is in the first_normal form and the rela
tion o2i =. { o;(jk)} holds - see the previous case, 

- no more object can be added to the set o~. 

The algorithm of obtaining the set o~ and Definition 2.3 guarantee that o~ 
is in the first_normal form and the equality o2 =. o~ holds. • 

Proof of Lemma 2.2. A proof can be obtained in a similar way as that of 
Lemma 2.1: by induction on object_depth of o. • 

Proof of Lemma 2. 3. The proof is again by induction on object_ depth of o. In 
the case of object_ depth( o) = 1, o must be a set object consisting of any number 
(including zero) of atom objects or the special object ..l. Then the required 
object o' will take a form identical to that of the object o : o' =ia o. Obviously, 
no other object o" E 02 can fulfil the condition o =. o". 

Let us now assume, that the lemma holds for each object o1 E 02 such that 
object_ depth ( o1) :S n- 1 (with n > 1). We will prove that it also holds for each 
object oz E 02 fulfilling t he condition: object depth (o2) = n. Let us observe 
that only 02 of a set form { 021, o22, .. . , o2n} with at least one o2i ( 1 :S i :S n} 
of a tuple form [a1: o~ 1 ; a2: o~ 2 ; ... ; az: o~zl may fulfi l this condition. Let us 
remark that for each object o~j (1 :S j :S z ): object_ depth ( o~j) :S n - 1. 
Then, from the induction hypothesis, it is immediate that for each object o~j 
,, ' • ,, • 1 • l 11-r'\.n ____ Lt..L - .L.. - 11~ - !.- LL -- 1 -~-- .L - -~·£' .... _ _......, 
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{ o~j 1 , o~j 2 , . .. , o~j(mj)} and the relation o~j .=. o~j is true. As the result, from Def-
inition 2.3 we obtain: oz =id {oz1,o22, ... ,o2(i-1),[a1:o~1 ; a2:o~2 ; .. . ; az:o~z], 
02(i+l)>'"'Ozn} = {o21,022, ... ,0z(i-l)> [a1:o~'1; a2:o~i; ... , az:O~~j, 
o2(i+1)l- .. ,o2n} =id 03. Let us assume, that {k1,k2, ... ,ks} = {1 :S p :S m1j 
(•3(1 :S r 'I i :S n)({[a1:o~'1P;az:o~i; ... ;az:o~~]} ~ {ozr}))}. Then, again from 
Definition 2.3, we can deduce: 03 .=. {ozl,o22, ... ,0z(i-l), [al:{o~1 (kl)};az:o:i; 

. a . o" ] [a . { o" } . a . o" . . a . o" ] [a . { o" } . a . o" . . a . o" ] "' ' z· iz ' 1· il(k2) ' 2· i2>" · ' z· iz '" · ' 1· il(ks) ' 2· i2>" ., z· iz ' 
Oz(i+l)> ... , Ozn}· We can apply the same procedure to the objects o~i,o~~' ... , o~~ 
and next to all the remaining objects Ozj (1 :S j 'I i :S n) of object_depth ~ 2. 
The final result of such an application will be an object OJ in the elementary 
form such that 02 = of. Let us complete these considerations by stating that 
of is the only object from the set 02 fulfilling both of the lemma constraints. 
The last conclusion can be deduced from the fact that for any two objects o1 , 

02 in the elementary form o1 .=. oz if and only if o1 =id 02. • 

Proof of Lemma 2.4. While reflexivity is obvious (it follows directly from Defini
tion 2.6) , let us fix our attention on the proof of transitivity and anti-symmetry 
properties. 

Let us assume that o1, o2 E 02 are objects such that o1 ~ Oz and o1 =id 
{on, 012, . .. , o1m} and Oz =id { 021, 022, ... , Ozn}· From Definition 2.6 we deduce 
that for each object {o1i} (1:Si:Sm) there exist object {o~i,o~ 1 , ... ,o~k}E02 
such that Oz..=. {o~i,o~ 1 , ... ,o~k} and {o1i} = {o~;}. On the other hand, from 
Lemma 2.3 it follows that for { o1i} as well as for { o~i} there exists exactly 
one object o~i (respectively om in the elementary form, for which the relation 
{ o1i} .=. o~i (respectively { o~;} .=. o~D holds. From Definition 2.3 and Lemma 2.3 
it is immediate that the objects o~i and o~: must be identical. Let o~, o~ be 
objects in the elementary form such that o1 .=. o~ and Oz ..=. o~. As a consequence 
of the former deduction we conclude that the relation o1 ~ o2 is true if and only 
if each element belonging to the set object o~ belongs also to the set object o~. 
Finally, for any objects o1, oz, OJ E 02 we obtain: if o1 ~ Oz and Oz ~OJ, then 
01 ~ OJ. 

The proof of the property of anti-symmetry can be achieved according to 
the same scheme. • 

Proof of Lemma 2.5. The proof of the lemma is decomposed into a sequence of 
intermediary steps. Let us first assume that: 

- 01 and Oz are any objects belonging to 02, 

- 03 = 01 lJ. oz, 
- 04 = o1 0 oz, 
- o~, o~, o~ and o~ are objects in the elementary form and such that, respec-

tively: 
01 ..=. o~, oz ..=. o~, 03 ..=. o~ and o4 ..=. o~. 

(O) Tt i<! "'" "" tr. f'A n f' lnrl o f), ~ f· 
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- any element belongs to the set o~ if and only if it belongs to the set o~ or 
to the set o~, 

- any element belongs to the set o~ if and only if it belongs to the set o~ as 
well as to the set o~. 

The first part of the concl sion can be deduced directly from Lemma 2.3 
and Definition 2.8. The second part will be proved by contradiction. Let us 
assume that in the set o~ t here exists an element o~i which belongs neither to 
the set o~ nor to the set o~. The element o~i must be obviously an atom or a 
tuple in the elementary form . In the first case the fact of existence of o~i in the 
set o~ directly implies (Lemma 2.3, Definition 2.9) the existence of o~i in the 
set o~ as well as in the set o~. In this way we come to a contradiction. Next, a 
tuple form of o~i obligatorily implies that in t he set objects o1 and o2 there exist 
tuples, respectively o1j and o2k, fulfilling the condition: { o11 } 0 { o2k} = { o4z} 
such that { o~J ~ { o4z}. But in such case the relations { o~J ~ { o1j} and 
{ o~J ~ { o2k} must be true (Definition 2.9, Lemma 2.3, Definition 2.6). As 
a simple consequence o~i must belong to the set o~ as well as to the set o~. 
So, again we come to a contradiction. The same reasoning will lead us to a 
contradiction if we assume that in both of the sets o~ and o~ there exists an 
element o(1_2)i' which does not belong to the set o~ . 

(1) Let us now prove the first of the facts being the contents of this lemma. 
Considering the equality o1 .\d. 02 = sup{o1 , o2}, the truth of the thesis: 
( 01 ~ ( 01 11 02)) 1\ ( 02 ~ ( 01 11 02)) can be achieved directly from the inter
mediate conclusion derived in the proof of Lemma 2.4 and the first conclusion 
proved in step (0) of this lemma. On the other hand, the truth of the thesis: 
•3(o' E 02)((o1 ~ o') 1\ (o2 ~ o') 1\ (o' ~ (o1 11 o2)) 1\ •(o' =. (o1 .\d. 02))) 
can be proved indirectly, y contradiction. Let us negate the last thesis. If o' 
exists, then, on the strength of the intermediate conclusion derived in the proof 
of Lemma 2.4, each element from the set object o~ and each element from the 
set object o~ must also exist in the set object o" in the elementary form such 
that o' .:::. o". Continuing, each element from the set object o" must also belong 
to the set o3. But from the first conclusion proved in step (0) of this lemma it 
follows that in o3 there are all such and only such elements, which exist in o~ 
or o~. As a consequence, the relation o' =. (o1 _\d. o2) must be true. In this way 
we come to a contradiction. 

(2) The proof of the equality 01 0 02 =. inf { o1, 02} can be achieved according 
to the same scheme. • 

Proof of Lemma 2.6. (1,2) T he first and second equalities can be easily derived 
from Definition 2.3, Lemma 2.3, the intermediate conclusions proved in step (0) 
of Lemma 2.5, and the k own De Morgan laws. 

(3) To derive the third of the equalities it is enough to prove that: 
o1 0 (.~ol)) =. { }. It will be proved by induct ion on object_depth of o1 . Observe 
that for object_depth( ol) = 1 01 must be a set object { ao(kl), ao(k2) , . . . , ao(ks) } 

· ,. r . . 1. --· ~~-- - L . .J: __ _ ...,_ ..... \ ,... .& ..... +,....'VV"O r.h~n .... .f.e> nl" +ho cot nhior.f. 
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{j_} . In the former case, directly from Definition 2.10 we obtain: (:::201) = 
((:::2{ao(k1)}) 0 (:::2{ao(k2)}) 0 .. . 0 (:::2{ao(ks)})). Then, from Definitions 2.10 
and 2.9 it is easy to see that (:::201) = {ao(n),aO(t2), ... ,aO(tt), []} , where 
{ao(l1), ao(lz), ... , ao(lt)} = AO-{ao(k1), ao(k2), ... , ao(ks)}· Finally, again from 
Definition 2.9, we have: ( o1 0 (:::201)) = { } . Similarly, in the latter case, directly 
from Definition 2.9 we obtain: {j_} 0 {} = { }. 

Let us now assume, that the equality 01 0 (:::2ol)) =. { } holds for any 
object o1 E 02 such that object_depth(o1 ) :::; n- 1 (with n > 1). We will 
prove that it also holds for any object 03 E 02, fulfilling the condition: object 
depth (o3) = n. Let' us first assume that 03 =id {[a1: 031; a2: 032; ... ; az: 03z]}. 
From the first equality of this lemma, Definitions 2.10, 2.9 and 2.8 and the 
induction hypothesis one can derive: (o3 0 (:::203)) = {[a1: 031; a2: 032; .. . ; 
az: 03z]} 0 (:::2{[a1: 031; a2: 032; .. . ; az: 03z]}) = {[a1: 031; a2: 032; ... ; az: 03z]} 0 
( {ao1, ao2, ... , aot} 12 {[a1: (:::2031)]} 12 {[a2: (:::2032)]} 12 ... 12 {[az: (:::203z)]}) =. 
({[a1:o31;a2:032; ... ;az:03z]} 0 {ao1,ao2, ... ,aot}) 12 ({[a1:031;a2:032; .. . ; 
az: 03z]} 0 {[a1 : (:::2031)]}) 12 ( {[a1: 031; a2: 032; ... ; az: 03z]} 0 {[a2 : (:::2032)]}) 12 
... 12 ({[a1:031;a2:032; ... ;az:03z]} 0 {[az: (:::203z)]}) = {} 12 {[a1: (o31 0 
(:::2o3l));a2:032; ... ;az:03z]} 12 {[a1:031;a2:(o32 0 (:::2032)); ... ;az :03z]} 12 ... !,2 
{[a1: 031; a2: 032; . .. ; az: (o3z 0 (:::203z))]} = { }. Next, let us assume, that 
03 =id { 031,032, .. . , 03m}, where m 2 2. In such a case, from Definitions 
2.10 and 2.8 and the first equality of this lemma, we have: (o3 0 (:::2o3)) = 
{ 031, 032, · · · , 03m} 0 (:::2{ 031, 032, · · · , 03m}) = { 031, 032, · · · , 03m} 0 ( (:::2{ 031}) 0 
(:::2{032}) 0 ... 0 (:::2{03m})) = ({o31} 12 {o32} 12 ... 12 {o3m}) 0 ((:::2{031}) 0 
(:::2{ 032}) 0 · · · 0 (:::2{ 03m} )) =. ( { 031} 0 ((:::2{ 031}) 0 (:::2{ 032}) 0 · · · 0 (:::2{ 03m} ))) !,2 
( { 032} 0 ((:::2{ 031}) 0 (:::2{ 032}) 0 .. · 0 (:::2{ 03m} ))) 12 .. · 12 ( { 03m} 0 ((:::2{ 031}) 0 
(:::2{032}) 0 ... 0 (:::2{o3m}))). Finally, as a consequence of the former case con
cerning the 03 form, the induction hypothesis, Lemma 2.5 and Definition 2.8 
we deduce: (o3 0 (:::203)) =. { }. This ends the proof of the third equality of the 
lemma. 

(4) The proof of the equality (o1 12 (:::201)) 0 02 =. 02 can be achieved 
according to the same scheme as the former one. • 




